update for api change.
[clang/stm8.git] / lib / CodeGen / CGBuiltin.cpp
blob0ad05a75cc8eb3611e657b9befe69cbfc57db4ff
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "TargetInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/Basic/TargetBuiltins.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm;
29 static void EmitMemoryBarrier(CodeGenFunction &CGF,
30 bool LoadLoad, bool LoadStore,
31 bool StoreLoad, bool StoreStore,
32 bool Device) {
33 Value *True = CGF.Builder.getTrue();
34 Value *False = CGF.Builder.getFalse();
35 Value *C[5] = { LoadLoad ? True : False,
36 LoadStore ? True : False,
37 StoreLoad ? True : False,
38 StoreStore ? True : False,
39 Device ? True : False };
40 CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier),
41 C, C + 5);
44 /// Emit the conversions required to turn the given value into an
45 /// integer of the given size.
46 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47 QualType T, const llvm::IntegerType *IntType) {
48 V = CGF.EmitToMemory(V, T);
50 if (V->getType()->isPointerTy())
51 return CGF.Builder.CreatePtrToInt(V, IntType);
53 assert(V->getType() == IntType);
54 return V;
57 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58 QualType T, const llvm::Type *ResultType) {
59 V = CGF.EmitFromMemory(V, T);
61 if (ResultType->isPointerTy())
62 return CGF.Builder.CreateIntToPtr(V, ResultType);
64 assert(V->getType() == ResultType);
65 return V;
68 // The atomic builtins are also full memory barriers. This is a utility for
69 // wrapping a call to the builtins with memory barriers.
70 static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71 Value **ArgBegin, Value **ArgEnd) {
72 // FIXME: We need a target hook for whether this applies to device memory or
73 // not.
74 bool Device = true;
76 // Create barriers both before and after the call.
77 EmitMemoryBarrier(CGF, true, true, true, true, Device);
78 Value *Result = CGF.Builder.CreateCall(Fn, ArgBegin, ArgEnd);
79 EmitMemoryBarrier(CGF, true, true, true, true, Device);
80 return Result;
83 /// Utility to insert an atomic instruction based on Instrinsic::ID
84 /// and the expression node.
85 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86 Intrinsic::ID Id, const CallExpr *E) {
87 QualType T = E->getType();
88 assert(E->getArg(0)->getType()->isPointerType());
89 assert(CGF.getContext().hasSameUnqualifiedType(T,
90 E->getArg(0)->getType()->getPointeeType()));
91 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
93 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94 unsigned AddrSpace =
95 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
97 const llvm::IntegerType *IntType =
98 llvm::IntegerType::get(CGF.getLLVMContext(),
99 CGF.getContext().getTypeSize(T));
100 const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
102 const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103 llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
105 llvm::Value *Args[2];
106 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108 const llvm::Type *ValueType = Args[1]->getType();
109 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
111 llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
112 Result = EmitFromInt(CGF, Result, T, ValueType);
113 return RValue::get(Result);
116 /// Utility to insert an atomic instruction based Instrinsic::ID and
117 /// the expression node, where the return value is the result of the
118 /// operation.
119 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120 Intrinsic::ID Id, const CallExpr *E,
121 Instruction::BinaryOps Op) {
122 QualType T = E->getType();
123 assert(E->getArg(0)->getType()->isPointerType());
124 assert(CGF.getContext().hasSameUnqualifiedType(T,
125 E->getArg(0)->getType()->getPointeeType()));
126 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
128 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129 unsigned AddrSpace =
130 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
132 const llvm::IntegerType *IntType =
133 llvm::IntegerType::get(CGF.getLLVMContext(),
134 CGF.getContext().getTypeSize(T));
135 const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
137 const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138 llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
140 llvm::Value *Args[2];
141 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142 const llvm::Type *ValueType = Args[1]->getType();
143 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
146 llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
147 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148 Result = EmitFromInt(CGF, Result, T, ValueType);
149 return RValue::get(Result);
152 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153 /// which must be a scalar floating point type.
154 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155 const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156 assert(ValTyP && "isn't scalar fp type!");
158 StringRef FnName;
159 switch (ValTyP->getKind()) {
160 default: assert(0 && "Isn't a scalar fp type!");
161 case BuiltinType::Float: FnName = "fabsf"; break;
162 case BuiltinType::Double: FnName = "fabs"; break;
163 case BuiltinType::LongDouble: FnName = "fabsl"; break;
166 // The prototype is something that takes and returns whatever V's type is.
167 llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
168 false);
169 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171 return CGF.Builder.CreateCall(Fn, V, "abs");
174 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
175 unsigned BuiltinID, const CallExpr *E) {
176 // See if we can constant fold this builtin. If so, don't emit it at all.
177 Expr::EvalResult Result;
178 if (E->Evaluate(Result, CGM.getContext()) &&
179 !Result.hasSideEffects()) {
180 if (Result.Val.isInt())
181 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
182 Result.Val.getInt()));
183 if (Result.Val.isFloat())
184 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
185 Result.Val.getFloat()));
188 switch (BuiltinID) {
189 default: break; // Handle intrinsics and libm functions below.
190 case Builtin::BI__builtin___CFStringMakeConstantString:
191 case Builtin::BI__builtin___NSStringMakeConstantString:
192 return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
193 case Builtin::BI__builtin_stdarg_start:
194 case Builtin::BI__builtin_va_start:
195 case Builtin::BI__builtin_va_end: {
196 Value *ArgValue = EmitVAListRef(E->getArg(0));
197 const llvm::Type *DestType = Int8PtrTy;
198 if (ArgValue->getType() != DestType)
199 ArgValue = Builder.CreateBitCast(ArgValue, DestType,
200 ArgValue->getName().data());
202 Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
203 Intrinsic::vaend : Intrinsic::vastart;
204 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
206 case Builtin::BI__builtin_va_copy: {
207 Value *DstPtr = EmitVAListRef(E->getArg(0));
208 Value *SrcPtr = EmitVAListRef(E->getArg(1));
210 const llvm::Type *Type = Int8PtrTy;
212 DstPtr = Builder.CreateBitCast(DstPtr, Type);
213 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
214 return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
215 DstPtr, SrcPtr));
217 case Builtin::BI__builtin_abs: {
218 Value *ArgValue = EmitScalarExpr(E->getArg(0));
220 Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
221 Value *CmpResult =
222 Builder.CreateICmpSGE(ArgValue,
223 llvm::Constant::getNullValue(ArgValue->getType()),
224 "abscond");
225 Value *Result =
226 Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
228 return RValue::get(Result);
230 case Builtin::BI__builtin_ctz:
231 case Builtin::BI__builtin_ctzl:
232 case Builtin::BI__builtin_ctzll: {
233 Value *ArgValue = EmitScalarExpr(E->getArg(0));
235 const llvm::Type *ArgType = ArgValue->getType();
236 Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
238 const llvm::Type *ResultType = ConvertType(E->getType());
239 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
240 if (Result->getType() != ResultType)
241 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
242 "cast");
243 return RValue::get(Result);
245 case Builtin::BI__builtin_clz:
246 case Builtin::BI__builtin_clzl:
247 case Builtin::BI__builtin_clzll: {
248 Value *ArgValue = EmitScalarExpr(E->getArg(0));
250 const llvm::Type *ArgType = ArgValue->getType();
251 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
253 const llvm::Type *ResultType = ConvertType(E->getType());
254 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
255 if (Result->getType() != ResultType)
256 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
257 "cast");
258 return RValue::get(Result);
260 case Builtin::BI__builtin_ffs:
261 case Builtin::BI__builtin_ffsl:
262 case Builtin::BI__builtin_ffsll: {
263 // ffs(x) -> x ? cttz(x) + 1 : 0
264 Value *ArgValue = EmitScalarExpr(E->getArg(0));
266 const llvm::Type *ArgType = ArgValue->getType();
267 Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
269 const llvm::Type *ResultType = ConvertType(E->getType());
270 Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
271 llvm::ConstantInt::get(ArgType, 1), "tmp");
272 Value *Zero = llvm::Constant::getNullValue(ArgType);
273 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
274 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
275 if (Result->getType() != ResultType)
276 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
277 "cast");
278 return RValue::get(Result);
280 case Builtin::BI__builtin_parity:
281 case Builtin::BI__builtin_parityl:
282 case Builtin::BI__builtin_parityll: {
283 // parity(x) -> ctpop(x) & 1
284 Value *ArgValue = EmitScalarExpr(E->getArg(0));
286 const llvm::Type *ArgType = ArgValue->getType();
287 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
289 const llvm::Type *ResultType = ConvertType(E->getType());
290 Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
291 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
292 "tmp");
293 if (Result->getType() != ResultType)
294 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
295 "cast");
296 return RValue::get(Result);
298 case Builtin::BI__builtin_popcount:
299 case Builtin::BI__builtin_popcountl:
300 case Builtin::BI__builtin_popcountll: {
301 Value *ArgValue = EmitScalarExpr(E->getArg(0));
303 const llvm::Type *ArgType = ArgValue->getType();
304 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
306 const llvm::Type *ResultType = ConvertType(E->getType());
307 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
308 if (Result->getType() != ResultType)
309 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
310 "cast");
311 return RValue::get(Result);
313 case Builtin::BI__builtin_expect: {
314 // FIXME: pass expect through to LLVM
315 Value *ArgValue = EmitScalarExpr(E->getArg(0));
316 if (E->getArg(1)->HasSideEffects(getContext()))
317 (void)EmitScalarExpr(E->getArg(1));
318 return RValue::get(ArgValue);
320 case Builtin::BI__builtin_bswap32:
321 case Builtin::BI__builtin_bswap64: {
322 Value *ArgValue = EmitScalarExpr(E->getArg(0));
323 const llvm::Type *ArgType = ArgValue->getType();
324 Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
325 return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
327 case Builtin::BI__builtin_object_size: {
328 // We pass this builtin onto the optimizer so that it can
329 // figure out the object size in more complex cases.
330 const llvm::Type *ResType[] = {
331 ConvertType(E->getType())
334 // LLVM only supports 0 and 2, make sure that we pass along that
335 // as a boolean.
336 Value *Ty = EmitScalarExpr(E->getArg(1));
337 ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
338 assert(CI);
339 uint64_t val = CI->getZExtValue();
340 CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
342 Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1);
343 return RValue::get(Builder.CreateCall2(F,
344 EmitScalarExpr(E->getArg(0)),
345 CI));
347 case Builtin::BI__builtin_prefetch: {
348 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
349 // FIXME: Technically these constants should of type 'int', yes?
