Add include needed for MSVC.
[clang/acc.git] / lib / Sema / SemaOverload.cpp
blob503f226fd66c079a37b58e8f6f8bc84cbebf005d
1 //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
12 //===----------------------------------------------------------------------===//
14 #include "Sema.h"
15 #include "SemaInherit.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/Compiler.h"
25 #include <algorithm>
27 namespace clang {
29 /// GetConversionCategory - Retrieve the implicit conversion
30 /// category corresponding to the given implicit conversion kind.
31 ImplicitConversionCategory
32 GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
42 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
50 ICC_Conversion,
51 ICC_Conversion,
52 ICC_Conversion
54 return Category[(int)Kind];
57 /// GetConversionRank - Retrieve the implicit conversion rank
58 /// corresponding to the given implicit conversion kind.
59 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
69 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
72 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
77 ICR_Conversion,
78 ICR_Conversion,
79 ICR_Conversion
81 return Rank[(int)Kind];
84 /// GetImplicitConversionName - Return the name of this kind of
85 /// implicit conversion.
86 const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
95 "Complex promotion",
96 "Integral conversion",
97 "Floating conversion",
98 "Complex conversion",
99 "Floating-integral conversion",
100 "Complex-real conversion",
101 "Pointer conversion",
102 "Pointer-to-member conversion",
103 "Boolean conversion",
104 "Compatible-types conversion",
105 "Derived-to-base conversion"
107 return Name[Kind];
110 /// StandardConversionSequence - Set the standard conversion
111 /// sequence to the identity conversion.
112 void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
119 RRefBinding = false;
120 CopyConstructor = 0;
123 /// getRank - Retrieve the rank of this standard conversion sequence
124 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125 /// implicit conversions.
126 ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
137 /// isPointerConversionToBool - Determines whether this conversion is
138 /// a conversion of a pointer or pointer-to-member to bool. This is
139 /// used as part of the ranking of standard conversion sequences
140 /// (C++ 13.3.3.2p4).
141 bool StandardConversionSequence::isPointerConversionToBool() const
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
155 return false;
158 /// isPointerConversionToVoidPointer - Determines whether this
159 /// conversion is a conversion of a pointer to a void pointer. This is
160 /// used as part of the ranking of standard conversion sequences (C++
161 /// 13.3.3.2p4).
162 bool
163 StandardConversionSequence::
164 isPointerConversionToVoidPointer(ASTContext& Context) const
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
179 return false;
182 /// DebugPrint - Print this standard conversion sequence to standard
183 /// error. Useful for debugging overloading issues.
184 void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
204 PrintedSomething = true;
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
220 /// DebugPrint - Print this user-defined conversion sequence to standard
221 /// error. Useful for debugging overloading issues.
222 void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
234 /// DebugPrint - Print this implicit conversion sequence to standard
235 /// error. Useful for debugging overloading issues.
236 void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
254 fprintf(stderr, "\n");
257 // IsOverload - Determine whether the given New declaration is an
258 // overload of the Old declaration. This routine returns false if New
259 // and Old cannot be overloaded, e.g., if they are functions with the
260 // same signature (C++ 1.3.10) or if the Old declaration isn't a
261 // function (or overload set). When it does return false and Old is an
262 // OverloadedFunctionDecl, MatchedDecl will be set to point to the
263 // FunctionDecl that New cannot be overloaded with.
265 // Example: Given the following input:
267 // void f(int, float); // #1
268 // void f(int, int); // #2
269 // int f(int, int); // #3
271 // When we process #1, there is no previous declaration of "f",
272 // so IsOverload will not be used.
274 // When we process #2, Old is a FunctionDecl for #1. By comparing the
275 // parameter types, we see that #1 and #2 are overloaded (since they
276 // have different signatures), so this routine returns false;
277 // MatchedDecl is unchanged.
279 // When we process #3, Old is an OverloadedFunctionDecl containing #1
280 // and #2. We compare the signatures of #3 to #1 (they're overloaded,
281 // so we do nothing) and then #3 to #2. Since the signatures of #3 and
282 // #2 are identical (return types of functions are not part of the
283 // signature), IsOverload returns false and MatchedDecl will be set to
284 // point to the FunctionDecl for #2.
285 bool
286 Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
309 // C++ [temp.fct]p2:
310 // A function template can be overloaded with other function templates
311 // and with normal (non-template) functions.
312 if ((OldTemplate == 0) != (NewTemplate == 0))
313 return true;
315 // Is the function New an overload of the function Old?
316 QualType OldQType = Context.getCanonicalType(Old->getType());
317 QualType NewQType = Context.getCanonicalType(New->getType());
319 // Compare the signatures (C++ 1.3.10) of the two functions to
320 // determine whether they are overloads. If we find any mismatch
321 // in the signature, they are overloads.
323 // If either of these functions is a K&R-style function (no
324 // prototype), then we consider them to have matching signatures.
325 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327 return false;
329 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
332 // The signature of a function includes the types of its
333 // parameters (C++ 1.3.10), which includes the presence or absence
334 // of the ellipsis; see C++ DR 357).
335 if (OldQType != NewQType &&
336 (OldType->getNumArgs() != NewType->getNumArgs() ||
337 OldType->isVariadic() != NewType->isVariadic() ||
338 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339 NewType->arg_type_begin())))
340 return true;
342 // C++ [temp.over.link]p4:
343 // The signature of a function template consists of its function
344 // signature, its return type and its template parameter list. The names
345 // of the template parameters are significant only for establishing the
346 // relationship between the template parameters and the rest of the
347 // signature.
349 // We check the return type and template parameter lists for function
350 // templates first; the remaining checks follow.
351 if (NewTemplate &&
352 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353 OldTemplate->getTemplateParameters(),
354 false, false, SourceLocation()) ||
355 OldType->getResultType() != NewType->getResultType()))
356 return true;
358 // If the function is a class member, its signature includes the
359 // cv-qualifiers (if any) on the function itself.
361 // As part of this, also check whether one of the member functions
362 // is static, in which case they are not overloads (C++
363 // 13.1p2). While not part of the definition of the signature,
364 // this check is important to determine whether these functions
365 // can be overloaded.
366 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368 if (OldMethod && NewMethod &&
369 !OldMethod->isStatic() && !NewMethod->isStatic() &&
370 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371 return true;
373 // The signatures match; this is not an overload.
374 return false;
375 } else {
376 // (C++ 13p1):
377 // Only function declarations can be overloaded; object and type
378 // declarations cannot be overloaded.
379 return false;
383 /// TryImplicitConversion - Attempt to perform an implicit conversion
384 /// from the given expression (Expr) to the given type (ToType). This
385 /// function returns an implicit conversion sequence that can be used
386 /// to perform the initialization. Given
388 /// void f(float f);
389 /// void g(int i) { f(i); }
391 /// this routine would produce an implicit conversion sequence to
392 /// describe the initialization of f from i, which will be a standard
393 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
394 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
396 /// Note that this routine only determines how the conversion can be
397 /// performed; it does not actually perform the conversion. As such,
398 /// it will not produce any diagnostics if no conversion is available,
399 /// but will instead return an implicit conversion sequence of kind
400 /// "BadConversion".
402 /// If @p SuppressUserConversions, then user-defined conversions are
403 /// not permitted.
404 /// If @p AllowExplicit, then explicit user-defined conversions are
405 /// permitted.
406 /// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407 /// no matter its actual lvalueness.
408 ImplicitConversionSequence
409 Sema::TryImplicitConversion(Expr* From, QualType ToType,
410 bool SuppressUserConversions,
411 bool AllowExplicit, bool ForceRValue)
413 ImplicitConversionSequence ICS;
414 if (IsStandardConversion(From, ToType, ICS.Standard))
415 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416 else if (getLangOptions().CPlusPlus &&
417 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418 !SuppressUserConversions, AllowExplicit,
419 ForceRValue)) {
420 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421 // C++ [over.ics.user]p4:
422 // A conversion of an expression of class type to the same class
423 // type is given Exact Match rank, and a conversion of an
424 // expression of class type to a base class of that type is
425 // given Conversion rank, in spite of the fact that a copy
426 // constructor (i.e., a user-defined conversion function) is
427 // called for those cases.
428 if (CXXConstructorDecl *Constructor
429 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430 QualType FromCanon
431 = Context.getCanonicalType(From->getType().getUnqualifiedType());
432 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434 // Turn this into a "standard" conversion sequence, so that it
435 // gets ranked with standard conversion sequences.
436 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437 ICS.Standard.setAsIdentityConversion();
438 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440 ICS.Standard.CopyConstructor = Constructor;
441 if (ToCanon != FromCanon)
442 ICS.Standard.Second = ICK_Derived_To_Base;
446 // C++ [over.best.ics]p4:
447 // However, when considering the argument of a user-defined
448 // conversion function that is a candidate by 13.3.1.3 when
449 // invoked for the copying of the temporary in the second step
450 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451 // 13.3.1.6 in all cases, only standard conversion sequences and
452 // ellipsis conversion sequences are allowed.
453 if (SuppressUserConversions &&
454 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456 } else
457 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
459 return ICS;
462 /// IsStandardConversion - Determines whether there is a standard
463 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464 /// expression From to the type ToType. Standard conversion sequences
465 /// only consider non-class types; for conversions that involve class
466 /// types, use TryImplicitConversion. If a conversion exists, SCS will
467 /// contain the standard conversion sequence required to perform this
468 /// conversion and this routine will return true. Otherwise, this
469 /// routine will return false and the value of SCS is unspecified.
470 bool
471 Sema::IsStandardConversion(Expr* From, QualType ToType,
472 StandardConversionSequence &SCS)
474 QualType FromType = From->getType();
476 // Standard conversions (C++ [conv])
477 SCS.setAsIdentityConversion();
478 SCS.Deprecated = false;
479 SCS.IncompatibleObjC = false;
480 SCS.FromTypePtr = FromType.getAsOpaquePtr();
481 SCS.CopyConstructor = 0;
483 // There are no standard conversions for class types in C++, so
484 // abort early. When overloading in C, however, we do permit
485 if (FromType->isRecordType() || ToType->isRecordType()) {
486 if (getLangOptions().CPlusPlus)
487 return false;
489 // When we're overloading in C, we allow, as standard conversions,
492 // The first conversion can be an lvalue-to-rvalue conversion,
493 // array-to-pointer conversion, or function-to-pointer conversion
494 // (C++ 4p1).
496 // Lvalue-to-rvalue conversion (C++ 4.1):
497 // An lvalue (3.10) of a non-function, non-array type T can be
498 // converted to an rvalue.
499 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500 if (argIsLvalue == Expr::LV_Valid &&
501 !FromType->isFunctionType() && !FromType->isArrayType() &&
502 Context.getCanonicalType(FromType) != Context.OverloadTy) {
503 SCS.First = ICK_Lvalue_To_Rvalue;
505 // If T is a non-class type, the type of the rvalue is the
506 // cv-unqualified version of T. Otherwise, the type of the rvalue
507 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508 // just strip the qualifiers because they don't matter.
510 // FIXME: Doesn't see through to qualifiers behind a typedef!
511 FromType = FromType.getUnqualifiedType();
513 // Array-to-pointer conversion (C++ 4.2)
514 else if (FromType->isArrayType()) {
515 SCS.First = ICK_Array_To_Pointer;
517 // An lvalue or rvalue of type "array of N T" or "array of unknown
518 // bound of T" can be converted to an rvalue of type "pointer to
519 // T" (C++ 4.2p1).
520 FromType = Context.getArrayDecayedType(FromType);
522 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523 // This conversion is deprecated. (C++ D.4).
524 SCS.Deprecated = true;
526 // For the purpose of ranking in overload resolution
527 // (13.3.3.1.1), this conversion is considered an
528 // array-to-pointer conversion followed by a qualification
529 // conversion (4.4). (C++ 4.2p2)
530 SCS.Second = ICK_Identity;
531 SCS.Third = ICK_Qualification;
532 SCS.ToTypePtr = ToType.getAsOpaquePtr();
533 return true;
536 // Function-to-pointer conversion (C++ 4.3).
537 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
538 SCS.First = ICK_Function_To_Pointer;
540 // An lvalue of function type T can be converted to an rvalue of
541 // type "pointer to T." The result is a pointer to the
542 // function. (C++ 4.3p1).
543 FromType = Context.getPointerType(FromType);
545 // Address of overloaded function (C++ [over.over]).
546 else if (FunctionDecl *Fn
547 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548 SCS.First = ICK_Function_To_Pointer;
550 // We were able to resolve the address of the overloaded function,
551 // so we can convert to the type of that function.
552 FromType = Fn->getType();
553 if (ToType->isLValueReferenceType())
554 FromType = Context.getLValueReferenceType(FromType);
555 else if (ToType->isRValueReferenceType())
556 FromType = Context.getRValueReferenceType(FromType);
557 else if (ToType->isMemberPointerType()) {
558 // Resolve address only succeeds if both sides are member pointers,
559 // but it doesn't have to be the same class. See DR 247.
560 // Note that this means that the type of &Derived::fn can be
561 // Ret (Base::*)(Args) if the fn overload actually found is from the
562 // base class, even if it was brought into the derived class via a
563 // using declaration. The standard isn't clear on this issue at all.
564 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565 FromType = Context.getMemberPointerType(FromType,
566 Context.getTypeDeclType(M->getParent()).getTypePtr());
567 } else
568 FromType = Context.getPointerType(FromType);
570 // We don't require any conversions for the first step.
571 else {
572 SCS.First = ICK_Identity;
575 // The second conversion can be an integral promotion, floating
576 // point promotion, integral conversion, floating point conversion,
577 // floating-integral conversion, pointer conversion,
578 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579 // For overloading in C, this can also be a "compatible-type"
580 // conversion.
581 bool IncompatibleObjC = false;
582 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583 // The unqualified versions of the types are the same: there's no
584 // conversion to do.
585 SCS.Second = ICK_Identity;
587 // Integral promotion (C++ 4.5).
588 else if (IsIntegralPromotion(From, FromType, ToType)) {
589 SCS.Second = ICK_Integral_Promotion;
590 FromType = ToType.getUnqualifiedType();
592 // Floating point promotion (C++ 4.6).
593 else if (IsFloatingPointPromotion(FromType, ToType)) {
594 SCS.Second = ICK_Floating_Promotion;
595 FromType = ToType.getUnqualifiedType();
597 // Complex promotion (Clang extension)
598 else if (IsComplexPromotion(FromType, ToType)) {
599 SCS.Second = ICK_Complex_Promotion;
600 FromType = ToType.getUnqualifiedType();
602 // Integral conversions (C++ 4.7).
603 // FIXME: isIntegralType shouldn't be true for enums in C++.
604 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
605 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
606 SCS.Second = ICK_Integral_Conversion;
607 FromType = ToType.getUnqualifiedType();
609 // Floating point conversions (C++ 4.8).
610 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
611 SCS.Second = ICK_Floating_Conversion;
612 FromType = ToType.getUnqualifiedType();
614 // Complex conversions (C99 6.3.1.6)
615 else if (FromType->isComplexType() && ToType->isComplexType()) {
616 SCS.Second = ICK_Complex_Conversion;
617 FromType = ToType.getUnqualifiedType();
619 // Floating-integral conversions (C++ 4.9).
620 // FIXME: isIntegralType shouldn't be true for enums in C++.
621 else if ((FromType->isFloatingType() &&
622 ToType->isIntegralType() && !ToType->isBooleanType() &&
623 !ToType->isEnumeralType()) ||
624 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625 ToType->isFloatingType())) {
626 SCS.Second = ICK_Floating_Integral;
627 FromType = ToType.getUnqualifiedType();
629 // Complex-real conversions (C99 6.3.1.7)
630 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631 (ToType->isComplexType() && FromType->isArithmeticType())) {
632 SCS.Second = ICK_Complex_Real;
633 FromType = ToType.getUnqualifiedType();
635 // Pointer conversions (C++ 4.10).
636 else if (IsPointerConversion(From, FromType, ToType, FromType,
637 IncompatibleObjC)) {
638 SCS.Second = ICK_Pointer_Conversion;
639 SCS.IncompatibleObjC = IncompatibleObjC;
641 // Pointer to member conversions (4.11).
642 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643 SCS.Second = ICK_Pointer_Member;
645 // Boolean conversions (C++ 4.12).
646 else if (ToType->isBooleanType() &&
647 (FromType->isArithmeticType() ||
648 FromType->isEnumeralType() ||
649 FromType->isPointerType() ||
650 FromType->isBlockPointerType() ||
651 FromType->isMemberPointerType() ||
652 FromType->isNullPtrType())) {
653 SCS.Second = ICK_Boolean_Conversion;
654 FromType = Context.BoolTy;
656 // Compatible conversions (Clang extension for C function overloading)
657 else if (!getLangOptions().CPlusPlus &&
658 Context.typesAreCompatible(ToType, FromType)) {
659 SCS.Second = ICK_Compatible_Conversion;
660 } else {
661 // No second conversion required.
662 SCS.Second = ICK_Identity;
665 QualType CanonFrom;
666 QualType CanonTo;
667 // The third conversion can be a qualification conversion (C++ 4p1).
668 if (IsQualificationConversion(FromType, ToType)) {
669 SCS.Third = ICK_Qualification;
670 FromType = ToType;
671 CanonFrom = Context.getCanonicalType(FromType);
672 CanonTo = Context.getCanonicalType(ToType);
673 } else {
674 // No conversion required
675 SCS.Third = ICK_Identity;
677 // C++ [over.best.ics]p6:
678 // [...] Any difference in top-level cv-qualification is
679 // subsumed by the initialization itself and does not constitute
680 // a conversion. [...]
681 CanonFrom = Context.getCanonicalType(FromType);
682 CanonTo = Context.getCanonicalType(ToType);
683 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
684 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685 FromType = ToType;
686 CanonFrom = CanonTo;
690 // If we have not converted the argument type to the parameter type,
691 // this is a bad conversion sequence.
692 if (CanonFrom != CanonTo)
693 return false;
695 SCS.ToTypePtr = FromType.getAsOpaquePtr();
696 return true;
699 /// IsIntegralPromotion - Determines whether the conversion from the
700 /// expression From (whose potentially-adjusted type is FromType) to
701 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
702 /// sets PromotedType to the promoted type.
