Add include needed for MSVC.
[clang/acc.git] / lib / Sema / SemaDeclCXX.cpp
blobc62858ac73028c0994343800bd38c95408570b73
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
12 //===----------------------------------------------------------------------===//
14 #include "Sema.h"
15 #include "SemaInherit.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclVisitor.h"
19 #include "clang/AST/TypeOrdering.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Parse/DeclSpec.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/Compiler.h"
25 #include <algorithm> // for std::equal
26 #include <map>
28 using namespace clang;
30 //===----------------------------------------------------------------------===//
31 // CheckDefaultArgumentVisitor
32 //===----------------------------------------------------------------------===//
34 namespace {
35 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36 /// the default argument of a parameter to determine whether it
37 /// contains any ill-formed subexpressions. For example, this will
38 /// diagnose the use of local variables or parameters within the
39 /// default argument expression.
40 class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42 Expr *DefaultArg;
43 Sema *S;
45 public:
46 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47 : DefaultArg(defarg), S(s) {}
49 bool VisitExpr(Expr *Node);
50 bool VisitDeclRefExpr(DeclRefExpr *DRE);
51 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54 /// VisitExpr - Visit all of the children of this expression.
55 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56 bool IsInvalid = false;
57 for (Stmt::child_iterator I = Node->child_begin(),
58 E = Node->child_end(); I != E; ++I)
59 IsInvalid |= Visit(*I);
60 return IsInvalid;
63 /// VisitDeclRefExpr - Visit a reference to a declaration, to
64 /// determine whether this declaration can be used in the default
65 /// argument expression.
66 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67 NamedDecl *Decl = DRE->getDecl();
68 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69 // C++ [dcl.fct.default]p9
70 // Default arguments are evaluated each time the function is
71 // called. The order of evaluation of function arguments is
72 // unspecified. Consequently, parameters of a function shall not
73 // be used in default argument expressions, even if they are not
74 // evaluated. Parameters of a function declared before a default
75 // argument expression are in scope and can hide namespace and
76 // class member names.
77 return S->Diag(DRE->getSourceRange().getBegin(),
78 diag::err_param_default_argument_references_param)
79 << Param->getDeclName() << DefaultArg->getSourceRange();
80 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81 // C++ [dcl.fct.default]p7
82 // Local variables shall not be used in default argument
83 // expressions.
84 if (VDecl->isBlockVarDecl())
85 return S->Diag(DRE->getSourceRange().getBegin(),
86 diag::err_param_default_argument_references_local)
87 << VDecl->getDeclName() << DefaultArg->getSourceRange();
90 return false;
93 /// VisitCXXThisExpr - Visit a C++ "this" expression.
94 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95 // C++ [dcl.fct.default]p8:
96 // The keyword this shall not be used in a default argument of a
97 // member function.
98 return S->Diag(ThisE->getSourceRange().getBegin(),
99 diag::err_param_default_argument_references_this)
100 << ThisE->getSourceRange();
104 /// ActOnParamDefaultArgument - Check whether the default argument
105 /// provided for a function parameter is well-formed. If so, attach it
106 /// to the parameter declaration.
107 void
108 Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109 ExprArg defarg) {
110 if (!param || !defarg.get())
111 return;
113 ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114 UnparsedDefaultArgLocs.erase(Param);
116 ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117 QualType ParamType = Param->getType();
119 // Default arguments are only permitted in C++
120 if (!getLangOptions().CPlusPlus) {
121 Diag(EqualLoc, diag::err_param_default_argument)
122 << DefaultArg->getSourceRange();
123 Param->setInvalidDecl();
124 return;
127 // C++ [dcl.fct.default]p5
128 // A default argument expression is implicitly converted (clause
129 // 4) to the parameter type. The default argument expression has
130 // the same semantic constraints as the initializer expression in
131 // a declaration of a variable of the parameter type, using the
132 // copy-initialization semantics (8.5).
133 Expr *DefaultArgPtr = DefaultArg.get();
134 bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135 EqualLoc,
136 Param->getDeclName(),
137 /*DirectInit=*/false);
138 if (DefaultArgPtr != DefaultArg.get()) {
139 DefaultArg.take();
140 DefaultArg.reset(DefaultArgPtr);
142 if (DefaultInitFailed) {
143 return;
146 // Check that the default argument is well-formed
147 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148 if (DefaultArgChecker.Visit(DefaultArg.get())) {
149 Param->setInvalidDecl();
150 return;
153 DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154 /*DestroyTemps=*/false);
156 // Okay: add the default argument to the parameter
157 Param->setDefaultArg(DefaultArgPtr);
160 /// ActOnParamUnparsedDefaultArgument - We've seen a default
161 /// argument for a function parameter, but we can't parse it yet
162 /// because we're inside a class definition. Note that this default
163 /// argument will be parsed later.
164 void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165 SourceLocation EqualLoc,
166 SourceLocation ArgLoc) {
167 if (!param)
168 return;
170 ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171 if (Param)
172 Param->setUnparsedDefaultArg();
174 UnparsedDefaultArgLocs[Param] = ArgLoc;
177 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178 /// the default argument for the parameter param failed.
179 void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180 if (!param)
181 return;
183 ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
185 Param->setInvalidDecl();
187 UnparsedDefaultArgLocs.erase(Param);
190 /// CheckExtraCXXDefaultArguments - Check for any extra default
191 /// arguments in the declarator, which is not a function declaration
192 /// or definition and therefore is not permitted to have default
193 /// arguments. This routine should be invoked for every declarator
194 /// that is not a function declaration or definition.
195 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196 // C++ [dcl.fct.default]p3
197 // A default argument expression shall be specified only in the
198 // parameter-declaration-clause of a function declaration or in a
199 // template-parameter (14.1). It shall not be specified for a
200 // parameter pack. If it is specified in a
201 // parameter-declaration-clause, it shall not occur within a
202 // declarator or abstract-declarator of a parameter-declaration.
203 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204 DeclaratorChunk &chunk = D.getTypeObject(i);
205 if (chunk.Kind == DeclaratorChunk::Function) {
206 for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207 ParmVarDecl *Param =
208 cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209 if (Param->hasUnparsedDefaultArg()) {
210 CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212 << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213 delete Toks;
214 chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215 } else if (Param->getDefaultArg()) {
216 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217 << Param->getDefaultArg()->getSourceRange();
218 Param->setDefaultArg(0);
225 // MergeCXXFunctionDecl - Merge two declarations of the same C++
226 // function, once we already know that they have the same
227 // type. Subroutine of MergeFunctionDecl. Returns true if there was an
228 // error, false otherwise.