350 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
351 llvm::ConstantInt::get(Int32Ty, 0);
352 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
353 llvm::ConstantInt::get(Int32Ty, 3);
354 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
355 Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
356 return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
358 case Builtin::BI__builtin_trap: {
359 Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
360 return RValue::get(Builder.CreateCall(F));
362 case Builtin::BI__builtin_unreachable: {
363 if (CatchUndefined)
364 EmitBranch(getTrapBB());
365 else
366 Builder.CreateUnreachable();
368 // We do need to preserve an insertion point.
369 EmitBlock(createBasicBlock("unreachable.cont"));
371 return RValue::get(0);
374 case Builtin::BI__builtin_powi:
375 case Builtin::BI__builtin_powif:
376 case Builtin::BI__builtin_powil: {
377 Value *Base = EmitScalarExpr(E->getArg(0));
378 Value *Exponent = EmitScalarExpr(E->getArg(1));
379 const llvm::Type *ArgType = Base->getType();
380 Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
381 return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
384 case Builtin::BI__builtin_isgreater:
385 case Builtin::BI__builtin_isgreaterequal:
386 case Builtin::BI__builtin_isless:
387 case Builtin::BI__builtin_islessequal:
388 case Builtin::BI__builtin_islessgreater:
389 case Builtin::BI__builtin_isunordered: {
390 // Ordered comparisons: we know the arguments to these are matching scalar
391 // floating point values.
392 Value *LHS = EmitScalarExpr(E->getArg(0));
393 Value *RHS = EmitScalarExpr(E->getArg(1));
395 switch (BuiltinID) {
396 default: assert(0 && "Unknown ordered comparison");
397 case Builtin::BI__builtin_isgreater:
398 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
399 break;
400 case Builtin::BI__builtin_isgreaterequal:
401 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
402 break;
403 case Builtin::BI__builtin_isless:
404 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
405 break;
406 case Builtin::BI__builtin_islessequal:
407 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
408 break;
409 case Builtin::BI__builtin_islessgreater:
410 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
411 break;
412 case Builtin::BI__builtin_isunordered:
413 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
414 break;
416 // ZExt bool to int type.
417 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
418 "tmp"));
420 case Builtin::BI__builtin_isnan: {
421 Value *V = EmitScalarExpr(E->getArg(0));
422 V = Builder.CreateFCmpUNO(V, V, "cmp");
423 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
426 case Builtin::BI__builtin_isinf: {
427 // isinf(x) --> fabs(x) == infinity
428 Value *V = EmitScalarExpr(E->getArg(0));
429 V = EmitFAbs(*this, V, E->getArg(0)->getType());
431 V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
432 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
435 // TODO: BI__builtin_isinf_sign
436 // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
438 case Builtin::BI__builtin_isnormal: {
439 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
440 Value *V = EmitScalarExpr(E->getArg(0));
441 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
443 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
444 Value *IsLessThanInf =
445 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
446 APFloat Smallest = APFloat::getSmallestNormalized(
447 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
448 Value *IsNormal =
449 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
450 "isnormal");
451 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
452 V = Builder.CreateAnd(V, IsNormal, "and");
453 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
456 case Builtin::BI__builtin_isfinite: {
457 // isfinite(x) --> x == x && fabs(x) != infinity; }
458 Value *V = EmitScalarExpr(E->getArg(0));
459 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
461 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
462 Value *IsNotInf =
463 Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
465 V = Builder.CreateAnd(Eq, IsNotInf, "and");
466 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
469 case Builtin::BI__builtin_fpclassify: {
470 Value *V = EmitScalarExpr(E->getArg(5));
471 const llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
473 // Create Result
474 BasicBlock *Begin = Builder.GetInsertBlock();
475 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
476 Builder.SetInsertPoint(End);
477 PHINode *Result =
478 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
479 "fpclassify_result");
481 // if (V==0) return FP_ZERO
482 Builder.SetInsertPoint(Begin);
483 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
484 "iszero");
485 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
486 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
487 Builder.CreateCondBr(IsZero, End, NotZero);
488 Result->addIncoming(ZeroLiteral, Begin);
490 // if (V != V) return FP_NAN
491 Builder.SetInsertPoint(NotZero);
492 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
493 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
494 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
495 Builder.CreateCondBr(IsNan, End, NotNan);
496 Result->addIncoming(NanLiteral, NotZero);
498 // if (fabs(V) == infinity) return FP_INFINITY
499 Builder.SetInsertPoint(NotNan);
500 Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
501 Value *IsInf =
502 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
503 "isinf");
504 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
505 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
506 Builder.CreateCondBr(IsInf, End, NotInf);
507 Result->addIncoming(InfLiteral, NotNan);
509 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
510 Builder.SetInsertPoint(NotInf);
511 APFloat Smallest = APFloat::getSmallestNormalized(
512 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
513 Value *IsNormal =
514 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
515 "isnormal");
516 Value *NormalResult =
517 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
518 EmitScalarExpr(E->getArg(3)));
519 Builder.CreateBr(End);
520 Result->addIncoming(NormalResult, NotInf);
522 // return Result
523 Builder.SetInsertPoint(End);
524 return RValue::get(Result);
527 case Builtin::BIalloca:
528 case Builtin::BI__builtin_alloca: {
529 Value *Size = EmitScalarExpr(E->getArg(0));
530 return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
532 case Builtin::BIbzero:
533 case Builtin::BI__builtin_bzero: {
534 Value *Address = EmitScalarExpr(E->getArg(0));
535 Value *SizeVal = EmitScalarExpr(E->getArg(1));
536 Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
537 return RValue::get(Address);
539 case Builtin::BImemcpy:
540 case Builtin::BI__builtin_memcpy: {
541 Value *Address = EmitScalarExpr(E->getArg(0));
542 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
543 Value *SizeVal = EmitScalarExpr(E->getArg(2));
544 Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
545 return RValue::get(Address);
548 case Builtin::BI__builtin___memcpy_chk: {
549 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
550 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
551 !E->getArg(3)->isEvaluatable(CGM.getContext()))
552 break;
553 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
554 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
555 if (Size.ugt(DstSize))
556 break;
557 Value *Dest = EmitScalarExpr(E->getArg(0));
558 Value *Src = EmitScalarExpr(E->getArg(1));
559 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
560 Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
561 return RValue::get(Dest);
564 case Builtin::BI__builtin_objc_memmove_collectable: {
565 Value *Address = EmitScalarExpr(E->getArg(0));
566 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
567 Value *SizeVal = EmitScalarExpr(E->getArg(2));
568 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
569 Address, SrcAddr, SizeVal);
570 return RValue::get(Address);
573 case Builtin::BI__builtin___memmove_chk: {
574 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
575 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
576 !E->getArg(3)->isEvaluatable(CGM.getContext()))
577 break;
578 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
579 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
580 if (Size.ugt(DstSize))
581 break;
582 Value *Dest = EmitScalarExpr(E->getArg(0));
583 Value *Src = EmitScalarExpr(E->getArg(1));
584 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
585 Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
586 return RValue::get(Dest);
589 case Builtin::BImemmove:
590 case Builtin::BI__builtin_memmove: {
591 Value *Address = EmitScalarExpr(E->getArg(0));
592 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
593 Value *SizeVal = EmitScalarExpr(E->getArg(2));
594 Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
595 return RValue::get(Address);
597 case Builtin::BImemset:
598 case Builtin::BI__builtin_memset: {
599 Value *Address = EmitScalarExpr(E->getArg(0));
600 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
601 Builder.getInt8Ty());
602 Value *SizeVal = EmitScalarExpr(E->getArg(2));
603 Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
604 return RValue::get(Address);
606 case Builtin::BI__builtin___memset_chk: {
607 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
608 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
609 !E->getArg(3)->isEvaluatable(CGM.getContext()))
610 break;
611 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
612 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
613 if (Size.ugt(DstSize))
614 break;
615 Value *Address = EmitScalarExpr(E->getArg(0));
616 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
617 Builder.getInt8Ty());
618 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
619 Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
621 return RValue::get(Address);
623 case Builtin::BI__builtin_dwarf_cfa: {
624 // The offset in bytes from the first argument to the CFA.
626 // Why on earth is this in the frontend? Is there any reason at
627 // all that the backend can't reasonably determine this while
628 // lowering llvm.eh.dwarf.cfa()?
630 // TODO: If there's a satisfactory reason, add a target hook for
631 // this instead of hard-coding 0, which is correct for most targets.
632 int32_t Offset = 0;
634 Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0);
635 return RValue::get(Builder.CreateCall(F,
636 llvm::ConstantInt::get(Int32Ty, Offset)));
638 case Builtin::BI__builtin_return_address: {
639 Value *Depth = EmitScalarExpr(E->getArg(0));
640 Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
641 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
642 return RValue::get(Builder.CreateCall(F, Depth));
644 case Builtin::BI__builtin_frame_address: {
645 Value *Depth = EmitScalarExpr(E->getArg(0));
646 Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
647 Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
648 return RValue::get(Builder.CreateCall(F, Depth));
650 case Builtin::BI__builtin_extract_return_addr: {
651 Value *Address = EmitScalarExpr(E->getArg(0));
652 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
653 return RValue::get(Result);
655 case Builtin::BI__builtin_frob_return_addr: {
656 Value *Address = EmitScalarExpr(E->getArg(0));
657 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
658 return RValue::get(Result);
660 case Builtin::BI__builtin_dwarf_sp_column: {
661 const llvm::IntegerType *Ty
662 = cast<llvm::IntegerType>(ConvertType(E->getType()));
663 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
664 if (Column == -1) {
665 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
666 return RValue::get(llvm::UndefValue::get(Ty));
668 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
670 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
671 Value *Address = EmitScalarExpr(E->getArg(0));
672 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
673 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
674 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
676 case Builtin::BI__builtin_eh_return: {
677 Value *Int = EmitScalarExpr(E->getArg(0));
678 Value *Ptr = EmitScalarExpr(E->getArg(1));
680 const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
681 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
682 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
683 Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
684 ? Intrinsic::eh_return_i32
685 : Intrinsic::eh_return_i64,
686 0, 0);
687 Builder.CreateCall2(F, Int, Ptr);
688 Builder.CreateUnreachable();
690 // We do need to preserve an insertion point.
