Add include needed for MSVC.
[clang/acc.git] / lib / Sema / SemaInit.cpp
blob52099a3d904f15070311d8331d1aa506268a4c94
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers. The main entry
11 // point is Sema::CheckInitList(), but all of the work is performed
12 // within the InitListChecker class.
14 // This file also implements Sema::CheckInitializerTypes.
16 //===----------------------------------------------------------------------===//
18 #include "Sema.h"
19 #include "clang/Parse/Designator.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include <map>
24 using namespace clang;
26 //===----------------------------------------------------------------------===//
27 // Sema Initialization Checking
28 //===----------------------------------------------------------------------===//
30 static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31 const ArrayType *AT = Context.getAsArrayType(DeclType);
32 if (!AT) return 0;
34 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35 return 0;
37 // See if this is a string literal or @encode.
38 Init = Init->IgnoreParens();
40 // Handle @encode, which is a narrow string.
41 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42 return Init;
44 // Otherwise we can only handle string literals.
45 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46 if (SL == 0) return 0;
48 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
49 // char array can be initialized with a narrow string.
50 // Only allow char x[] = "foo"; not char x[] = L"foo";
51 if (!SL->isWide())
52 return ElemTy->isCharType() ? Init : 0;
54 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
55 // correction from DR343): "An array with element type compatible with a
56 // qualified or unqualified version of wchar_t may be initialized by a wide
57 // string literal, optionally enclosed in braces."
58 if (Context.typesAreCompatible(Context.getWCharType(),
59 ElemTy.getUnqualifiedType()))
60 return Init;
62 return 0;
65 static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
66 bool DirectInit, Sema &S) {
67 // Get the type before calling CheckSingleAssignmentConstraints(), since
68 // it can promote the expression.
69 QualType InitType = Init->getType();
71 if (S.getLangOptions().CPlusPlus) {
72 // FIXME: I dislike this error message. A lot.
73 if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
74 return S.Diag(Init->getSourceRange().getBegin(),
75 diag::err_typecheck_convert_incompatible)
76 << DeclType << Init->getType() << "initializing"
77 << Init->getSourceRange();
78 return false;
81 Sema::AssignConvertType ConvTy =
82 S.CheckSingleAssignmentConstraints(DeclType, Init);
83 return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
84 InitType, Init, "initializing");
87 static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
88 // Get the length of the string as parsed.
89 uint64_t StrLength =
90 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
93 const ArrayType *AT = S.Context.getAsArrayType(DeclT);
94 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
95 // C99 6.7.8p14. We have an array of character type with unknown size
96 // being initialized to a string literal.
97 llvm::APSInt ConstVal(32);
98 ConstVal = StrLength;
99 // Return a new array type (C99 6.7.8p22).
100 DeclT = S.Context.getConstantArrayWithoutExprType(IAT->getElementType(),
101 ConstVal,
102 ArrayType::Normal, 0);
103 return;
106 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
108 // C99 6.7.8p14. We have an array of character type with known size. However,
109 // the size may be smaller or larger than the string we are initializing.
110 // FIXME: Avoid truncation for 64-bit length strings.
111 if (StrLength-1 > CAT->getSize().getZExtValue())
112 S.Diag(Str->getSourceRange().getBegin(),
113 diag::warn_initializer_string_for_char_array_too_long)
114 << Str->getSourceRange();
116 // Set the type to the actual size that we are initializing. If we have
117 // something like:
118 // char x[1] = "foo";
119 // then this will set the string literal's type to char[1].
120 Str->setType(DeclT);
123 bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
124 SourceLocation InitLoc,
125 DeclarationName InitEntity, bool DirectInit) {
126 if (DeclType->isDependentType() ||
127 Init->isTypeDependent() || Init->isValueDependent())
128 return false;
130 // C++ [dcl.init.ref]p1:
131 // A variable declared to be a T& or T&&, that is "reference to type T"
132 // (8.3.2), shall be initialized by an object, or function, of
133 // type T or by an object that can be converted into a T.
134 if (DeclType->isReferenceType())
135 return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
137 // C99 6.7.8p3: The type of the entity to be initialized shall be an array
138 // of unknown size ("[]") or an object type that is not a variable array type.
139 if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
140 return Diag(InitLoc, diag::err_variable_object_no_init)
141 << VAT->getSizeExpr()->getSourceRange();
143 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
144 if (!InitList) {
145 // FIXME: Handle wide strings
146 if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
147 CheckStringInit(Str, DeclType, *this);
148 return false;
151 // C++ [dcl.init]p14:
152 // -- If the destination type is a (possibly cv-qualified) class
153 // type:
154 if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
155 QualType DeclTypeC = Context.getCanonicalType(DeclType);
156 QualType InitTypeC = Context.getCanonicalType(Init->getType());
158 // -- If the initialization is direct-initialization, or if it is
159 // copy-initialization where the cv-unqualified version of the
160 // source type is the same class as, or a derived class of, the
161 // class of the destination, constructors are considered.
162 if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
163 IsDerivedFrom(InitTypeC, DeclTypeC)) {
164 const CXXRecordDecl *RD =
165 cast<CXXRecordDecl>(DeclType->getAsRecordType()->getDecl());
167 // No need to make a CXXConstructExpr if both the ctor and dtor are
168 // trivial.
169 if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
170 return false;
172 CXXConstructorDecl *Constructor
173 = PerformInitializationByConstructor(DeclType, &Init, 1,
174 InitLoc, Init->getSourceRange(),
175 InitEntity,
176 DirectInit? IK_Direct : IK_Copy);
177 if (!Constructor)
178 return true;
180 Init = CXXConstructExpr::Create(Context, DeclType, Constructor, false,
181 &Init, 1);
182 return false;
185 // -- Otherwise (i.e., for the remaining copy-initialization
186 // cases), user-defined conversion sequences that can
187 // convert from the source type to the destination type or
188 // (when a conversion function is used) to a derived class
189 // thereof are enumerated as described in 13.3.1.4, and the
190 // best one is chosen through overload resolution
191 // (13.3). If the conversion cannot be done or is
192 // ambiguous, the initialization is ill-formed. The
193 // function selected is called with the initializer
194 // expression as its argument; if the function is a
195 // constructor, the call initializes a temporary of the
196 // destination type.
197 // FIXME: We're pretending to do copy elision here; return to this when we
198 // have ASTs for such things.
199 if (!PerformImplicitConversion(Init, DeclType, "initializing"))
200 return false;
202 if (InitEntity)
203 return Diag(InitLoc, diag::err_cannot_initialize_decl)
204 << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
205 << Init->getType() << Init->getSourceRange();
206 return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
207 << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
208 << Init->getType() << Init->getSourceRange();
211 // C99 6.7.8p16.
212 if (DeclType->isArrayType())
213 return Diag(Init->getLocStart(), diag::err_array_init_list_required)
214 << Init->getSourceRange();
216 return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
219 bool hadError = CheckInitList(InitList, DeclType);
220 Init = InitList;
221 return hadError;
224 //===----------------------------------------------------------------------===//
225 // Semantic checking for initializer lists.