229 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230 bool Invalid = false;
232 // C++ [dcl.fct.default]p4:
234 // For non-template functions, default arguments can be added in
235 // later declarations of a function in the same
236 // scope. Declarations in different scopes have completely
237 // distinct sets of default arguments. That is, declarations in
238 // inner scopes do not acquire default arguments from
239 // declarations in outer scopes, and vice versa. In a given
240 // function declaration, all parameters subsequent to a
241 // parameter with a default argument shall have default
242 // arguments supplied in this or previous declarations. A
243 // default argument shall not be redefined by a later
244 // declaration (not even to the same value).
245 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246 ParmVarDecl *OldParam = Old->getParamDecl(p);
247 ParmVarDecl *NewParam = New->getParamDecl(p);
249 if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250 Diag(NewParam->getLocation(),
251 diag::err_param_default_argument_redefinition)
252 << NewParam->getDefaultArg()->getSourceRange();
253 Diag(OldParam->getLocation(), diag::note_previous_definition);
254 Invalid = true;
255 } else if (OldParam->getDefaultArg()) {
256 // Merge the old default argument into the new parameter
257 NewParam->setDefaultArg(OldParam->getDefaultArg());
261 if (CheckEquivalentExceptionSpec(
262 Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263 New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264 Invalid = true;
267 return Invalid;
270 /// CheckCXXDefaultArguments - Verify that the default arguments for a
271 /// function declaration are well-formed according to C++
272 /// [dcl.fct.default].
273 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274 unsigned NumParams = FD->getNumParams();
275 unsigned p;
277 // Find first parameter with a default argument
278 for (p = 0; p < NumParams; ++p) {
279 ParmVarDecl *Param = FD->getParamDecl(p);
280 if (Param->getDefaultArg())
281 break;
284 // C++ [dcl.fct.default]p4:
285 // In a given function declaration, all parameters
286 // subsequent to a parameter with a default argument shall
287 // have default arguments supplied in this or previous
288 // declarations. A default argument shall not be redefined
289 // by a later declaration (not even to the same value).
290 unsigned LastMissingDefaultArg = 0;
291 for(; p < NumParams; ++p) {
292 ParmVarDecl *Param = FD->getParamDecl(p);
293 if (!Param->getDefaultArg()) {
294 if (Param->isInvalidDecl())
295 /* We already complained about this parameter. */;
296 else if (Param->getIdentifier())
297 Diag(Param->getLocation(),
298 diag::err_param_default_argument_missing_name)
299 << Param->getIdentifier();
300 else
301 Diag(Param->getLocation(),
302 diag::err_param_default_argument_missing);
304 LastMissingDefaultArg = p;
308 if (LastMissingDefaultArg > 0) {
309 // Some default arguments were missing. Clear out all of the
310 // default arguments up to (and including) the last missing
311 // default argument, so that we leave the function parameters
312 // in a semantically valid state.
313 for (p = 0; p <= LastMissingDefaultArg; ++p) {
314 ParmVarDecl *Param = FD->getParamDecl(p);
315 if (Param->hasDefaultArg()) {
316 if (!Param->hasUnparsedDefaultArg())
317 Param->getDefaultArg()->Destroy(Context);
318 Param->setDefaultArg(0);
324 /// isCurrentClassName - Determine whether the identifier II is the
325 /// name of the class type currently being defined. In the case of
326 /// nested classes, this will only return true if II is the name of
327 /// the innermost class.
328 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329 const CXXScopeSpec *SS) {
330 CXXRecordDecl *CurDecl;
331 if (SS && SS->isSet() && !SS->isInvalid()) {
332 DeclContext *DC = computeDeclContext(*SS);
333 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334 } else
335 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
337 if (CurDecl)
338 return &II == CurDecl->getIdentifier();
339 else
340 return false;
343 /// \brief Check the validity of a C++ base class specifier.
345 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346 /// and returns NULL otherwise.
347 CXXBaseSpecifier *
348 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349 SourceRange SpecifierRange,
350 bool Virtual, AccessSpecifier Access,
351 QualType BaseType,
352 SourceLocation BaseLoc) {
353 // C++ [class.union]p1:
354 // A union shall not have base classes.
355 if (Class->isUnion()) {
356 Diag(Class->getLocation(), diag::err_base_clause_on_union)
357 << SpecifierRange;
358 return 0;
361 if (BaseType->isDependentType())
362 return new CXXBaseSpecifier(SpecifierRange, Virtual,
363 Class->getTagKind() == RecordDecl::TK_class,
364 Access, BaseType);
366 // Base specifiers must be record types.
367 if (!BaseType->isRecordType()) {
368 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369 return 0;
372 // C++ [class.union]p1:
373 // A union shall not be used as a base class.
374 if (BaseType->isUnionType()) {
375 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376 return 0;
379 // C++ [class.derived]p2:
380 // The class-name in a base-specifier shall not be an incompletely
381 // defined class.
382 if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383 SpecifierRange))
384 return 0;
386 // If the base class is polymorphic, the new one is, too.
387 RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388 assert(BaseDecl && "Record type has no declaration");
389 BaseDecl = BaseDecl->getDefinition(Context);
390 assert(BaseDecl && "Base type is not incomplete, but has no definition");
391 if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392 Class->setPolymorphic(true);
394 // C++ [dcl.init.aggr]p1:
395 // An aggregate is [...] a class with [...] no base classes [...].
396 Class->setAggregate(false);
397 Class->setPOD(false);
399 if (Virtual) {
400 // C++ [class.ctor]p5:
401 // A constructor is trivial if its class has no virtual base classes.
402 Class->setHasTrivialConstructor(false);
403 } else {
404 // C++ [class.ctor]p5:
405 // A constructor is trivial if all the direct base classes of its
406 // class have trivial constructors.
407 Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408 hasTrivialConstructor());
411 // C++ [class.ctor]p3:
412 // A destructor is trivial if all the direct base classes of its class
413 // have trivial destructors.
414 Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415 hasTrivialDestructor());
417 // Create the base specifier.
418 // FIXME: Allocate via ASTContext?
419 return new CXXBaseSpecifier(SpecifierRange, Virtual,
420 Class->getTagKind() == RecordDecl::TK_class,
421 Access, BaseType);
424 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425 /// one entry in the base class list of a class specifier, for
426 /// example:
427 /// class foo : public bar, virtual private baz {
428 /// 'public bar' and 'virtual private baz' are each base-specifiers.
429 Sema::BaseResult
430 Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431 bool Virtual, AccessSpecifier Access,
432 TypeTy *basetype, SourceLocation BaseLoc) {
433 if (!classdecl)
434 return true;
436 AdjustDeclIfTemplate(classdecl);
437 CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438 QualType BaseType = QualType::getFromOpaquePtr(basetype);
439 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440 Virtual, Access,
441 BaseType, BaseLoc))
442 return BaseSpec;
444 return true;
447 /// \brief Performs the actual work of attaching the given base class
448 /// specifiers to a C++ class.