691 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
693 return RValue::get(0);
695 case Builtin::BI__builtin_unwind_init: {
696 Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0);
697 return RValue::get(Builder.CreateCall(F));
699 case Builtin::BI__builtin_extend_pointer: {
700 // Extends a pointer to the size of an _Unwind_Word, which is
701 // uint64_t on all platforms. Generally this gets poked into a
702 // register and eventually used as an address, so if the
703 // addressing registers are wider than pointers and the platform
704 // doesn't implicitly ignore high-order bits when doing
705 // addressing, we need to make sure we zext / sext based on
706 // the platform's expectations.
708 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
710 // Cast the pointer to intptr_t.
711 Value *Ptr = EmitScalarExpr(E->getArg(0));
712 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
714 // If that's 64 bits, we're done.
715 if (IntPtrTy->getBitWidth() == 64)
716 return RValue::get(Result);
718 // Otherwise, ask the codegen data what to do.
719 if (getTargetHooks().extendPointerWithSExt())
720 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
721 else
722 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
724 case Builtin::BI__builtin_setjmp: {
725 // Buffer is a void**.
726 Value *Buf = EmitScalarExpr(E->getArg(0));
728 // Store the frame pointer to the setjmp buffer.
729 Value *FrameAddr =
730 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
731 ConstantInt::get(Int32Ty, 0));
732 Builder.CreateStore(FrameAddr, Buf);
734 // Store the stack pointer to the setjmp buffer.
735 Value *StackAddr =
736 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
737 Value *StackSaveSlot =
738 Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
739 Builder.CreateStore(StackAddr, StackSaveSlot);
741 // Call LLVM's EH setjmp, which is lightweight.
742 Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
743 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
744 return RValue::get(Builder.CreateCall(F, Buf));
746 case Builtin::BI__builtin_longjmp: {
747 Value *Buf = EmitScalarExpr(E->getArg(0));
748 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
750 // Call LLVM's EH longjmp, which is lightweight.
751 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
753 // longjmp doesn't return; mark this as unreachable.
754 Builder.CreateUnreachable();
756 // We do need to preserve an insertion point.
757 EmitBlock(createBasicBlock("longjmp.cont"));
759 return RValue::get(0);
761 case Builtin::BI__sync_fetch_and_add:
762 case Builtin::BI__sync_fetch_and_sub:
763 case Builtin::BI__sync_fetch_and_or:
764 case Builtin::BI__sync_fetch_and_and:
765 case Builtin::BI__sync_fetch_and_xor:
766 case Builtin::BI__sync_add_and_fetch:
767 case Builtin::BI__sync_sub_and_fetch:
768 case Builtin::BI__sync_and_and_fetch:
769 case Builtin::BI__sync_or_and_fetch:
770 case Builtin::BI__sync_xor_and_fetch:
771 case Builtin::BI__sync_val_compare_and_swap:
772 case Builtin::BI__sync_bool_compare_and_swap:
773 case Builtin::BI__sync_lock_test_and_set:
774 case Builtin::BI__sync_lock_release:
775 case Builtin::BI__sync_swap:
776 assert(0 && "Shouldn't make it through sema");
777 case Builtin::BI__sync_fetch_and_add_1:
778 case Builtin::BI__sync_fetch_and_add_2:
779 case Builtin::BI__sync_fetch_and_add_4:
780 case Builtin::BI__sync_fetch_and_add_8:
781 case Builtin::BI__sync_fetch_and_add_16:
782 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
783 case Builtin::BI__sync_fetch_and_sub_1:
784 case Builtin::BI__sync_fetch_and_sub_2:
785 case Builtin::BI__sync_fetch_and_sub_4:
786 case Builtin::BI__sync_fetch_and_sub_8:
787 case Builtin::BI__sync_fetch_and_sub_16:
788 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
789 case Builtin::BI__sync_fetch_and_or_1:
790 case Builtin::BI__sync_fetch_and_or_2:
791 case Builtin::BI__sync_fetch_and_or_4:
792 case Builtin::BI__sync_fetch_and_or_8:
793 case Builtin::BI__sync_fetch_and_or_16:
794 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
795 case Builtin::BI__sync_fetch_and_and_1:
796 case Builtin::BI__sync_fetch_and_and_2:
797 case Builtin::BI__sync_fetch_and_and_4:
798 case Builtin::BI__sync_fetch_and_and_8:
799 case Builtin::BI__sync_fetch_and_and_16:
800 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
801 case Builtin::BI__sync_fetch_and_xor_1:
802 case Builtin::BI__sync_fetch_and_xor_2:
803 case Builtin::BI__sync_fetch_and_xor_4:
804 case Builtin::BI__sync_fetch_and_xor_8:
805 case Builtin::BI__sync_fetch_and_xor_16:
806 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
808 // Clang extensions: not overloaded yet.
809 case Builtin::BI__sync_fetch_and_min:
810 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
811 case Builtin::BI__sync_fetch_and_max:
812 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
813 case Builtin::BI__sync_fetch_and_umin:
814 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
815 case Builtin::BI__sync_fetch_and_umax:
816 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
818 case Builtin::BI__sync_add_and_fetch_1:
819 case Builtin::BI__sync_add_and_fetch_2:
820 case Builtin::BI__sync_add_and_fetch_4:
821 case Builtin::BI__sync_add_and_fetch_8:
822 case Builtin::BI__sync_add_and_fetch_16:
823 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
824 llvm::Instruction::Add);
825 case Builtin::BI__sync_sub_and_fetch_1:
826 case Builtin::BI__sync_sub_and_fetch_2:
827 case Builtin::BI__sync_sub_and_fetch_4:
828 case Builtin::BI__sync_sub_and_fetch_8:
829 case Builtin::BI__sync_sub_and_fetch_16:
830 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
831 llvm::Instruction::Sub);
832 case Builtin::BI__sync_and_and_fetch_1:
833 case Builtin::BI__sync_and_and_fetch_2:
834 case Builtin::BI__sync_and_and_fetch_4:
835 case Builtin::BI__sync_and_and_fetch_8:
836 case Builtin::BI__sync_and_and_fetch_16:
837 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
838 llvm::Instruction::And);
839 case Builtin::BI__sync_or_and_fetch_1:
840 case Builtin::BI__sync_or_and_fetch_2:
841 case Builtin::BI__sync_or_and_fetch_4:
842 case Builtin::BI__sync_or_and_fetch_8:
843 case Builtin::BI__sync_or_and_fetch_16:
844 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
845 llvm::Instruction::Or);
846 case Builtin::BI__sync_xor_and_fetch_1:
847 case Builtin::BI__sync_xor_and_fetch_2:
848 case Builtin::BI__sync_xor_and_fetch_4:
849 case Builtin::BI__sync_xor_and_fetch_8:
850 case Builtin::BI__sync_xor_and_fetch_16:
851 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
852 llvm::Instruction::Xor);
854 case Builtin::BI__sync_val_compare_and_swap_1:
855 case Builtin::BI__sync_val_compare_and_swap_2:
856 case Builtin::BI__sync_val_compare_and_swap_4:
857 case Builtin::BI__sync_val_compare_and_swap_8:
858 case Builtin::BI__sync_val_compare_and_swap_16: {
859 QualType T = E->getType();
860 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
861 unsigned AddrSpace =
862 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
864 const llvm::IntegerType *IntType =
865 llvm::IntegerType::get(getLLVMContext(),
866 getContext().getTypeSize(T));
867 const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
868 const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
869 Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
870 IntrinsicTypes, 2);
872 Value *Args[3];
873 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
874 Args[1] = EmitScalarExpr(E->getArg(1));
875 const llvm::Type *ValueType = Args[1]->getType();
876 Args[1] = EmitToInt(*this, Args[1], T, IntType);
877 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
879 Value *Result = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
880 Result = EmitFromInt(*this, Result, T, ValueType);
881 return RValue::get(Result);
884 case Builtin::BI__sync_bool_compare_and_swap_1:
885 case Builtin::BI__sync_bool_compare_and_swap_2:
886 case Builtin::BI__sync_bool_compare_and_swap_4:
887 case Builtin::BI__sync_bool_compare_and_swap_8:
888 case Builtin::BI__sync_bool_compare_and_swap_16: {
889 QualType T = E->getArg(1)->getType();
890 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
891 unsigned AddrSpace =
892 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
894 const llvm::IntegerType *IntType =
895 llvm::IntegerType::get(getLLVMContext(),
896 getContext().getTypeSize(T));
897 const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
898 const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
899 Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
900 IntrinsicTypes, 2);
902 Value *Args[3];
903 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
904 Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
905 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
907 Value *OldVal = Args[1];
908 Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
909 Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
910 // zext bool to int.
911 Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
912 return RValue::get(Result);
915 case Builtin::BI__sync_swap_1:
916 case Builtin::BI__sync_swap_2:
917 case Builtin::BI__sync_swap_4:
918 case Builtin::BI__sync_swap_8:
919 case Builtin::BI__sync_swap_16:
920 return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
922 case Builtin::BI__sync_lock_test_and_set_1:
923 case Builtin::BI__sync_lock_test_and_set_2:
924 case Builtin::BI__sync_lock_test_and_set_4:
925 case Builtin::BI__sync_lock_test_and_set_8:
926 case Builtin::BI__sync_lock_test_and_set_16:
927 return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
929 case Builtin::BI__sync_lock_release_1:
930 case Builtin::BI__sync_lock_release_2:
931 case Builtin::BI__sync_lock_release_4:
932 case Builtin::BI__sync_lock_release_8:
933 case Builtin::BI__sync_lock_release_16: {
934 Value *Ptr = EmitScalarExpr(E->getArg(0));
935 const llvm::Type *ElTy =
936 cast<llvm::PointerType>(Ptr->getType())->getElementType();
937 llvm::StoreInst *Store =
938 Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
939 Store->setVolatile(true);
940 return RValue::get(0);
943 case Builtin::BI__sync_synchronize: {
944 // We assume like gcc appears to, that this only applies to cached memory.
945 EmitMemoryBarrier(*this, true, true, true, true, false);
946 return RValue::get(0);
949 case Builtin::BI__builtin_llvm_memory_barrier: {
950 Value *C[5] = {
951 EmitScalarExpr(E->getArg(0)),
952 EmitScalarExpr(E->getArg(1)),
953 EmitScalarExpr(E->getArg(2)),
954 EmitScalarExpr(E->getArg(3)),
955 EmitScalarExpr(E->getArg(4))
957 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
958 return RValue::get(0);
961 // Library functions with special handling.
962 case Builtin::BIsqrt:
963 case Builtin::BIsqrtf:
964 case Builtin::BIsqrtl: {
965 // TODO: there is currently no set of optimizer flags
966 // sufficient for us to rewrite sqrt to @llvm.sqrt.