226 //===----------------------------------------------------------------------===//
228 /// @brief Semantic checking for initializer lists.
230 /// The InitListChecker class contains a set of routines that each
231 /// handle the initialization of a certain kind of entity, e.g.,
232 /// arrays, vectors, struct/union types, scalars, etc. The
233 /// InitListChecker itself performs a recursive walk of the subobject
234 /// structure of the type to be initialized, while stepping through
235 /// the initializer list one element at a time. The IList and Index
236 /// parameters to each of the Check* routines contain the active
237 /// (syntactic) initializer list and the index into that initializer
238 /// list that represents the current initializer. Each routine is
239 /// responsible for moving that Index forward as it consumes elements.
241 /// Each Check* routine also has a StructuredList/StructuredIndex
242 /// arguments, which contains the current the "structured" (semantic)
243 /// initializer list and the index into that initializer list where we
244 /// are copying initializers as we map them over to the semantic
245 /// list. Once we have completed our recursive walk of the subobject
246 /// structure, we will have constructed a full semantic initializer
247 /// list.
249 /// C99 designators cause changes in the initializer list traversal,
250 /// because they make the initialization "jump" into a specific
251 /// subobject and then continue the initialization from that
252 /// point. CheckDesignatedInitializer() recursively steps into the
253 /// designated subobject and manages backing out the recursion to
254 /// initialize the subobjects after the one designated.
255 namespace {
256 class InitListChecker {
257 Sema &SemaRef;
258 bool hadError;
259 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
260 InitListExpr *FullyStructuredList;
262 void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
263 unsigned &Index, InitListExpr *StructuredList,
264 unsigned &StructuredIndex,
265 bool TopLevelObject = false);
266 void CheckExplicitInitList(InitListExpr *IList, QualType &T,
267 unsigned &Index, InitListExpr *StructuredList,
268 unsigned &StructuredIndex,
269 bool TopLevelObject = false);
270 void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
271 bool SubobjectIsDesignatorContext,
272 unsigned &Index,
273 InitListExpr *StructuredList,
274 unsigned &StructuredIndex,
275 bool TopLevelObject = false);
276 void CheckSubElementType(InitListExpr *IList, QualType ElemType,
277 unsigned &Index,
278 InitListExpr *StructuredList,
279 unsigned &StructuredIndex);
280 void CheckScalarType(InitListExpr *IList, QualType DeclType,
281 unsigned &Index,
282 InitListExpr *StructuredList,
283 unsigned &StructuredIndex);
284 void CheckReferenceType(InitListExpr *IList, QualType DeclType,
285 unsigned &Index,
286 InitListExpr *StructuredList,
287 unsigned &StructuredIndex);
288 void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
289 InitListExpr *StructuredList,
290 unsigned &StructuredIndex);
291 void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
292 RecordDecl::field_iterator Field,
293 bool SubobjectIsDesignatorContext, unsigned &Index,
294 InitListExpr *StructuredList,
295 unsigned &StructuredIndex,
296 bool TopLevelObject = false);
297 void CheckArrayType(InitListExpr *IList, QualType &DeclType,
298 llvm::APSInt elementIndex,
299 bool SubobjectIsDesignatorContext, unsigned &Index,
300 InitListExpr *StructuredList,
301 unsigned &StructuredIndex);
302 bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
303 unsigned DesigIdx,
304 QualType &CurrentObjectType,
305 RecordDecl::field_iterator *NextField,
306 llvm::APSInt *NextElementIndex,
307 unsigned &Index,
308 InitListExpr *StructuredList,
309 unsigned &StructuredIndex,
310 bool FinishSubobjectInit,
311 bool TopLevelObject);
312 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
313 QualType CurrentObjectType,
314 InitListExpr *StructuredList,
315 unsigned StructuredIndex,
316 SourceRange InitRange);
317 void UpdateStructuredListElement(InitListExpr *StructuredList,
318 unsigned &StructuredIndex,
319 Expr *expr);
320 int numArrayElements(QualType DeclType);
321 int numStructUnionElements(QualType DeclType);
323 void FillInValueInitializations(InitListExpr *ILE);
324 public:
325 InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
326 bool HadError() { return hadError; }
328 // @brief Retrieves the fully-structured initializer list used for
329 // semantic analysis and code generation.
330 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
332 } // end anonymous namespace
334 /// Recursively replaces NULL values within the given initializer list
335 /// with expressions that perform value-initialization of the
336 /// appropriate type.
337 void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
338 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
339 "Should not have void type");
340 SourceLocation Loc = ILE->getSourceRange().getBegin();
341 if (ILE->getSyntacticForm())
342 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
344 if (const RecordType *RType = ILE->getType()->getAsRecordType()) {
345 unsigned Init = 0, NumInits = ILE->getNumInits();
346 for (RecordDecl::field_iterator
347 Field = RType->getDecl()->field_begin(),
348 FieldEnd = RType->getDecl()->field_end();
349 Field != FieldEnd; ++Field) {
350 if (Field->isUnnamedBitfield())
351 continue;
353 if (Init >= NumInits || !ILE->getInit(Init)) {
354 if (Field->getType()->isReferenceType()) {
355 // C++ [dcl.init.aggr]p9:
356 // If an incomplete or empty initializer-list leaves a
357 // member of reference type uninitialized, the program is
358 // ill-formed.
359 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
360 << Field->getType()
361 << ILE->getSyntacticForm()->getSourceRange();
362 SemaRef.Diag(Field->getLocation(),
363 diag::note_uninit_reference_member);
364 hadError = true;
365 return;
366 } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
367 hadError = true;
368 return;
371 // FIXME: If value-initialization involves calling a constructor, should
372 // we make that call explicit in the representation (even when it means
373 // extending the initializer list)?
374 if (Init < NumInits && !hadError)
375 ILE->setInit(Init,
376 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
377 } else if (InitListExpr *InnerILE
378 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
379 FillInValueInitializations(InnerILE);
380 ++Init;
382 // Only look at the first initialization of a union.
383 if (RType->getDecl()->isUnion())
384 break;
387 return;
390 QualType ElementType;
392 unsigned NumInits = ILE->getNumInits();
393 unsigned NumElements = NumInits;
394 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
395 ElementType = AType->getElementType();
396 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
397 NumElements = CAType->getSize().getZExtValue();
398 } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
399 ElementType = VType->getElementType();
400 NumElements = VType->getNumElements();
401 } else
402 ElementType = ILE->getType();
404 for (unsigned Init = 0; Init != NumElements; ++Init) {
405 if (Init >= NumInits || !ILE->getInit(Init)) {
406 if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
407 hadError = true;
408 return;
411 // FIXME: If value-initialization involves calling a constructor, should
412 // we make that call explicit in the representation (even when it means
413 // extending the initializer list)?