449 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450 unsigned NumBases) {
451 if (NumBases == 0)
452 return false;
454 // Used to keep track of which base types we have already seen, so
455 // that we can properly diagnose redundant direct base types. Note
456 // that the key is always the unqualified canonical type of the base
457 // class.
458 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
460 // Copy non-redundant base specifiers into permanent storage.
461 unsigned NumGoodBases = 0;
462 bool Invalid = false;
463 for (unsigned idx = 0; idx < NumBases; ++idx) {
464 QualType NewBaseType
465 = Context.getCanonicalType(Bases[idx]->getType());
466 NewBaseType = NewBaseType.getUnqualifiedType();
468 if (KnownBaseTypes[NewBaseType]) {
469 // C++ [class.mi]p3:
470 // A class shall not be specified as a direct base class of a
471 // derived class more than once.
472 Diag(Bases[idx]->getSourceRange().getBegin(),
473 diag::err_duplicate_base_class)
474 << KnownBaseTypes[NewBaseType]->getType()
475 << Bases[idx]->getSourceRange();
477 // Delete the duplicate base class specifier; we're going to
478 // overwrite its pointer later.
479 delete Bases[idx];
481 Invalid = true;
482 } else {
483 // Okay, add this new base class.
484 KnownBaseTypes[NewBaseType] = Bases[idx];
485 Bases[NumGoodBases++] = Bases[idx];
489 // Attach the remaining base class specifiers to the derived class.
490 Class->setBases(Context, Bases, NumGoodBases);
492 // Delete the remaining (good) base class specifiers, since their
493 // data has been copied into the CXXRecordDecl.
494 for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495 delete Bases[idx];
497 return Invalid;
500 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
501 /// class, after checking whether there are any duplicate base
502 /// classes.
503 void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504 unsigned NumBases) {
505 if (!ClassDecl || !Bases || !NumBases)
506 return;
508 AdjustDeclIfTemplate(ClassDecl);
509 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510 (CXXBaseSpecifier**)(Bases), NumBases);
513 //===----------------------------------------------------------------------===//
514 // C++ class member Handling
515 //===----------------------------------------------------------------------===//
517 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519 /// bitfield width if there is one and 'InitExpr' specifies the initializer if
520 /// any.
521 Sema::DeclPtrTy
522 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523 ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524 const DeclSpec &DS = D.getDeclSpec();
525 DeclarationName Name = GetNameForDeclarator(D);
526 Expr *BitWidth = static_cast<Expr*>(BW);
527 Expr *Init = static_cast<Expr*>(InitExpr);
528 SourceLocation Loc = D.getIdentifierLoc();
530 bool isFunc = D.isFunctionDeclarator();
532 // C++ 9.2p6: A member shall not be declared to have automatic storage
533 // duration (auto, register) or with the extern storage-class-specifier.
534 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535 // data members and cannot be applied to names declared const or static,
536 // and cannot be applied to reference members.
537 switch (DS.getStorageClassSpec()) {
538 case DeclSpec::SCS_unspecified:
539 case DeclSpec::SCS_typedef:
540 case DeclSpec::SCS_static:
541 // FALL THROUGH.
542 break;
543 case DeclSpec::SCS_mutable:
544 if (isFunc) {
545 if (DS.getStorageClassSpecLoc().isValid())
546 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547 else
548 Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
550 // FIXME: It would be nicer if the keyword was ignored only for this
551 // declarator. Otherwise we could get follow-up errors.
552 D.getMutableDeclSpec().ClearStorageClassSpecs();
553 } else {
554 QualType T = GetTypeForDeclarator(D, S);
555 diag::kind err = static_cast<diag::kind>(0);
556 if (T->isReferenceType())
557 err = diag::err_mutable_reference;
558 else if (T.isConstQualified())
559 err = diag::err_mutable_const;
560 if (err != 0) {
561 if (DS.getStorageClassSpecLoc().isValid())
562 Diag(DS.getStorageClassSpecLoc(), err);
563 else
564 Diag(DS.getThreadSpecLoc(), err);
565 // FIXME: It would be nicer if the keyword was ignored only for this
566 // declarator. Otherwise we could get follow-up errors.
567 D.getMutableDeclSpec().ClearStorageClassSpecs();
570 break;
571 default:
572 if (DS.getStorageClassSpecLoc().isValid())
573 Diag(DS.getStorageClassSpecLoc(),
574 diag::err_storageclass_invalid_for_member);
575 else
576 Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577 D.getMutableDeclSpec().ClearStorageClassSpecs();
580 if (!isFunc &&
581 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582 D.getNumTypeObjects() == 0) {
583 // Check also for this case:
585 // typedef int f();
586 // f a;
588 QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589 isFunc = TDType->isFunctionType();
592 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594 !isFunc);
596 Decl *Member;
597 if (isInstField) {
598 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599 AS);
600 assert(Member && "HandleField never returns null");
601 } else {
602 Member = ActOnDeclarator(S, D).getAs<Decl>();
603 if (!Member) {
604 if (BitWidth) DeleteExpr(BitWidth);
605 return DeclPtrTy();
608 // Non-instance-fields can't have a bitfield.
609 if (BitWidth) {
610 if (Member->isInvalidDecl()) {
611 // don't emit another diagnostic.
612 } else if (isa<VarDecl>(Member)) {
613 // C++ 9.6p3: A bit-field shall not be a static member.
614 // "static member 'A' cannot be a bit-field"
615 Diag(Loc, diag::err_static_not_bitfield)
616 << Name << BitWidth->getSourceRange();
617 } else if (isa<TypedefDecl>(Member)) {
618 // "typedef member 'x' cannot be a bit-field"
619 Diag(Loc, diag::err_typedef_not_bitfield)
620 << Name << BitWidth->getSourceRange();
621 } else {
622 // A function typedef ("typedef int f(); f a;").
623 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624 Diag(Loc, diag::err_not_integral_type_bitfield)
625 << Name << cast<ValueDecl>(Member)->getType()
626 << BitWidth->getSourceRange();
629 DeleteExpr(BitWidth);
630 BitWidth = 0;
631 Member->setInvalidDecl();
634 Member->setAccess(AS);
637 assert((Name || isInstField) && "No identifier for non-field ?");
639 if (Init)
640 AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641 if (Deleted) // FIXME: Source location is not very good.
642 SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
644 if (isInstField) {
645 FieldCollector->Add(cast<FieldDecl>(Member));
646 return DeclPtrTy();
648 return DeclPtrTy::make(Member);
651 /// ActOnMemInitializer - Handle a C++ member initializer.