967 // -fmath-errno=0 is not good enough; we need finiteness.
968 // We could probably precondition the call with an ult
969 // against 0, but is that worth the complexity?
970 break;
973 case Builtin::BIpow:
974 case Builtin::BIpowf:
975 case Builtin::BIpowl: {
976 // Rewrite sqrt to intrinsic if allowed.
977 if (!FD->hasAttr<ConstAttr>())
978 break;
979 Value *Base = EmitScalarExpr(E->getArg(0));
980 Value *Exponent = EmitScalarExpr(E->getArg(1));
981 const llvm::Type *ArgType = Base->getType();
982 Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
983 return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
986 case Builtin::BI__builtin_signbit:
987 case Builtin::BI__builtin_signbitf:
988 case Builtin::BI__builtin_signbitl: {
989 LLVMContext &C = CGM.getLLVMContext();
991 Value *Arg = EmitScalarExpr(E->getArg(0));
992 const llvm::Type *ArgTy = Arg->getType();
993 if (ArgTy->isPPC_FP128Ty())
994 break; // FIXME: I'm not sure what the right implementation is here.
995 int ArgWidth = ArgTy->getPrimitiveSizeInBits();
996 const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
997 Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
998 Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
999 Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1000 return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1004 // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
1005 // that function.
1006 if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
1007 getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1008 return EmitCall(E->getCallee()->getType(),
1009 CGM.getBuiltinLibFunction(FD, BuiltinID),
1010 ReturnValueSlot(), E->arg_begin(), E->arg_end(), FD);
1012 // See if we have a target specific intrinsic.
1013 const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1014 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1015 if (const char *Prefix =
1016 llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1017 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1019 if (IntrinsicID != Intrinsic::not_intrinsic) {
1020 SmallVector<Value*, 16> Args;
1022 // Find out if any arguments are required to be integer constant
1023 // expressions.
1024 unsigned ICEArguments = 0;
1025 ASTContext::GetBuiltinTypeError Error;
1026 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1027 assert(Error == ASTContext::GE_None && "Should not codegen an error");
1029 Function *F = CGM.getIntrinsic(IntrinsicID);
1030 const llvm::FunctionType *FTy = F->getFunctionType();
1032 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1033 Value *ArgValue;
1034 // If this is a normal argument, just emit it as a scalar.
1035 if ((ICEArguments & (1 << i)) == 0) {
1036 ArgValue = EmitScalarExpr(E->getArg(i));
1037 } else {
1038 // If this is required to be a constant, constant fold it so that we
1039 // know that the generated intrinsic gets a ConstantInt.
1040 llvm::APSInt Result;
1041 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1042 assert(IsConst && "Constant arg isn't actually constant?");
1043 (void)IsConst;
1044 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1047 // If the intrinsic arg type is different from the builtin arg type
1048 // we need to do a bit cast.
1049 const llvm::Type *PTy = FTy->getParamType(i);
1050 if (PTy != ArgValue->getType()) {
1051 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1052 "Must be able to losslessly bit cast to param");
1053 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1056 Args.push_back(ArgValue);
1059 Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size());
1060 QualType BuiltinRetType = E->getType();
1062 const llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1063 if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1065 if (RetTy != V->getType()) {
1066 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1067 "Must be able to losslessly bit cast result type");
1068 V = Builder.CreateBitCast(V, RetTy);
1071 return RValue::get(V);
1074 // See if we have a target specific builtin that needs to be lowered.
1075 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1076 return RValue::get(V);
1078 ErrorUnsupported(E, "builtin function");
1080 // Unknown builtin, for now just dump it out and return undef.
1081 if (hasAggregateLLVMType(E->getType()))
1082 return RValue::getAggregate(CreateMemTemp(E->getType()));
1083 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1086 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1087 const CallExpr *E) {
1088 switch (Target.getTriple().getArch()) {
1089 case llvm::Triple::arm:
1090 case llvm::Triple::thumb:
1091 return EmitARMBuiltinExpr(BuiltinID, E);
1092 case llvm::Triple::x86:
1093 case llvm::Triple::x86_64:
1094 return EmitX86BuiltinExpr(BuiltinID, E);
1095 case llvm::Triple::ppc:
1096 case llvm::Triple::ppc64:
1097 return EmitPPCBuiltinExpr(BuiltinID, E);
1098 default:
1099 return 0;
1103 static const llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type,
1104 bool q) {
1105 switch (type) {
1106 default: break;
1107 case 0:
1108 case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1109 case 6:
1110 case 7:
1111 case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1112 case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1113 case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1114 case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1116 return 0;
1119 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1120 unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1121 SmallVector<Constant*, 16> Indices(nElts, C);
1122 Value* SV = llvm::ConstantVector::get(Indices);
1123 return Builder.CreateShuffleVector(V, V, SV, "lane");
1126 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1127 const char *name,
1128 unsigned shift, bool rightshift) {
1129 unsigned j = 0;
1130 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1131 ai != ae; ++ai, ++j)
1132 if (shift > 0 && shift == j)
1133 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1134 else
1135 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1137 return Builder.CreateCall(F, Ops.begin(), Ops.end(), name);
1140 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, const llvm::Type *Ty,
1141 bool neg) {
1142 ConstantInt *CI = cast<ConstantInt>(V);
1143 int SV = CI->getSExtValue();
1145 const llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1146 llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1147 SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1148 return llvm::ConstantVector::get(CV);
1151 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1152 /// alignment of the type referenced by the pointer. Skip over implicit
1153 /// casts.
1154 static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1155 unsigned Align = 1;
1156 // Check if the type is a pointer. The implicit cast operand might not be.
1157 while (Addr->getType()->isPointerType()) {
1158 QualType PtTy = Addr->getType()->getPointeeType();
1159 unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1160 if (NewA > Align)
1161 Align = NewA;
1163 // If the address is an implicit cast, repeat with the cast operand.
1164 if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1165 Addr = CastAddr->getSubExpr();
1166 continue;
1168 break;
1170 return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1173 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1174 const CallExpr *E) {
1175 if (BuiltinID == ARM::BI__clear_cache) {
1176 const FunctionDecl *FD = E->getDirectCallee();
1177 // Oddly people write this call without args on occasion and gcc accepts
1178 // it - it's also marked as varargs in the description file.
1179 llvm::SmallVector<Value*, 2> Ops;
1180 for (unsigned i = 0; i < E->getNumArgs(); i++)
1181 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1182 const llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1183 const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1184 llvm::StringRef Name = FD->getName();
1185 return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
1186 Ops.begin(), Ops.end());
1189 if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1190 Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1192 Value *LdPtr = EmitScalarExpr(E->getArg(0));
1193 Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1195 Value *Val0 = Builder.CreateExtractValue(Val, 1);
1196 Value *Val1 = Builder.CreateExtractValue(Val, 0);
1197 Val0 = Builder.CreateZExt(Val0, Int64Ty);
1198 Val1 = Builder.CreateZExt(Val1, Int64Ty);
1200 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1201 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1202 return Builder.CreateOr(Val, Val1);
1205 if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1206 Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1207 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1209 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1210 Value *Tmp = Builder.CreateAlloca(Int64Ty, One, "tmp");
1211 Value *Val = EmitScalarExpr(E->getArg(0));
1212 Builder.CreateStore(Val, Tmp);
1214 Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1215 Val = Builder.CreateLoad(LdPtr);
1217 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1218 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1219 Value *StPtr = EmitScalarExpr(E->getArg(1));
1220 return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1223 llvm::SmallVector<Value*, 4> Ops;
1224 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1225 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1227 llvm::APSInt Result;
1228 const Expr *Arg = E->getArg(E->getNumArgs()-1);
1229 if (!Arg->isIntegerConstantExpr(Result, getContext()))
1230 return 0;
1232 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1233 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1234 // Determine the overloaded type of this builtin.
1235 const llvm::Type *Ty;
1236 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1237 Ty = llvm::Type::getFloatTy(getLLVMContext());
1238 else
1239 Ty = llvm::Type::getDoubleTy(getLLVMContext());
1241 // Determine whether this is an unsigned conversion or not.
1242 bool usgn = Result.getZExtValue() == 1;
1243 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1245 // Call the appropriate intrinsic.
1246 Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1247 return Builder.CreateCall(F, Ops.begin(), Ops.end(), "vcvtr");
1250 // Determine the type of this overloaded NEON intrinsic.
1251 unsigned type = Result.getZExtValue();
1252 bool usgn = type & 0x08;
1253 bool quad = type & 0x10;
1254 bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1255 (void)poly; // Only used in assert()s.