414 if (Init < NumInits && !hadError)
415 ILE->setInit(Init,
416 new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
418 else if (InitListExpr *InnerILE =dyn_cast<InitListExpr>(ILE->getInit(Init)))
419 FillInValueInitializations(InnerILE);
424 InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
425 : SemaRef(S) {
426 hadError = false;
428 unsigned newIndex = 0;
429 unsigned newStructuredIndex = 0;
430 FullyStructuredList
431 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
432 CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
433 /*TopLevelObject=*/true);
435 if (!hadError)
436 FillInValueInitializations(FullyStructuredList);
439 int InitListChecker::numArrayElements(QualType DeclType) {
440 // FIXME: use a proper constant
441 int maxElements = 0x7FFFFFFF;
442 if (const ConstantArrayType *CAT =
443 SemaRef.Context.getAsConstantArrayType(DeclType)) {
444 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
446 return maxElements;
449 int InitListChecker::numStructUnionElements(QualType DeclType) {
450 RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl();
451 int InitializableMembers = 0;
452 for (RecordDecl::field_iterator
453 Field = structDecl->field_begin(),
454 FieldEnd = structDecl->field_end();
455 Field != FieldEnd; ++Field) {
456 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
457 ++InitializableMembers;
459 if (structDecl->isUnion())
460 return std::min(InitializableMembers, 1);
461 return InitializableMembers - structDecl->hasFlexibleArrayMember();
464 void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
465 QualType T, unsigned &Index,
466 InitListExpr *StructuredList,
467 unsigned &StructuredIndex,
468 bool TopLevelObject) {
469 int maxElements = 0;
471 if (T->isArrayType())
472 maxElements = numArrayElements(T);
473 else if (T->isStructureType() || T->isUnionType())
474 maxElements = numStructUnionElements(T);
475 else if (T->isVectorType())
476 maxElements = T->getAsVectorType()->getNumElements();
477 else
478 assert(0 && "CheckImplicitInitList(): Illegal type");
480 if (maxElements == 0) {
481 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
482 diag::err_implicit_empty_initializer);
483 ++Index;
484 hadError = true;
485 return;
488 // Build a structured initializer list corresponding to this subobject.
489 InitListExpr *StructuredSubobjectInitList
490 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
491 StructuredIndex,
492 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
493 ParentIList->getSourceRange().getEnd()));
494 unsigned StructuredSubobjectInitIndex = 0;
496 // Check the element types and build the structural subobject.
497 unsigned StartIndex = Index;
498 CheckListElementTypes(ParentIList, T, false, Index,
499 StructuredSubobjectInitList,
500 StructuredSubobjectInitIndex,
501 TopLevelObject);
502 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
503 StructuredSubobjectInitList->setType(T);
505 // Update the structured sub-object initializer so that it's ending
506 // range corresponds with the end of the last initializer it used.
507 if (EndIndex < ParentIList->getNumInits()) {
508 SourceLocation EndLoc
509 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
510 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
514 void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
515 unsigned &Index,
516 InitListExpr *StructuredList,
517 unsigned &StructuredIndex,
518 bool TopLevelObject) {
519 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
520 SyntacticToSemantic[IList] = StructuredList;
521 StructuredList->setSyntacticForm(IList);
522 CheckListElementTypes(IList, T, true, Index, StructuredList,
523 StructuredIndex, TopLevelObject);
524 IList->setType(T);
525 StructuredList->setType(T);
526 if (hadError)
527 return;
529 if (Index < IList->getNumInits()) {
530 // We have leftover initializers
531 if (StructuredIndex == 1 &&
532 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
533 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
534 if (SemaRef.getLangOptions().CPlusPlus) {
535 DK = diag::err_excess_initializers_in_char_array_initializer;
536 hadError = true;
538 // Special-case
539 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
540 << IList->getInit(Index)->getSourceRange();
541 } else if (!T->isIncompleteType()) {
542 // Don't complain for incomplete types, since we'll get an error
543 // elsewhere
544 QualType CurrentObjectType = StructuredList->getType();
545 int initKind =
546 CurrentObjectType->isArrayType()? 0 :
547 CurrentObjectType->isVectorType()? 1 :
548 CurrentObjectType->isScalarType()? 2 :
549 CurrentObjectType->isUnionType()? 3 :
552 unsigned DK = diag::warn_excess_initializers;
553 if (SemaRef.getLangOptions().CPlusPlus) {
554 DK = diag::err_excess_initializers;
555 hadError = true;
557 if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
558 DK = diag::err_excess_initializers;
559 hadError = true;
562 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
563 << initKind << IList->getInit(Index)->getSourceRange();
567 if (T->isScalarType() && !TopLevelObject)
568 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
569 << IList->getSourceRange()
570 << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
571 << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
574 void InitListChecker::CheckListElementTypes(InitListExpr *IList,
575 QualType &DeclType,
576 bool SubobjectIsDesignatorContext,
577 unsigned &Index,
578 InitListExpr *StructuredList,
579 unsigned &StructuredIndex,
580 bool TopLevelObject) {
581 if (DeclType->isScalarType()) {
582 CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
583 } else if (DeclType->isVectorType()) {
584 CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
585 } else if (DeclType->isAggregateType()) {
586 if (DeclType->isRecordType()) {
587 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
588 CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
589 SubobjectIsDesignatorContext, Index,
590 StructuredList, StructuredIndex,
591 TopLevelObject);
592 } else if (DeclType->isArrayType()) {
593 llvm::APSInt Zero(
594 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
595 false);
596 CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
597 StructuredList, StructuredIndex);
599 else
600 assert(0 && "Aggregate that isn't a structure or array?!");
601 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
602 // This type is invalid, issue a diagnostic.
603 ++Index;
604 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
605 << DeclType;
606 hadError = true;
607 } else if (DeclType->isRecordType()) {
608 // C++ [dcl.init]p14:
609 // [...] If the class is an aggregate (8.5.1), and the initializer
610 // is a brace-enclosed list, see 8.5.1.
612 // Note: 8.5.1 is handled below; here, we diagnose the case where
613 // we have an initializer list and a destination type that is not
614 // an aggregate.
615 // FIXME: In C++0x, this is yet another form of initialization.
616 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
617 << DeclType << IList->getSourceRange();
618 hadError = true;
619 } else if (DeclType->isReferenceType()) {
620 CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
621 } else {
622 // In C, all types are either scalars or aggregates, but
623 // additional handling is needed here for C++ (and possibly others?).
624 assert(0 && "Unsupported initializer type");
628 void InitListChecker::CheckSubElementType(InitListExpr *IList,
629 QualType ElemType,
630 unsigned &Index,
631 InitListExpr *StructuredList,
632 unsigned &StructuredIndex) {
633 Expr *expr = IList->getInit(Index);
634 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
635 unsigned newIndex = 0;
636 unsigned newStructuredIndex = 0;
637 InitListExpr *newStructuredList
638 = getStructuredSubobjectInit(IList, Index, ElemType,
639 StructuredList, StructuredIndex,
640 SubInitList->getSourceRange());
641 CheckExplicitInitList(SubInitList, ElemType, newIndex,
642 newStructuredList, newStructuredIndex);
643 ++StructuredIndex;
644 ++Index;
645 } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
646 CheckStringInit(Str, ElemType, SemaRef);
647 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
648 ++Index;
649 } else if (ElemType->isScalarType()) {
650 CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
651 } else if (ElemType->isReferenceType()) {
652 CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
653 } else {
654 if (SemaRef.getLangOptions().CPlusPlus) {
655 // C++ [dcl.init.aggr]p12:
656 // All implicit type conversions (clause 4) are considered when
657 // initializing the aggregate member with an ini- tializer from
658 // an initializer-list. If the initializer can initialize a
659 // member, the member is initialized. [...]