652 Sema::MemInitResult
653 Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654 Scope *S,
655 const CXXScopeSpec &SS,
656 IdentifierInfo *MemberOrBase,
657 TypeTy *TemplateTypeTy,
658 SourceLocation IdLoc,
659 SourceLocation LParenLoc,
660 ExprTy **Args, unsigned NumArgs,
661 SourceLocation *CommaLocs,
662 SourceLocation RParenLoc) {
663 if (!ConstructorD)
664 return true;
666 CXXConstructorDecl *Constructor
667 = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668 if (!Constructor) {
669 // The user wrote a constructor initializer on a function that is
670 // not a C++ constructor. Ignore the error for now, because we may
671 // have more member initializers coming; we'll diagnose it just
672 // once in ActOnMemInitializers.
673 return true;
676 CXXRecordDecl *ClassDecl = Constructor->getParent();
678 // C++ [class.base.init]p2:
679 // Names in a mem-initializer-id are looked up in the scope of the
680 // constructor’s class and, if not found in that scope, are looked
681 // up in the scope containing the constructor’s
682 // definition. [Note: if the constructor’s class contains a member
683 // with the same name as a direct or virtual base class of the
684 // class, a mem-initializer-id naming the member or base class and
685 // composed of a single identifier refers to the class member. A
686 // mem-initializer-id for the hidden base class may be specified
687 // using a qualified name. ]
688 if (!SS.getScopeRep() && !TemplateTypeTy) {
689 // Look for a member, first.
690 FieldDecl *Member = 0;
691 DeclContext::lookup_result Result
692 = ClassDecl->lookup(MemberOrBase);
693 if (Result.first != Result.second)
694 Member = dyn_cast<FieldDecl>(*Result.first);
696 // FIXME: Handle members of an anonymous union.
698 if (Member) {
699 // FIXME: Perform direct initialization of the member.
700 return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701 IdLoc);
704 // It didn't name a member, so see if it names a class.
705 TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706 : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707 if (!BaseTy)
708 return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709 << MemberOrBase << SourceRange(IdLoc, RParenLoc);
711 QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712 if (!BaseType->isRecordType() && !BaseType->isDependentType())
713 return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714 << BaseType << SourceRange(IdLoc, RParenLoc);
716 // C++ [class.base.init]p2:
717 // [...] Unless the mem-initializer-id names a nonstatic data
718 // member of the constructor’s class or a direct or virtual base
719 // of that class, the mem-initializer is ill-formed. A
720 // mem-initializer-list can initialize a base class using any
721 // name that denotes that base class type.
723 // First, check for a direct base class.
724 const CXXBaseSpecifier *DirectBaseSpec = 0;
725 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726 Base != ClassDecl->bases_end(); ++Base) {
727 if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728 Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729 // We found a direct base of this type. That's what we're
730 // initializing.
731 DirectBaseSpec = &*Base;
732 break;
736 // Check for a virtual base class.
737 // FIXME: We might be able to short-circuit this if we know in advance that
738 // there are no virtual bases.
739 const CXXBaseSpecifier *VirtualBaseSpec = 0;
740 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741 // We haven't found a base yet; search the class hierarchy for a
742 // virtual base class.
743 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744 /*DetectVirtual=*/false);
745 if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746 for (BasePaths::paths_iterator Path = Paths.begin();
747 Path != Paths.end(); ++Path) {
748 if (Path->back().Base->isVirtual()) {
749 VirtualBaseSpec = Path->back().Base;
750 break;
756 // C++ [base.class.init]p2:
757 // If a mem-initializer-id is ambiguous because it designates both
758 // a direct non-virtual base class and an inherited virtual base
759 // class, the mem-initializer is ill-formed.
760 if (DirectBaseSpec && VirtualBaseSpec)
761 return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762 << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763 // C++ [base.class.init]p2:
764 // Unless the mem-initializer-id names a nonstatic data membeer of the
765 // constructor's class ot a direst or virtual base of that class, the
766 // mem-initializer is ill-formed.
767 if (!DirectBaseSpec && !VirtualBaseSpec)
768 return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769 << BaseType << ClassDecl->getNameAsCString()
770 << SourceRange(IdLoc, RParenLoc);
773 return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774 IdLoc);
777 void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
778 SourceLocation ColonLoc,
779 MemInitTy **MemInits, unsigned NumMemInits) {
780 if (!ConstructorDecl)
781 return;
783 CXXConstructorDecl *Constructor
784 = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
786 if (!Constructor) {
787 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
788 return;
790 llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
791 bool err = false;
792 for (unsigned i = 0; i < NumMemInits; i++) {
793 CXXBaseOrMemberInitializer *Member =
794 static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
795 void *KeyToMember = Member->getBaseOrMember();
796 // For fields injected into the class via declaration of an anonymous union,
797 // use its anonymous union class declaration as the unique key.
798 if (FieldDecl *Field = Member->getMember())
799 if (Field->getDeclContext()->isRecord() &&
800 cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
801 KeyToMember = static_cast<void *>(Field->getDeclContext());
802 CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
803 if (!PrevMember) {
804 PrevMember = Member;
805 continue;
807 if (FieldDecl *Field = Member->getMember())
808 Diag(Member->getSourceLocation(),
809 diag::error_multiple_mem_initialization)
810 << Field->getNameAsString();
811 else {
812 Type *BaseClass = Member->getBaseClass();
813 assert(BaseClass && "ActOnMemInitializers - neither field or base");
814 Diag(Member->getSourceLocation(),
815 diag::error_multiple_base_initialization)
816 << BaseClass->getDesugaredType(true);
818 Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
819 << 0;
820 err = true;
822 if (!err) {
823 Constructor->setBaseOrMemberInitializers(Context,
824 reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
825 NumMemInits);
826 // Also issue warning if order of ctor-initializer list does not match order
827 // of 1) base class declarations and 2) order of non-static data members.
828 llvm::SmallVector<const void*, 32> AllBaseOrMembers;
830 CXXRecordDecl *ClassDecl
831 = cast<CXXRecordDecl>(Constructor->getDeclContext());
832 // Push virtual bases before others.
833 for (CXXRecordDecl::base_class_iterator VBase =
834 ClassDecl->vbases_begin(),
835 E = ClassDecl->vbases_end(); VBase != E; ++VBase)
836 AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
838 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
839 E = ClassDecl->bases_end(); Base != E; ++Base) {
840 // Virtuals are alread in the virtual base list and are constructed
841 // first.