1256 bool rightShift = false;
1258 const llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1259 const llvm::Type *Ty = VTy;
1260 if (!Ty)
1261 return 0;
1263 unsigned Int;
1264 switch (BuiltinID) {
1265 default: return 0;
1266 case ARM::BI__builtin_neon_vabd_v:
1267 case ARM::BI__builtin_neon_vabdq_v:
1268 Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1269 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vabd");
1270 case ARM::BI__builtin_neon_vabs_v:
1271 case ARM::BI__builtin_neon_vabsq_v:
1272 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, &Ty, 1),
1273 Ops, "vabs");
1274 case ARM::BI__builtin_neon_vaddhn_v:
1275 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, &Ty, 1),
1276 Ops, "vaddhn");
1277 case ARM::BI__builtin_neon_vcale_v:
1278 std::swap(Ops[0], Ops[1]);
1279 case ARM::BI__builtin_neon_vcage_v: {
1280 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1281 return EmitNeonCall(F, Ops, "vcage");
1283 case ARM::BI__builtin_neon_vcaleq_v:
1284 std::swap(Ops[0], Ops[1]);
1285 case ARM::BI__builtin_neon_vcageq_v: {
1286 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1287 return EmitNeonCall(F, Ops, "vcage");
1289 case ARM::BI__builtin_neon_vcalt_v:
1290 std::swap(Ops[0], Ops[1]);
1291 case ARM::BI__builtin_neon_vcagt_v: {
1292 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1293 return EmitNeonCall(F, Ops, "vcagt");
1295 case ARM::BI__builtin_neon_vcaltq_v:
1296 std::swap(Ops[0], Ops[1]);
1297 case ARM::BI__builtin_neon_vcagtq_v: {
1298 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1299 return EmitNeonCall(F, Ops, "vcagt");
1301 case ARM::BI__builtin_neon_vcls_v:
1302 case ARM::BI__builtin_neon_vclsq_v: {
1303 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, &Ty, 1);
1304 return EmitNeonCall(F, Ops, "vcls");
1306 case ARM::BI__builtin_neon_vclz_v:
1307 case ARM::BI__builtin_neon_vclzq_v: {
1308 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, &Ty, 1);
1309 return EmitNeonCall(F, Ops, "vclz");
1311 case ARM::BI__builtin_neon_vcnt_v:
1312 case ARM::BI__builtin_neon_vcntq_v: {
1313 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, &Ty, 1);
1314 return EmitNeonCall(F, Ops, "vcnt");
1316 case ARM::BI__builtin_neon_vcvt_f16_v: {
1317 assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1318 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1319 return EmitNeonCall(F, Ops, "vcvt");
1321 case ARM::BI__builtin_neon_vcvt_f32_f16: {
1322 assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1323 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1324 return EmitNeonCall(F, Ops, "vcvt");
1326 case ARM::BI__builtin_neon_vcvt_f32_v:
1327 case ARM::BI__builtin_neon_vcvtq_f32_v: {
1328 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1329 Ty = GetNeonType(getLLVMContext(), 4, quad);
1330 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1331 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1333 case ARM::BI__builtin_neon_vcvt_s32_v:
1334 case ARM::BI__builtin_neon_vcvt_u32_v:
1335 case ARM::BI__builtin_neon_vcvtq_s32_v:
1336 case ARM::BI__builtin_neon_vcvtq_u32_v: {
1337 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1338 return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1339 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1341 case ARM::BI__builtin_neon_vcvt_n_f32_v:
1342 case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1343 const llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1344 Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1345 Function *F = CGM.getIntrinsic(Int, Tys, 2);
1346 return EmitNeonCall(F, Ops, "vcvt_n");
1348 case ARM::BI__builtin_neon_vcvt_n_s32_v:
1349 case ARM::BI__builtin_neon_vcvt_n_u32_v:
1350 case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1351 case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1352 const llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1353 Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1354 Function *F = CGM.getIntrinsic(Int, Tys, 2);
1355 return EmitNeonCall(F, Ops, "vcvt_n");
1357 case ARM::BI__builtin_neon_vext_v:
1358 case ARM::BI__builtin_neon_vextq_v: {
1359 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1360 SmallVector<Constant*, 16> Indices;
1361 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1362 Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1364 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1365 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1366 Value *SV = llvm::ConstantVector::get(Indices);
1367 return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1369 case ARM::BI__builtin_neon_vget_lane_i8:
1370 case ARM::BI__builtin_neon_vget_lane_i16:
1371 case ARM::BI__builtin_neon_vget_lane_i32:
1372 case ARM::BI__builtin_neon_vget_lane_i64:
1373 case ARM::BI__builtin_neon_vget_lane_f32:
1374 case ARM::BI__builtin_neon_vgetq_lane_i8:
1375 case ARM::BI__builtin_neon_vgetq_lane_i16:
1376 case ARM::BI__builtin_neon_vgetq_lane_i32:
1377 case ARM::BI__builtin_neon_vgetq_lane_i64:
1378 case ARM::BI__builtin_neon_vgetq_lane_f32:
1379 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1380 "vget_lane");
1381 case ARM::BI__builtin_neon_vhadd_v:
1382 case ARM::BI__builtin_neon_vhaddq_v:
1383 Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1384 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhadd");
1385 case ARM::BI__builtin_neon_vhsub_v:
1386 case ARM::BI__builtin_neon_vhsubq_v:
1387 Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1388 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhsub");
1389 case ARM::BI__builtin_neon_vld1_v:
1390 case ARM::BI__builtin_neon_vld1q_v:
1391 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1392 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, &Ty, 1),
1393 Ops, "vld1");
1394 case ARM::BI__builtin_neon_vld1_lane_v:
1395 case ARM::BI__builtin_neon_vld1q_lane_v:
1396 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1397 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1398 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1399 Ops[0] = Builder.CreateLoad(Ops[0]);
1400 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1401 case ARM::BI__builtin_neon_vld1_dup_v:
1402 case ARM::BI__builtin_neon_vld1q_dup_v: {
1403 Value *V = UndefValue::get(Ty);
1404 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1405 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1406 Ops[0] = Builder.CreateLoad(Ops[0]);
1407 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1408 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1409 return EmitNeonSplat(Ops[0], CI);
1411 case ARM::BI__builtin_neon_vld2_v:
1412 case ARM::BI__builtin_neon_vld2q_v: {
1413 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, &Ty, 1);
1414 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1415 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1416 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1417 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1418 return Builder.CreateStore(Ops[1], Ops[0]);
1420 case ARM::BI__builtin_neon_vld3_v:
1421 case ARM::BI__builtin_neon_vld3q_v: {
1422 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, &Ty, 1);
1423 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1424 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1425 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1426 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1427 return Builder.CreateStore(Ops[1], Ops[0]);
1429 case ARM::BI__builtin_neon_vld4_v:
1430 case ARM::BI__builtin_neon_vld4q_v: {
1431 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, &Ty, 1);
1432 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1433 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1434 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1435 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1436 return Builder.CreateStore(Ops[1], Ops[0]);
1438 case ARM::BI__builtin_neon_vld2_lane_v:
1439 case ARM::BI__builtin_neon_vld2q_lane_v: {
1440 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, &Ty, 1);
1441 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1442 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1443 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1444 Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld2_lane");
1445 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1446 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1447 return Builder.CreateStore(Ops[1], Ops[0]);
1449 case ARM::BI__builtin_neon_vld3_lane_v:
1450 case ARM::BI__builtin_neon_vld3q_lane_v: {
1451 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, &Ty, 1);
1452 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1453 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1454 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1455 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1456 Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1457 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1458 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1459 return Builder.CreateStore(Ops[1], Ops[0]);
1461 case ARM::BI__builtin_neon_vld4_lane_v:
1462 case ARM::BI__builtin_neon_vld4q_lane_v: {
1463 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, &Ty, 1);
1464 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1465 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1466 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1467 Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1468 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1469 Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1470 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1471 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1472 return Builder.CreateStore(Ops[1], Ops[0]);
1474 case ARM::BI__builtin_neon_vld2_dup_v:
1475 case ARM::BI__builtin_neon_vld3_dup_v:
1476 case ARM::BI__builtin_neon_vld4_dup_v: {
1477 // Handle 64-bit elements as a special-case. There is no "dup" needed.
1478 if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1479 switch (BuiltinID) {
1480 case ARM::BI__builtin_neon_vld2_dup_v:
1481 Int = Intrinsic::arm_neon_vld2;
1482 break;
1483 case ARM::BI__builtin_neon_vld3_dup_v:
1484 Int = Intrinsic::arm_neon_vld2;
1485 break;
1486 case ARM::BI__builtin_neon_vld4_dup_v:
1487 Int = Intrinsic::arm_neon_vld2;
1488 break;
1489 default: assert(0 && "unknown vld_dup intrinsic?");
1491 Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1492 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1493 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1494 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1495 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1496 return Builder.CreateStore(Ops[1], Ops[0]);
1498 switch (BuiltinID) {
1499 case ARM::BI__builtin_neon_vld2_dup_v:
1500 Int = Intrinsic::arm_neon_vld2lane;
1501 break;
1502 case ARM::BI__builtin_neon_vld3_dup_v:
1503 Int = Intrinsic::arm_neon_vld2lane;
1504 break;
1505 case ARM::BI__builtin_neon_vld4_dup_v:
1506 Int = Intrinsic::arm_neon_vld2lane;
1507 break;
1508 default: assert(0 && "unknown vld_dup intrinsic?");
1510 Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1511 const llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1513 SmallVector<Value*, 6> Args;
1514 Args.push_back(Ops[1]);
1515 Args.append(STy->getNumElements(), UndefValue::get(Ty));
1517 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1518 Args.push_back(CI);
1519 Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1521 Ops[1] = Builder.CreateCall(F, Args.begin(), Args.end(), "vld_dup");
1522 // splat lane 0 to all elts in each vector of the result.
1523 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1524 Value *Val = Builder.CreateExtractValue(Ops[1], i);
1525 Value *Elt = Builder.CreateBitCast(Val, Ty);
1526 Elt = EmitNeonSplat(Elt, CI);
1527 Elt = Builder.CreateBitCast(Elt, Val->getType());
1528 Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1530 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1531 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1532 return Builder.CreateStore(Ops[1], Ops[0]);
1534 case ARM::BI__builtin_neon_vmax_v:
1535 case ARM::BI__builtin_neon_vmaxq_v:
1536 Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1537 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmax");
1538 case ARM::BI__builtin_neon_vmin_v:
1539 case ARM::BI__builtin_neon_vminq_v:
1540 Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1541 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmin");
1542 case ARM::BI__builtin_neon_vmovl_v: {
1543 const llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1544 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1545 if (usgn)
1546 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1547 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1549 case ARM::BI__builtin_neon_vmovn_v: {
1550 const llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1551 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1552 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1554 case ARM::BI__builtin_neon_vmul_v:
1555 case ARM::BI__builtin_neon_vmulq_v:
1556 assert(poly && "vmul builtin only supported for polynomial types");
1557 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, &Ty, 1),
1558 Ops, "vmul");
1559 case ARM::BI__builtin_neon_vmull_v:
1560 Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1561 Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1562 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmull");
1563 case ARM::BI__builtin_neon_vpadal_v:
1564 case ARM::BI__builtin_neon_vpadalq_v: {
1565 Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1566 // The source operand type has twice as many elements of half the size.
1567 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1568 const llvm::Type *EltTy =
1569 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1570 const llvm::Type *NarrowTy =
1571 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1572 const llvm::Type *Tys[2] = { Ty, NarrowTy };
1573 return EmitNeonCall(CGM.getIntrinsic(Int, Tys, 2), Ops, "vpadal");
1575 case ARM::BI__builtin_neon_vpadd_v:
1576 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, &Ty, 1),
1577 Ops, "vpadd");
1578 case ARM::BI__builtin_neon_vpaddl_v:
1579 case ARM::BI__builtin_neon_vpaddlq_v: {
1580 Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1581 // The source operand type has twice as many elements of half the size.