703 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
705 const BuiltinType *To = ToType->getAsBuiltinType();
706 // All integers are built-in.
707 if (!To) {
708 return false;
711 // An rvalue of type char, signed char, unsigned char, short int, or
712 // unsigned short int can be converted to an rvalue of type int if
713 // int can represent all the values of the source type; otherwise,
714 // the source rvalue can be converted to an rvalue of type unsigned
715 // int (C++ 4.5p1).
716 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
717 if (// We can promote any signed, promotable integer type to an int
718 (FromType->isSignedIntegerType() ||
719 // We can promote any unsigned integer type whose size is
720 // less than int to an int.
721 (!FromType->isSignedIntegerType() &&
722 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
723 return To->getKind() == BuiltinType::Int;
726 return To->getKind() == BuiltinType::UInt;
729 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730 // can be converted to an rvalue of the first of the following types
731 // that can represent all the values of its underlying type: int,
732 // unsigned int, long, or unsigned long (C++ 4.5p2).
733 if ((FromType->isEnumeralType() || FromType->isWideCharType())
734 && ToType->isIntegerType()) {
735 // Determine whether the type we're converting from is signed or
736 // unsigned.
737 bool FromIsSigned;
738 uint64_t FromSize = Context.getTypeSize(FromType);
739 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741 FromIsSigned = UnderlyingType->isSignedIntegerType();
742 } else {
743 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744 FromIsSigned = true;
747 // The types we'll try to promote to, in the appropriate
748 // order. Try each of these types.
749 QualType PromoteTypes[6] = {
750 Context.IntTy, Context.UnsignedIntTy,
751 Context.LongTy, Context.UnsignedLongTy ,
752 Context.LongLongTy, Context.UnsignedLongLongTy
754 for (int Idx = 0; Idx < 6; ++Idx) {
755 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756 if (FromSize < ToSize ||
757 (FromSize == ToSize &&
758 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759 // We found the type that we can promote to. If this is the
760 // type we wanted, we have a promotion. Otherwise, no
761 // promotion.
762 return Context.getCanonicalType(ToType).getUnqualifiedType()
763 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
768 // An rvalue for an integral bit-field (9.6) can be converted to an
769 // rvalue of type int if int can represent all the values of the
770 // bit-field; otherwise, it can be converted to unsigned int if
771 // unsigned int can represent all the values of the bit-field. If
772 // the bit-field is larger yet, no integral promotion applies to
773 // it. If the bit-field has an enumerated type, it is treated as any
774 // other value of that type for promotion purposes (C++ 4.5p3).
775 // FIXME: We should delay checking of bit-fields until we actually perform the
776 // conversion.
777 using llvm::APSInt;
778 if (From)
779 if (FieldDecl *MemberDecl = From->getBitField()) {
780 APSInt BitWidth;
781 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784 ToSize = Context.getTypeSize(ToType);
786 // Are we promoting to an int from a bitfield that fits in an int?
787 if (BitWidth < ToSize ||
788 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789 return To->getKind() == BuiltinType::Int;
792 // Are we promoting to an unsigned int from an unsigned bitfield
793 // that fits into an unsigned int?
794 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795 return To->getKind() == BuiltinType::UInt;
798 return false;
802 // An rvalue of type bool can be converted to an rvalue of type int,
803 // with false becoming zero and true becoming one (C++ 4.5p4).
804 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
805 return true;
808 return false;
811 /// IsFloatingPointPromotion - Determines whether the conversion from
812 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813 /// returns true and sets PromotedType to the promoted type.
814 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
816 /// An rvalue of type float can be converted to an rvalue of type
817 /// double. (C++ 4.6p1).
818 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
819 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
820 if (FromBuiltin->getKind() == BuiltinType::Float &&
821 ToBuiltin->getKind() == BuiltinType::Double)
822 return true;
824 // C99 6.3.1.5p1:
825 // When a float is promoted to double or long double, or a
826 // double is promoted to long double [...].
827 if (!getLangOptions().CPlusPlus &&
828 (FromBuiltin->getKind() == BuiltinType::Float ||
829 FromBuiltin->getKind() == BuiltinType::Double) &&
830 (ToBuiltin->getKind() == BuiltinType::LongDouble))
831 return true;
834 return false;
837 /// \brief Determine if a conversion is a complex promotion.
839 /// A complex promotion is defined as a complex -> complex conversion
840 /// where the conversion between the underlying real types is a
841 /// floating-point or integral promotion.
842 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843 const ComplexType *FromComplex = FromType->getAsComplexType();
844 if (!FromComplex)
845 return false;
847 const ComplexType *ToComplex = ToType->getAsComplexType();
848 if (!ToComplex)
849 return false;
851 return IsFloatingPointPromotion(FromComplex->getElementType(),
852 ToComplex->getElementType()) ||
853 IsIntegralPromotion(0, FromComplex->getElementType(),
854 ToComplex->getElementType());
857 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858 /// the pointer type FromPtr to a pointer to type ToPointee, with the
859 /// same type qualifiers as FromPtr has on its pointee type. ToType,
860 /// if non-empty, will be a pointer to ToType that may or may not have
861 /// the right set of qualifiers on its pointee.
862 static QualType
863 BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864 QualType ToPointee, QualType ToType,
865 ASTContext &Context) {
866 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868 unsigned Quals = CanonFromPointee.getCVRQualifiers();
870 // Exact qualifier match -> return the pointer type we're converting to.
871 if (CanonToPointee.getCVRQualifiers() == Quals) {
872 // ToType is exactly what we need. Return it.
873 if (ToType.getTypePtr())
874 return ToType;
876 // Build a pointer to ToPointee. It has the right qualifiers
877 // already.
878 return Context.getPointerType(ToPointee);
881 // Just build a canonical type that has the right qualifiers.
882 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
885 /// IsPointerConversion - Determines whether the conversion of the
886 /// expression From, which has the (possibly adjusted) type FromType,
887 /// can be converted to the type ToType via a pointer conversion (C++
888 /// 4.10). If so, returns true and places the converted type (that
889 /// might differ from ToType in its cv-qualifiers at some level) into
890 /// ConvertedType.
892 /// This routine also supports conversions to and from block pointers
893 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
894 /// pointers to interfaces. FIXME: Once we've determined the
895 /// appropriate overloading rules for Objective-C, we may want to
896 /// split the Objective-C checks into a different routine; however,
897 /// GCC seems to consider all of these conversions to be pointer
898 /// conversions, so for now they live here. IncompatibleObjC will be
899 /// set if the conversion is an allowed Objective-C conversion that
900 /// should result in a warning.
901 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902 QualType& ConvertedType,
903 bool &IncompatibleObjC)
905 IncompatibleObjC = false;
906 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907 return true;
909 // Conversion from a null pointer constant to any Objective-C pointer type.
910 if (ToType->isObjCObjectPointerType() &&
911 From->isNullPointerConstant(Context)) {
912 ConvertedType = ToType;
913 return true;
916 // Blocks: Block pointers can be converted to void*.
917 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
919 ConvertedType = ToType;
920 return true;
922 // Blocks: A null pointer constant can be converted to a block
923 // pointer type.
924 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925 ConvertedType = ToType;
926 return true;
929 // If the left-hand-side is nullptr_t, the right side can be a null
930 // pointer constant.
931 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932 ConvertedType = ToType;
933 return true;
936 const PointerType* ToTypePtr = ToType->getAsPointerType();
937 if (!ToTypePtr)
938 return false;
940 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941 if (From->isNullPointerConstant(Context)) {
942 ConvertedType = ToType;
943 return true;
946 // Beyond this point, both types need to be pointers.
947 const PointerType *FromTypePtr = FromType->getAsPointerType();
948 if (!FromTypePtr)
949 return false;
951 QualType FromPointeeType = FromTypePtr->getPointeeType();
952 QualType ToPointeeType = ToTypePtr->getPointeeType();
954 // An rvalue of type "pointer to cv T," where T is an object type,
955 // can be converted to an rvalue of type "pointer to cv void" (C++
956 // 4.10p2).
957 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
958 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959 ToPointeeType,
960 ToType, Context);
961 return true;
964 // When we're overloading in C, we allow a special kind of pointer
965 // conversion for compatible-but-not-identical pointee types.
966 if (!getLangOptions().CPlusPlus &&
967 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969 ToPointeeType,
970 ToType, Context);
971 return true;
974 // C++ [conv.ptr]p3:
976 // An rvalue of type "pointer to cv D," where D is a class type,
977 // can be converted to an rvalue of type "pointer to cv B," where
978 // B is a base class (clause 10) of D. If B is an inaccessible
979 // (clause 11) or ambiguous (10.2) base class of D, a program that
980 // necessitates this conversion is ill-formed. The result of the
981 // conversion is a pointer to the base class sub-object of the
982 // derived class object. The null pointer value is converted to
983 // the null pointer value of the destination type.
985 // Note that we do not check for ambiguity or inaccessibility
986 // here. That is handled by CheckPointerConversion.
987 if (getLangOptions().CPlusPlus &&
988 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
989 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
990 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991 ToPointeeType,
992 ToType, Context);
993 return true;
996 return false;
999 /// isObjCPointerConversion - Determines whether this is an
1000 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001 /// with the same arguments and return values.
1002 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003 QualType& ConvertedType,
1004 bool &IncompatibleObjC) {
1005 if (!getLangOptions().ObjC1)
1006 return false;
1008 // First, we handle all conversions on ObjC object pointer types.
1009 const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1010 const ObjCObjectPointerType *FromObjCPtr =
1011 FromType->getAsObjCObjectPointerType();
1013 if (ToObjCPtr && FromObjCPtr) {
1014 // Objective C++: We're able to convert between "id" or "Class" and a
1015 // pointer to any interface (in both directions).
1016 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1017 ConvertedType = ToType;
1018 return true;
1020 // Conversions with Objective-C's id<...>.
1021 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1022 ToObjCPtr->isObjCQualifiedIdType()) &&
1023 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
1024 ConvertedType = ToType;
1025 return true;
1027 // Objective C++: We're able to convert from a pointer to an
1028 // interface to a pointer to a different interface.
1029 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1030 ConvertedType = ToType;
1031 return true;
1034 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1035 // Okay: this is some kind of implicit downcast of Objective-C
1036 // interfaces, which is permitted. However, we're going to
1037 // complain about it.
1038 IncompatibleObjC = true;
1039 ConvertedType = FromType;
1040 return true;
1043 // Beyond this point, both types need to be C pointers or block pointers.
1044 QualType ToPointeeType;
1045 if (const PointerType *ToCPtr = ToType->getAsPointerType())
1046 ToPointeeType = ToCPtr->getPointeeType();
1047 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
1048 ToPointeeType = ToBlockPtr->getPointeeType();
1049 else
1050 return false;
1052 QualType FromPointeeType;
1053 if (const PointerType *FromCPtr = FromType->getAsPointerType())
1054 FromPointeeType = FromCPtr->getPointeeType();
1055 else if (const BlockPointerType *FromBlockPtr = FromType->getAsBlockPointerType())
1056 FromPointeeType = FromBlockPtr->getPointeeType();
1057 else
1058 return false;
1060 // If we have pointers to pointers, recursively check whether this
1061 // is an Objective-C conversion.
1062 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1063 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1064 IncompatibleObjC)) {
1065 // We always complain about this conversion.
1066 IncompatibleObjC = true;
1067 ConvertedType = ToType;
1068 return true;
1070 // If we have pointers to functions or blocks, check whether the only
1071 // differences in the argument and result types are in Objective-C
1072 // pointer conversions. If so, we permit the conversion (but
1073 // complain about it).
1074 const FunctionProtoType *FromFunctionType
1075 = FromPointeeType->getAsFunctionProtoType();
1076 const FunctionProtoType *ToFunctionType
1077 = ToPointeeType->getAsFunctionProtoType();
1078 if (FromFunctionType && ToFunctionType) {
1079 // If the function types are exactly the same, this isn't an
1080 // Objective-C pointer conversion.
1081 if (Context.getCanonicalType(FromPointeeType)
1082 == Context.getCanonicalType(ToPointeeType))
1083 return false;
1085 // Perform the quick checks that will tell us whether these
1086 // function types are obviously different.
1087 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1088 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1089 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1090 return false;
1092 bool HasObjCConversion = false;
1093 if (Context.getCanonicalType(FromFunctionType->getResultType())
1094 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1095 // Okay, the types match exactly. Nothing to do.
1096 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1097 ToFunctionType->getResultType(),
1098 ConvertedType, IncompatibleObjC)) {
1099 // Okay, we have an Objective-C pointer conversion.
1100 HasObjCConversion = true;
1101 } else {
1102 // Function types are too different. Abort.
1103 return false;
1106 // Check argument types.
1107 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1108 ArgIdx != NumArgs; ++ArgIdx) {
1109 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1110 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1111 if (Context.getCanonicalType(FromArgType)
1112 == Context.getCanonicalType(ToArgType)) {
1113 // Okay, the types match exactly. Nothing to do.
1114 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1115 ConvertedType, IncompatibleObjC)) {
1116 // Okay, we have an Objective-C pointer conversion.
1117 HasObjCConversion = true;
1118 } else {
1119 // Argument types are too different. Abort.
1120 return false;
1124 if (HasObjCConversion) {
1125 // We had an Objective-C conversion. Allow this pointer
1126 // conversion, but complain about it.
1127 ConvertedType = ToType;
1128 IncompatibleObjC = true;
1129 return true;
1133 return false;
1136 /// CheckPointerConversion - Check the pointer conversion from the
1137 /// expression From to the type ToType. This routine checks for
1138 /// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1139 /// conversions for which IsPointerConversion has already returned
1140 /// true. It returns true and produces a diagnostic if there was an
1141 /// error, or returns false otherwise.
1142 bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1143 QualType FromType = From->getType();
1145 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1146 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1147 QualType FromPointeeType = FromPtrType->getPointeeType(),
1148 ToPointeeType = ToPtrType->getPointeeType();
1150 if (FromPointeeType->isRecordType() &&
1151 ToPointeeType->isRecordType()) {
1152 // We must have a derived-to-base conversion. Check an
1153 // ambiguous or inaccessible conversion.
1154 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1155 From->getExprLoc(),
1156 From->getSourceRange());
1159 if (const ObjCObjectPointerType *FromPtrType =
1160 FromType->getAsObjCObjectPointerType())
1161 if (const ObjCObjectPointerType *ToPtrType =
1162 ToType->getAsObjCObjectPointerType()) {
1163 // Objective-C++ conversions are always okay.
1164 // FIXME: We should have a different class of conversions for the
1165 // Objective-C++ implicit conversions.
1166 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1167 return false;
1170 return false;
1173 /// IsMemberPointerConversion - Determines whether the conversion of the
1174 /// expression From, which has the (possibly adjusted) type FromType, can be
1175 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
1176 /// If so, returns true and places the converted type (that might differ from
1177 /// ToType in its cv-qualifiers at some level) into ConvertedType.
1178 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1179 QualType ToType, QualType &ConvertedType)
1181 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1182 if (!ToTypePtr)
1183 return false;
1185 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1186 if (From->isNullPointerConstant(Context)) {
1187 ConvertedType = ToType;
1188 return true;
1191 // Otherwise, both types have to be member pointers.
1192 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1193 if (!FromTypePtr)
1194 return false;
1196 // A pointer to member of B can be converted to a pointer to member of D,
1197 // where D is derived from B (C++ 4.11p2).
1198 QualType FromClass(FromTypePtr->getClass(), 0);
1199 QualType ToClass(ToTypePtr->getClass(), 0);
1200 // FIXME: What happens when these are dependent? Is this function even called?
1202 if (IsDerivedFrom(ToClass, FromClass)) {
1203 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1204 ToClass.getTypePtr());
1205 return true;
1208 return false;
1211 /// CheckMemberPointerConversion - Check the member pointer conversion from the
1212 /// expression From to the type ToType. This routine checks for ambiguous or
1213 /// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1214 /// for which IsMemberPointerConversion has already returned true. It returns
1215 /// true and produces a diagnostic if there was an error, or returns false
1216 /// otherwise.
1217 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1218 QualType FromType = From->getType();
1219 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1220 if (!FromPtrType)
1221 return false;
1223 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1224 assert(ToPtrType && "No member pointer cast has a target type "
1225 "that is not a member pointer.");
1227 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1228 QualType ToClass = QualType(ToPtrType->getClass(), 0);
1230 // FIXME: What about dependent types?
1231 assert(FromClass->isRecordType() && "Pointer into non-class.");
1232 assert(ToClass->isRecordType() && "Pointer into non-class.");
1234 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1235 /*DetectVirtual=*/true);
1236 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1237 assert(DerivationOkay &&
1238 "Should not have been called if derivation isn't OK.");
1239 (void)DerivationOkay;
1241 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1242 getUnqualifiedType())) {
1243 // Derivation is ambiguous. Redo the check to find the exact paths.
1244 Paths.clear();
1245 Paths.setRecordingPaths(true);
1246 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1247 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1248 (void)StillOkay;
1250 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1251 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1252 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1253 return true;
1256 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1257 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1258 << FromClass << ToClass << QualType(VBase, 0)
1259 << From->getSourceRange();
1260 return true;
1263 return false;
1266 /// IsQualificationConversion - Determines whether the conversion from
1267 /// an rvalue of type FromType to ToType is a qualification conversion
1268 /// (C++ 4.4).
1269 bool
1270 Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1272 FromType = Context.getCanonicalType(FromType);
1273 ToType = Context.getCanonicalType(ToType);
1275 // If FromType and ToType are the same type, this is not a
1276 // qualification conversion.
1277 if (FromType == ToType)
1278 return false;
1280 // (C++ 4.4p4):
1281 // A conversion can add cv-qualifiers at levels other than the first
1282 // in multi-level pointers, subject to the following rules: [...]
1283 bool PreviousToQualsIncludeConst = true;
1284 bool UnwrappedAnyPointer = false;
1285 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1286 // Within each iteration of the loop, we check the qualifiers to
1287 // determine if this still looks like a qualification
1288 // conversion. Then, if all is well, we unwrap one more level of
1289 // pointers or pointers-to-members and do it all again
1290 // until there are no more pointers or pointers-to-members left to
1291 // unwrap.
1292 UnwrappedAnyPointer = true;
1294 // -- for every j > 0, if const is in cv 1,j then const is in cv
1295 // 2,j, and similarly for volatile.