842 if (Base->isVirtual())
843 continue;
844 AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
847 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
848 E = ClassDecl->field_end(); Field != E; ++Field)
849 AllBaseOrMembers.push_back(*Field);
851 int Last = AllBaseOrMembers.size();
852 int curIndex = 0;
853 CXXBaseOrMemberInitializer *PrevMember = 0;
854 for (unsigned i = 0; i < NumMemInits; i++) {
855 CXXBaseOrMemberInitializer *Member =
856 static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
857 void *MemberInCtorList;
858 if (Member->isBaseInitializer())
859 MemberInCtorList = Member->getBaseClass();
860 else
861 MemberInCtorList = Member->getMember();
863 int j;
864 for (j = curIndex; j < Last; j++)
865 if (MemberInCtorList == AllBaseOrMembers[j])
866 break;
867 if (j == Last) {
868 if (!PrevMember)
869 continue;
870 // Initializer as specified in ctor-initializer list is out of order.
871 // Issue a warning diagnostic.
872 if (PrevMember->isBaseInitializer()) {
873 // Diagnostics is for an initialized base class.
874 Type *BaseClass = PrevMember->getBaseClass();
875 Diag(PrevMember->getSourceLocation(),
876 diag::warn_base_initialized)
877 << BaseClass->getDesugaredType(true);
879 else {
880 FieldDecl *Field = PrevMember->getMember();
881 Diag(PrevMember->getSourceLocation(),
882 diag::warn_field_initialized)
883 << Field->getNameAsString();
885 // Also the note!
886 if (FieldDecl *Field = Member->getMember())
887 Diag(Member->getSourceLocation(),
888 diag::note_fieldorbase_initialized_here) << 0
889 << Field->getNameAsString();
890 else {
891 Type *BaseClass = Member->getBaseClass();
892 Diag(Member->getSourceLocation(),
893 diag::note_fieldorbase_initialized_here) << 1
894 << BaseClass->getDesugaredType(true);
897 PrevMember = Member;
898 for (curIndex=0; curIndex < Last; curIndex++)
899 if (MemberInCtorList == AllBaseOrMembers[curIndex])
900 break;
905 void Sema::ActOnDefaultCDtorInitializers(DeclPtrTy CDtorDecl) {
906 if (!CDtorDecl)
907 return;
909 if (CXXConstructorDecl *Constructor
910 = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
911 Constructor->setBaseOrMemberInitializers(Context,
912 (CXXBaseOrMemberInitializer **)0, 0);
913 else
914 if (CXXDestructorDecl *Destructor
915 = dyn_cast<CXXDestructorDecl>(CDtorDecl.getAs<Decl>()))
916 Destructor->setBaseOrMemberDestructions(Context);
919 namespace {
920 /// PureVirtualMethodCollector - traverses a class and its superclasses
921 /// and determines if it has any pure virtual methods.
922 class VISIBILITY_HIDDEN PureVirtualMethodCollector {
923 ASTContext &Context;
925 public:
926 typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
928 private:
929 MethodList Methods;
931 void Collect(const CXXRecordDecl* RD, MethodList& Methods);
933 public:
934 PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
935 : Context(Ctx) {
937 MethodList List;
938 Collect(RD, List);
940 // Copy the temporary list to methods, and make sure to ignore any
941 // null entries.
942 for (size_t i = 0, e = List.size(); i != e; ++i) {
943 if (List[i])
944 Methods.push_back(List[i]);
948 bool empty() const { return Methods.empty(); }
950 MethodList::const_iterator methods_begin() { return Methods.begin(); }
951 MethodList::const_iterator methods_end() { return Methods.end(); }
954 void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
955 MethodList& Methods) {
956 // First, collect the pure virtual methods for the base classes.
957 for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
958 BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
959 if (const RecordType *RT = Base->getType()->getAsRecordType()) {
960 const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
961 if (BaseDecl && BaseDecl->isAbstract())
962 Collect(BaseDecl, Methods);
966 // Next, zero out any pure virtual methods that this class overrides.
967 typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
969 MethodSetTy OverriddenMethods;
970 size_t MethodsSize = Methods.size();
972 for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
973 i != e; ++i) {
974 // Traverse the record, looking for methods.
975 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
976 // If the method is pure virtual, add it to the methods vector.
977 if (MD->isPure()) {
978 Methods.push_back(MD);
979 continue;
982 // Otherwise, record all the overridden methods in our set.
983 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
984 E = MD->end_overridden_methods(); I != E; ++I) {
985 // Keep track of the overridden methods.
986 OverriddenMethods.insert(*I);
991 // Now go through the methods and zero out all the ones we know are
992 // overridden.
993 for (size_t i = 0, e = MethodsSize; i != e; ++i) {
994 if (OverriddenMethods.count(Methods[i]))
995 Methods[i] = 0;
1001 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1002 unsigned DiagID, AbstractDiagSelID SelID,
1003 const CXXRecordDecl *CurrentRD) {
1005 if (!getLangOptions().CPlusPlus)
1006 return false;
1008 if (const ArrayType *AT = Context.getAsArrayType(T))
1009 return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1010 CurrentRD);
1012 if (const PointerType *PT = T->getAsPointerType()) {
1013 // Find the innermost pointer type.
1014 while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1015 PT = T;
1017 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1018 return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1019 CurrentRD);
1022 const RecordType *RT = T->getAsRecordType();
1023 if (!RT)
1024 return false;
1026 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1027 if (!RD)
1028 return false;
1030 if (CurrentRD && CurrentRD != RD)
1031 return false;
1033 if (!RD->isAbstract())
1034 return false;
1036 Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1038 // Check if we've already emitted the list of pure virtual functions for this
1039 // class.
1040 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1041 return true;
1043 PureVirtualMethodCollector Collector(Context, RD);
1045 for (PureVirtualMethodCollector::MethodList::const_iterator I =
1046 Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1047 const CXXMethodDecl *MD = *I;
1049 Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1050 MD->getDeclName();
1053 if (!PureVirtualClassDiagSet)
1054 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1055 PureVirtualClassDiagSet->insert(RD);
1057 return true;
1060 namespace {
1061 class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1062 : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1063 Sema &SemaRef;
1064 CXXRecordDecl *AbstractClass;
1066 bool VisitDeclContext(const DeclContext *DC) {
1067 bool Invalid = false;
1069 for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1070 E = DC->decls_end(); I != E; ++I)
1071 Invalid |= Visit(*I);
1073 return Invalid;
1076 public:
1077 AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1078 : SemaRef(SemaRef), AbstractClass(ac) {
1079 Visit(SemaRef.Context.getTranslationUnitDecl());
1082 bool VisitFunctionDecl(const FunctionDecl *FD) {
1083 if (FD->isThisDeclarationADefinition()) {
1084 // No need to do the check if we're in a definition, because it requires
1085 // that the return/param types are complete.