1582 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1583 const llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1584 const llvm::Type *NarrowTy =
1585 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1586 const llvm::Type *Tys[2] = { Ty, NarrowTy };
1587 return EmitNeonCall(CGM.getIntrinsic(Int, Tys, 2), Ops, "vpaddl");
1589 case ARM::BI__builtin_neon_vpmax_v:
1590 Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1591 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmax");
1592 case ARM::BI__builtin_neon_vpmin_v:
1593 Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1594 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmin");
1595 case ARM::BI__builtin_neon_vqabs_v:
1596 case ARM::BI__builtin_neon_vqabsq_v:
1597 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, &Ty, 1),
1598 Ops, "vqabs");
1599 case ARM::BI__builtin_neon_vqadd_v:
1600 case ARM::BI__builtin_neon_vqaddq_v:
1601 Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1602 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqadd");
1603 case ARM::BI__builtin_neon_vqdmlal_v:
1604 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, &Ty, 1),
1605 Ops, "vqdmlal");
1606 case ARM::BI__builtin_neon_vqdmlsl_v:
1607 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, &Ty, 1),
1608 Ops, "vqdmlsl");
1609 case ARM::BI__builtin_neon_vqdmulh_v:
1610 case ARM::BI__builtin_neon_vqdmulhq_v:
1611 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, &Ty, 1),
1612 Ops, "vqdmulh");
1613 case ARM::BI__builtin_neon_vqdmull_v:
1614 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, &Ty, 1),
1615 Ops, "vqdmull");
1616 case ARM::BI__builtin_neon_vqmovn_v:
1617 Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1618 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqmovn");
1619 case ARM::BI__builtin_neon_vqmovun_v:
1620 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, &Ty, 1),
1621 Ops, "vqdmull");
1622 case ARM::BI__builtin_neon_vqneg_v:
1623 case ARM::BI__builtin_neon_vqnegq_v:
1624 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, &Ty, 1),
1625 Ops, "vqneg");
1626 case ARM::BI__builtin_neon_vqrdmulh_v:
1627 case ARM::BI__builtin_neon_vqrdmulhq_v:
1628 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, &Ty, 1),
1629 Ops, "vqrdmulh");
1630 case ARM::BI__builtin_neon_vqrshl_v:
1631 case ARM::BI__builtin_neon_vqrshlq_v:
1632 Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1633 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshl");
1634 case ARM::BI__builtin_neon_vqrshrn_n_v:
1635 Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1636 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshrn_n",
1637 1, true);
1638 case ARM::BI__builtin_neon_vqrshrun_n_v:
1639 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, &Ty, 1),
1640 Ops, "vqrshrun_n", 1, true);
1641 case ARM::BI__builtin_neon_vqshl_v:
1642 case ARM::BI__builtin_neon_vqshlq_v:
1643 Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1644 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl");
1645 case ARM::BI__builtin_neon_vqshl_n_v:
1646 case ARM::BI__builtin_neon_vqshlq_n_v:
1647 Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1648 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl_n",
1649 1, false);
1650 case ARM::BI__builtin_neon_vqshlu_n_v:
1651 case ARM::BI__builtin_neon_vqshluq_n_v:
1652 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, &Ty, 1),
1653 Ops, "vqshlu", 1, false);
1654 case ARM::BI__builtin_neon_vqshrn_n_v:
1655 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1656 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshrn_n",
1657 1, true);
1658 case ARM::BI__builtin_neon_vqshrun_n_v:
1659 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, &Ty, 1),
1660 Ops, "vqshrun_n", 1, true);
1661 case ARM::BI__builtin_neon_vqsub_v:
1662 case ARM::BI__builtin_neon_vqsubq_v:
1663 Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1664 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqsub");
1665 case ARM::BI__builtin_neon_vraddhn_v:
1666 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, &Ty, 1),
1667 Ops, "vraddhn");
1668 case ARM::BI__builtin_neon_vrecpe_v:
1669 case ARM::BI__builtin_neon_vrecpeq_v:
1670 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, &Ty, 1),
1671 Ops, "vrecpe");
1672 case ARM::BI__builtin_neon_vrecps_v:
1673 case ARM::BI__builtin_neon_vrecpsq_v:
1674 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, &Ty, 1),
1675 Ops, "vrecps");
1676 case ARM::BI__builtin_neon_vrhadd_v:
1677 case ARM::BI__builtin_neon_vrhaddq_v:
1678 Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1679 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrhadd");
1680 case ARM::BI__builtin_neon_vrshl_v:
1681 case ARM::BI__builtin_neon_vrshlq_v:
1682 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1683 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshl");
1684 case ARM::BI__builtin_neon_vrshrn_n_v:
1685 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, &Ty, 1),
1686 Ops, "vrshrn_n", 1, true);
1687 case ARM::BI__builtin_neon_vrshr_n_v:
1688 case ARM::BI__builtin_neon_vrshrq_n_v:
1689 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1690 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshr_n", 1, true);
1691 case ARM::BI__builtin_neon_vrsqrte_v:
1692 case ARM::BI__builtin_neon_vrsqrteq_v:
1693 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, &Ty, 1),
1694 Ops, "vrsqrte");
1695 case ARM::BI__builtin_neon_vrsqrts_v:
1696 case ARM::BI__builtin_neon_vrsqrtsq_v:
1697 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, &Ty, 1),
1698 Ops, "vrsqrts");
1699 case ARM::BI__builtin_neon_vrsra_n_v:
1700 case ARM::BI__builtin_neon_vrsraq_n_v:
1701 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1702 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1703 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1704 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1705 Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, &Ty, 1), Ops[1], Ops[2]);
1706 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1707 case ARM::BI__builtin_neon_vrsubhn_v:
1708 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, &Ty, 1),
1709 Ops, "vrsubhn");
1710 case ARM::BI__builtin_neon_vset_lane_i8:
1711 case ARM::BI__builtin_neon_vset_lane_i16:
1712 case ARM::BI__builtin_neon_vset_lane_i32:
1713 case ARM::BI__builtin_neon_vset_lane_i64:
1714 case ARM::BI__builtin_neon_vset_lane_f32:
1715 case ARM::BI__builtin_neon_vsetq_lane_i8:
1716 case ARM::BI__builtin_neon_vsetq_lane_i16:
1717 case ARM::BI__builtin_neon_vsetq_lane_i32:
1718 case ARM::BI__builtin_neon_vsetq_lane_i64:
1719 case ARM::BI__builtin_neon_vsetq_lane_f32:
1720 Ops.push_back(EmitScalarExpr(E->getArg(2)));
1721 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1722 case ARM::BI__builtin_neon_vshl_v:
1723 case ARM::BI__builtin_neon_vshlq_v:
1724 Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1725 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshl");
1726 case ARM::BI__builtin_neon_vshll_n_v:
1727 Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1728 return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshll", 1);
1729 case ARM::BI__builtin_neon_vshl_n_v:
1730 case ARM::BI__builtin_neon_vshlq_n_v:
1731 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1732 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1733 case ARM::BI__builtin_neon_vshrn_n_v:
1734 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, &Ty, 1),
1735 Ops, "vshrn_n", 1, true);
1736 case ARM::BI__builtin_neon_vshr_n_v:
1737 case ARM::BI__builtin_neon_vshrq_n_v:
1738 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1739 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1740 if (usgn)
1741 return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1742 else
1743 return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1744 case ARM::BI__builtin_neon_vsri_n_v:
1745 case ARM::BI__builtin_neon_vsriq_n_v:
1746 rightShift = true;
1747 case ARM::BI__builtin_neon_vsli_n_v:
1748 case ARM::BI__builtin_neon_vsliq_n_v:
1749 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1750 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, &Ty, 1),
1751 Ops, "vsli_n");
1752 case ARM::BI__builtin_neon_vsra_n_v:
1753 case ARM::BI__builtin_neon_vsraq_n_v:
1754 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1755 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1756 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1757 if (usgn)
1758 Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1759 else
1760 Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1761 return Builder.CreateAdd(Ops[0], Ops[1]);
1762 case ARM::BI__builtin_neon_vst1_v:
1763 case ARM::BI__builtin_neon_vst1q_v:
1764 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1765 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, &Ty, 1),
1766 Ops, "");
1767 case ARM::BI__builtin_neon_vst1_lane_v:
1768 case ARM::BI__builtin_neon_vst1q_lane_v:
1769 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1770 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1771 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1772 return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1773 case ARM::BI__builtin_neon_vst2_v:
1774 case ARM::BI__builtin_neon_vst2q_v:
1775 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1776 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, &Ty, 1),
1777 Ops, "");
1778 case ARM::BI__builtin_neon_vst2_lane_v:
1779 case ARM::BI__builtin_neon_vst2q_lane_v:
1780 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1781 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, &Ty, 1),
1782 Ops, "");
1783 case ARM::BI__builtin_neon_vst3_v:
1784 case ARM::BI__builtin_neon_vst3q_v:
1785 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1786 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, &Ty, 1),
1787 Ops, "");
1788 case ARM::BI__builtin_neon_vst3_lane_v:
1789 case ARM::BI__builtin_neon_vst3q_lane_v:
1790 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1791 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, &Ty, 1),
1792 Ops, "");
1793 case ARM::BI__builtin_neon_vst4_v:
1794 case ARM::BI__builtin_neon_vst4q_v:
1795 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1796 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, &Ty, 1),
1797 Ops, "");
1798 case ARM::BI__builtin_neon_vst4_lane_v:
1799 case ARM::BI__builtin_neon_vst4q_lane_v:
1800 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1801 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, &Ty, 1),
1802 Ops, "");
1803 case ARM::BI__builtin_neon_vsubhn_v:
1804 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, &Ty, 1),
1805 Ops, "vsubhn");
1806 case ARM::BI__builtin_neon_vtbl1_v:
1807 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1808 Ops, "vtbl1");
1809 case ARM::BI__builtin_neon_vtbl2_v:
1810 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1811 Ops, "vtbl2");
1812 case ARM::BI__builtin_neon_vtbl3_v:
1813 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1814 Ops, "vtbl3");
1815 case ARM::BI__builtin_neon_vtbl4_v:
1816 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1817 Ops, "vtbl4");
1818 case ARM::BI__builtin_neon_vtbx1_v:
1819 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1820 Ops, "vtbx1");
1821 case ARM::BI__builtin_neon_vtbx2_v:
1822 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1823 Ops, "vtbx2");
1824 case ARM::BI__builtin_neon_vtbx3_v:
1825 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1826 Ops, "vtbx3");
1827 case ARM::BI__builtin_neon_vtbx4_v:
1828 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1829 Ops, "vtbx4");
1830 case ARM::BI__builtin_neon_vtst_v:
1831 case ARM::BI__builtin_neon_vtstq_v: {
1832 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1833 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1834 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1835 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1836 ConstantAggregateZero::get(Ty));
1837 return Builder.CreateSExt(Ops[0], Ty, "vtst");
1839 case ARM::BI__builtin_neon_vtrn_v:
1840 case ARM::BI__builtin_neon_vtrnq_v: {
1841 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1842 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1843 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1844 Value *SV = 0;
1846 for (unsigned vi = 0; vi != 2; ++vi) {
1847 SmallVector<Constant*, 16> Indices;
1848 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1849 Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1850 Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1852 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1853 SV = llvm::ConstantVector::get(Indices);
1854 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1855 SV = Builder.CreateStore(SV, Addr);
1857 return SV;
1859 case ARM::BI__builtin_neon_vuzp_v:
1860 case ARM::BI__builtin_neon_vuzpq_v: {
1861 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1862 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1863 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1864 Value *SV = 0;
1866 for (unsigned vi = 0; vi != 2; ++vi) {
1867 SmallVector<Constant*, 16> Indices;
1868 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1869 Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1871 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1872 SV = llvm::ConstantVector::get(Indices);
1873 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1874 SV = Builder.CreateStore(SV, Addr);
1876 return SV;
1878 case ARM::BI__builtin_neon_vzip_v:
1879 case ARM::BI__builtin_neon_vzipq_v: {
1880 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1881 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1882 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1883 Value *SV = 0;
1885 for (unsigned vi = 0; vi != 2; ++vi) {
1886 SmallVector<Constant*, 16> Indices;
1887 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1888 Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1889 Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1891 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1892 SV = llvm::ConstantVector::get(Indices);
1893 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1894 SV = Builder.CreateStore(SV, Addr);
1896 return SV;
1901 llvm::Value *CodeGenFunction::
1902 BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1903 assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1904 "Not a power-of-two sized vector!");
1905 bool AllConstants = true;
1906 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1907 AllConstants &= isa<Constant>(Ops[i]);
1909 // If this is a constant vector, create a ConstantVector.