660 ImplicitConversionSequence ICS
661 = SemaRef.TryCopyInitialization(expr, ElemType);
662 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
663 if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
664 "initializing"))
665 hadError = true;
666 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
667 ++Index;
668 return;
671 // Fall through for subaggregate initialization
672 } else {
673 // C99 6.7.8p13:
675 // The initializer for a structure or union object that has
676 // automatic storage duration shall be either an initializer
677 // list as described below, or a single expression that has
678 // compatible structure or union type. In the latter case, the
679 // initial value of the object, including unnamed members, is
680 // that of the expression.
681 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
682 SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
683 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
684 ++Index;
685 return;
688 // Fall through for subaggregate initialization
691 // C++ [dcl.init.aggr]p12:
693 // [...] Otherwise, if the member is itself a non-empty
694 // subaggregate, brace elision is assumed and the initializer is
695 // considered for the initialization of the first member of
696 // the subaggregate.
697 if (ElemType->isAggregateType() || ElemType->isVectorType()) {
698 CheckImplicitInitList(IList, ElemType, Index, StructuredList,
699 StructuredIndex);
700 ++StructuredIndex;
701 } else {
702 // We cannot initialize this element, so let
703 // PerformCopyInitialization produce the appropriate diagnostic.
704 SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
705 hadError = true;
706 ++Index;
707 ++StructuredIndex;
712 void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
713 unsigned &Index,
714 InitListExpr *StructuredList,
715 unsigned &StructuredIndex) {
716 if (Index < IList->getNumInits()) {
717 Expr *expr = IList->getInit(Index);
718 if (isa<InitListExpr>(expr)) {
719 SemaRef.Diag(IList->getLocStart(),
720 diag::err_many_braces_around_scalar_init)
721 << IList->getSourceRange();
722 hadError = true;
723 ++Index;
724 ++StructuredIndex;
725 return;
726 } else if (isa<DesignatedInitExpr>(expr)) {
727 SemaRef.Diag(expr->getSourceRange().getBegin(),
728 diag::err_designator_for_scalar_init)
729 << DeclType << expr->getSourceRange();
730 hadError = true;
731 ++Index;
732 ++StructuredIndex;
733 return;
736 Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
737 if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
738 hadError = true; // types weren't compatible.
739 else if (savExpr != expr) {
740 // The type was promoted, update initializer list.
741 IList->setInit(Index, expr);
743 if (hadError)
744 ++StructuredIndex;
745 else
746 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
747 ++Index;
748 } else {
749 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
750 << IList->getSourceRange();
751 hadError = true;
752 ++Index;
753 ++StructuredIndex;
754 return;
758 void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
759 unsigned &Index,
760 InitListExpr *StructuredList,
761 unsigned &StructuredIndex) {
762 if (Index < IList->getNumInits()) {
763 Expr *expr = IList->getInit(Index);
764 if (isa<InitListExpr>(expr)) {
765 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
766 << DeclType << IList->getSourceRange();
767 hadError = true;
768 ++Index;
769 ++StructuredIndex;
770 return;
773 Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
774 if (SemaRef.CheckReferenceInit(expr, DeclType))
775 hadError = true;
776 else if (savExpr != expr) {
777 // The type was promoted, update initializer list.
778 IList->setInit(Index, expr);
780 if (hadError)
781 ++StructuredIndex;
782 else
783 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
784 ++Index;
785 } else {
786 // FIXME: It would be wonderful if we could point at the actual member. In
787 // general, it would be useful to pass location information down the stack,
788 // so that we know the location (or decl) of the "current object" being
789 // initialized.
790 SemaRef.Diag(IList->getLocStart(),
791 diag::err_init_reference_member_uninitialized)
792 << DeclType
793 << IList->getSourceRange();
794 hadError = true;
795 ++Index;
796 ++StructuredIndex;
797 return;
801 void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
802 unsigned &Index,
803 InitListExpr *StructuredList,
804 unsigned &StructuredIndex) {
805 if (Index < IList->getNumInits()) {
806 const VectorType *VT = DeclType->getAsVectorType();
807 int maxElements = VT->getNumElements();
808 QualType elementType = VT->getElementType();
810 for (int i = 0; i < maxElements; ++i) {
811 // Don't attempt to go past the end of the init list
812 if (Index >= IList->getNumInits())
813 break;
814 CheckSubElementType(IList, elementType, Index,
815 StructuredList, StructuredIndex);
820 void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
821 llvm::APSInt elementIndex,
822 bool SubobjectIsDesignatorContext,
823 unsigned &Index,
824 InitListExpr *StructuredList,
825 unsigned &StructuredIndex) {
826 // Check for the special-case of initializing an array with a string.
827 if (Index < IList->getNumInits()) {
828 if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
829 SemaRef.Context)) {
830 CheckStringInit(Str, DeclType, SemaRef);
831 // We place the string literal directly into the resulting
832 // initializer list. This is the only place where the structure
833 // of the structured initializer list doesn't match exactly,
834 // because doing so would involve allocating one character
835 // constant for each string.
836 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
837 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
838 ++Index;
839 return;
842 if (const VariableArrayType *VAT =
843 SemaRef.Context.getAsVariableArrayType(DeclType)) {
844 // Check for VLAs; in standard C it would be possible to check this
845 // earlier, but I don't know where clang accepts VLAs (gcc accepts
846 // them in all sorts of strange places).
847 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
848 diag::err_variable_object_no_init)
849 << VAT->getSizeExpr()->getSourceRange();
850 hadError = true;
851 ++Index;
852 ++StructuredIndex;
853 return;
856 // We might know the maximum number of elements in advance.
857 llvm::APSInt maxElements(elementIndex.getBitWidth(),
858 elementIndex.isUnsigned());
859 bool maxElementsKnown = false;
860 if (const ConstantArrayType *CAT =
861 SemaRef.Context.getAsConstantArrayType(DeclType)) {
862 maxElements = CAT->getSize();
863 elementIndex.extOrTrunc(maxElements.getBitWidth());
864 elementIndex.setIsUnsigned(maxElements.isUnsigned());
865 maxElementsKnown = true;
868 QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
869 ->getElementType();
870 while (Index < IList->getNumInits()) {
871 Expr *Init = IList->getInit(Index);
872 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
873 // If we're not the subobject that matches up with the '{' for
874 // the designator, we shouldn't be handling the
875 // designator. Return immediately.
876 if (!SubobjectIsDesignatorContext)
877 return;
879 // Handle this designated initializer. elementIndex will be
880 // updated to be the next array element we'll initialize.