1086 // because that requires
1087 return VisitDeclContext(FD);
1090 // Check the return type.
1091 QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1092 bool Invalid =
1093 SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1094 diag::err_abstract_type_in_decl,
1095 Sema::AbstractReturnType,
1096 AbstractClass);
1098 for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1099 E = FD->param_end(); I != E; ++I) {
1100 const ParmVarDecl *VD = *I;
1101 Invalid |=
1102 SemaRef.RequireNonAbstractType(VD->getLocation(),
1103 VD->getOriginalType(),
1104 diag::err_abstract_type_in_decl,
1105 Sema::AbstractParamType,
1106 AbstractClass);
1109 return Invalid;
1112 bool VisitDecl(const Decl* D) {
1113 if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1114 return VisitDeclContext(DC);
1116 return false;
1121 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1122 DeclPtrTy TagDecl,
1123 SourceLocation LBrac,
1124 SourceLocation RBrac) {
1125 if (!TagDecl)
1126 return;
1128 AdjustDeclIfTemplate(TagDecl);
1129 ActOnFields(S, RLoc, TagDecl,
1130 (DeclPtrTy*)FieldCollector->getCurFields(),
1131 FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1133 CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1134 if (!RD->isAbstract()) {
1135 // Collect all the pure virtual methods and see if this is an abstract
1136 // class after all.
1137 PureVirtualMethodCollector Collector(Context, RD);
1138 if (!Collector.empty())
1139 RD->setAbstract(true);
1142 if (RD->isAbstract())
1143 AbstractClassUsageDiagnoser(*this, RD);
1145 if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1146 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1147 i != e; ++i) {
1148 // All the nonstatic data members must have trivial constructors.
1149 QualType FTy = i->getType();
1150 while (const ArrayType *AT = Context.getAsArrayType(FTy))
1151 FTy = AT->getElementType();
1153 if (const RecordType *RT = FTy->getAsRecordType()) {
1154 CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1156 if (!FieldRD->hasTrivialConstructor())
1157 RD->setHasTrivialConstructor(false);
1158 if (!FieldRD->hasTrivialDestructor())
1159 RD->setHasTrivialDestructor(false);
1161 // If RD has neither a trivial constructor nor a trivial destructor
1162 // we don't need to continue checking.
1163 if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1164 break;
1169 if (!RD->isDependentType())
1170 AddImplicitlyDeclaredMembersToClass(RD);
1173 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1174 /// special functions, such as the default constructor, copy
1175 /// constructor, or destructor, to the given C++ class (C++
1176 /// [special]p1). This routine can only be executed just before the
1177 /// definition of the class is complete.
1178 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1179 QualType ClassType = Context.getTypeDeclType(ClassDecl);
1180 ClassType = Context.getCanonicalType(ClassType);
1182 // FIXME: Implicit declarations have exception specifications, which are
1183 // the union of the specifications of the implicitly called functions.
1185 if (!ClassDecl->hasUserDeclaredConstructor()) {
1186 // C++ [class.ctor]p5:
1187 // A default constructor for a class X is a constructor of class X
1188 // that can be called without an argument. If there is no
1189 // user-declared constructor for class X, a default constructor is
1190 // implicitly declared. An implicitly-declared default constructor
1191 // is an inline public member of its class.
1192 DeclarationName Name
1193 = Context.DeclarationNames.getCXXConstructorName(ClassType);
1194 CXXConstructorDecl *DefaultCon =
1195 CXXConstructorDecl::Create(Context, ClassDecl,
1196 ClassDecl->getLocation(), Name,
1197 Context.getFunctionType(Context.VoidTy,
1198 0, 0, false, 0),
1199 /*isExplicit=*/false,
1200 /*isInline=*/true,
1201 /*isImplicitlyDeclared=*/true);
1202 DefaultCon->setAccess(AS_public);
1203 DefaultCon->setImplicit();
1204 ClassDecl->addDecl(DefaultCon);
1207 if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1208 // C++ [class.copy]p4:
1209 // If the class definition does not explicitly declare a copy
1210 // constructor, one is declared implicitly.
1212 // C++ [class.copy]p5:
1213 // The implicitly-declared copy constructor for a class X will
1214 // have the form
1216 // X::X(const X&)
1218 // if
1219 bool HasConstCopyConstructor = true;
1221 // -- each direct or virtual base class B of X has a copy
1222 // constructor whose first parameter is of type const B& or
1223 // const volatile B&, and
1224 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1225 HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1226 const CXXRecordDecl *BaseClassDecl
1227 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1228 HasConstCopyConstructor
1229 = BaseClassDecl->hasConstCopyConstructor(Context);
1232 // -- for all the nonstatic data members of X that are of a
1233 // class type M (or array thereof), each such class type
1234 // has a copy constructor whose first parameter is of type
1235 // const M& or const volatile M&.
1236 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1237 HasConstCopyConstructor && Field != ClassDecl->field_end();
1238 ++Field) {
1239 QualType FieldType = (*Field)->getType();
1240 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1241 FieldType = Array->getElementType();
1242 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1243 const CXXRecordDecl *FieldClassDecl
1244 = cast<CXXRecordDecl>(FieldClassType->getDecl());
1245 HasConstCopyConstructor
1246 = FieldClassDecl->hasConstCopyConstructor(Context);
1250 // Otherwise, the implicitly declared copy constructor will have
1251 // the form
1253 // X::X(X&)
1254 QualType ArgType = ClassType;
1255 if (HasConstCopyConstructor)
1256 ArgType = ArgType.withConst();
1257 ArgType = Context.getLValueReferenceType(ArgType);
1259 // An implicitly-declared copy constructor is an inline public
1260 // member of its class.
1261 DeclarationName Name
1262 = Context.DeclarationNames.getCXXConstructorName(ClassType);
1263 CXXConstructorDecl *CopyConstructor
1264 = CXXConstructorDecl::Create(Context, ClassDecl,
1265 ClassDecl->getLocation(), Name,
1266 Context.getFunctionType(Context.VoidTy,
1267 &ArgType, 1,
1268 false, 0),
1269 /*isExplicit=*/false,
1270 /*isInline=*/true,
1271 /*isImplicitlyDeclared=*/true);
1272 CopyConstructor->setAccess(AS_public);
1273 CopyConstructor->setImplicit();
1275 // Add the parameter to the constructor.