1910 if (AllConstants) {
1911 std::vector<llvm::Constant*> CstOps;
1912 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1913 CstOps.push_back(cast<Constant>(Ops[i]));
1914 return llvm::ConstantVector::get(CstOps);
1917 // Otherwise, insertelement the values to build the vector.
1918 Value *Result =
1919 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1921 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1922 Result = Builder.CreateInsertElement(Result, Ops[i],
1923 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1925 return Result;
1928 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1929 const CallExpr *E) {
1930 llvm::SmallVector<Value*, 4> Ops;
1932 // Find out if any arguments are required to be integer constant expressions.
1933 unsigned ICEArguments = 0;
1934 ASTContext::GetBuiltinTypeError Error;
1935 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1936 assert(Error == ASTContext::GE_None && "Should not codegen an error");
1938 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1939 // If this is a normal argument, just emit it as a scalar.
1940 if ((ICEArguments & (1 << i)) == 0) {
1941 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1942 continue;
1945 // If this is required to be a constant, constant fold it so that we know
1946 // that the generated intrinsic gets a ConstantInt.
1947 llvm::APSInt Result;
1948 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1949 assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1950 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1953 switch (BuiltinID) {
1954 default: return 0;
1955 case X86::BI__builtin_ia32_pslldi128:
1956 case X86::BI__builtin_ia32_psllqi128:
1957 case X86::BI__builtin_ia32_psllwi128:
1958 case X86::BI__builtin_ia32_psradi128:
1959 case X86::BI__builtin_ia32_psrawi128:
1960 case X86::BI__builtin_ia32_psrldi128:
1961 case X86::BI__builtin_ia32_psrlqi128:
1962 case X86::BI__builtin_ia32_psrlwi128: {
1963 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1964 const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1965 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1966 Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1967 Ops[1], Zero, "insert");
1968 Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1969 const char *name = 0;
1970 Intrinsic::ID ID = Intrinsic::not_intrinsic;
1972 switch (BuiltinID) {
1973 default: assert(0 && "Unsupported shift intrinsic!");
1974 case X86::BI__builtin_ia32_pslldi128:
1975 name = "pslldi";
1976 ID = Intrinsic::x86_sse2_psll_d;
1977 break;
1978 case X86::BI__builtin_ia32_psllqi128:
1979 name = "psllqi";
1980 ID = Intrinsic::x86_sse2_psll_q;
1981 break;
1982 case X86::BI__builtin_ia32_psllwi128:
1983 name = "psllwi";
1984 ID = Intrinsic::x86_sse2_psll_w;
1985 break;
1986 case X86::BI__builtin_ia32_psradi128:
1987 name = "psradi";
1988 ID = Intrinsic::x86_sse2_psra_d;
1989 break;
1990 case X86::BI__builtin_ia32_psrawi128:
1991 name = "psrawi";
1992 ID = Intrinsic::x86_sse2_psra_w;
1993 break;
1994 case X86::BI__builtin_ia32_psrldi128:
1995 name = "psrldi";
1996 ID = Intrinsic::x86_sse2_psrl_d;
1997 break;
1998 case X86::BI__builtin_ia32_psrlqi128:
1999 name = "psrlqi";
2000 ID = Intrinsic::x86_sse2_psrl_q;
2001 break;
2002 case X86::BI__builtin_ia32_psrlwi128:
2003 name = "psrlwi";
2004 ID = Intrinsic::x86_sse2_psrl_w;
2005 break;
2007 llvm::Function *F = CGM.getIntrinsic(ID);
2008 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
2010 case X86::BI__builtin_ia32_vec_init_v8qi:
2011 case X86::BI__builtin_ia32_vec_init_v4hi:
2012 case X86::BI__builtin_ia32_vec_init_v2si:
2013 return Builder.CreateBitCast(BuildVector(Ops),
2014 llvm::Type::getX86_MMXTy(getLLVMContext()));
2015 case X86::BI__builtin_ia32_vec_ext_v2si:
2016 return Builder.CreateExtractElement(Ops[0],
2017 llvm::ConstantInt::get(Ops[1]->getType(), 0));
2018 case X86::BI__builtin_ia32_pslldi:
2019 case X86::BI__builtin_ia32_psllqi:
2020 case X86::BI__builtin_ia32_psllwi:
2021 case X86::BI__builtin_ia32_psradi:
2022 case X86::BI__builtin_ia32_psrawi:
2023 case X86::BI__builtin_ia32_psrldi:
2024 case X86::BI__builtin_ia32_psrlqi:
2025 case X86::BI__builtin_ia32_psrlwi: {
2026 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2027 const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2028 Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2029 const char *name = 0;
2030 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2032 switch (BuiltinID) {
2033 default: assert(0 && "Unsupported shift intrinsic!");
2034 case X86::BI__builtin_ia32_pslldi:
2035 name = "pslldi";
2036 ID = Intrinsic::x86_mmx_psll_d;
2037 break;
2038 case X86::BI__builtin_ia32_psllqi:
2039 name = "psllqi";
2040 ID = Intrinsic::x86_mmx_psll_q;
2041 break;
2042 case X86::BI__builtin_ia32_psllwi:
2043 name = "psllwi";
2044 ID = Intrinsic::x86_mmx_psll_w;
2045 break;
2046 case X86::BI__builtin_ia32_psradi:
2047 name = "psradi";
2048 ID = Intrinsic::x86_mmx_psra_d;
2049 break;
2050 case X86::BI__builtin_ia32_psrawi:
2051 name = "psrawi";
2052 ID = Intrinsic::x86_mmx_psra_w;
2053 break;
2054 case X86::BI__builtin_ia32_psrldi:
2055 name = "psrldi";
2056 ID = Intrinsic::x86_mmx_psrl_d;
2057 break;
2058 case X86::BI__builtin_ia32_psrlqi:
2059 name = "psrlqi";
2060 ID = Intrinsic::x86_mmx_psrl_q;
2061 break;
2062 case X86::BI__builtin_ia32_psrlwi:
2063 name = "psrlwi";
2064 ID = Intrinsic::x86_mmx_psrl_w;
2065 break;
2067 llvm::Function *F = CGM.getIntrinsic(ID);
2068 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
2070 case X86::BI__builtin_ia32_cmpps: {
2071 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2072 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps");
2074 case X86::BI__builtin_ia32_cmpss: {
2075 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2076 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss");
2078 case X86::BI__builtin_ia32_ldmxcsr: {
2079 const llvm::Type *PtrTy = Int8PtrTy;
2080 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2081 Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2082 Builder.CreateStore(Ops[0], Tmp);
2083 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2084 Builder.CreateBitCast(Tmp, PtrTy));
2086 case X86::BI__builtin_ia32_stmxcsr: {
2087 const llvm::Type *PtrTy = Int8PtrTy;
2088 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2089 Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2090 One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2091 Builder.CreateBitCast(Tmp, PtrTy));
2092 return Builder.CreateLoad(Tmp, "stmxcsr");
2094 case X86::BI__builtin_ia32_cmppd: {
2095 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2096 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd");
2098 case X86::BI__builtin_ia32_cmpsd: {
2099 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2100 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd");
2102 case X86::BI__builtin_ia32_storehps:
2103 case X86::BI__builtin_ia32_storelps: {
2104 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2105 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2107 // cast val v2i64
2108 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2110 // extract (0, 1)
2111 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2112 llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2113 Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2115 // cast pointer to i64 & store
2116 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2117 return Builder.CreateStore(Ops[1], Ops[0]);
2119 case X86::BI__builtin_ia32_palignr: {
2120 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2122 // If palignr is shifting the pair of input vectors less than 9 bytes,
2123 // emit a shuffle instruction.
2124 if (shiftVal <= 8) {
2125 llvm::SmallVector<llvm::Constant*, 8> Indices;
2126 for (unsigned i = 0; i != 8; ++i)
2127 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2129 Value* SV = llvm::ConstantVector::get(Indices);
2130 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2133 // If palignr is shifting the pair of input vectors more than 8 but less
2134 // than 16 bytes, emit a logical right shift of the destination.
2135 if (shiftVal < 16) {
2136 // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2137 const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2139 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2140 Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2142 // create i32 constant
2143 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2144 return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2147 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2148 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2150 case X86::BI__builtin_ia32_palignr128: {
2151 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2153 // If palignr is shifting the pair of input vectors less than 17 bytes,
2154 // emit a shuffle instruction.