1296 if (!ToType.isAtLeastAsQualifiedAs(FromType))
1297 return false;
1299 // -- if the cv 1,j and cv 2,j are different, then const is in
1300 // every cv for 0 < k < j.
1301 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1302 && !PreviousToQualsIncludeConst)
1303 return false;
1305 // Keep track of whether all prior cv-qualifiers in the "to" type
1306 // include const.
1307 PreviousToQualsIncludeConst
1308 = PreviousToQualsIncludeConst && ToType.isConstQualified();
1311 // We are left with FromType and ToType being the pointee types
1312 // after unwrapping the original FromType and ToType the same number
1313 // of types. If we unwrapped any pointers, and if FromType and
1314 // ToType have the same unqualified type (since we checked
1315 // qualifiers above), then this is a qualification conversion.
1316 return UnwrappedAnyPointer &&
1317 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1320 /// Determines whether there is a user-defined conversion sequence
1321 /// (C++ [over.ics.user]) that converts expression From to the type
1322 /// ToType. If such a conversion exists, User will contain the
1323 /// user-defined conversion sequence that performs such a conversion
1324 /// and this routine will return true. Otherwise, this routine returns
1325 /// false and User is unspecified.
1327 /// \param AllowConversionFunctions true if the conversion should
1328 /// consider conversion functions at all. If false, only constructors
1329 /// will be considered.
1331 /// \param AllowExplicit true if the conversion should consider C++0x
1332 /// "explicit" conversion functions as well as non-explicit conversion
1333 /// functions (C++0x [class.conv.fct]p2).
1335 /// \param ForceRValue true if the expression should be treated as an rvalue
1336 /// for overload resolution.
1337 bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1338 UserDefinedConversionSequence& User,
1339 bool AllowConversionFunctions,
1340 bool AllowExplicit, bool ForceRValue)
1342 OverloadCandidateSet CandidateSet;
1343 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1344 if (CXXRecordDecl *ToRecordDecl
1345 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1346 // C++ [over.match.ctor]p1:
1347 // When objects of class type are direct-initialized (8.5), or
1348 // copy-initialized from an expression of the same or a
1349 // derived class type (8.5), overload resolution selects the
1350 // constructor. [...] For copy-initialization, the candidate
1351 // functions are all the converting constructors (12.3.1) of
1352 // that class. The argument list is the expression-list within
1353 // the parentheses of the initializer.
1354 DeclarationName ConstructorName
1355 = Context.DeclarationNames.getCXXConstructorName(
1356 Context.getCanonicalType(ToType).getUnqualifiedType());
1357 DeclContext::lookup_iterator Con, ConEnd;
1358 for (llvm::tie(Con, ConEnd)
1359 = ToRecordDecl->lookup(ConstructorName);
1360 Con != ConEnd; ++Con) {
1361 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1362 if (Constructor->isConvertingConstructor())
1363 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1364 /*SuppressUserConversions=*/true, ForceRValue);
1369 if (!AllowConversionFunctions) {
1370 // Don't allow any conversion functions to enter the overload set.
1371 } else if (const RecordType *FromRecordType
1372 = From->getType()->getAsRecordType()) {
1373 if (CXXRecordDecl *FromRecordDecl
1374 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1375 // Add all of the conversion functions as candidates.
1376 // FIXME: Look for conversions in base classes!
1377 OverloadedFunctionDecl *Conversions
1378 = FromRecordDecl->getConversionFunctions();
1379 for (OverloadedFunctionDecl::function_iterator Func
1380 = Conversions->function_begin();
1381 Func != Conversions->function_end(); ++Func) {
1382 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1383 if (AllowExplicit || !Conv->isExplicit())
1384 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1389 OverloadCandidateSet::iterator Best;
1390 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1391 case OR_Success:
1392 // Record the standard conversion we used and the conversion function.
1393 if (CXXConstructorDecl *Constructor
1394 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1395 // C++ [over.ics.user]p1:
1396 // If the user-defined conversion is specified by a
1397 // constructor (12.3.1), the initial standard conversion
1398 // sequence converts the source type to the type required by
1399 // the argument of the constructor.
1401 // FIXME: What about ellipsis conversions?
1402 QualType ThisType = Constructor->getThisType(Context);
1403 User.Before = Best->Conversions[0].Standard;
1404 User.ConversionFunction = Constructor;
1405 User.After.setAsIdentityConversion();
1406 User.After.FromTypePtr
1407 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1408 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1409 return true;
1410 } else if (CXXConversionDecl *Conversion
1411 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1412 // C++ [over.ics.user]p1:
1414 // [...] If the user-defined conversion is specified by a
1415 // conversion function (12.3.2), the initial standard
1416 // conversion sequence converts the source type to the
1417 // implicit object parameter of the conversion function.
1418 User.Before = Best->Conversions[0].Standard;
1419 User.ConversionFunction = Conversion;
1421 // C++ [over.ics.user]p2:
1422 // The second standard conversion sequence converts the
1423 // result of the user-defined conversion to the target type
1424 // for the sequence. Since an implicit conversion sequence
1425 // is an initialization, the special rules for
1426 // initialization by user-defined conversion apply when
1427 // selecting the best user-defined conversion for a
1428 // user-defined conversion sequence (see 13.3.3 and
1429 // 13.3.3.1).
1430 User.After = Best->FinalConversion;
1431 return true;
1432 } else {
1433 assert(false && "Not a constructor or conversion function?");
1434 return false;
1437 case OR_No_Viable_Function:
1438 case OR_Deleted:
1439 // No conversion here! We're done.
1440 return false;
1442 case OR_Ambiguous:
1443 // FIXME: See C++ [over.best.ics]p10 for the handling of
1444 // ambiguous conversion sequences.
1445 return false;
1448 return false;
1451 /// CompareImplicitConversionSequences - Compare two implicit
1452 /// conversion sequences to determine whether one is better than the
1453 /// other or if they are indistinguishable (C++ 13.3.3.2).
1454 ImplicitConversionSequence::CompareKind
1455 Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1456 const ImplicitConversionSequence& ICS2)
1458 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1459 // conversion sequences (as defined in 13.3.3.1)
1460 // -- a standard conversion sequence (13.3.3.1.1) is a better
1461 // conversion sequence than a user-defined conversion sequence or
1462 // an ellipsis conversion sequence, and
1463 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1464 // conversion sequence than an ellipsis conversion sequence
1465 // (13.3.3.1.3).
1467 if (ICS1.ConversionKind < ICS2.ConversionKind)
1468 return ImplicitConversionSequence::Better;
1469 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1470 return ImplicitConversionSequence::Worse;
1472 // Two implicit conversion sequences of the same form are
1473 // indistinguishable conversion sequences unless one of the
1474 // following rules apply: (C++ 13.3.3.2p3):
1475 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1476 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1477 else if (ICS1.ConversionKind ==
1478 ImplicitConversionSequence::UserDefinedConversion) {
1479 // User-defined conversion sequence U1 is a better conversion
1480 // sequence than another user-defined conversion sequence U2 if
1481 // they contain the same user-defined conversion function or
1482 // constructor and if the second standard conversion sequence of
1483 // U1 is better than the second standard conversion sequence of
1484 // U2 (C++ 13.3.3.2p3).
1485 if (ICS1.UserDefined.ConversionFunction ==
1486 ICS2.UserDefined.ConversionFunction)
1487 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1488 ICS2.UserDefined.After);
1491 return ImplicitConversionSequence::Indistinguishable;
1494 /// CompareStandardConversionSequences - Compare two standard
1495 /// conversion sequences to determine whether one is better than the
1496 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
1497 ImplicitConversionSequence::CompareKind
1498 Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1499 const StandardConversionSequence& SCS2)
1501 // Standard conversion sequence S1 is a better conversion sequence
1502 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1504 // -- S1 is a proper subsequence of S2 (comparing the conversion
1505 // sequences in the canonical form defined by 13.3.3.1.1,
1506 // excluding any Lvalue Transformation; the identity conversion
1507 // sequence is considered to be a subsequence of any
1508 // non-identity conversion sequence) or, if not that,
1509 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1510 // Neither is a proper subsequence of the other. Do nothing.
1512 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1513 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1514 (SCS1.Second == ICK_Identity &&
1515 SCS1.Third == ICK_Identity))
1516 // SCS1 is a proper subsequence of SCS2.
1517 return ImplicitConversionSequence::Better;
1518 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1519 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1520 (SCS2.Second == ICK_Identity &&
1521 SCS2.Third == ICK_Identity))
1522 // SCS2 is a proper subsequence of SCS1.
1523 return ImplicitConversionSequence::Worse;
1525 // -- the rank of S1 is better than the rank of S2 (by the rules
1526 // defined below), or, if not that,
1527 ImplicitConversionRank Rank1 = SCS1.getRank();
1528 ImplicitConversionRank Rank2 = SCS2.getRank();
1529 if (Rank1 < Rank2)
1530 return ImplicitConversionSequence::Better;
1531 else if (Rank2 < Rank1)
1532 return ImplicitConversionSequence::Worse;
1534 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1535 // are indistinguishable unless one of the following rules
1536 // applies:
1538 // A conversion that is not a conversion of a pointer, or
1539 // pointer to member, to bool is better than another conversion
1540 // that is such a conversion.
1541 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1542 return SCS2.isPointerConversionToBool()
1543 ? ImplicitConversionSequence::Better
1544 : ImplicitConversionSequence::Worse;
1546 // C++ [over.ics.rank]p4b2:
1548 // If class B is derived directly or indirectly from class A,
1549 // conversion of B* to A* is better than conversion of B* to
1550 // void*, and conversion of A* to void* is better than conversion
1551 // of B* to void*.
1552 bool SCS1ConvertsToVoid
1553 = SCS1.isPointerConversionToVoidPointer(Context);
1554 bool SCS2ConvertsToVoid
1555 = SCS2.isPointerConversionToVoidPointer(Context);
1556 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1557 // Exactly one of the conversion sequences is a conversion to
1558 // a void pointer; it's the worse conversion.
1559 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1560 : ImplicitConversionSequence::Worse;
1561 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1562 // Neither conversion sequence converts to a void pointer; compare
1563 // their derived-to-base conversions.
1564 if (ImplicitConversionSequence::CompareKind DerivedCK
1565 = CompareDerivedToBaseConversions(SCS1, SCS2))
1566 return DerivedCK;
1567 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1568 // Both conversion sequences are conversions to void
1569 // pointers. Compare the source types to determine if there's an
1570 // inheritance relationship in their sources.
1571 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1572 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1574 // Adjust the types we're converting from via the array-to-pointer
1575 // conversion, if we need to.
1576 if (SCS1.First == ICK_Array_To_Pointer)
1577 FromType1 = Context.getArrayDecayedType(FromType1);
1578 if (SCS2.First == ICK_Array_To_Pointer)
1579 FromType2 = Context.getArrayDecayedType(FromType2);
1581 QualType FromPointee1
1582 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1583 QualType FromPointee2
1584 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1586 if (IsDerivedFrom(FromPointee2, FromPointee1))
1587 return ImplicitConversionSequence::Better;
1588 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1589 return ImplicitConversionSequence::Worse;
1591 // Objective-C++: If one interface is more specific than the
1592 // other, it is the better one.
1593 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1594 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1595 if (FromIface1 && FromIface1) {
1596 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1597 return ImplicitConversionSequence::Better;
1598 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1599 return ImplicitConversionSequence::Worse;
1603 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1604 // bullet 3).
1605 if (ImplicitConversionSequence::CompareKind QualCK
1606 = CompareQualificationConversions(SCS1, SCS2))
1607 return QualCK;
1609 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1610 // C++0x [over.ics.rank]p3b4:
1611 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1612 // implicit object parameter of a non-static member function declared
1613 // without a ref-qualifier, and S1 binds an rvalue reference to an
1614 // rvalue and S2 binds an lvalue reference.
1615 // FIXME: We don't know if we're dealing with the implicit object parameter,
1616 // or if the member function in this case has a ref qualifier.
1617 // (Of course, we don't have ref qualifiers yet.)
1618 if (SCS1.RRefBinding != SCS2.RRefBinding)
1619 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1620 : ImplicitConversionSequence::Worse;
1622 // C++ [over.ics.rank]p3b4:
1623 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1624 // which the references refer are the same type except for
1625 // top-level cv-qualifiers, and the type to which the reference
1626 // initialized by S2 refers is more cv-qualified than the type
1627 // to which the reference initialized by S1 refers.
1628 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1629 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1630 T1 = Context.getCanonicalType(T1);
1631 T2 = Context.getCanonicalType(T2);
1632 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1633 if (T2.isMoreQualifiedThan(T1))
1634 return ImplicitConversionSequence::Better;
1635 else if (T1.isMoreQualifiedThan(T2))
1636 return ImplicitConversionSequence::Worse;
1640 return ImplicitConversionSequence::Indistinguishable;
1643 /// CompareQualificationConversions - Compares two standard conversion
1644 /// sequences to determine whether they can be ranked based on their
1645 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1646 ImplicitConversionSequence::CompareKind
1647 Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1648 const StandardConversionSequence& SCS2)
1650 // C++ 13.3.3.2p3:
1651 // -- S1 and S2 differ only in their qualification conversion and
1652 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1653 // cv-qualification signature of type T1 is a proper subset of
1654 // the cv-qualification signature of type T2, and S1 is not the
1655 // deprecated string literal array-to-pointer conversion (4.2).
1656 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1657 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1658 return ImplicitConversionSequence::Indistinguishable;
1660 // FIXME: the example in the standard doesn't use a qualification
1661 // conversion (!)
1662 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1663 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1664 T1 = Context.getCanonicalType(T1);
1665 T2 = Context.getCanonicalType(T2);
1667 // If the types are the same, we won't learn anything by unwrapped
1668 // them.
1669 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1670 return ImplicitConversionSequence::Indistinguishable;
1672 ImplicitConversionSequence::CompareKind Result
1673 = ImplicitConversionSequence::Indistinguishable;
1674 while (UnwrapSimilarPointerTypes(T1, T2)) {
1675 // Within each iteration of the loop, we check the qualifiers to
1676 // determine if this still looks like a qualification
1677 // conversion. Then, if all is well, we unwrap one more level of
1678 // pointers or pointers-to-members and do it all again
1679 // until there are no more pointers or pointers-to-members left
1680 // to unwrap. This essentially mimics what
1681 // IsQualificationConversion does, but here we're checking for a
1682 // strict subset of qualifiers.
1683 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1684 // The qualifiers are the same, so this doesn't tell us anything
1685 // about how the sequences rank.
1687 else if (T2.isMoreQualifiedThan(T1)) {
1688 // T1 has fewer qualifiers, so it could be the better sequence.
1689 if (Result == ImplicitConversionSequence::Worse)
1690 // Neither has qualifiers that are a subset of the other's
1691 // qualifiers.
1692 return ImplicitConversionSequence::Indistinguishable;
1694 Result = ImplicitConversionSequence::Better;
1695 } else if (T1.isMoreQualifiedThan(T2)) {
1696 // T2 has fewer qualifiers, so it could be the better sequence.
1697 if (Result == ImplicitConversionSequence::Better)
1698 // Neither has qualifiers that are a subset of the other's
1699 // qualifiers.
1700 return ImplicitConversionSequence::Indistinguishable;
1702 Result = ImplicitConversionSequence::Worse;
1703 } else {
1704 // Qualifiers are disjoint.
1705 return ImplicitConversionSequence::Indistinguishable;
1708 // If the types after this point are equivalent, we're done.
1709 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1710 break;
1713 // Check that the winning standard conversion sequence isn't using
1714 // the deprecated string literal array to pointer conversion.
1715 switch (Result) {
1716 case ImplicitConversionSequence::Better:
1717 if (SCS1.Deprecated)
1718 Result = ImplicitConversionSequence::Indistinguishable;
1719 break;
1721 case ImplicitConversionSequence::Indistinguishable:
1722 break;
1724 case ImplicitConversionSequence::Worse:
1725 if (SCS2.Deprecated)
1726 Result = ImplicitConversionSequence::Indistinguishable;
1727 break;
1730 return Result;
1733 /// CompareDerivedToBaseConversions - Compares two standard conversion
1734 /// sequences to determine whether they can be ranked based on their
1735 /// various kinds of derived-to-base conversions (C++
1736 /// [over.ics.rank]p4b3). As part of these checks, we also look at
1737 /// conversions between Objective-C interface types.
1738 ImplicitConversionSequence::CompareKind
1739 Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1740 const StandardConversionSequence& SCS2) {
1741 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1742 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1743 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1744 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1746 // Adjust the types we're converting from via the array-to-pointer
1747 // conversion, if we need to.
1748 if (SCS1.First == ICK_Array_To_Pointer)
1749 FromType1 = Context.getArrayDecayedType(FromType1);
1750 if (SCS2.First == ICK_Array_To_Pointer)
1751 FromType2 = Context.getArrayDecayedType(FromType2);
1753 // Canonicalize all of the types.
1754 FromType1 = Context.getCanonicalType(FromType1);
1755 ToType1 = Context.getCanonicalType(ToType1);
1756 FromType2 = Context.getCanonicalType(FromType2);
1757 ToType2 = Context.getCanonicalType(ToType2);
1759 // C++ [over.ics.rank]p4b3:
1761 // If class B is derived directly or indirectly from class A and
1762 // class C is derived directly or indirectly from B,
1764 // For Objective-C, we let A, B, and C also be Objective-C
1765 // interfaces.
1767 // Compare based on pointer conversions.
1768 if (SCS1.Second == ICK_Pointer_Conversion &&
1769 SCS2.Second == ICK_Pointer_Conversion &&
1770 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1771 FromType1->isPointerType() && FromType2->isPointerType() &&
1772 ToType1->isPointerType() && ToType2->isPointerType()) {
1773 QualType FromPointee1
1774 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1775 QualType ToPointee1
1776 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1777 QualType FromPointee2
1778 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1779 QualType ToPointee2
1780 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1782 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1783 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1784 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1785 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1787 // -- conversion of C* to B* is better than conversion of C* to A*,
1788 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1789 if (IsDerivedFrom(ToPointee1, ToPointee2))
1790 return ImplicitConversionSequence::Better;
1791 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1792 return ImplicitConversionSequence::Worse;
1794 if (ToIface1 && ToIface2) {
1795 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1796 return ImplicitConversionSequence::Better;
1797 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1798 return ImplicitConversionSequence::Worse;
1802 // -- conversion of B* to A* is better than conversion of C* to A*,
1803 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1804 if (IsDerivedFrom(FromPointee2, FromPointee1))
1805 return ImplicitConversionSequence::Better;
1806 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1807 return ImplicitConversionSequence::Worse;
1809 if (FromIface1 && FromIface2) {
1810 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1811 return ImplicitConversionSequence::Better;
1812 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1813 return ImplicitConversionSequence::Worse;
1818 // Compare based on reference bindings.