1276 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1277 ClassDecl->getLocation(),
1278 /*IdentifierInfo=*/0,
1279 ArgType, VarDecl::None, 0);
1280 CopyConstructor->setParams(Context, &FromParam, 1);
1281 ClassDecl->addDecl(CopyConstructor);
1284 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1285 // Note: The following rules are largely analoguous to the copy
1286 // constructor rules. Note that virtual bases are not taken into account
1287 // for determining the argument type of the operator. Note also that
1288 // operators taking an object instead of a reference are allowed.
1290 // C++ [class.copy]p10:
1291 // If the class definition does not explicitly declare a copy
1292 // assignment operator, one is declared implicitly.
1293 // The implicitly-defined copy assignment operator for a class X
1294 // will have the form
1296 // X& X::operator=(const X&)
1298 // if
1299 bool HasConstCopyAssignment = true;
1301 // -- each direct base class B of X has a copy assignment operator
1302 // whose parameter is of type const B&, const volatile B& or B,
1303 // and
1304 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1305 HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1306 const CXXRecordDecl *BaseClassDecl
1307 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1308 HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1311 // -- for all the nonstatic data members of X that are of a class
1312 // type M (or array thereof), each such class type has a copy
1313 // assignment operator whose parameter is of type const M&,
1314 // const volatile M& or M.
1315 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1316 HasConstCopyAssignment && Field != ClassDecl->field_end();
1317 ++Field) {
1318 QualType FieldType = (*Field)->getType();
1319 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1320 FieldType = Array->getElementType();
1321 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1322 const CXXRecordDecl *FieldClassDecl
1323 = cast<CXXRecordDecl>(FieldClassType->getDecl());
1324 HasConstCopyAssignment
1325 = FieldClassDecl->hasConstCopyAssignment(Context);
1329 // Otherwise, the implicitly declared copy assignment operator will
1330 // have the form
1332 // X& X::operator=(X&)
1333 QualType ArgType = ClassType;
1334 QualType RetType = Context.getLValueReferenceType(ArgType);
1335 if (HasConstCopyAssignment)
1336 ArgType = ArgType.withConst();
1337 ArgType = Context.getLValueReferenceType(ArgType);
1339 // An implicitly-declared copy assignment operator is an inline public
1340 // member of its class.
1341 DeclarationName Name =
1342 Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1343 CXXMethodDecl *CopyAssignment =
1344 CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1345 Context.getFunctionType(RetType, &ArgType, 1,
1346 false, 0),
1347 /*isStatic=*/false, /*isInline=*/true);
1348 CopyAssignment->setAccess(AS_public);
1349 CopyAssignment->setImplicit();
1351 // Add the parameter to the operator.
1352 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1353 ClassDecl->getLocation(),
1354 /*IdentifierInfo=*/0,
1355 ArgType, VarDecl::None, 0);
1356 CopyAssignment->setParams(Context, &FromParam, 1);
1358 // Don't call addedAssignmentOperator. There is no way to distinguish an
1359 // implicit from an explicit assignment operator.
1360 ClassDecl->addDecl(CopyAssignment);
1363 if (!ClassDecl->hasUserDeclaredDestructor()) {
1364 // C++ [class.dtor]p2:
1365 // If a class has no user-declared destructor, a destructor is
1366 // declared implicitly. An implicitly-declared destructor is an
1367 // inline public member of its class.
1368 DeclarationName Name
1369 = Context.DeclarationNames.getCXXDestructorName(ClassType);
1370 CXXDestructorDecl *Destructor
1371 = CXXDestructorDecl::Create(Context, ClassDecl,
1372 ClassDecl->getLocation(), Name,
1373 Context.getFunctionType(Context.VoidTy,
1374 0, 0, false, 0),
1375 /*isInline=*/true,
1376 /*isImplicitlyDeclared=*/true);
1377 Destructor->setAccess(AS_public);
1378 Destructor->setImplicit();
1379 ClassDecl->addDecl(Destructor);
1383 void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1384 TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1385 if (!Template)
1386 return;
1388 TemplateParameterList *Params = Template->getTemplateParameters();
1389 for (TemplateParameterList::iterator Param = Params->begin(),
1390 ParamEnd = Params->end();
1391 Param != ParamEnd; ++Param) {
1392 NamedDecl *Named = cast<NamedDecl>(*Param);
1393 if (Named->getDeclName()) {
1394 S->AddDecl(DeclPtrTy::make(Named));
1395 IdResolver.AddDecl(Named);
1400 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
1401 /// parsing a top-level (non-nested) C++ class, and we are now
1402 /// parsing those parts of the given Method declaration that could
1403 /// not be parsed earlier (C++ [class.mem]p2), such as default
1404 /// arguments. This action should enter the scope of the given
1405 /// Method declaration as if we had just parsed the qualified method
1406 /// name. However, it should not bring the parameters into scope;
1407 /// that will be performed by ActOnDelayedCXXMethodParameter.
1408 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1409 if (!MethodD)
1410 return;
1412 CXXScopeSpec SS;
1413 FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1414 QualType ClassTy
1415 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1416 SS.setScopeRep(
1417 NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1418 ActOnCXXEnterDeclaratorScope(S, SS);
1421 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
1422 /// C++ method declaration. We're (re-)introducing the given
1423 /// function parameter into scope for use in parsing later parts of
1424 /// the method declaration. For example, we could see an
1425 /// ActOnParamDefaultArgument event for this parameter.
1426 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1427 if (!ParamD)
1428 return;
1430 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1432 // If this parameter has an unparsed default argument, clear it out
1433 // to make way for the parsed default argument.
1434 if (Param->hasUnparsedDefaultArg())
1435 Param->setDefaultArg(0);
1437 S->AddDecl(DeclPtrTy::make(Param));
1438 if (Param->getDeclName())
1439 IdResolver.AddDecl(Param);
1442 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1443 /// processing the delayed method declaration for Method. The method
1444 /// declaration is now considered finished. There may be a separate
1445 /// ActOnStartOfFunctionDef action later (not necessarily
1446 /// immediately!) for this method, if it was also defined inside the
1447 /// class body.
1448 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1449 if (!MethodD)
1450 return;
1452 FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1453 CXXScopeSpec SS;
1454 QualType ClassTy
1455 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1456 SS.setScopeRep(
1457 NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1458 ActOnCXXExitDeclaratorScope(S, SS);
1460 // Now that we have our default arguments, check the constructor
1461 // again. It could produce additional diagnostics or affect whether
1462 // the class has implicitly-declared destructors, among other
1463 // things.
1464 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1465 CheckConstructor(Constructor);
1467 // Check the default arguments, which we may have added.
1468 if (!Method->isInvalidDecl())
1469 CheckCXXDefaultArguments(Method);
1472 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1473 /// the well-formedness of the constructor declarator @p D with type @p
1474 /// R. If there are any errors in the declarator, this routine will
1475 /// emit diagnostics and set the invalid bit to true. In any case, the type
1476 /// will be updated to reflect a well-formed type for the constructor and
1477 /// returned.