2155 if (shiftVal <= 16) {
2156 llvm::SmallVector<llvm::Constant*, 16> Indices;
2157 for (unsigned i = 0; i != 16; ++i)
2158 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2160 Value* SV = llvm::ConstantVector::get(Indices);
2161 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2164 // If palignr is shifting the pair of input vectors more than 16 but less
2165 // than 32 bytes, emit a logical right shift of the destination.
2166 if (shiftVal < 32) {
2167 const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2169 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2170 Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2172 // create i32 constant
2173 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2174 return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2177 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2178 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2180 case X86::BI__builtin_ia32_movntps:
2181 case X86::BI__builtin_ia32_movntpd:
2182 case X86::BI__builtin_ia32_movntdq:
2183 case X86::BI__builtin_ia32_movnti: {
2184 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2185 Builder.getInt32(1));
2187 // Convert the type of the pointer to a pointer to the stored type.
2188 Value *BC = Builder.CreateBitCast(Ops[0],
2189 llvm::PointerType::getUnqual(Ops[1]->getType()),
2190 "cast");
2191 StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2192 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2193 SI->setAlignment(16);
2194 return SI;
2196 // 3DNow!
2197 case X86::BI__builtin_ia32_pavgusb:
2198 case X86::BI__builtin_ia32_pf2id:
2199 case X86::BI__builtin_ia32_pfacc:
2200 case X86::BI__builtin_ia32_pfadd:
2201 case X86::BI__builtin_ia32_pfcmpeq:
2202 case X86::BI__builtin_ia32_pfcmpge:
2203 case X86::BI__builtin_ia32_pfcmpgt:
2204 case X86::BI__builtin_ia32_pfmax:
2205 case X86::BI__builtin_ia32_pfmin:
2206 case X86::BI__builtin_ia32_pfmul:
2207 case X86::BI__builtin_ia32_pfrcp:
2208 case X86::BI__builtin_ia32_pfrcpit1:
2209 case X86::BI__builtin_ia32_pfrcpit2:
2210 case X86::BI__builtin_ia32_pfrsqrt:
2211 case X86::BI__builtin_ia32_pfrsqit1:
2212 case X86::BI__builtin_ia32_pfrsqrtit1:
2213 case X86::BI__builtin_ia32_pfsub:
2214 case X86::BI__builtin_ia32_pfsubr:
2215 case X86::BI__builtin_ia32_pi2fd:
2216 case X86::BI__builtin_ia32_pmulhrw:
2217 case X86::BI__builtin_ia32_pf2iw:
2218 case X86::BI__builtin_ia32_pfnacc:
2219 case X86::BI__builtin_ia32_pfpnacc:
2220 case X86::BI__builtin_ia32_pi2fw:
2221 case X86::BI__builtin_ia32_pswapdsf:
2222 case X86::BI__builtin_ia32_pswapdsi: {
2223 const char *name = 0;
2224 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2225 switch(BuiltinID) {
2226 case X86::BI__builtin_ia32_pavgusb:
2227 name = "pavgusb";
2228 ID = Intrinsic::x86_3dnow_pavgusb;
2229 break;
2230 case X86::BI__builtin_ia32_pf2id:
2231 name = "pf2id";
2232 ID = Intrinsic::x86_3dnow_pf2id;
2233 break;
2234 case X86::BI__builtin_ia32_pfacc:
2235 name = "pfacc";
2236 ID = Intrinsic::x86_3dnow_pfacc;
2237 break;
2238 case X86::BI__builtin_ia32_pfadd:
2239 name = "pfadd";
2240 ID = Intrinsic::x86_3dnow_pfadd;
2241 break;
2242 case X86::BI__builtin_ia32_pfcmpeq:
2243 name = "pfcmpeq";
2244 ID = Intrinsic::x86_3dnow_pfcmpeq;
2245 break;
2246 case X86::BI__builtin_ia32_pfcmpge:
2247 name = "pfcmpge";
2248 ID = Intrinsic::x86_3dnow_pfcmpge;
2249 break;
2250 case X86::BI__builtin_ia32_pfcmpgt:
2251 name = "pfcmpgt";
2252 ID = Intrinsic::x86_3dnow_pfcmpgt;
2253 break;
2254 case X86::BI__builtin_ia32_pfmax:
2255 name = "pfmax";
2256 ID = Intrinsic::x86_3dnow_pfmax;
2257 break;
2258 case X86::BI__builtin_ia32_pfmin:
2259 name = "pfmin";
2260 ID = Intrinsic::x86_3dnow_pfmin;
2261 break;
2262 case X86::BI__builtin_ia32_pfmul:
2263 name = "pfmul";
2264 ID = Intrinsic::x86_3dnow_pfmul;
2265 break;
2266 case X86::BI__builtin_ia32_pfrcp:
2267 name = "pfrcp";
2268 ID = Intrinsic::x86_3dnow_pfrcp;
2269 break;
2270 case X86::BI__builtin_ia32_pfrcpit1:
2271 name = "pfrcpit1";
2272 ID = Intrinsic::x86_3dnow_pfrcpit1;
2273 break;
2274 case X86::BI__builtin_ia32_pfrcpit2:
2275 name = "pfrcpit2";
2276 ID = Intrinsic::x86_3dnow_pfrcpit2;
2277 break;
2278 case X86::BI__builtin_ia32_pfrsqrt:
2279 name = "pfrsqrt";
2280 ID = Intrinsic::x86_3dnow_pfrsqrt;
2281 break;
2282 case X86::BI__builtin_ia32_pfrsqit1:
2283 case X86::BI__builtin_ia32_pfrsqrtit1:
2284 name = "pfrsqit1";
2285 ID = Intrinsic::x86_3dnow_pfrsqit1;
2286 break;
2287 case X86::BI__builtin_ia32_pfsub:
2288 name = "pfsub";
2289 ID = Intrinsic::x86_3dnow_pfsub;
2290 break;
2291 case X86::BI__builtin_ia32_pfsubr:
2292 name = "pfsubr";
2293 ID = Intrinsic::x86_3dnow_pfsubr;
2294 break;
2295 case X86::BI__builtin_ia32_pi2fd:
2296 name = "pi2fd";
2297 ID = Intrinsic::x86_3dnow_pi2fd;
2298 break;
2299 case X86::BI__builtin_ia32_pmulhrw:
2300 name = "pmulhrw";
2301 ID = Intrinsic::x86_3dnow_pmulhrw;
2302 break;
2303 case X86::BI__builtin_ia32_pf2iw:
2304 name = "pf2iw";
2305 ID = Intrinsic::x86_3dnowa_pf2iw;
2306 break;
2307 case X86::BI__builtin_ia32_pfnacc:
2308 name = "pfnacc";
2309 ID = Intrinsic::x86_3dnowa_pfnacc;
2310 break;
2311 case X86::BI__builtin_ia32_pfpnacc:
2312 name = "pfpnacc";
2313 ID = Intrinsic::x86_3dnowa_pfpnacc;
2314 break;
2315 case X86::BI__builtin_ia32_pi2fw:
2316 name = "pi2fw";
2317 ID = Intrinsic::x86_3dnowa_pi2fw;
2318 break;
2319 case X86::BI__builtin_ia32_pswapdsf:
2320 case X86::BI__builtin_ia32_pswapdsi:
2321 name = "pswapd";
2322 ID = Intrinsic::x86_3dnowa_pswapd;
2323 break;
2325 llvm::Function *F = CGM.getIntrinsic(ID);
2326 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
2331 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2332 const CallExpr *E) {
2333 llvm::SmallVector<Value*, 4> Ops;
2335 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2336 Ops.push_back(EmitScalarExpr(E->getArg(i)));
2338 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2340 switch (BuiltinID) {
2341 default: return 0;
2343 // vec_ld, vec_lvsl, vec_lvsr
2344 case PPC::BI__builtin_altivec_lvx:
2345 case PPC::BI__builtin_altivec_lvxl:
2346 case PPC::BI__builtin_altivec_lvebx:
2347 case PPC::BI__builtin_altivec_lvehx:
2348 case PPC::BI__builtin_altivec_lvewx:
2349 case PPC::BI__builtin_altivec_lvsl:
2350 case PPC::BI__builtin_altivec_lvsr:
2352 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2354 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2355 Ops.pop_back();
2357 switch (BuiltinID) {
2358 default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2359 case PPC::BI__builtin_altivec_lvx:
2360 ID = Intrinsic::ppc_altivec_lvx;
2361 break;
2362 case PPC::BI__builtin_altivec_lvxl:
2363 ID = Intrinsic::ppc_altivec_lvxl;
2364 break;
2365 case PPC::BI__builtin_altivec_lvebx:
2366 ID = Intrinsic::ppc_altivec_lvebx;
2367 break;
2368 case PPC::BI__builtin_altivec_lvehx:
2369 ID = Intrinsic::ppc_altivec_lvehx;
2370 break;
2371 case PPC::BI__builtin_altivec_lvewx:
2372 ID = Intrinsic::ppc_altivec_lvewx;
2373 break;
2374 case PPC::BI__builtin_altivec_lvsl:
2375 ID = Intrinsic::ppc_altivec_lvsl;
2376 break;
2377 case PPC::BI__builtin_altivec_lvsr:
2378 ID = Intrinsic::ppc_altivec_lvsr;
2379 break;
2381 llvm::Function *F = CGM.getIntrinsic(ID);
2382 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2385 // vec_st
2386 case PPC::BI__builtin_altivec_stvx:
2387 case PPC::BI__builtin_altivec_stvxl:
2388 case PPC::BI__builtin_altivec_stvebx:
2389 case PPC::BI__builtin_altivec_stvehx:
2390 case PPC::BI__builtin_altivec_stvewx:
2392 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2393 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2394 Ops.pop_back();
2396 switch (BuiltinID) {
2397 default: assert(0 && "Unsupported st intrinsic!");
2398 case PPC::BI__builtin_altivec_stvx:
2399 ID = Intrinsic::ppc_altivec_stvx;
2400 break;
2401 case PPC::BI__builtin_altivec_stvxl:
2402 ID = Intrinsic::ppc_altivec_stvxl;
2403 break;
2404 case PPC::BI__builtin_altivec_stvebx:
2405 ID = Intrinsic::ppc_altivec_stvebx;
2406 break;
2407 case PPC::BI__builtin_altivec_stvehx:
2408 ID = Intrinsic::ppc_altivec_stvehx;
2409 break;
2410 case PPC::BI__builtin_altivec_stvewx:
2411 ID = Intrinsic::ppc_altivec_stvewx;
2412 break;
2414 llvm::Function *F = CGM.getIntrinsic(ID);
2415 return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2418 return 0;