1819 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1820 SCS1.Second == ICK_Derived_To_Base) {
1821 // -- binding of an expression of type C to a reference of type
1822 // B& is better than binding an expression of type C to a
1823 // reference of type A&,
1824 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1825 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1826 if (IsDerivedFrom(ToType1, ToType2))
1827 return ImplicitConversionSequence::Better;
1828 else if (IsDerivedFrom(ToType2, ToType1))
1829 return ImplicitConversionSequence::Worse;
1832 // -- binding of an expression of type B to a reference of type
1833 // A& is better than binding an expression of type C to a
1834 // reference of type A&,
1835 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1836 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1837 if (IsDerivedFrom(FromType2, FromType1))
1838 return ImplicitConversionSequence::Better;
1839 else if (IsDerivedFrom(FromType1, FromType2))
1840 return ImplicitConversionSequence::Worse;
1845 // FIXME: conversion of A::* to B::* is better than conversion of
1846 // A::* to C::*,
1848 // FIXME: conversion of B::* to C::* is better than conversion of
1849 // A::* to C::*, and
1851 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1852 SCS1.Second == ICK_Derived_To_Base) {
1853 // -- conversion of C to B is better than conversion of C to A,
1854 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1855 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1856 if (IsDerivedFrom(ToType1, ToType2))
1857 return ImplicitConversionSequence::Better;
1858 else if (IsDerivedFrom(ToType2, ToType1))
1859 return ImplicitConversionSequence::Worse;
1862 // -- conversion of B to A is better than conversion of C to A.
1863 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1864 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1865 if (IsDerivedFrom(FromType2, FromType1))
1866 return ImplicitConversionSequence::Better;
1867 else if (IsDerivedFrom(FromType1, FromType2))
1868 return ImplicitConversionSequence::Worse;
1872 return ImplicitConversionSequence::Indistinguishable;
1875 /// TryCopyInitialization - Try to copy-initialize a value of type
1876 /// ToType from the expression From. Return the implicit conversion
1877 /// sequence required to pass this argument, which may be a bad
1878 /// conversion sequence (meaning that the argument cannot be passed to
1879 /// a parameter of this type). If @p SuppressUserConversions, then we
1880 /// do not permit any user-defined conversion sequences. If @p ForceRValue,
1881 /// then we treat @p From as an rvalue, even if it is an lvalue.
1882 ImplicitConversionSequence
1883 Sema::TryCopyInitialization(Expr *From, QualType ToType,
1884 bool SuppressUserConversions, bool ForceRValue) {
1885 if (ToType->isReferenceType()) {
1886 ImplicitConversionSequence ICS;
1887 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1888 /*AllowExplicit=*/false, ForceRValue);
1889 return ICS;
1890 } else {
1891 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1892 ForceRValue);
1896 /// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1897 /// the expression @p From. Returns true (and emits a diagnostic) if there was
1898 /// an error, returns false if the initialization succeeded. Elidable should
1899 /// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1900 /// differently in C++0x for this case.
1901 bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1902 const char* Flavor, bool Elidable) {
1903 if (!getLangOptions().CPlusPlus) {
1904 // In C, argument passing is the same as performing an assignment.
1905 QualType FromType = From->getType();
1907 AssignConvertType ConvTy =
1908 CheckSingleAssignmentConstraints(ToType, From);
1909 if (ConvTy != Compatible &&
1910 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1911 ConvTy = Compatible;
1913 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1914 FromType, From, Flavor);
1917 if (ToType->isReferenceType())
1918 return CheckReferenceInit(From, ToType);
1920 if (!PerformImplicitConversion(From, ToType, Flavor,
1921 /*AllowExplicit=*/false, Elidable))
1922 return false;
1924 return Diag(From->getSourceRange().getBegin(),
1925 diag::err_typecheck_convert_incompatible)
1926 << ToType << From->getType() << Flavor << From->getSourceRange();
1929 /// TryObjectArgumentInitialization - Try to initialize the object
1930 /// parameter of the given member function (@c Method) from the
1931 /// expression @p From.
1932 ImplicitConversionSequence
1933 Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1934 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1935 unsigned MethodQuals = Method->getTypeQualifiers();
1936 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1938 // Set up the conversion sequence as a "bad" conversion, to allow us
1939 // to exit early.
1940 ImplicitConversionSequence ICS;
1941 ICS.Standard.setAsIdentityConversion();
1942 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1944 // We need to have an object of class type.
1945 QualType FromType = From->getType();
1946 if (const PointerType *PT = FromType->getAsPointerType())
1947 FromType = PT->getPointeeType();
1949 assert(FromType->isRecordType());
1951 // The implicit object parmeter is has the type "reference to cv X",
1952 // where X is the class of which the function is a member
1953 // (C++ [over.match.funcs]p4). However, when finding an implicit
1954 // conversion sequence for the argument, we are not allowed to
1955 // create temporaries or perform user-defined conversions
1956 // (C++ [over.match.funcs]p5). We perform a simplified version of
1957 // reference binding here, that allows class rvalues to bind to
1958 // non-constant references.
1960 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1961 // with the implicit object parameter (C++ [over.match.funcs]p5).
1962 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1963 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1964 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1965 return ICS;
1967 // Check that we have either the same type or a derived type. It
1968 // affects the conversion rank.
1969 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1970 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1971 ICS.Standard.Second = ICK_Identity;
1972 else if (IsDerivedFrom(FromType, ClassType))
1973 ICS.Standard.Second = ICK_Derived_To_Base;
1974 else
1975 return ICS;
1977 // Success. Mark this as a reference binding.
1978 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1979 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1980 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1981 ICS.Standard.ReferenceBinding = true;
1982 ICS.Standard.DirectBinding = true;
1983 ICS.Standard.RRefBinding = false;
1984 return ICS;
1987 /// PerformObjectArgumentInitialization - Perform initialization of
1988 /// the implicit object parameter for the given Method with the given
1989 /// expression.
1990 bool
1991 Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1992 QualType FromRecordType, DestType;
1993 QualType ImplicitParamRecordType =
1994 Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1996 if (const PointerType *PT = From->getType()->getAsPointerType()) {
1997 FromRecordType = PT->getPointeeType();
1998 DestType = Method->getThisType(Context);
1999 } else {
2000 FromRecordType = From->getType();
2001 DestType = ImplicitParamRecordType;
2004 ImplicitConversionSequence ICS
2005 = TryObjectArgumentInitialization(From, Method);
2006 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2007 return Diag(From->getSourceRange().getBegin(),
2008 diag::err_implicit_object_parameter_init)
2009 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2011 if (ICS.Standard.Second == ICK_Derived_To_Base &&
2012 CheckDerivedToBaseConversion(FromRecordType,
2013 ImplicitParamRecordType,
2014 From->getSourceRange().getBegin(),
2015 From->getSourceRange()))
2016 return true;
2018 ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2019 return false;
2022 /// TryContextuallyConvertToBool - Attempt to contextually convert the
2023 /// expression From to bool (C++0x [conv]p3).
2024 ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2025 return TryImplicitConversion(From, Context.BoolTy, false, true);
2028 /// PerformContextuallyConvertToBool - Perform a contextual conversion
2029 /// of the expression From to bool (C++0x [conv]p3).
2030 bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2031 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2032 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2033 return false;
2035 return Diag(From->getSourceRange().getBegin(),
2036 diag::err_typecheck_bool_condition)
2037 << From->getType() << From->getSourceRange();
2040 /// AddOverloadCandidate - Adds the given function to the set of
2041 /// candidate functions, using the given function call arguments. If
2042 /// @p SuppressUserConversions, then don't allow user-defined
2043 /// conversions via constructors or conversion operators.
2044 /// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2045 /// hacky way to implement the overloading rules for elidable copy
2046 /// initialization in C++0x (C++0x 12.8p15).
2047 void
2048 Sema::AddOverloadCandidate(FunctionDecl *Function,
2049 Expr **Args, unsigned NumArgs,
2050 OverloadCandidateSet& CandidateSet,
2051 bool SuppressUserConversions,
2052 bool ForceRValue)
2054 const FunctionProtoType* Proto
2055 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2056 assert(Proto && "Functions without a prototype cannot be overloaded");
2057 assert(!isa<CXXConversionDecl>(Function) &&
2058 "Use AddConversionCandidate for conversion functions");
2059 assert(!Function->getDescribedFunctionTemplate() &&
2060 "Use AddTemplateOverloadCandidate for function templates");
2062 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2063 if (!isa<CXXConstructorDecl>(Method)) {
2064 // If we get here, it's because we're calling a member function
2065 // that is named without a member access expression (e.g.,
2066 // "this->f") that was either written explicitly or created
2067 // implicitly. This can happen with a qualified call to a member
2068 // function, e.g., X::f(). We use a NULL object as the implied
2069 // object argument (C++ [over.call.func]p3).
2070 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2071 SuppressUserConversions, ForceRValue);
2072 return;
2074 // We treat a constructor like a non-member function, since its object
2075 // argument doesn't participate in overload resolution.
2079 // Add this candidate
2080 CandidateSet.push_back(OverloadCandidate());
2081 OverloadCandidate& Candidate = CandidateSet.back();
2082 Candidate.Function = Function;
2083 Candidate.Viable = true;
2084 Candidate.IsSurrogate = false;
2085 Candidate.IgnoreObjectArgument = false;
2087 unsigned NumArgsInProto = Proto->getNumArgs();
2089 // (C++ 13.3.2p2): A candidate function having fewer than m
2090 // parameters is viable only if it has an ellipsis in its parameter
2091 // list (8.3.5).
2092 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2093 Candidate.Viable = false;
2094 return;
2097 // (C++ 13.3.2p2): A candidate function having more than m parameters
2098 // is viable only if the (m+1)st parameter has a default argument
2099 // (8.3.6). For the purposes of overload resolution, the
2100 // parameter list is truncated on the right, so that there are
2101 // exactly m parameters.
2102 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2103 if (NumArgs < MinRequiredArgs) {
2104 // Not enough arguments.
2105 Candidate.Viable = false;
2106 return;
2109 // Determine the implicit conversion sequences for each of the
2110 // arguments.
2111 Candidate.Conversions.resize(NumArgs);
2112 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2113 if (ArgIdx < NumArgsInProto) {
2114 // (C++ 13.3.2p3): for F to be a viable function, there shall
2115 // exist for each argument an implicit conversion sequence
2116 // (13.3.3.1) that converts that argument to the corresponding
2117 // parameter of F.
2118 QualType ParamType = Proto->getArgType(ArgIdx);
2119 Candidate.Conversions[ArgIdx]
2120 = TryCopyInitialization(Args[ArgIdx], ParamType,
2121 SuppressUserConversions, ForceRValue);
2122 if (Candidate.Conversions[ArgIdx].ConversionKind
2123 == ImplicitConversionSequence::BadConversion) {
2124 Candidate.Viable = false;
2125 break;
2127 } else {
2128 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2129 // argument for which there is no corresponding parameter is
2130 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2131 Candidate.Conversions[ArgIdx].ConversionKind
2132 = ImplicitConversionSequence::EllipsisConversion;
2137 /// \brief Add all of the function declarations in the given function set to
2138 /// the overload canddiate set.
2139 void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2140 Expr **Args, unsigned NumArgs,
2141 OverloadCandidateSet& CandidateSet,
2142 bool SuppressUserConversions) {
2143 for (FunctionSet::const_iterator F = Functions.begin(),
2144 FEnd = Functions.end();
2145 F != FEnd; ++F) {
2146 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2147 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2148 SuppressUserConversions);
2149 else
2150 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2151 /*FIXME: explicit args */false, 0, 0,
2152 Args, NumArgs, CandidateSet,
2153 SuppressUserConversions);
2157 /// AddMethodCandidate - Adds the given C++ member function to the set
2158 /// of candidate functions, using the given function call arguments
2159 /// and the object argument (@c Object). For example, in a call
2160 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2161 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2162 /// allow user-defined conversions via constructors or conversion
2163 /// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2164 /// a slightly hacky way to implement the overloading rules for elidable copy
2165 /// initialization in C++0x (C++0x 12.8p15).
2166 void
2167 Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2168 Expr **Args, unsigned NumArgs,
2169 OverloadCandidateSet& CandidateSet,
2170 bool SuppressUserConversions, bool ForceRValue)
2172 const FunctionProtoType* Proto
2173 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2174 assert(Proto && "Methods without a prototype cannot be overloaded");
2175 assert(!isa<CXXConversionDecl>(Method) &&
2176 "Use AddConversionCandidate for conversion functions");
2177 assert(!isa<CXXConstructorDecl>(Method) &&
2178 "Use AddOverloadCandidate for constructors");
2180 // Add this candidate
2181 CandidateSet.push_back(OverloadCandidate());
2182 OverloadCandidate& Candidate = CandidateSet.back();
2183 Candidate.Function = Method;
2184 Candidate.IsSurrogate = false;
2185 Candidate.IgnoreObjectArgument = false;
2187 unsigned NumArgsInProto = Proto->getNumArgs();
2189 // (C++ 13.3.2p2): A candidate function having fewer than m
2190 // parameters is viable only if it has an ellipsis in its parameter
2191 // list (8.3.5).
2192 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2193 Candidate.Viable = false;
2194 return;
2197 // (C++ 13.3.2p2): A candidate function having more than m parameters
2198 // is viable only if the (m+1)st parameter has a default argument
2199 // (8.3.6). For the purposes of overload resolution, the
2200 // parameter list is truncated on the right, so that there are
2201 // exactly m parameters.
2202 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2203 if (NumArgs < MinRequiredArgs) {
2204 // Not enough arguments.
2205 Candidate.Viable = false;
2206 return;
2209 Candidate.Viable = true;
2210 Candidate.Conversions.resize(NumArgs + 1);
2212 if (Method->isStatic() || !Object)
2213 // The implicit object argument is ignored.
2214 Candidate.IgnoreObjectArgument = true;
2215 else {
2216 // Determine the implicit conversion sequence for the object
2217 // parameter.
2218 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2219 if (Candidate.Conversions[0].ConversionKind
2220 == ImplicitConversionSequence::BadConversion) {
2221 Candidate.Viable = false;
2222 return;
2226 // Determine the implicit conversion sequences for each of the
2227 // arguments.
2228 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2229 if (ArgIdx < NumArgsInProto) {
2230 // (C++ 13.3.2p3): for F to be a viable function, there shall
2231 // exist for each argument an implicit conversion sequence
2232 // (13.3.3.1) that converts that argument to the corresponding
2233 // parameter of F.
2234 QualType ParamType = Proto->getArgType(ArgIdx);
2235 Candidate.Conversions[ArgIdx + 1]
2236 = TryCopyInitialization(Args[ArgIdx], ParamType,
2237 SuppressUserConversions, ForceRValue);
2238 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2239 == ImplicitConversionSequence::BadConversion) {
2240 Candidate.Viable = false;
2241 break;
2243 } else {
2244 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2245 // argument for which there is no corresponding parameter is
2246 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2247 Candidate.Conversions[ArgIdx + 1].ConversionKind
2248 = ImplicitConversionSequence::EllipsisConversion;
2253 /// \brief Add a C++ function template as a candidate in the candidate set,
2254 /// using template argument deduction to produce an appropriate function
2255 /// template specialization.
2256 void
2257 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2258 bool HasExplicitTemplateArgs,
2259 const TemplateArgument *ExplicitTemplateArgs,
2260 unsigned NumExplicitTemplateArgs,
2261 Expr **Args, unsigned NumArgs,
2262 OverloadCandidateSet& CandidateSet,
2263 bool SuppressUserConversions,
2264 bool ForceRValue) {
2265 // C++ [over.match.funcs]p7:
2266 // In each case where a candidate is a function template, candidate
2267 // function template specializations are generated using template argument
2268 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2269 // candidate functions in the usual way.113) A given name can refer to one
2270 // or more function templates and also to a set of overloaded non-template
2271 // functions. In such a case, the candidate functions generated from each
2272 // function template are combined with the set of non-template candidate
2273 // functions.
2274 TemplateDeductionInfo Info(Context);
2275 FunctionDecl *Specialization = 0;
2276 if (TemplateDeductionResult Result
2277 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2278 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2279 Args, NumArgs, Specialization, Info)) {
2280 // FIXME: Record what happened with template argument deduction, so
2281 // that we can give the user a beautiful diagnostic.
2282 (void)Result;
2283 return;
2286 // Add the function template specialization produced by template argument
2287 // deduction as a candidate.
2288 assert(Specialization && "Missing function template specialization?");
2289 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2290 SuppressUserConversions, ForceRValue);
2293 /// AddConversionCandidate - Add a C++ conversion function as a
2294 /// candidate in the candidate set (C++ [over.match.conv],
2295 /// C++ [over.match.copy]). From is the expression we're converting from,
2296 /// and ToType is the type that we're eventually trying to convert to
2297 /// (which may or may not be the same type as the type that the
2298 /// conversion function produces).
2299 void
2300 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2301 Expr *From, QualType ToType,
2302 OverloadCandidateSet& CandidateSet) {
2303 // Add this candidate
2304 CandidateSet.push_back(OverloadCandidate());
2305 OverloadCandidate& Candidate = CandidateSet.back();
2306 Candidate.Function = Conversion;
2307 Candidate.IsSurrogate = false;
2308 Candidate.IgnoreObjectArgument = false;
2309 Candidate.FinalConversion.setAsIdentityConversion();
2310 Candidate.FinalConversion.FromTypePtr
2311 = Conversion->getConversionType().getAsOpaquePtr();
2312 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2314 // Determine the implicit conversion sequence for the implicit
2315 // object parameter.