881 if (CheckDesignatedInitializer(IList, DIE, 0,
882 DeclType, 0, &elementIndex, Index,
883 StructuredList, StructuredIndex, true,
884 false)) {
885 hadError = true;
886 continue;
889 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
890 maxElements.extend(elementIndex.getBitWidth());
891 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
892 elementIndex.extend(maxElements.getBitWidth());
893 elementIndex.setIsUnsigned(maxElements.isUnsigned());
895 // If the array is of incomplete type, keep track of the number of
896 // elements in the initializer.
897 if (!maxElementsKnown && elementIndex > maxElements)
898 maxElements = elementIndex;
900 continue;
903 // If we know the maximum number of elements, and we've already
904 // hit it, stop consuming elements in the initializer list.
905 if (maxElementsKnown && elementIndex == maxElements)
906 break;
908 // Check this element.
909 CheckSubElementType(IList, elementType, Index,
910 StructuredList, StructuredIndex);
911 ++elementIndex;
913 // If the array is of incomplete type, keep track of the number of
914 // elements in the initializer.
915 if (!maxElementsKnown && elementIndex > maxElements)
916 maxElements = elementIndex;
918 if (!hadError && DeclType->isIncompleteArrayType()) {
919 // If this is an incomplete array type, the actual type needs to
920 // be calculated here.
921 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
922 if (maxElements == Zero) {
923 // Sizing an array implicitly to zero is not allowed by ISO C,
924 // but is supported by GNU.
925 SemaRef.Diag(IList->getLocStart(),
926 diag::ext_typecheck_zero_array_size);
929 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
930 ArrayType::Normal, 0);
934 void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
935 QualType DeclType,
936 RecordDecl::field_iterator Field,
937 bool SubobjectIsDesignatorContext,
938 unsigned &Index,
939 InitListExpr *StructuredList,
940 unsigned &StructuredIndex,
941 bool TopLevelObject) {
942 RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
944 // If the record is invalid, some of it's members are invalid. To avoid
945 // confusion, we forgo checking the intializer for the entire record.
946 if (structDecl->isInvalidDecl()) {
947 hadError = true;
948 return;
951 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
952 // Value-initialize the first named member of the union.
953 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
954 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
955 Field != FieldEnd; ++Field) {
956 if (Field->getDeclName()) {
957 StructuredList->setInitializedFieldInUnion(*Field);
958 break;
961 return;
964 // If structDecl is a forward declaration, this loop won't do
965 // anything except look at designated initializers; That's okay,
966 // because an error should get printed out elsewhere. It might be
967 // worthwhile to skip over the rest of the initializer, though.
968 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
969 RecordDecl::field_iterator FieldEnd = RD->field_end();
970 bool InitializedSomething = false;
971 while (Index < IList->getNumInits()) {
972 Expr *Init = IList->getInit(Index);
974 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
975 // If we're not the subobject that matches up with the '{' for
976 // the designator, we shouldn't be handling the
977 // designator. Return immediately.
978 if (!SubobjectIsDesignatorContext)
979 return;
981 // Handle this designated initializer. Field will be updated to
982 // the next field that we'll be initializing.
983 if (CheckDesignatedInitializer(IList, DIE, 0,
984 DeclType, &Field, 0, Index,
985 StructuredList, StructuredIndex,
986 true, TopLevelObject))
987 hadError = true;
989 InitializedSomething = true;
990 continue;
993 if (Field == FieldEnd) {
994 // We've run out of fields. We're done.
995 break;
998 // We've already initialized a member of a union. We're done.
999 if (InitializedSomething && DeclType->isUnionType())
1000 break;
1002 // If we've hit the flexible array member at the end, we're done.
1003 if (Field->getType()->isIncompleteArrayType())
1004 break;
1006 if (Field->isUnnamedBitfield()) {
1007 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1008 ++Field;
1009 continue;
1012 CheckSubElementType(IList, Field->getType(), Index,
1013 StructuredList, StructuredIndex);
1014 InitializedSomething = true;
1016 if (DeclType->isUnionType()) {
1017 // Initialize the first field within the union.
1018 StructuredList->setInitializedFieldInUnion(*Field);
1021 ++Field;
1024 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1025 Index >= IList->getNumInits())
1026 return;
1028 // Handle GNU flexible array initializers.
1029 if (!TopLevelObject &&
1030 (!isa<InitListExpr>(IList->getInit(Index)) ||
1031 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1032 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1033 diag::err_flexible_array_init_nonempty)
1034 << IList->getInit(Index)->getSourceRange().getBegin();
1035 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1036 << *Field;
1037 hadError = true;
1038 ++Index;
1039 return;
1040 } else {
1041 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1042 diag::ext_flexible_array_init)
1043 << IList->getInit(Index)->getSourceRange().getBegin();
1044 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1045 << *Field;
1048 if (isa<InitListExpr>(IList->getInit(Index)))
1049 CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1050 StructuredIndex);
1051 else
1052 CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1053 StructuredIndex);
1056 /// \brief Expand a field designator that refers to a member of an
1057 /// anonymous struct or union into a series of field designators that
1058 /// refers to the field within the appropriate subobject.
1060 /// Field/FieldIndex will be updated to point to the (new)
1061 /// currently-designated field.
1062 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1063 DesignatedInitExpr *DIE,
1064 unsigned DesigIdx,
1065 FieldDecl *Field,
1066 RecordDecl::field_iterator &FieldIter,
1067 unsigned &FieldIndex) {
1068 typedef DesignatedInitExpr::Designator Designator;
1070 // Build the path from the current object to the member of the
1071 // anonymous struct/union (backwards).
1072 llvm::SmallVector<FieldDecl *, 4> Path;
1073 SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1075 // Build the replacement designators.
1076 llvm::SmallVector<Designator, 4> Replacements;
1077 for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1078 FI = Path.rbegin(), FIEnd = Path.rend();
1079 FI != FIEnd; ++FI) {
1080 if (FI + 1 == FIEnd)
1081 Replacements.push_back(Designator((IdentifierInfo *)0,
1082 DIE->getDesignator(DesigIdx)->getDotLoc(),
1083 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1084 else
1085 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1086 SourceLocation()));
1087 Replacements.back().setField(*FI);
1090 // Expand the current designator into the set of replacement
1091 // designators, so we have a full subobject path down to where the
1092 // member of the anonymous struct/union is actually stored.
1093 DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1094 &Replacements[0] + Replacements.size());
1096 // Update FieldIter/FieldIndex;
1097 RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1098 FieldIter = Record->field_begin();
1099 FieldIndex = 0;
1100 for (RecordDecl::field_iterator FEnd = Record->field_end();
1101 FieldIter != FEnd; ++FieldIter) {
1102 if (FieldIter->isUnnamedBitfield())
1103 continue;
1105 if (*FieldIter == Path.back())
1106 return;
1108 ++FieldIndex;
1111 assert(false && "Unable to find anonymous struct/union field");
1114 /// @brief Check the well-formedness of a C99 designated initializer.
1116 /// Determines whether the designated initializer @p DIE, which
1117 /// resides at the given @p Index within the initializer list @p
1118 /// IList, is well-formed for a current object of type @p DeclType
1119 /// (C99 6.7.8). The actual subobject that this designator refers to
1120 /// within the current subobject is returned in either
1121 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1123 /// @param IList The initializer list in which this designated
1124 /// initializer occurs.