2316 Candidate.Viable = true;
2317 Candidate.Conversions.resize(1);
2318 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2320 if (Candidate.Conversions[0].ConversionKind
2321 == ImplicitConversionSequence::BadConversion) {
2322 Candidate.Viable = false;
2323 return;
2326 // To determine what the conversion from the result of calling the
2327 // conversion function to the type we're eventually trying to
2328 // convert to (ToType), we need to synthesize a call to the
2329 // conversion function and attempt copy initialization from it. This
2330 // makes sure that we get the right semantics with respect to
2331 // lvalues/rvalues and the type. Fortunately, we can allocate this
2332 // call on the stack and we don't need its arguments to be
2333 // well-formed.
2334 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2335 SourceLocation());
2336 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2337 &ConversionRef, false);
2339 // Note that it is safe to allocate CallExpr on the stack here because
2340 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2341 // allocator).
2342 CallExpr Call(Context, &ConversionFn, 0, 0,
2343 Conversion->getConversionType().getNonReferenceType(),
2344 SourceLocation());
2345 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2346 switch (ICS.ConversionKind) {
2347 case ImplicitConversionSequence::StandardConversion:
2348 Candidate.FinalConversion = ICS.Standard;
2349 break;
2351 case ImplicitConversionSequence::BadConversion:
2352 Candidate.Viable = false;
2353 break;
2355 default:
2356 assert(false &&
2357 "Can only end up with a standard conversion sequence or failure");
2361 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2362 /// converts the given @c Object to a function pointer via the
2363 /// conversion function @c Conversion, and then attempts to call it
2364 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
2365 /// the type of function that we'll eventually be calling.
2366 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2367 const FunctionProtoType *Proto,
2368 Expr *Object, Expr **Args, unsigned NumArgs,
2369 OverloadCandidateSet& CandidateSet) {
2370 CandidateSet.push_back(OverloadCandidate());
2371 OverloadCandidate& Candidate = CandidateSet.back();
2372 Candidate.Function = 0;
2373 Candidate.Surrogate = Conversion;
2374 Candidate.Viable = true;
2375 Candidate.IsSurrogate = true;
2376 Candidate.IgnoreObjectArgument = false;
2377 Candidate.Conversions.resize(NumArgs + 1);
2379 // Determine the implicit conversion sequence for the implicit
2380 // object parameter.
2381 ImplicitConversionSequence ObjectInit
2382 = TryObjectArgumentInitialization(Object, Conversion);
2383 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2384 Candidate.Viable = false;
2385 return;
2388 // The first conversion is actually a user-defined conversion whose
2389 // first conversion is ObjectInit's standard conversion (which is
2390 // effectively a reference binding). Record it as such.
2391 Candidate.Conversions[0].ConversionKind
2392 = ImplicitConversionSequence::UserDefinedConversion;
2393 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2394 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2395 Candidate.Conversions[0].UserDefined.After
2396 = Candidate.Conversions[0].UserDefined.Before;
2397 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2399 // Find the
2400 unsigned NumArgsInProto = Proto->getNumArgs();
2402 // (C++ 13.3.2p2): A candidate function having fewer than m
2403 // parameters is viable only if it has an ellipsis in its parameter
2404 // list (8.3.5).
2405 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2406 Candidate.Viable = false;
2407 return;
2410 // Function types don't have any default arguments, so just check if
2411 // we have enough arguments.
2412 if (NumArgs < NumArgsInProto) {
2413 // Not enough arguments.
2414 Candidate.Viable = false;
2415 return;
2418 // Determine the implicit conversion sequences for each of the
2419 // arguments.
2420 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2421 if (ArgIdx < NumArgsInProto) {
2422 // (C++ 13.3.2p3): for F to be a viable function, there shall
2423 // exist for each argument an implicit conversion sequence
2424 // (13.3.3.1) that converts that argument to the corresponding
2425 // parameter of F.
2426 QualType ParamType = Proto->getArgType(ArgIdx);
2427 Candidate.Conversions[ArgIdx + 1]
2428 = TryCopyInitialization(Args[ArgIdx], ParamType,
2429 /*SuppressUserConversions=*/false);
2430 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2431 == ImplicitConversionSequence::BadConversion) {
2432 Candidate.Viable = false;
2433 break;
2435 } else {
2436 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2437 // argument for which there is no corresponding parameter is
2438 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2439 Candidate.Conversions[ArgIdx + 1].ConversionKind
2440 = ImplicitConversionSequence::EllipsisConversion;
2445 // FIXME: This will eventually be removed, once we've migrated all of the
2446 // operator overloading logic over to the scheme used by binary operators, which
2447 // works for template instantiation.
2448 void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2449 SourceLocation OpLoc,
2450 Expr **Args, unsigned NumArgs,
2451 OverloadCandidateSet& CandidateSet,
2452 SourceRange OpRange) {
2454 FunctionSet Functions;
2456 QualType T1 = Args[0]->getType();
2457 QualType T2;
2458 if (NumArgs > 1)
2459 T2 = Args[1]->getType();
2461 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2462 if (S)
2463 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2464 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2465 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2466 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2467 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2470 /// \brief Add overload candidates for overloaded operators that are
2471 /// member functions.
2473 /// Add the overloaded operator candidates that are member functions
2474 /// for the operator Op that was used in an operator expression such
2475 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
2476 /// CandidateSet will store the added overload candidates. (C++
2477 /// [over.match.oper]).
2478 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2479 SourceLocation OpLoc,
2480 Expr **Args, unsigned NumArgs,
2481 OverloadCandidateSet& CandidateSet,
2482 SourceRange OpRange) {
2483 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2485 // C++ [over.match.oper]p3:
2486 // For a unary operator @ with an operand of a type whose
2487 // cv-unqualified version is T1, and for a binary operator @ with
2488 // a left operand of a type whose cv-unqualified version is T1 and
2489 // a right operand of a type whose cv-unqualified version is T2,
2490 // three sets of candidate functions, designated member
2491 // candidates, non-member candidates and built-in candidates, are
2492 // constructed as follows:
2493 QualType T1 = Args[0]->getType();
2494 QualType T2;
2495 if (NumArgs > 1)
2496 T2 = Args[1]->getType();
2498 // -- If T1 is a class type, the set of member candidates is the
2499 // result of the qualified lookup of T1::operator@
2500 // (13.3.1.1.1); otherwise, the set of member candidates is
2501 // empty.
2502 // FIXME: Lookup in base classes, too!
2503 if (const RecordType *T1Rec = T1->getAsRecordType()) {
2504 DeclContext::lookup_const_iterator Oper, OperEnd;
2505 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2506 Oper != OperEnd; ++Oper)
2507 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2508 Args+1, NumArgs - 1, CandidateSet,
2509 /*SuppressUserConversions=*/false);
2513 /// AddBuiltinCandidate - Add a candidate for a built-in
2514 /// operator. ResultTy and ParamTys are the result and parameter types
2515 /// of the built-in candidate, respectively. Args and NumArgs are the
2516 /// arguments being passed to the candidate. IsAssignmentOperator
2517 /// should be true when this built-in candidate is an assignment
2518 /// operator. NumContextualBoolArguments is the number of arguments
2519 /// (at the beginning of the argument list) that will be contextually
2520 /// converted to bool.
2521 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2522 Expr **Args, unsigned NumArgs,
2523 OverloadCandidateSet& CandidateSet,
2524 bool IsAssignmentOperator,
2525 unsigned NumContextualBoolArguments) {
2526 // Add this candidate
2527 CandidateSet.push_back(OverloadCandidate());
2528 OverloadCandidate& Candidate = CandidateSet.back();
2529 Candidate.Function = 0;
2530 Candidate.IsSurrogate = false;
2531 Candidate.IgnoreObjectArgument = false;
2532 Candidate.BuiltinTypes.ResultTy = ResultTy;
2533 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2534 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2536 // Determine the implicit conversion sequences for each of the
2537 // arguments.
2538 Candidate.Viable = true;
2539 Candidate.Conversions.resize(NumArgs);
2540 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2541 // C++ [over.match.oper]p4:
2542 // For the built-in assignment operators, conversions of the
2543 // left operand are restricted as follows:
2544 // -- no temporaries are introduced to hold the left operand, and
2545 // -- no user-defined conversions are applied to the left
2546 // operand to achieve a type match with the left-most
2547 // parameter of a built-in candidate.
2549 // We block these conversions by turning off user-defined
2550 // conversions, since that is the only way that initialization of
2551 // a reference to a non-class type can occur from something that
2552 // is not of the same type.
2553 if (ArgIdx < NumContextualBoolArguments) {
2554 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2555 "Contextual conversion to bool requires bool type");
2556 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2557 } else {
2558 Candidate.Conversions[ArgIdx]
2559 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2560 ArgIdx == 0 && IsAssignmentOperator);
2562 if (Candidate.Conversions[ArgIdx].ConversionKind
2563 == ImplicitConversionSequence::BadConversion) {
2564 Candidate.Viable = false;
2565 break;
2570 /// BuiltinCandidateTypeSet - A set of types that will be used for the
2571 /// candidate operator functions for built-in operators (C++
2572 /// [over.built]). The types are separated into pointer types and
2573 /// enumeration types.
2574 class BuiltinCandidateTypeSet {
2575 /// TypeSet - A set of types.
2576 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2578 /// PointerTypes - The set of pointer types that will be used in the
2579 /// built-in candidates.
2580 TypeSet PointerTypes;
2582 /// MemberPointerTypes - The set of member pointer types that will be
2583 /// used in the built-in candidates.
2584 TypeSet MemberPointerTypes;
2586 /// EnumerationTypes - The set of enumeration types that will be
2587 /// used in the built-in candidates.
2588 TypeSet EnumerationTypes;
2590 /// Context - The AST context in which we will build the type sets.
2591 ASTContext &Context;
2593 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2594 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2596 public:
2597 /// iterator - Iterates through the types that are part of the set.
2598 typedef TypeSet::iterator iterator;
2600 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2602 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2603 bool AllowExplicitConversions);
2605 /// pointer_begin - First pointer type found;
2606 iterator pointer_begin() { return PointerTypes.begin(); }
2608 /// pointer_end - Past the last pointer type found;
2609 iterator pointer_end() { return PointerTypes.end(); }
2611 /// member_pointer_begin - First member pointer type found;
2612 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2614 /// member_pointer_end - Past the last member pointer type found;
2615 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2617 /// enumeration_begin - First enumeration type found;
2618 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2620 /// enumeration_end - Past the last enumeration type found;
2621 iterator enumeration_end() { return EnumerationTypes.end(); }
2624 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2625 /// the set of pointer types along with any more-qualified variants of
2626 /// that type. For example, if @p Ty is "int const *", this routine
2627 /// will add "int const *", "int const volatile *", "int const
2628 /// restrict *", and "int const volatile restrict *" to the set of
2629 /// pointer types. Returns true if the add of @p Ty itself succeeded,
2630 /// false otherwise.
2631 bool
2632 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2633 // Insert this type.
2634 if (!PointerTypes.insert(Ty))
2635 return false;
2637 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2638 QualType PointeeTy = PointerTy->getPointeeType();
2639 // FIXME: Optimize this so that we don't keep trying to add the same types.
2641 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2642 // pointer conversions that don't cast away constness?
2643 if (!PointeeTy.isConstQualified())
2644 AddPointerWithMoreQualifiedTypeVariants
2645 (Context.getPointerType(PointeeTy.withConst()));
2646 if (!PointeeTy.isVolatileQualified())
2647 AddPointerWithMoreQualifiedTypeVariants
2648 (Context.getPointerType(PointeeTy.withVolatile()));
2649 if (!PointeeTy.isRestrictQualified())
2650 AddPointerWithMoreQualifiedTypeVariants
2651 (Context.getPointerType(PointeeTy.withRestrict()));
2654 return true;
2657 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2658 /// to the set of pointer types along with any more-qualified variants of
2659 /// that type. For example, if @p Ty is "int const *", this routine
2660 /// will add "int const *", "int const volatile *", "int const
2661 /// restrict *", and "int const volatile restrict *" to the set of
2662 /// pointer types. Returns true if the add of @p Ty itself succeeded,
2663 /// false otherwise.
2664 bool
2665 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2666 QualType Ty) {
2667 // Insert this type.
2668 if (!MemberPointerTypes.insert(Ty))
2669 return false;
2671 if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2672 QualType PointeeTy = PointerTy->getPointeeType();
2673 const Type *ClassTy = PointerTy->getClass();
2674 // FIXME: Optimize this so that we don't keep trying to add the same types.
2676 if (!PointeeTy.isConstQualified())
2677 AddMemberPointerWithMoreQualifiedTypeVariants
2678 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2679 if (!PointeeTy.isVolatileQualified())
2680 AddMemberPointerWithMoreQualifiedTypeVariants
2681 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2682 if (!PointeeTy.isRestrictQualified())
2683 AddMemberPointerWithMoreQualifiedTypeVariants
2684 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2687 return true;
2690 /// AddTypesConvertedFrom - Add each of the types to which the type @p
2691 /// Ty can be implicit converted to the given set of @p Types. We're
2692 /// primarily interested in pointer types and enumeration types. We also
2693 /// take member pointer types, for the conditional operator.
2694 /// AllowUserConversions is true if we should look at the conversion
2695 /// functions of a class type, and AllowExplicitConversions if we
2696 /// should also include the explicit conversion functions of a class
2697 /// type.
2698 void
2699 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2700 bool AllowUserConversions,
2701 bool AllowExplicitConversions) {
2702 // Only deal with canonical types.
2703 Ty = Context.getCanonicalType(Ty);
2705 // Look through reference types; they aren't part of the type of an
2706 // expression for the purposes of conversions.
2707 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2708 Ty = RefTy->getPointeeType();
2710 // We don't care about qualifiers on the type.
2711 Ty = Ty.getUnqualifiedType();
2713 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2714 QualType PointeeTy = PointerTy->getPointeeType();
2716 // Insert our type, and its more-qualified variants, into the set
2717 // of types.
2718 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2719 return;
2721 // Add 'cv void*' to our set of types.
2722 if (!Ty->isVoidType()) {
2723 QualType QualVoid
2724 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2725 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2728 // If this is a pointer to a class type, add pointers to its bases
2729 // (with the same level of cv-qualification as the original
2730 // derived class, of course).
2731 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2732 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2733 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2734 Base != ClassDecl->bases_end(); ++Base) {
2735 QualType BaseTy = Context.getCanonicalType(Base->getType());
2736 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2738 // Add the pointer type, recursively, so that we get all of
2739 // the indirect base classes, too.
2740 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2743 } else if (Ty->isMemberPointerType()) {
2744 // Member pointers are far easier, since the pointee can't be converted.
2745 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2746 return;
2747 } else if (Ty->isEnumeralType()) {
2748 EnumerationTypes.insert(Ty);
2749 } else if (AllowUserConversions) {
2750 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2751 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2752 // FIXME: Visit conversion functions in the base classes, too.
2753 OverloadedFunctionDecl *Conversions
2754 = ClassDecl->getConversionFunctions();
2755 for (OverloadedFunctionDecl::function_iterator Func
2756 = Conversions->function_begin();
2757 Func != Conversions->function_end(); ++Func) {
2758 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2759 if (AllowExplicitConversions || !Conv->isExplicit())
2760 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2766 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
2767 /// operator overloads to the candidate set (C++ [over.built]), based
2768 /// on the operator @p Op and the arguments given. For example, if the
2769 /// operator is a binary '+', this routine might add "int
2770 /// operator+(int, int)" to cover integer addition.
2771 void
2772 Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2773 Expr **Args, unsigned NumArgs,
2774 OverloadCandidateSet& CandidateSet) {
2775 // The set of "promoted arithmetic types", which are the arithmetic
2776 // types are that preserved by promotion (C++ [over.built]p2). Note
2777 // that the first few of these types are the promoted integral
2778 // types; these types need to be first.
2779 // FIXME: What about complex?
2780 const unsigned FirstIntegralType = 0;
2781 const unsigned LastIntegralType = 13;
2782 const unsigned FirstPromotedIntegralType = 7,
2783 LastPromotedIntegralType = 13;
2784 const unsigned FirstPromotedArithmeticType = 7,
2785 LastPromotedArithmeticType = 16;
2786 const unsigned NumArithmeticTypes = 16;
2787 QualType ArithmeticTypes[NumArithmeticTypes] = {
2788 Context.BoolTy, Context.CharTy, Context.WCharTy,
2789 // Context.Char16Ty, Context.Char32Ty,
2790 Context.SignedCharTy, Context.ShortTy,
2791 Context.UnsignedCharTy, Context.UnsignedShortTy,
2792 Context.IntTy, Context.LongTy, Context.LongLongTy,
2793 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2794 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2797 // Find all of the types that the arguments can convert to, but only
2798 // if the operator we're looking at has built-in operator candidates
2799 // that make use of these types.
2800 BuiltinCandidateTypeSet CandidateTypes(Context);
2801 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2802 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2803 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2804 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2805 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2806 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2807 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2808 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2809 true,
2810 (Op == OO_Exclaim ||
2811 Op == OO_AmpAmp ||
2812 Op == OO_PipePipe));
2815 bool isComparison = false;
2816 switch (Op) {
2817 case OO_None:
2818 case NUM_OVERLOADED_OPERATORS:
2819 assert(false && "Expected an overloaded operator");
2820 break;
2822 case OO_Star: // '*' is either unary or binary
2823 if (NumArgs == 1)
2824 goto UnaryStar;
2825 else
2826 goto BinaryStar;
2827 break;
2829 case OO_Plus: // '+' is either unary or binary
2830 if (NumArgs == 1)
2831 goto UnaryPlus;
2832 else
2833 goto BinaryPlus;
2834 break;
2836 case OO_Minus: // '-' is either unary or binary
2837 if (NumArgs == 1)
2838 goto UnaryMinus;
2839 else
2840 goto BinaryMinus;
2841 break;
2843 case OO_Amp: // '&' is either unary or binary
2844 if (NumArgs == 1)
2845 goto UnaryAmp;
2846 else
2847 goto BinaryAmp;
2849 case OO_PlusPlus:
2850 case OO_MinusMinus:
2851 // C++ [over.built]p3:
2853 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2854 // is either volatile or empty, there exist candidate operator
2855 // functions of the form
2857 // VQ T& operator++(VQ T&);
2858 // T operator++(VQ T&, int);
2860 // C++ [over.built]p4:
2862 // For every pair (T, VQ), where T is an arithmetic type other
2863 // than bool, and VQ is either volatile or empty, there exist
2864 // candidate operator functions of the form
2866 // VQ T& operator--(VQ T&);
2867 // T operator--(VQ T&, int);
2868 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2869 Arith < NumArithmeticTypes; ++Arith) {
2870 QualType ArithTy = ArithmeticTypes[Arith];
2871 QualType ParamTypes[2]
2872 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2874 // Non-volatile version.