1126 /// @param DIE The designated initializer expression.
1128 /// @param DesigIdx The index of the current designator.
1130 /// @param DeclType The type of the "current object" (C99 6.7.8p17),
1131 /// into which the designation in @p DIE should refer.
1133 /// @param NextField If non-NULL and the first designator in @p DIE is
1134 /// a field, this will be set to the field declaration corresponding
1135 /// to the field named by the designator.
1137 /// @param NextElementIndex If non-NULL and the first designator in @p
1138 /// DIE is an array designator or GNU array-range designator, this
1139 /// will be set to the last index initialized by this designator.
1141 /// @param Index Index into @p IList where the designated initializer
1142 /// @p DIE occurs.
1144 /// @param StructuredList The initializer list expression that
1145 /// describes all of the subobject initializers in the order they'll
1146 /// actually be initialized.
1148 /// @returns true if there was an error, false otherwise.
1149 bool
1150 InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1151 DesignatedInitExpr *DIE,
1152 unsigned DesigIdx,
1153 QualType &CurrentObjectType,
1154 RecordDecl::field_iterator *NextField,
1155 llvm::APSInt *NextElementIndex,
1156 unsigned &Index,
1157 InitListExpr *StructuredList,
1158 unsigned &StructuredIndex,
1159 bool FinishSubobjectInit,
1160 bool TopLevelObject) {
1161 if (DesigIdx == DIE->size()) {
1162 // Check the actual initialization for the designated object type.
1163 bool prevHadError = hadError;
1165 // Temporarily remove the designator expression from the
1166 // initializer list that the child calls see, so that we don't try
1167 // to re-process the designator.
1168 unsigned OldIndex = Index;
1169 IList->setInit(OldIndex, DIE->getInit());
1171 CheckSubElementType(IList, CurrentObjectType, Index,
1172 StructuredList, StructuredIndex);
1174 // Restore the designated initializer expression in the syntactic
1175 // form of the initializer list.
1176 if (IList->getInit(OldIndex) != DIE->getInit())
1177 DIE->setInit(IList->getInit(OldIndex));
1178 IList->setInit(OldIndex, DIE);
1180 return hadError && !prevHadError;
1183 bool IsFirstDesignator = (DesigIdx == 0);
1184 assert((IsFirstDesignator || StructuredList) &&
1185 "Need a non-designated initializer list to start from");
1187 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1188 // Determine the structural initializer list that corresponds to the
1189 // current subobject.
1190 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1191 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1192 StructuredList, StructuredIndex,
1193 SourceRange(D->getStartLocation(),
1194 DIE->getSourceRange().getEnd()));
1195 assert(StructuredList && "Expected a structured initializer list");
1197 if (D->isFieldDesignator()) {
1198 // C99 6.7.8p7:
1200 // If a designator has the form
1202 // . identifier
1204 // then the current object (defined below) shall have
1205 // structure or union type and the identifier shall be the
1206 // name of a member of that type.
1207 const RecordType *RT = CurrentObjectType->getAsRecordType();
1208 if (!RT) {
1209 SourceLocation Loc = D->getDotLoc();
1210 if (Loc.isInvalid())
1211 Loc = D->getFieldLoc();
1212 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1213 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1214 ++Index;
1215 return true;
1218 // Note: we perform a linear search of the fields here, despite
1219 // the fact that we have a faster lookup method, because we always
1220 // need to compute the field's index.
1221 FieldDecl *KnownField = D->getField();
1222 IdentifierInfo *FieldName = D->getFieldName();
1223 unsigned FieldIndex = 0;
1224 RecordDecl::field_iterator
1225 Field = RT->getDecl()->field_begin(),
1226 FieldEnd = RT->getDecl()->field_end();
1227 for (; Field != FieldEnd; ++Field) {
1228 if (Field->isUnnamedBitfield())
1229 continue;
1231 if (KnownField == *Field || Field->getIdentifier() == FieldName)
1232 break;
1234 ++FieldIndex;
1237 if (Field == FieldEnd) {
1238 // There was no normal field in the struct with the designated
1239 // name. Perform another lookup for this name, which may find
1240 // something that we can't designate (e.g., a member function),
1241 // may find nothing, or may find a member of an anonymous
1242 // struct/union.
1243 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1244 if (Lookup.first == Lookup.second) {
1245 // Name lookup didn't find anything.
1246 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1247 << FieldName << CurrentObjectType;
1248 ++Index;
1249 return true;
1250 } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1251 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1252 ->isAnonymousStructOrUnion()) {
1253 // Handle an field designator that refers to a member of an
1254 // anonymous struct or union.
1255 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1256 cast<FieldDecl>(*Lookup.first),
1257 Field, FieldIndex);
1258 D = DIE->getDesignator(DesigIdx);
1259 } else {
1260 // Name lookup found something, but it wasn't a field.
1261 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1262 << FieldName;
1263 SemaRef.Diag((*Lookup.first)->getLocation(),
1264 diag::note_field_designator_found);
1265 ++Index;
1266 return true;
1268 } else if (!KnownField &&
1269 cast<RecordDecl>((*Field)->getDeclContext())
1270 ->isAnonymousStructOrUnion()) {
1271 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1272 Field, FieldIndex);
1273 D = DIE->getDesignator(DesigIdx);
1276 // All of the fields of a union are located at the same place in
1277 // the initializer list.
1278 if (RT->getDecl()->isUnion()) {
1279 FieldIndex = 0;
1280 StructuredList->setInitializedFieldInUnion(*Field);
1283 // Update the designator with the field declaration.
1284 D->setField(*Field);
1286 // Make sure that our non-designated initializer list has space
1287 // for a subobject corresponding to this field.
1288 if (FieldIndex >= StructuredList->getNumInits())
1289 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1291 // This designator names a flexible array member.
1292 if (Field->getType()->isIncompleteArrayType()) {
1293 bool Invalid = false;
1294 if ((DesigIdx + 1) != DIE->size()) {
1295 // We can't designate an object within the flexible array
1296 // member (because GCC doesn't allow it).
1297 DesignatedInitExpr::Designator *NextD
1298 = DIE->getDesignator(DesigIdx + 1);
1299 SemaRef.Diag(NextD->getStartLocation(),
1300 diag::err_designator_into_flexible_array_member)
1301 << SourceRange(NextD->getStartLocation(),
1302 DIE->getSourceRange().getEnd());
1303 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1304 << *Field;
1305 Invalid = true;
1308 if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1309 // The initializer is not an initializer list.
1310 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1311 diag::err_flexible_array_init_needs_braces)
1312 << DIE->getInit()->getSourceRange();
1313 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1314 << *Field;
1315 Invalid = true;
1318 // Handle GNU flexible array initializers.
1319 if (!Invalid && !TopLevelObject &&
1320 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1321 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1322 diag::err_flexible_array_init_nonempty)
1323 << DIE->getSourceRange().getBegin();
1324 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1325 << *Field;
1326 Invalid = true;
1329 if (Invalid) {
1330 ++Index;
1331 return true;
1334 // Initialize the array.
1335 bool prevHadError = hadError;
1336 unsigned newStructuredIndex = FieldIndex;
1337 unsigned OldIndex = Index;
1338 IList->setInit(Index, DIE->getInit());
1339 CheckSubElementType(IList, Field->getType(), Index,
1340 StructuredList, newStructuredIndex);
1341 IList->setInit(OldIndex, DIE);
1342 if (hadError && !prevHadError) {
1343 ++Field;
1344 ++FieldIndex;
1345 if (NextField)
1346 *NextField = Field;
1347 StructuredIndex = FieldIndex;
1348 return true;
1350 } else {
1351 // Recurse to check later designated subobjects.
1352 QualType FieldType = (*Field)->getType();
1353 unsigned newStructuredIndex = FieldIndex;
1354 if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1355 Index, StructuredList, newStructuredIndex,
1356 true, false))
1357 return true;
1360 // Find the position of the next field to be initialized in this
1361 // subobject.
1362 ++Field;
1363 ++FieldIndex;
1365 // If this the first designator, our caller will continue checking
1366 // the rest of this struct/class/union subobject.
1367 if (IsFirstDesignator) {
1368 if (NextField)
1369 *NextField = Field;
1370 StructuredIndex = FieldIndex;
1371 return false;
1374 if (!FinishSubobjectInit)
1375 return false;
1377 // We've already initialized something in the union; we're done.
1378 if (RT->getDecl()->isUnion())
1379 return hadError;
1381 // Check the remaining fields within this class/struct/union subobject.
1382 bool prevHadError = hadError;
1383 CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1384 StructuredList, FieldIndex);
1385 return hadError && !prevHadError;
1388 // C99 6.7.8p6:
1390 // If a designator has the form
1392 // [ constant-expression ]
1394 // then the current object (defined below) shall have array
1395 // type and the expression shall be an integer constant
1396 // expression. If the array is of unknown size, any
1397 // nonnegative value is valid.
1399 // Additionally, cope with the GNU extension that permits
1400 // designators of the form
1402 // [ constant-expression ... constant-expression ]
1403 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1404 if (!AT) {
1405 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1406 << CurrentObjectType;
1407 ++Index;
1408 return true;
1411 Expr *IndexExpr = 0;
1412 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1413 if (D->isArrayDesignator()) {
1414 IndexExpr = DIE->getArrayIndex(*D);
1415 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1416 DesignatedEndIndex = DesignatedStartIndex;
1417 } else {
1418 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1421 DesignatedStartIndex =
1422 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1423 DesignatedEndIndex =
1424 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1425 IndexExpr = DIE->getArrayRangeEnd(*D);
1427 if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1428 FullyStructuredList->sawArrayRangeDesignator();
1431 if (isa<ConstantArrayType>(AT)) {
1432 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1433 DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1434 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1435 DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1436 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1437 if (DesignatedEndIndex >= MaxElements) {
1438 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1439 diag::err_array_designator_too_large)
1440 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1441 << IndexExpr->getSourceRange();
1442 ++Index;
1443 return true;
1445 } else {
1446 // Make sure the bit-widths and signedness match.
1447 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1448 DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1449 else if (DesignatedStartIndex.getBitWidth() <
1450 DesignatedEndIndex.getBitWidth())
1451 DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1452 DesignatedStartIndex.setIsUnsigned(true);
1453 DesignatedEndIndex.setIsUnsigned(true);
1456 // Make sure that our non-designated initializer list has space
1457 // for a subobject corresponding to this array element.
1458 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1459 StructuredList->resizeInits(SemaRef.Context,
1460 DesignatedEndIndex.getZExtValue() + 1);
1462 // Repeatedly perform subobject initializations in the range
1463 // [DesignatedStartIndex, DesignatedEndIndex].
1465 // Move to the next designator
1466 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1467 unsigned OldIndex = Index;
1468 while (DesignatedStartIndex <= DesignatedEndIndex) {
1469 // Recurse to check later designated subobjects.
1470 QualType ElementType = AT->getElementType();
1471 Index = OldIndex;
1472 if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1473 Index, StructuredList, ElementIndex,
1474 (DesignatedStartIndex == DesignatedEndIndex),
1475 false))
1476 return true;
1478 // Move to the next index in the array that we'll be initializing.
1479 ++DesignatedStartIndex;
1480 ElementIndex = DesignatedStartIndex.getZExtValue();
1483 // If this the first designator, our caller will continue checking
1484 // the rest of this array subobject.
1485 if (IsFirstDesignator) {
1486 if (NextElementIndex)
1487 *NextElementIndex = DesignatedStartIndex;
1488 StructuredIndex = ElementIndex;
1489 return false;
1492 if (!FinishSubobjectInit)
1493 return false;
1495 // Check the remaining elements within this array subobject.
1496 bool prevHadError = hadError;
1497 CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1498 StructuredList, ElementIndex);
1499 return hadError && !prevHadError;
1502 // Get the structured initializer list for a subobject of type
1503 // @p CurrentObjectType.
1504 InitListExpr *
1505 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1506 QualType CurrentObjectType,
1507 InitListExpr *StructuredList,
1508 unsigned StructuredIndex,
1509 SourceRange InitRange) {
1510 Expr *ExistingInit = 0;
1511 if (!StructuredList)
1512 ExistingInit = SyntacticToSemantic[IList];
1513 else if (StructuredIndex < StructuredList->getNumInits())
1514 ExistingInit = StructuredList->getInit(StructuredIndex);
1516 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1517 return Result;
1519 if (ExistingInit) {
1520 // We are creating an initializer list that initializes the
1521 // subobjects of the current object, but there was already an
1522 // initialization that completely initialized the current
1523 // subobject, e.g., by a compound literal:
1525 // struct X { int a, b; };
1526 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1528 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1529 // designated initializer re-initializes the whole
1530 // subobject [0], overwriting previous initializers.
1531 SemaRef.Diag(InitRange.getBegin(),
1532 diag::warn_subobject_initializer_overrides)
1533 << InitRange;
1534 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1535 diag::note_previous_initializer)
1536 << /*FIXME:has side effects=*/0
1537 << ExistingInit->getSourceRange();
1540 InitListExpr *Result
1541 = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1542 InitRange.getEnd());
1544 Result->setType(CurrentObjectType);
1546 // Pre-allocate storage for the structured initializer list.
1547 unsigned NumElements = 0;
1548 unsigned NumInits = 0;
1549 if (!StructuredList)
1550 NumInits = IList->getNumInits();
1551 else if (Index < IList->getNumInits()) {
1552 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1553 NumInits = SubList->getNumInits();
1556 if (const ArrayType *AType
1557 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1558 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1559 NumElements = CAType->getSize().getZExtValue();
1560 // Simple heuristic so that we don't allocate a very large
1561 // initializer with many empty entries at the end.