2875 if (NumArgs == 1)
2876 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2877 else
2878 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2880 // Volatile version
2881 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2882 if (NumArgs == 1)
2883 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2884 else
2885 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2888 // C++ [over.built]p5:
2890 // For every pair (T, VQ), where T is a cv-qualified or
2891 // cv-unqualified object type, and VQ is either volatile or
2892 // empty, there exist candidate operator functions of the form
2894 // T*VQ& operator++(T*VQ&);
2895 // T*VQ& operator--(T*VQ&);
2896 // T* operator++(T*VQ&, int);
2897 // T* operator--(T*VQ&, int);
2898 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2899 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2900 // Skip pointer types that aren't pointers to object types.
2901 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2902 continue;
2904 QualType ParamTypes[2] = {
2905 Context.getLValueReferenceType(*Ptr), Context.IntTy
2908 // Without volatile
2909 if (NumArgs == 1)
2910 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2911 else
2912 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2914 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2915 // With volatile
2916 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2917 if (NumArgs == 1)
2918 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2919 else
2920 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2923 break;
2925 UnaryStar:
2926 // C++ [over.built]p6:
2927 // For every cv-qualified or cv-unqualified object type T, there
2928 // exist candidate operator functions of the form
2930 // T& operator*(T*);
2932 // C++ [over.built]p7:
2933 // For every function type T, there exist candidate operator
2934 // functions of the form
2935 // T& operator*(T*);
2936 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2937 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2938 QualType ParamTy = *Ptr;
2939 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2940 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2941 &ParamTy, Args, 1, CandidateSet);
2943 break;
2945 UnaryPlus:
2946 // C++ [over.built]p8:
2947 // For every type T, there exist candidate operator functions of
2948 // the form
2950 // T* operator+(T*);
2951 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2952 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2953 QualType ParamTy = *Ptr;
2954 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2957 // Fall through
2959 UnaryMinus:
2960 // C++ [over.built]p9:
2961 // For every promoted arithmetic type T, there exist candidate
2962 // operator functions of the form
2964 // T operator+(T);
2965 // T operator-(T);
2966 for (unsigned Arith = FirstPromotedArithmeticType;
2967 Arith < LastPromotedArithmeticType; ++Arith) {
2968 QualType ArithTy = ArithmeticTypes[Arith];
2969 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2971 break;
2973 case OO_Tilde:
2974 // C++ [over.built]p10:
2975 // For every promoted integral type T, there exist candidate
2976 // operator functions of the form
2978 // T operator~(T);
2979 for (unsigned Int = FirstPromotedIntegralType;
2980 Int < LastPromotedIntegralType; ++Int) {
2981 QualType IntTy = ArithmeticTypes[Int];
2982 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2984 break;
2986 case OO_New:
2987 case OO_Delete:
2988 case OO_Array_New:
2989 case OO_Array_Delete:
2990 case OO_Call:
2991 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2992 break;
2994 case OO_Comma:
2995 UnaryAmp:
2996 case OO_Arrow:
2997 // C++ [over.match.oper]p3:
2998 // -- For the operator ',', the unary operator '&', or the
2999 // operator '->', the built-in candidates set is empty.
3000 break;
3002 case OO_Less:
3003 case OO_Greater:
3004 case OO_LessEqual:
3005 case OO_GreaterEqual:
3006 case OO_EqualEqual:
3007 case OO_ExclaimEqual:
3008 // C++ [over.built]p15:
3010 // For every pointer or enumeration type T, there exist
3011 // candidate operator functions of the form
3013 // bool operator<(T, T);
3014 // bool operator>(T, T);
3015 // bool operator<=(T, T);
3016 // bool operator>=(T, T);
3017 // bool operator==(T, T);
3018 // bool operator!=(T, T);
3019 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3020 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3021 QualType ParamTypes[2] = { *Ptr, *Ptr };
3022 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3024 for (BuiltinCandidateTypeSet::iterator Enum
3025 = CandidateTypes.enumeration_begin();
3026 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3027 QualType ParamTypes[2] = { *Enum, *Enum };
3028 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3031 // Fall through.
3032 isComparison = true;
3034 BinaryPlus:
3035 BinaryMinus:
3036 if (!isComparison) {
3037 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3039 // C++ [over.built]p13:
3041 // For every cv-qualified or cv-unqualified object type T
3042 // there exist candidate operator functions of the form
3044 // T* operator+(T*, ptrdiff_t);
3045 // T& operator[](T*, ptrdiff_t); [BELOW]
3046 // T* operator-(T*, ptrdiff_t);
3047 // T* operator+(ptrdiff_t, T*);
3048 // T& operator[](ptrdiff_t, T*); [BELOW]
3050 // C++ [over.built]p14:
3052 // For every T, where T is a pointer to object type, there
3053 // exist candidate operator functions of the form
3055 // ptrdiff_t operator-(T, T);
3056 for (BuiltinCandidateTypeSet::iterator Ptr
3057 = CandidateTypes.pointer_begin();
3058 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3059 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3061 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3062 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3064 if (Op == OO_Plus) {
3065 // T* operator+(ptrdiff_t, T*);
3066 ParamTypes[0] = ParamTypes[1];
3067 ParamTypes[1] = *Ptr;
3068 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3069 } else {
3070 // ptrdiff_t operator-(T, T);
3071 ParamTypes[1] = *Ptr;
3072 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3073 Args, 2, CandidateSet);
3077 // Fall through
3079 case OO_Slash:
3080 BinaryStar:
3081 Conditional:
3082 // C++ [over.built]p12:
3084 // For every pair of promoted arithmetic types L and R, there
3085 // exist candidate operator functions of the form
3087 // LR operator*(L, R);
3088 // LR operator/(L, R);
3089 // LR operator+(L, R);
3090 // LR operator-(L, R);
3091 // bool operator<(L, R);
3092 // bool operator>(L, R);
3093 // bool operator<=(L, R);
3094 // bool operator>=(L, R);
3095 // bool operator==(L, R);
3096 // bool operator!=(L, R);
3098 // where LR is the result of the usual arithmetic conversions
3099 // between types L and R.
3101 // C++ [over.built]p24:
3103 // For every pair of promoted arithmetic types L and R, there exist
3104 // candidate operator functions of the form
3106 // LR operator?(bool, L, R);
3108 // where LR is the result of the usual arithmetic conversions
3109 // between types L and R.
3110 // Our candidates ignore the first parameter.
3111 for (unsigned Left = FirstPromotedArithmeticType;
3112 Left < LastPromotedArithmeticType; ++Left) {
3113 for (unsigned Right = FirstPromotedArithmeticType;
3114 Right < LastPromotedArithmeticType; ++Right) {
3115 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3116 QualType Result
3117 = isComparison? Context.BoolTy
3118 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3119 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3122 break;
3124 case OO_Percent:
3125 BinaryAmp:
3126 case OO_Caret:
3127 case OO_Pipe:
3128 case OO_LessLess:
3129 case OO_GreaterGreater:
3130 // C++ [over.built]p17:
3132 // For every pair of promoted integral types L and R, there
3133 // exist candidate operator functions of the form
3135 // LR operator%(L, R);
3136 // LR operator&(L, R);
3137 // LR operator^(L, R);
3138 // LR operator|(L, R);
3139 // L operator<<(L, R);
3140 // L operator>>(L, R);
3142 // where LR is the result of the usual arithmetic conversions
3143 // between types L and R.
3144 for (unsigned Left = FirstPromotedIntegralType;
3145 Left < LastPromotedIntegralType; ++Left) {
3146 for (unsigned Right = FirstPromotedIntegralType;
3147 Right < LastPromotedIntegralType; ++Right) {
3148 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3149 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3150 ? LandR[0]
3151 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3152 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3155 break;
3157 case OO_Equal:
3158 // C++ [over.built]p20:
3160 // For every pair (T, VQ), where T is an enumeration or
3161 // (FIXME:) pointer to member type and VQ is either volatile or
3162 // empty, there exist candidate operator functions of the form
3164 // VQ T& operator=(VQ T&, T);
3165 for (BuiltinCandidateTypeSet::iterator Enum
3166 = CandidateTypes.enumeration_begin();
3167 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3168 QualType ParamTypes[2];
3170 // T& operator=(T&, T)
3171 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3172 ParamTypes[1] = *Enum;
3173 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3174 /*IsAssignmentOperator=*/false);
3176 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3177 // volatile T& operator=(volatile T&, T)
3178 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3179 ParamTypes[1] = *Enum;
3180 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3181 /*IsAssignmentOperator=*/false);
3184 // Fall through.
3186 case OO_PlusEqual:
3187 case OO_MinusEqual:
3188 // C++ [over.built]p19:
3190 // For every pair (T, VQ), where T is any type and VQ is either
3191 // volatile or empty, there exist candidate operator functions
3192 // of the form
3194 // T*VQ& operator=(T*VQ&, T*);
3196 // C++ [over.built]p21:
3198 // For every pair (T, VQ), where T is a cv-qualified or
3199 // cv-unqualified object type and VQ is either volatile or
3200 // empty, there exist candidate operator functions of the form
3202 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3203 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3204 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3205 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3206 QualType ParamTypes[2];
3207 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3209 // non-volatile version
3210 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3211 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3212 /*IsAssigmentOperator=*/Op == OO_Equal);
3214 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3215 // volatile version
3216 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3217 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3218 /*IsAssigmentOperator=*/Op == OO_Equal);
3221 // Fall through.
3223 case OO_StarEqual:
3224 case OO_SlashEqual:
3225 // C++ [over.built]p18:
3227 // For every triple (L, VQ, R), where L is an arithmetic type,
3228 // VQ is either volatile or empty, and R is a promoted
3229 // arithmetic type, there exist candidate operator functions of
3230 // the form
3232 // VQ L& operator=(VQ L&, R);
3233 // VQ L& operator*=(VQ L&, R);
3234 // VQ L& operator/=(VQ L&, R);
3235 // VQ L& operator+=(VQ L&, R);
3236 // VQ L& operator-=(VQ L&, R);
3237 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3238 for (unsigned Right = FirstPromotedArithmeticType;
3239 Right < LastPromotedArithmeticType; ++Right) {
3240 QualType ParamTypes[2];
3241 ParamTypes[1] = ArithmeticTypes[Right];
3243 // Add this built-in operator as a candidate (VQ is empty).
3244 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3245 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3246 /*IsAssigmentOperator=*/Op == OO_Equal);
3248 // Add this built-in operator as a candidate (VQ is 'volatile').
3249 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3250 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3251 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3252 /*IsAssigmentOperator=*/Op == OO_Equal);
3255 break;
3257 case OO_PercentEqual:
3258 case OO_LessLessEqual:
3259 case OO_GreaterGreaterEqual:
3260 case OO_AmpEqual:
3261 case OO_CaretEqual:
3262 case OO_PipeEqual:
3263 // C++ [over.built]p22:
3265 // For every triple (L, VQ, R), where L is an integral type, VQ
3266 // is either volatile or empty, and R is a promoted integral
3267 // type, there exist candidate operator functions of the form
3269 // VQ L& operator%=(VQ L&, R);
3270 // VQ L& operator<<=(VQ L&, R);
3271 // VQ L& operator>>=(VQ L&, R);
3272 // VQ L& operator&=(VQ L&, R);
3273 // VQ L& operator^=(VQ L&, R);
3274 // VQ L& operator|=(VQ L&, R);
3275 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3276 for (unsigned Right = FirstPromotedIntegralType;
3277 Right < LastPromotedIntegralType; ++Right) {
3278 QualType ParamTypes[2];
3279 ParamTypes[1] = ArithmeticTypes[Right];
3281 // Add this built-in operator as a candidate (VQ is empty).
3282 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3283 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3285 // Add this built-in operator as a candidate (VQ is 'volatile').
3286 ParamTypes[0] = ArithmeticTypes[Left];
3287 ParamTypes[0].addVolatile();
3288 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3289 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3292 break;
3294 case OO_Exclaim: {
3295 // C++ [over.operator]p23:
3297 // There also exist candidate operator functions of the form
3299 // bool operator!(bool);
3300 // bool operator&&(bool, bool); [BELOW]
3301 // bool operator||(bool, bool); [BELOW]
3302 QualType ParamTy = Context.BoolTy;
3303 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3304 /*IsAssignmentOperator=*/false,
3305 /*NumContextualBoolArguments=*/1);
3306 break;
3309 case OO_AmpAmp:
3310 case OO_PipePipe: {
3311 // C++ [over.operator]p23:
3313 // There also exist candidate operator functions of the form
3315 // bool operator!(bool); [ABOVE]
3316 // bool operator&&(bool, bool);
3317 // bool operator||(bool, bool);
3318 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3319 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3320 /*IsAssignmentOperator=*/false,
3321 /*NumContextualBoolArguments=*/2);
3322 break;
3325 case OO_Subscript:
3326 // C++ [over.built]p13:
3328 // For every cv-qualified or cv-unqualified object type T there
3329 // exist candidate operator functions of the form
3331 // T* operator+(T*, ptrdiff_t); [ABOVE]
3332 // T& operator[](T*, ptrdiff_t);
3333 // T* operator-(T*, ptrdiff_t); [ABOVE]
3334 // T* operator+(ptrdiff_t, T*); [ABOVE]
3335 // T& operator[](ptrdiff_t, T*);
3336 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3337 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3338 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3339 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3340 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3342 // T& operator[](T*, ptrdiff_t)
3343 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3345 // T& operator[](ptrdiff_t, T*);
3346 ParamTypes[0] = ParamTypes[1];
3347 ParamTypes[1] = *Ptr;
3348 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3350 break;
3352 case OO_ArrowStar:
3353 // FIXME: No support for pointer-to-members yet.
3354 break;
3356 case OO_Conditional:
3357 // Note that we don't consider the first argument, since it has been
3358 // contextually converted to bool long ago. The candidates below are
3359 // therefore added as binary.
3361 // C++ [over.built]p24:
3362 // For every type T, where T is a pointer or pointer-to-member type,
3363 // there exist candidate operator functions of the form
3365 // T operator?(bool, T, T);
3367 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3368 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3369 QualType ParamTypes[2] = { *Ptr, *Ptr };
3370 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3372 for (BuiltinCandidateTypeSet::iterator Ptr =
3373 CandidateTypes.member_pointer_begin(),
3374 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3375 QualType ParamTypes[2] = { *Ptr, *Ptr };
3376 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3378 goto Conditional;
3382 /// \brief Add function candidates found via argument-dependent lookup
3383 /// to the set of overloading candidates.
3385 /// This routine performs argument-dependent name lookup based on the
3386 /// given function name (which may also be an operator name) and adds
3387 /// all of the overload candidates found by ADL to the overload
3388 /// candidate set (C++ [basic.lookup.argdep]).
3389 void
3390 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3391 Expr **Args, unsigned NumArgs,
3392 OverloadCandidateSet& CandidateSet) {
3393 FunctionSet Functions;
3395 // Record all of the function candidates that we've already
3396 // added to the overload set, so that we don't add those same
3397 // candidates a second time.
3398 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3399 CandEnd = CandidateSet.end();
3400 Cand != CandEnd; ++Cand)
3401 if (Cand->Function) {
3402 Functions.insert(Cand->Function);
3403 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3404 Functions.insert(FunTmpl);
3407 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3409 // Erase all of the candidates we already knew about.
3410 // FIXME: This is suboptimal. Is there a better way?
3411 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3412 CandEnd = CandidateSet.end();
3413 Cand != CandEnd; ++Cand)
3414 if (Cand->Function) {
3415 Functions.erase(Cand->Function);
3416 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3417 Functions.erase(FunTmpl);
3420 // For each of the ADL candidates we found, add it to the overload
3421 // set.
3422 for (FunctionSet::iterator Func = Functions.begin(),
3423 FuncEnd = Functions.end();
3424 Func != FuncEnd; ++Func) {
3425 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3426 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3427 else
3428 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3429 /*FIXME: explicit args */false, 0, 0,
3430 Args, NumArgs, CandidateSet);
3434 /// isBetterOverloadCandidate - Determines whether the first overload
3435 /// candidate is a better candidate than the second (C++ 13.3.3p1).
3436 bool
3437 Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3438 const OverloadCandidate& Cand2)
3440 // Define viable functions to be better candidates than non-viable
3441 // functions.
3442 if (!Cand2.Viable)
3443 return Cand1.Viable;
3444 else if (!Cand1.Viable)
3445 return false;
3447 // C++ [over.match.best]p1:
3449 // -- if F is a static member function, ICS1(F) is defined such
3450 // that ICS1(F) is neither better nor worse than ICS1(G) for
3451 // any function G, and, symmetrically, ICS1(G) is neither
3452 // better nor worse than ICS1(F).
3453 unsigned StartArg = 0;
3454 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3455 StartArg = 1;
3457 // C++ [over.match.best]p1:
3458 // A viable function F1 is defined to be a better function than another
3459 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
3460 // conversion sequence than ICSi(F2), and then...
3461 unsigned NumArgs = Cand1.Conversions.size();
3462 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3463 bool HasBetterConversion = false;
3464 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3465 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3466 Cand2.Conversions[ArgIdx])) {
3467 case ImplicitConversionSequence::Better:
3468 // Cand1 has a better conversion sequence.
3469 HasBetterConversion = true;
3470 break;
3472 case ImplicitConversionSequence::Worse:
3473 // Cand1 can't be better than Cand2.
3474 return false;
3476 case ImplicitConversionSequence::Indistinguishable:
3477 // Do nothing.
3478 break;
3482 // -- for some argument j, ICSj(F1) is a better conversion sequence than
3483 // ICSj(F2), or, if not that,
3484 if (HasBetterConversion)
3485 return true;
3487 // - F1 is a non-template function and F2 is a function template
3488 // specialization, or, if not that,
3489 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3490 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3491 return true;
3493 // -- F1 and F2 are function template specializations, and the function
3494 // template for F1 is more specialized than the template for F2
3495 // according to the partial ordering rules described in 14.5.5.2, or,
3496 // if not that,
3498 // FIXME: Implement partial ordering of function templates.