1562 if (NumInits && NumElements > NumInits)
1563 NumElements = 0;
1565 } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1566 NumElements = VType->getNumElements();
1567 else if (const RecordType *RType = CurrentObjectType->getAsRecordType()) {
1568 RecordDecl *RDecl = RType->getDecl();
1569 if (RDecl->isUnion())
1570 NumElements = 1;
1571 else
1572 NumElements = std::distance(RDecl->field_begin(),
1573 RDecl->field_end());
1576 if (NumElements < NumInits)
1577 NumElements = IList->getNumInits();
1579 Result->reserveInits(NumElements);
1581 // Link this new initializer list into the structured initializer
1582 // lists.
1583 if (StructuredList)
1584 StructuredList->updateInit(StructuredIndex, Result);
1585 else {
1586 Result->setSyntacticForm(IList);
1587 SyntacticToSemantic[IList] = Result;
1590 return Result;
1593 /// Update the initializer at index @p StructuredIndex within the
1594 /// structured initializer list to the value @p expr.
1595 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1596 unsigned &StructuredIndex,
1597 Expr *expr) {
1598 // No structured initializer list to update
1599 if (!StructuredList)
1600 return;
1602 if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1603 // This initializer overwrites a previous initializer. Warn.
1604 SemaRef.Diag(expr->getSourceRange().getBegin(),
1605 diag::warn_initializer_overrides)
1606 << expr->getSourceRange();
1607 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1608 diag::note_previous_initializer)
1609 << /*FIXME:has side effects=*/0
1610 << PrevInit->getSourceRange();
1613 ++StructuredIndex;
1616 /// Check that the given Index expression is a valid array designator
1617 /// value. This is essentailly just a wrapper around
1618 /// VerifyIntegerConstantExpression that also checks for negative values
1619 /// and produces a reasonable diagnostic if there is a
1620 /// failure. Returns true if there was an error, false otherwise. If
1621 /// everything went okay, Value will receive the value of the constant
1622 /// expression.
1623 static bool
1624 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1625 SourceLocation Loc = Index->getSourceRange().getBegin();
1627 // Make sure this is an integer constant expression.
1628 if (S.VerifyIntegerConstantExpression(Index, &Value))
1629 return true;
1631 if (Value.isSigned() && Value.isNegative())
1632 return S.Diag(Loc, diag::err_array_designator_negative)
1633 << Value.toString(10) << Index->getSourceRange();
1635 Value.setIsUnsigned(true);
1636 return false;
1639 Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1640 SourceLocation Loc,
1641 bool GNUSyntax,
1642 OwningExprResult Init) {
1643 typedef DesignatedInitExpr::Designator ASTDesignator;
1645 bool Invalid = false;
1646 llvm::SmallVector<ASTDesignator, 32> Designators;
1647 llvm::SmallVector<Expr *, 32> InitExpressions;
1649 // Build designators and check array designator expressions.
1650 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1651 const Designator &D = Desig.getDesignator(Idx);
1652 switch (D.getKind()) {
1653 case Designator::FieldDesignator:
1654 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1655 D.getFieldLoc()));
1656 break;
1658 case Designator::ArrayDesignator: {
1659 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1660 llvm::APSInt IndexValue;
1661 if (!Index->isTypeDependent() &&
1662 !Index->isValueDependent() &&
1663 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1664 Invalid = true;
1665 else {
1666 Designators.push_back(ASTDesignator(InitExpressions.size(),
1667 D.getLBracketLoc(),
1668 D.getRBracketLoc()));
1669 InitExpressions.push_back(Index);
1671 break;
1674 case Designator::ArrayRangeDesignator: {
1675 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1676 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1677 llvm::APSInt StartValue;
1678 llvm::APSInt EndValue;
1679 bool StartDependent = StartIndex->isTypeDependent() ||
1680 StartIndex->isValueDependent();
1681 bool EndDependent = EndIndex->isTypeDependent() ||
1682 EndIndex->isValueDependent();
1683 if ((!StartDependent &&
1684 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1685 (!EndDependent &&
1686 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1687 Invalid = true;
1688 else {
1689 // Make sure we're comparing values with the same bit width.
1690 if (StartDependent || EndDependent) {
1691 // Nothing to compute.
1692 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1693 EndValue.extend(StartValue.getBitWidth());
1694 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1695 StartValue.extend(EndValue.getBitWidth());
1697 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1698 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1699 << StartValue.toString(10) << EndValue.toString(10)
1700 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1701 Invalid = true;
1702 } else {
1703 Designators.push_back(ASTDesignator(InitExpressions.size(),
1704 D.getLBracketLoc(),
1705 D.getEllipsisLoc(),
1706 D.getRBracketLoc()));
1707 InitExpressions.push_back(StartIndex);
1708 InitExpressions.push_back(EndIndex);
1711 break;
1716 if (Invalid || Init.isInvalid())
1717 return ExprError();
1719 // Clear out the expressions within the designation.
1720 Desig.ClearExprs(*this);
1722 DesignatedInitExpr *DIE
1723 = DesignatedInitExpr::Create(Context,
1724 Designators.data(), Designators.size(),
1725 InitExpressions.data(), InitExpressions.size(),
1726 Loc, GNUSyntax, Init.takeAs<Expr>());
1727 return Owned(DIE);
1730 bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1731 InitListChecker CheckInitList(*this, InitList, DeclType);
1732 if (!CheckInitList.HadError())
1733 InitList = CheckInitList.getFullyStructuredList();
1735 return CheckInitList.HadError();
1738 /// \brief Diagnose any semantic errors with value-initialization of
1739 /// the given type.
1741 /// Value-initialization effectively zero-initializes any types
1742 /// without user-declared constructors, and calls the default
1743 /// constructor for a for any type that has a user-declared
1744 /// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1745 /// a type with a user-declared constructor does not have an
1746 /// accessible, non-deleted default constructor. In C, everything can
1747 /// be value-initialized, which corresponds to C's notion of
1748 /// initializing objects with static storage duration when no
1749 /// initializer is provided for that object.
1751 /// \returns true if there was an error, false otherwise.
1752 bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1753 // C++ [dcl.init]p5:
1755 // To value-initialize an object of type T means:
1757 // -- if T is an array type, then each element is value-initialized;
1758 if (const ArrayType *AT = Context.getAsArrayType(Type))
1759 return CheckValueInitialization(AT->getElementType(), Loc);
1761 if (const RecordType *RT = Type->getAsRecordType()) {
1762 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1763 // -- if T is a class type (clause 9) with a user-declared
1764 // constructor (12.1), then the default constructor for T is
1765 // called (and the initialization is ill-formed if T has no
1766 // accessible default constructor);
1767 if (ClassDecl->hasUserDeclaredConstructor())
1768 // FIXME: Eventually, we'll need to put the constructor decl into the
1769 // AST.
1770 return PerformInitializationByConstructor(Type, 0, 0, Loc,
1771 SourceRange(Loc),
1772 DeclarationName(),
1773 IK_Direct);
1777 if (Type->isReferenceType()) {
1778 // C++ [dcl.init]p5:
1779 // [...] A program that calls for default-initialization or
1780 // value-initialization of an entity of reference type is
1781 // ill-formed. [...]
1782 // FIXME: Once we have code that goes through this path, add an actual
1783 // diagnostic :)
1786 return false;