3500 // -- the context is an initialization by user-defined conversion
3501 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3502 // from the return type of F1 to the destination type (i.e.,
3503 // the type of the entity being initialized) is a better
3504 // conversion sequence than the standard conversion sequence
3505 // from the return type of F2 to the destination type.
3506 if (Cand1.Function && Cand2.Function &&
3507 isa<CXXConversionDecl>(Cand1.Function) &&
3508 isa<CXXConversionDecl>(Cand2.Function)) {
3509 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3510 Cand2.FinalConversion)) {
3511 case ImplicitConversionSequence::Better:
3512 // Cand1 has a better conversion sequence.
3513 return true;
3515 case ImplicitConversionSequence::Worse:
3516 // Cand1 can't be better than Cand2.
3517 return false;
3519 case ImplicitConversionSequence::Indistinguishable:
3520 // Do nothing
3521 break;
3525 return false;
3528 /// \brief Computes the best viable function (C++ 13.3.3)
3529 /// within an overload candidate set.
3531 /// \param CandidateSet the set of candidate functions.
3533 /// \param Loc the location of the function name (or operator symbol) for
3534 /// which overload resolution occurs.
3536 /// \param Best f overload resolution was successful or found a deleted
3537 /// function, Best points to the candidate function found.
3539 /// \returns The result of overload resolution.
3540 Sema::OverloadingResult
3541 Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3542 SourceLocation Loc,
3543 OverloadCandidateSet::iterator& Best)
3545 // Find the best viable function.
3546 Best = CandidateSet.end();
3547 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3548 Cand != CandidateSet.end(); ++Cand) {
3549 if (Cand->Viable) {
3550 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3551 Best = Cand;
3555 // If we didn't find any viable functions, abort.
3556 if (Best == CandidateSet.end())
3557 return OR_No_Viable_Function;
3559 // Make sure that this function is better than every other viable
3560 // function. If not, we have an ambiguity.
3561 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3562 Cand != CandidateSet.end(); ++Cand) {
3563 if (Cand->Viable &&
3564 Cand != Best &&
3565 !isBetterOverloadCandidate(*Best, *Cand)) {
3566 Best = CandidateSet.end();
3567 return OR_Ambiguous;
3571 // Best is the best viable function.
3572 if (Best->Function &&
3573 (Best->Function->isDeleted() ||
3574 Best->Function->getAttr<UnavailableAttr>()))
3575 return OR_Deleted;
3577 // C++ [basic.def.odr]p2:
3578 // An overloaded function is used if it is selected by overload resolution
3579 // when referred to from a potentially-evaluated expression. [Note: this
3580 // covers calls to named functions (5.2.2), operator overloading
3581 // (clause 13), user-defined conversions (12.3.2), allocation function for
3582 // placement new (5.3.4), as well as non-default initialization (8.5).
3583 if (Best->Function)
3584 MarkDeclarationReferenced(Loc, Best->Function);
3585 return OR_Success;
3588 /// PrintOverloadCandidates - When overload resolution fails, prints
3589 /// diagnostic messages containing the candidates in the candidate
3590 /// set. If OnlyViable is true, only viable candidates will be printed.
3591 void
3592 Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3593 bool OnlyViable)
3595 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3596 LastCand = CandidateSet.end();
3597 for (; Cand != LastCand; ++Cand) {
3598 if (Cand->Viable || !OnlyViable) {
3599 if (Cand->Function) {
3600 if (Cand->Function->isDeleted() ||
3601 Cand->Function->getAttr<UnavailableAttr>()) {
3602 // Deleted or "unavailable" function.
3603 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3604 << Cand->Function->isDeleted();
3605 } else {
3606 // Normal function
3607 // FIXME: Give a better reason!
3608 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3610 } else if (Cand->IsSurrogate) {
3611 // Desugar the type of the surrogate down to a function type,
3612 // retaining as many typedefs as possible while still showing
3613 // the function type (and, therefore, its parameter types).
3614 QualType FnType = Cand->Surrogate->getConversionType();
3615 bool isLValueReference = false;
3616 bool isRValueReference = false;
3617 bool isPointer = false;
3618 if (const LValueReferenceType *FnTypeRef =
3619 FnType->getAsLValueReferenceType()) {
3620 FnType = FnTypeRef->getPointeeType();
3621 isLValueReference = true;
3622 } else if (const RValueReferenceType *FnTypeRef =
3623 FnType->getAsRValueReferenceType()) {
3624 FnType = FnTypeRef->getPointeeType();
3625 isRValueReference = true;
3627 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3628 FnType = FnTypePtr->getPointeeType();
3629 isPointer = true;
3631 // Desugar down to a function type.
3632 FnType = QualType(FnType->getAsFunctionType(), 0);
3633 // Reconstruct the pointer/reference as appropriate.
3634 if (isPointer) FnType = Context.getPointerType(FnType);
3635 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3636 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3638 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3639 << FnType;
3640 } else {
3641 // FIXME: We need to get the identifier in here
3642 // FIXME: Do we want the error message to point at the operator?
3643 // (built-ins won't have a location)
3644 QualType FnType
3645 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3646 Cand->BuiltinTypes.ParamTypes,
3647 Cand->Conversions.size(),
3648 false, 0);
3650 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3656 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3657 /// an overloaded function (C++ [over.over]), where @p From is an
3658 /// expression with overloaded function type and @p ToType is the type
3659 /// we're trying to resolve to. For example:
3661 /// @code
3662 /// int f(double);
3663 /// int f(int);
3664 ///
3665 /// int (*pfd)(double) = f; // selects f(double)
3666 /// @endcode
3668 /// This routine returns the resulting FunctionDecl if it could be
3669 /// resolved, and NULL otherwise. When @p Complain is true, this
3670 /// routine will emit diagnostics if there is an error.
3671 FunctionDecl *
3672 Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3673 bool Complain) {
3674 QualType FunctionType = ToType;
3675 bool IsMember = false;
3676 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3677 FunctionType = ToTypePtr->getPointeeType();
3678 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3679 FunctionType = ToTypeRef->getPointeeType();
3680 else if (const MemberPointerType *MemTypePtr =
3681 ToType->getAsMemberPointerType()) {
3682 FunctionType = MemTypePtr->getPointeeType();
3683 IsMember = true;
3686 // We only look at pointers or references to functions.
3687 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3688 if (!FunctionType->isFunctionType())
3689 return 0;
3691 // Find the actual overloaded function declaration.
3692 OverloadedFunctionDecl *Ovl = 0;
3694 // C++ [over.over]p1:
3695 // [...] [Note: any redundant set of parentheses surrounding the
3696 // overloaded function name is ignored (5.1). ]
3697 Expr *OvlExpr = From->IgnoreParens();
3699 // C++ [over.over]p1:
3700 // [...] The overloaded function name can be preceded by the &
3701 // operator.
3702 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3703 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3704 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3707 // Try to dig out the overloaded function.
3708 FunctionTemplateDecl *FunctionTemplate = 0;
3709 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3710 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3711 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3714 // If there's no overloaded function declaration or function template,
3715 // we're done.
3716 if (!Ovl && !FunctionTemplate)
3717 return 0;
3719 OverloadIterator Fun;
3720 if (Ovl)
3721 Fun = Ovl;
3722 else
3723 Fun = FunctionTemplate;
3725 // Look through all of the overloaded functions, searching for one
3726 // whose type matches exactly.
3727 llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3729 bool FoundNonTemplateFunction = false;
3730 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3731 // C++ [over.over]p3:
3732 // Non-member functions and static member functions match
3733 // targets of type "pointer-to-function" or "reference-to-function."
3734 // Nonstatic member functions match targets of
3735 // type "pointer-to-member-function."
3736 // Note that according to DR 247, the containing class does not matter.
3738 if (FunctionTemplateDecl *FunctionTemplate
3739 = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3740 if (CXXMethodDecl *Method
3741 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3742 // Skip non-static function templates when converting to pointer, and
3743 // static when converting to member pointer.
3744 if (Method->isStatic() == IsMember)
3745 continue;
3746 } else if (IsMember)
3747 continue;
3749 // C++ [over.over]p2:
3750 // If the name is a function template, template argument deduction is
3751 // done (14.8.2.2), and if the argument deduction succeeds, the
3752 // resulting template argument list is used to generate a single
3753 // function template specialization, which is added to the set of
3754 // overloaded functions considered.
3755 FunctionDecl *Specialization = 0;
3756 TemplateDeductionInfo Info(Context);
3757 if (TemplateDeductionResult Result
3758 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3759 /*FIXME:*/0, /*FIXME:*/0,
3760 FunctionType, Specialization, Info)) {
3761 // FIXME: make a note of the failed deduction for diagnostics.
3762 (void)Result;
3763 } else {
3764 assert(FunctionType
3765 == Context.getCanonicalType(Specialization->getType()));
3766 Matches.insert(
3767 cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3771 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3772 // Skip non-static functions when converting to pointer, and static
3773 // when converting to member pointer.
3774 if (Method->isStatic() == IsMember)
3775 continue;
3776 } else if (IsMember)
3777 continue;
3779 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3780 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3781 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3782 FoundNonTemplateFunction = true;
3787 // If there were 0 or 1 matches, we're done.
3788 if (Matches.empty())
3789 return 0;
3790 else if (Matches.size() == 1)
3791 return *Matches.begin();
3793 // C++ [over.over]p4:
3794 // If more than one function is selected, [...]
3795 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3796 if (FoundNonTemplateFunction) {
3797 // [...] any function template specializations in the set are eliminated
3798 // if the set also contains a non-template function, [...]
3799 for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3800 MEnd = Matches.end();
3801 M != MEnd; ++M)
3802 if ((*M)->getPrimaryTemplate() == 0)
3803 RemainingMatches.push_back(*M);
3804 } else {
3805 // [...] and any given function template specialization F1 is eliminated
3806 // if the set contains a second function template specialization whose
3807 // function template is more specialized than the function template of F1
3808 // according to the partial ordering rules of 14.5.5.2.
3809 // FIXME: Implement this!
3810 RemainingMatches.append(Matches.begin(), Matches.end());
3813 // [...] After such eliminations, if any, there shall remain exactly one
3814 // selected function.
3815 if (RemainingMatches.size() == 1)
3816 return RemainingMatches.front();
3818 // FIXME: We should probably return the same thing that BestViableFunction
3819 // returns (even if we issue the diagnostics here).
3820 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3821 << RemainingMatches[0]->getDeclName();
3822 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3823 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3824 return 0;
3827 /// ResolveOverloadedCallFn - Given the call expression that calls Fn
3828 /// (which eventually refers to the declaration Func) and the call
3829 /// arguments Args/NumArgs, attempt to resolve the function call down
3830 /// to a specific function. If overload resolution succeeds, returns
3831 /// the function declaration produced by overload
3832 /// resolution. Otherwise, emits diagnostics, deletes all of the
3833 /// arguments and Fn, and returns NULL.
3834 FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3835 DeclarationName UnqualifiedName,
3836 bool HasExplicitTemplateArgs,
3837 const TemplateArgument *ExplicitTemplateArgs,
3838 unsigned NumExplicitTemplateArgs,
3839 SourceLocation LParenLoc,
3840 Expr **Args, unsigned NumArgs,
3841 SourceLocation *CommaLocs,
3842 SourceLocation RParenLoc,
3843 bool &ArgumentDependentLookup) {
3844 OverloadCandidateSet CandidateSet;
3846 // Add the functions denoted by Callee to the set of candidate
3847 // functions. While we're doing so, track whether argument-dependent
3848 // lookup still applies, per:
3850 // C++0x [basic.lookup.argdep]p3:
3851 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3852 // and let Y be the lookup set produced by argument dependent
3853 // lookup (defined as follows). If X contains
3855 // -- a declaration of a class member, or
3857 // -- a block-scope function declaration that is not a
3858 // using-declaration, or
3860 // -- a declaration that is neither a function or a function
3861 // template
3863 // then Y is empty.
3864 if (OverloadedFunctionDecl *Ovl
3865 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3866 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3867 FuncEnd = Ovl->function_end();
3868 Func != FuncEnd; ++Func) {
3869 DeclContext *Ctx = 0;
3870 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3871 if (HasExplicitTemplateArgs)
3872 continue;
3874 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3875 Ctx = FunDecl->getDeclContext();
3876 } else {
3877 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3878 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3879 ExplicitTemplateArgs,
3880 NumExplicitTemplateArgs,
3881 Args, NumArgs, CandidateSet);
3882 Ctx = FunTmpl->getDeclContext();
3886 if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3887 ArgumentDependentLookup = false;
3889 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3890 assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3891 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3893 if (Func->getDeclContext()->isRecord() ||
3894 Func->getDeclContext()->isFunctionOrMethod())
3895 ArgumentDependentLookup = false;
3896 } else if (FunctionTemplateDecl *FuncTemplate
3897 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3898 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3899 ExplicitTemplateArgs,
3900 NumExplicitTemplateArgs,
3901 Args, NumArgs, CandidateSet);
3903 if (FuncTemplate->getDeclContext()->isRecord())
3904 ArgumentDependentLookup = false;
3907 if (Callee)
3908 UnqualifiedName = Callee->getDeclName();
3910 // FIXME: Pass explicit template arguments through for ADL
3911 if (ArgumentDependentLookup)
3912 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3913 CandidateSet);
3915 OverloadCandidateSet::iterator Best;
3916 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3917 case OR_Success:
3918 return Best->Function;
3920 case OR_No_Viable_Function:
3921 Diag(Fn->getSourceRange().getBegin(),
3922 diag::err_ovl_no_viable_function_in_call)
3923 << UnqualifiedName << Fn->getSourceRange();
3924 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3925 break;
3927 case OR_Ambiguous:
3928 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3929 << UnqualifiedName << Fn->getSourceRange();
3930 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3931 break;
3933 case OR_Deleted:
3934 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3935 << Best->Function->isDeleted()
3936 << UnqualifiedName
3937 << Fn->getSourceRange();
3938 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3939 break;
3942 // Overload resolution failed. Destroy all of the subexpressions and
3943 // return NULL.
3944 Fn->Destroy(Context);
3945 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3946 Args[Arg]->Destroy(Context);
3947 return 0;
3950 /// \brief Create a unary operation that may resolve to an overloaded
3951 /// operator.
3953 /// \param OpLoc The location of the operator itself (e.g., '*').
3955 /// \param OpcIn The UnaryOperator::Opcode that describes this
3956 /// operator.
3958 /// \param Functions The set of non-member functions that will be
3959 /// considered by overload resolution. The caller needs to build this
3960 /// set based on the context using, e.g.,
3961 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3962 /// set should not contain any member functions; those will be added
3963 /// by CreateOverloadedUnaryOp().
3965 /// \param input The input argument.
3966 Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3967 unsigned OpcIn,
3968 FunctionSet &Functions,
3969 ExprArg input) {
3970 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3971 Expr *Input = (Expr *)input.get();
3973 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3974 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3975 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3977 Expr *Args[2] = { Input, 0 };
3978 unsigned NumArgs = 1;
3980 // For post-increment and post-decrement, add the implicit '0' as
3981 // the second argument, so that we know this is a post-increment or
3982 // post-decrement.
3983 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3984 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3985 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3986 SourceLocation());
3987 NumArgs = 2;
3990 if (Input->isTypeDependent()) {
3991 OverloadedFunctionDecl *Overloads
3992 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3993 for (FunctionSet::iterator Func = Functions.begin(),
3994 FuncEnd = Functions.end();
3995 Func != FuncEnd; ++Func)
3996 Overloads->addOverload(*Func);
3998 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3999 OpLoc, false, false);
4001 input.release();
4002 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4003 &Args[0], NumArgs,
4004 Context.DependentTy,
4005 OpLoc));
4008 // Build an empty overload set.
4009 OverloadCandidateSet CandidateSet;
4011 // Add the candidates from the given function set.
4012 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4014 // Add operator candidates that are member functions.
4015 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4017 // Add builtin operator candidates.
4018 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4020 // Perform overload resolution.
4021 OverloadCandidateSet::iterator Best;
4022 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4023 case OR_Success: {
4024 // We found a built-in operator or an overloaded operator.
4025 FunctionDecl *FnDecl = Best->Function;
4027 if (FnDecl) {
4028 // We matched an overloaded operator. Build a call to that
4029 // operator.
4031 // Convert the arguments.
4032 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4033 if (PerformObjectArgumentInitialization(Input, Method))
4034 return ExprError();
4035 } else {
4036 // Convert the arguments.
4037 if (PerformCopyInitialization(Input,
4038 FnDecl->getParamDecl(0)->getType(),
4039 "passing"))
4040 return ExprError();
4043 // Determine the result type
4044 QualType ResultTy
4045 = FnDecl->getType()->getAsFunctionType()->getResultType();
4046 ResultTy = ResultTy.getNonReferenceType();
4048 // Build the actual expression node.
4049 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4050 SourceLocation());
4051 UsualUnaryConversions(FnExpr);
4053 input.release();
4054 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4055 &Input, 1, ResultTy,
4056 OpLoc));
4057 } else {
4058 // We matched a built-in operator. Convert the arguments, then
4059 // break out so that we will build the appropriate built-in
4060 // operator node.
4061 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4062 Best->Conversions[0], "passing"))
4063 return ExprError();
4065 break;
4069 case OR_No_Viable_Function:
4070 // No viable function; fall through to handling this as a
4071 // built-in operator, which will produce an error message for us.
4072 break;
4074 case OR_Ambiguous:
4075 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4076 << UnaryOperator::getOpcodeStr(Opc)
4077 << Input->getSourceRange();
4078 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4079 return ExprError();
4081 case OR_Deleted:
4082 Diag(OpLoc, diag::err_ovl_deleted_oper)
4083 << Best->Function->isDeleted()
4084 << UnaryOperator::getOpcodeStr(Opc)
4085 << Input->getSourceRange();
4086 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4087 return ExprError();
4090 // Either we found no viable overloaded operator or we matched a
4091 // built-in operator. In either case, fall through to trying to
4092 // build a built-in operation.
4093 input.release();
4094 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4097 /// \brief Create a binary operation that may resolve to an overloaded
4098 /// operator.
4100 /// \param OpLoc The location of the operator itself (e.g., '+').
4102 /// \param OpcIn The BinaryOperator::Opcode that describes this
4103 /// operator.
4105 /// \param Functions The set of non-member functions that will be
4106 /// considered by overload resolution. The caller needs to build this
4107 /// set based on the context using, e.g.,
4108 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4109 /// set should not contain any member functions; those will be added
4110 /// by CreateOverloadedBinOp().
4112 /// \param LHS Left-hand argument.
4113 /// \param RHS Right-hand argument.
4114 Sema::OwningExprResult
4115 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4116 unsigned OpcIn,
4117 FunctionSet &Functions,
4118 Expr *LHS, Expr *RHS) {
4119 Expr *Args[2] = { LHS, RHS };
4121 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4122 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4123 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4125 // If either side is type-dependent, create an appropriate dependent
4126 // expression.
4127 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4128 // .* cannot be overloaded.
4129 if (Opc == BinaryOperator::PtrMemD)
4130 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4131 Context.DependentTy, OpLoc));
4133 OverloadedFunctionDecl *Overloads
4134 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4135 for (FunctionSet::iterator Func = Functions.begin(),
4136 FuncEnd = Functions.end();
4137 Func != FuncEnd; ++Func)
4138 Overloads->addOverload(*Func);
4140 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4141 OpLoc, false, false);
4143 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4144 Args, 2,
4145 Context.DependentTy,
4146 OpLoc));
4149 // If this is the .* operator, which is not overloadable, just
4150 // create a built-in binary operator.
4151 if (Opc == BinaryOperator::PtrMemD)
4152 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4154 // If this is one of the assignment operators, we only perform
4155 // overload resolution if the left-hand side is a class or
4156 // enumeration type (C++ [expr.ass]p3).
4157 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4158 !LHS->getType()->isOverloadableType())
4159 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4161 // Build an empty overload set.
4162 OverloadCandidateSet CandidateSet;
4164 // Add the candidates from the given function set.
4165 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4167 // Add operator candidates that are member functions.
4168 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4170 // Add builtin operator candidates.
4171 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4173 // Perform overload resolution.
4174 OverloadCandidateSet::iterator Best;
4175 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4176 case OR_Success: {
4177 // We found a built-in operator or an overloaded operator.
4178 FunctionDecl *FnDecl = Best->Function;
4180 if (FnDecl) {
4181 // We matched an overloaded operator. Build a call to that
4182 // operator.
4184 // Convert the arguments.
4185 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4186 if (PerformObjectArgumentInitialization(LHS, Method) ||
4187 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4188 "passing"))
4189 return ExprError();
4190 } else {
4191 // Convert the arguments.
4192 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4193 "passing") ||
4194 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4195 "passing"))
4196 return ExprError();
4199 // Determine the result type
4200 QualType ResultTy
4201 = FnDecl->getType()->getAsFunctionType()->getResultType();
4202 ResultTy = ResultTy.getNonReferenceType();
4204 // Build the actual expression node.
4205 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4206 OpLoc);
4207 UsualUnaryConversions(FnExpr);
4209 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4210 Args, 2, ResultTy,
4211 OpLoc));
4212 } else {
4213 // We matched a built-in operator. Convert the arguments, then
4214 // break out so that we will build the appropriate built-in
4215 // operator node.
4216 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4217 Best->Conversions[0], "passing") ||
4218 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4219 Best->Conversions[1], "passing"))
4220 return ExprError();
4222 break;
4226 case OR_No_Viable_Function:
4227 // For class as left operand for assignment or compound assigment operator
4228 // do not fall through to handling in built-in, but report that no overloaded
4229 // assignment operator found
4230 if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4231 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4232 << BinaryOperator::getOpcodeStr(Opc)
4233 << LHS->getSourceRange() << RHS->getSourceRange();
4234 return ExprError();
4236 // No viable function; fall through to handling this as a
4237 // built-in operator, which will produce an error message for us.
4238 break;
4240 case OR_Ambiguous:
4241 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4242 << BinaryOperator::getOpcodeStr(Opc)
4243 << LHS->getSourceRange() << RHS->getSourceRange();
4244 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4245 return ExprError();
4247 case OR_Deleted:
4248 Diag(OpLoc, diag::err_ovl_deleted_oper)
4249 << Best->Function->isDeleted()
4250 << BinaryOperator::getOpcodeStr(Opc)
4251 << LHS->getSourceRange() << RHS->getSourceRange();
4252 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4253 return ExprError();
4256 // Either we found no viable overloaded operator or we matched a
4257 // built-in operator. In either case, try to build a built-in
4258 // operation.
4259 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4262 /// BuildCallToMemberFunction - Build a call to a member
4263 /// function. MemExpr is the expression that refers to the member
4264 /// function (and includes the object parameter), Args/NumArgs are the
4265 /// arguments to the function call (not including the object
4266 /// parameter). The caller needs to validate that the member
4267 /// expression refers to a member function or an overloaded member
4268 /// function.
4269 Sema::ExprResult
4270 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4271 SourceLocation LParenLoc, Expr **Args,
4272 unsigned NumArgs, SourceLocation *CommaLocs,
4273 SourceLocation RParenLoc) {
4274 // Dig out the member expression. This holds both the object
4275 // argument and the member function we're referring to.
4276 MemberExpr *MemExpr = 0;
4277 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4278 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4279 else
4280 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4281 assert(MemExpr && "Building member call without member expression");
4283 // Extract the object argument.
4284 Expr *ObjectArg = MemExpr->getBase();
4286 CXXMethodDecl *Method = 0;
4287 if (OverloadedFunctionDecl *Ovl
4288 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4289 // Add overload candidates
4290 OverloadCandidateSet CandidateSet;
4291 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4292 FuncEnd = Ovl->function_end();
4293 Func != FuncEnd; ++Func) {
4294 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4295 Method = cast<CXXMethodDecl>(*Func);
4296 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4297 /*SuppressUserConversions=*/false);
4300 OverloadCandidateSet::iterator Best;
4301 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4302 case OR_Success:
4303 Method = cast<CXXMethodDecl>(Best->Function);
4304 break;
4306 case OR_No_Viable_Function:
4307 Diag(MemExpr->getSourceRange().getBegin(),
4308 diag::err_ovl_no_viable_member_function_in_call)
4309 << Ovl->getDeclName() << MemExprE->getSourceRange();
4310 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4311 // FIXME: Leaking incoming expressions!
4312 return true;
4314 case OR_Ambiguous:
4315 Diag(MemExpr->getSourceRange().getBegin(),
4316 diag::err_ovl_ambiguous_member_call)
4317 << Ovl->getDeclName() << MemExprE->getSourceRange();
4318 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4319 // FIXME: Leaking incoming expressions!
4320 return true;
4322 case OR_Deleted:
4323 Diag(MemExpr->getSourceRange().getBegin(),
4324 diag::err_ovl_deleted_member_call)
4325 << Best->Function->isDeleted()
4326 << Ovl->getDeclName() << MemExprE->getSourceRange();
4327 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4328 // FIXME: Leaking incoming expressions!
4329 return true;
4332 FixOverloadedFunctionReference(MemExpr, Method);
4333 } else {
4334 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4337 assert(Method && "Member call to something that isn't a method?");
4338 ExprOwningPtr<CXXMemberCallExpr>
4339 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4340 NumArgs,
4341 Method->getResultType().getNonReferenceType(),
4342 RParenLoc));
4344 // Convert the object argument (for a non-static member function call).
4345 if (!Method->isStatic() &&
4346 PerformObjectArgumentInitialization(ObjectArg, Method))
4347 return true;
4348 MemExpr->setBase(ObjectArg);
4350 // Convert the rest of the arguments
4351 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4352 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4353 RParenLoc))
4354 return true;
4356 return CheckFunctionCall(Method, TheCall.take()).release();
4359 /// BuildCallToObjectOfClassType - Build a call to an object of class
4360 /// type (C++ [over.call.object]), which can end up invoking an
4361 /// overloaded function call operator (@c operator()) or performing a
4362 /// user-defined conversion on the object argument.
4363 Sema::ExprResult
4364 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4365 SourceLocation LParenLoc,
4366 Expr **Args, unsigned NumArgs,
4367 SourceLocation *CommaLocs,
4368 SourceLocation RParenLoc) {
4369 assert(Object->getType()->isRecordType() && "Requires object type argument");
4370 const RecordType *Record = Object->getType()->getAsRecordType();
4372 // C++ [over.call.object]p1:
4373 // If the primary-expression E in the function call syntax
4374 // evaluates to a class object of type “cv T”, then the set of
4375 // candidate functions includes at least the function call
4376 // operators of T. The function call operators of T are obtained by
4377 // ordinary lookup of the name operator() in the context of
4378 // (E).operator().
4379 OverloadCandidateSet CandidateSet;
4380 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4381 DeclContext::lookup_const_iterator Oper, OperEnd;
4382 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4383 Oper != OperEnd; ++Oper)
4384 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4385 CandidateSet, /*SuppressUserConversions=*/false);
4387 // C++ [over.call.object]p2:
4388 // In addition, for each conversion function declared in T of the
4389 // form
4391 // operator conversion-type-id () cv-qualifier;
4393 // where cv-qualifier is the same cv-qualification as, or a
4394 // greater cv-qualification than, cv, and where conversion-type-id
4395 // denotes the type "pointer to function of (P1,...,Pn) returning
4396 // R", or the type "reference to pointer to function of
4397 // (P1,...,Pn) returning R", or the type "reference to function
4398 // of (P1,...,Pn) returning R", a surrogate call function [...]
4399 // is also considered as a candidate function. Similarly,
4400 // surrogate call functions are added to the set of candidate
4401 // functions for each conversion function declared in an
4402 // accessible base class provided the function is not hidden
4403 // within T by another intervening declaration.
4405 // FIXME: Look in base classes for more conversion operators!
4406 OverloadedFunctionDecl *Conversions
4407 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4408 for (OverloadedFunctionDecl::function_iterator
4409 Func = Conversions->function_begin(),
4410 FuncEnd = Conversions->function_end();
4411 Func != FuncEnd; ++Func) {
4412 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4414 // Strip the reference type (if any) and then the pointer type (if
4415 // any) to get down to what might be a function type.
4416 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4417 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4418 ConvType = ConvPtrType->getPointeeType();
4420 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4421 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4424 // Perform overload resolution.
4425 OverloadCandidateSet::iterator Best;
4426 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4427 case OR_Success:
4428 // Overload resolution succeeded; we'll build the appropriate call
4429 // below.
4430 break;
4432 case OR_No_Viable_Function:
4433 Diag(Object->getSourceRange().getBegin(),
4434 diag::err_ovl_no_viable_object_call)
4435 << Object->getType() << Object->getSourceRange();
4436 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4437 break;
4439 case OR_Ambiguous:
4440 Diag(Object->getSourceRange().getBegin(),
4441 diag::err_ovl_ambiguous_object_call)
4442 << Object->getType() << Object->getSourceRange();
4443 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4444 break;
4446 case OR_Deleted:
4447 Diag(Object->getSourceRange().getBegin(),
4448 diag::err_ovl_deleted_object_call)
4449 << Best->Function->isDeleted()
4450 << Object->getType() << Object->getSourceRange();
4451 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4452 break;
4455 if (Best == CandidateSet.end()) {
4456 // We had an error; delete all of the subexpressions and return
4457 // the error.
4458 Object->Destroy(Context);
4459 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4460 Args[ArgIdx]->Destroy(Context);
4461 return true;
4464 if (Best->Function == 0) {
4465 // Since there is no function declaration, this is one of the
4466 // surrogate candidates. Dig out the conversion function.
4467 CXXConversionDecl *Conv
4468 = cast<CXXConversionDecl>(
4469 Best->Conversions[0].UserDefined.ConversionFunction);
4471 // We selected one of the surrogate functions that converts the
4472 // object parameter to a function pointer. Perform the conversion
4473 // on the object argument, then let ActOnCallExpr finish the job.
4474 // FIXME: Represent the user-defined conversion in the AST!
4475 ImpCastExprToType(Object,
4476 Conv->getConversionType().getNonReferenceType(),
4477 Conv->getConversionType()->isLValueReferenceType());
4478 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4479 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4480 CommaLocs, RParenLoc).release();
4483 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4484 // that calls this method, using Object for the implicit object
4485 // parameter and passing along the remaining arguments.
4486 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4487 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4489 unsigned NumArgsInProto = Proto->getNumArgs();
4490 unsigned NumArgsToCheck = NumArgs;
4492 // Build the full argument list for the method call (the
4493 // implicit object parameter is placed at the beginning of the
4494 // list).
4495 Expr **MethodArgs;
4496 if (NumArgs < NumArgsInProto) {
4497 NumArgsToCheck = NumArgsInProto;
4498 MethodArgs = new Expr*[NumArgsInProto + 1];
4499 } else {
4500 MethodArgs = new Expr*[NumArgs + 1];
4502 MethodArgs[0] = Object;
4503 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4504 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4506 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4507 SourceLocation());
4508 UsualUnaryConversions(NewFn);
4510 // Once we've built TheCall, all of the expressions are properly
4511 // owned.
4512 QualType ResultTy = Method->getResultType().getNonReferenceType();
4513 ExprOwningPtr<CXXOperatorCallExpr>
4514 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4515 MethodArgs, NumArgs + 1,
4516 ResultTy, RParenLoc));
4517 delete [] MethodArgs;
4519 // We may have default arguments. If so, we need to allocate more
4520 // slots in the call for them.
4521 if (NumArgs < NumArgsInProto)
4522 TheCall->setNumArgs(Context, NumArgsInProto + 1);
4523 else if (NumArgs > NumArgsInProto)
4524 NumArgsToCheck = NumArgsInProto;
4526 bool IsError = false;
4528 // Initialize the implicit object parameter.
4529 IsError |= PerformObjectArgumentInitialization(Object, Method);
4530 TheCall->setArg(0, Object);
4533 // Check the argument types.
4534 for (unsigned i = 0; i != NumArgsToCheck; i++) {
4535 Expr *Arg;
4536 if (i < NumArgs) {
4537 Arg = Args[i];
4539 // Pass the argument.
4540 QualType ProtoArgType = Proto->getArgType(i);
4541 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4542 } else {
4543 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4546 TheCall->setArg(i + 1, Arg);
4549 // If this is a variadic call, handle args passed through "...".
4550 if (Proto->isVariadic()) {
4551 // Promote the arguments (C99 6.5.2.2p7).
4552 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4553 Expr *Arg = Args[i];
4554 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4555 TheCall->setArg(i + 1, Arg);
4559 if (IsError) return true;
4561 return CheckFunctionCall(Method, TheCall.take()).release();
4564 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4565 /// (if one exists), where @c Base is an expression of class type and
4566 /// @c Member is the name of the member we're trying to find.
4567 Action::ExprResult
4568 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4569 SourceLocation MemberLoc,
4570 IdentifierInfo &Member) {
4571 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4573 // C++ [over.ref]p1:
4575 // [...] An expression x->m is interpreted as (x.operator->())->m
4576 // for a class object x of type T if T::operator->() exists and if
4577 // the operator is selected as the best match function by the
4578 // overload resolution mechanism (13.3).
4579 // FIXME: look in base classes.
4580 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4581 OverloadCandidateSet CandidateSet;
4582 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4584 DeclContext::lookup_const_iterator Oper, OperEnd;
4585 for (llvm::tie(Oper, OperEnd)
4586 = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4587 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4588 /*SuppressUserConversions=*/false);
4590 ExprOwningPtr<Expr> BasePtr(this, Base);
4592 // Perform overload resolution.
4593 OverloadCandidateSet::iterator Best;
4594 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4595 case OR_Success:
4596 // Overload resolution succeeded; we'll build the call below.
4597 break;
4599 case OR_No_Viable_Function:
4600 if (CandidateSet.empty())
4601 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4602 << BasePtr->getType() << BasePtr->getSourceRange();
4603 else
4604 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4605 << "operator->" << BasePtr->getSourceRange();
4606 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4607 return true;
4609 case OR_Ambiguous:
4610 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4611 << "operator->" << BasePtr->getSourceRange();
4612 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4613 return true;
4615 case OR_Deleted:
4616 Diag(OpLoc, diag::err_ovl_deleted_oper)
4617 << Best->Function->isDeleted()
4618 << "operator->" << BasePtr->getSourceRange();
4619 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4620 return true;
4623 // Convert the object parameter.
4624 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4625 if (PerformObjectArgumentInitialization(Base, Method))
4626 return true;
4628 // No concerns about early exits now.
4629 BasePtr.take();
4631 // Build the operator call.
4632 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4633 SourceLocation());
4634 UsualUnaryConversions(FnExpr);
4635 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4636 Method->getResultType().getNonReferenceType(),
4637 OpLoc);
4638 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4639 MemberLoc, Member, DeclPtrTy()).release();
4642 /// FixOverloadedFunctionReference - E is an expression that refers to
4643 /// a C++ overloaded function (possibly with some parentheses and
4644 /// perhaps a '&' around it). We have resolved the overloaded function
4645 /// to the function declaration Fn, so patch up the expression E to
4646 /// refer (possibly indirectly) to Fn.
4647 void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4648 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4649 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4650 E->setType(PE->getSubExpr()->getType());
4651 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4652 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4653 "Can only take the address of an overloaded function");
4654 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4655 if (Method->isStatic()) {
4656 // Do nothing: static member functions aren't any different
4657 // from non-member functions.
4659 else if (QualifiedDeclRefExpr *DRE
4660 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4661 // We have taken the address of a pointer to member
4662 // function. Perform the computation here so that we get the
4663 // appropriate pointer to member type.
4664 DRE->setDecl(Fn);
4665 DRE->setType(Fn->getType());
4666 QualType ClassType
4667 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4668 E->setType(Context.getMemberPointerType(Fn->getType(),
4669 ClassType.getTypePtr()));
4670 return;
4673 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4674 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4675 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4676 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4677 isa<FunctionTemplateDecl>(DR->getDecl())) &&
4678 "Expected overloaded function or function template");
4679 DR->setDecl(Fn);
4680 E->setType(Fn->getType());
4681 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4682 MemExpr->setMemberDecl(Fn);
4683 E->setType(Fn->getType());
4684 } else {
4685 assert(false && "Invalid reference to overloaded function");
4689 } // end namespace clang