1478 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1479 FunctionDecl::StorageClass &SC) {
1480 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1482 // C++ [class.ctor]p3:
1483 // A constructor shall not be virtual (10.3) or static (9.4). A
1484 // constructor can be invoked for a const, volatile or const
1485 // volatile object. A constructor shall not be declared const,
1486 // volatile, or const volatile (9.3.2).
1487 if (isVirtual) {
1488 if (!D.isInvalidType())
1489 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1490 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1491 << SourceRange(D.getIdentifierLoc());
1492 D.setInvalidType();
1494 if (SC == FunctionDecl::Static) {
1495 if (!D.isInvalidType())
1496 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1497 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1498 << SourceRange(D.getIdentifierLoc());
1499 D.setInvalidType();
1500 SC = FunctionDecl::None;
1503 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1504 if (FTI.TypeQuals != 0) {
1505 if (FTI.TypeQuals & QualType::Const)
1506 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1507 << "const" << SourceRange(D.getIdentifierLoc());
1508 if (FTI.TypeQuals & QualType::Volatile)
1509 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1510 << "volatile" << SourceRange(D.getIdentifierLoc());
1511 if (FTI.TypeQuals & QualType::Restrict)
1512 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1513 << "restrict" << SourceRange(D.getIdentifierLoc());
1516 // Rebuild the function type "R" without any type qualifiers (in
1517 // case any of the errors above fired) and with "void" as the
1518 // return type, since constructors don't have return types. We
1519 // *always* have to do this, because GetTypeForDeclarator will
1520 // put in a result type of "int" when none was specified.
1521 const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1522 return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1523 Proto->getNumArgs(),
1524 Proto->isVariadic(), 0);
1527 /// CheckConstructor - Checks a fully-formed constructor for
1528 /// well-formedness, issuing any diagnostics required. Returns true if
1529 /// the constructor declarator is invalid.
1530 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1531 CXXRecordDecl *ClassDecl
1532 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1533 if (!ClassDecl)
1534 return Constructor->setInvalidDecl();
1536 // C++ [class.copy]p3:
1537 // A declaration of a constructor for a class X is ill-formed if
1538 // its first parameter is of type (optionally cv-qualified) X and
1539 // either there are no other parameters or else all other
1540 // parameters have default arguments.
1541 if (!Constructor->isInvalidDecl() &&
1542 ((Constructor->getNumParams() == 1) ||
1543 (Constructor->getNumParams() > 1 &&
1544 Constructor->getParamDecl(1)->hasDefaultArg()))) {
1545 QualType ParamType = Constructor->getParamDecl(0)->getType();
1546 QualType ClassTy = Context.getTagDeclType(ClassDecl);
1547 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1548 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1549 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1550 << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1551 Constructor->setInvalidDecl();
1555 // Notify the class that we've added a constructor.
1556 ClassDecl->addedConstructor(Context, Constructor);
1559 static inline bool
1560 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1561 return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1562 FTI.ArgInfo[0].Param &&
1563 FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1566 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1567 /// the well-formednes of the destructor declarator @p D with type @p
1568 /// R. If there are any errors in the declarator, this routine will
1569 /// emit diagnostics and set the declarator to invalid. Even if this happens,
1570 /// will be updated to reflect a well-formed type for the destructor and
1571 /// returned.
1572 QualType Sema::CheckDestructorDeclarator(Declarator &D,
1573 FunctionDecl::StorageClass& SC) {
1574 // C++ [class.dtor]p1:
1575 // [...] A typedef-name that names a class is a class-name
1576 // (7.1.3); however, a typedef-name that names a class shall not
1577 // be used as the identifier in the declarator for a destructor
1578 // declaration.
1579 QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1580 if (isa<TypedefType>(DeclaratorType)) {
1581 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1582 << DeclaratorType;
1583 D.setInvalidType();
1586 // C++ [class.dtor]p2:
1587 // A destructor is used to destroy objects of its class type. A
1588 // destructor takes no parameters, and no return type can be
1589 // specified for it (not even void). The address of a destructor
1590 // shall not be taken. A destructor shall not be static. A
1591 // destructor can be invoked for a const, volatile or const
1592 // volatile object. A destructor shall not be declared const,
1593 // volatile or const volatile (9.3.2).
1594 if (SC == FunctionDecl::Static) {
1595 if (!D.isInvalidType())
1596 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1597 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1598 << SourceRange(D.getIdentifierLoc());
1599 SC = FunctionDecl::None;
1600 D.setInvalidType();
1602 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1603 // Destructors don't have return types, but the parser will
1604 // happily parse something like:
1606 // class X {
1607 // float ~X();
1608 // };
1610 // The return type will be eliminated later.
1611 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1612 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1613 << SourceRange(D.getIdentifierLoc());
1616 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1617 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1618 if (FTI.TypeQuals & QualType::Const)
1619 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1620 << "const" << SourceRange(D.getIdentifierLoc());
1621 if (FTI.TypeQuals & QualType::Volatile)
1622 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1623 << "volatile" << SourceRange(D.getIdentifierLoc());
1624 if (FTI.TypeQuals & QualType::Restrict)
1625 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1626 << "restrict" << SourceRange(D.getIdentifierLoc());
1627 D.setInvalidType();
1630 // Make sure we don't have any parameters.
1631 if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1632 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1634 // Delete the parameters.
1635 FTI.freeArgs();
1636 D.setInvalidType();
1639 // Make sure the destructor isn't variadic.
1640 if (FTI.isVariadic) {
1641 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1642 D.setInvalidType();
1645 // Rebuild the function type "R" without any type qualifiers or
1646 // parameters (in case any of the errors above fired) and with
1647 // "void" as the return type, since destructors don't have return
1648 // types. We *always* have to do this, because GetTypeForDeclarator
1649 // will put in a result type of "int" when none was specified.
1650 return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1653 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1654 /// well-formednes of the conversion function declarator @p D with
1655 /// type @p R. If there are any errors in the declarator, this routine
1656 /// will emit diagnostics and return true. Otherwise, it will return
1657 /// false. Either way, the type @p R will be updated to reflect a
1658 /// well-formed type for the conversion operator.
1659 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1660 FunctionDecl::StorageClass& SC) {
1661 // C++ [class.conv.fct]p1:
1662 // Neither parameter types nor return type can be specified. The
1663 // type of a conversion function (8.3.5) is “function taking no
1664 // parameter returning conversion-type-id.”
1665 if (SC == FunctionDecl::Static) {
1666 if (!D.isInvalidType())
1667 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1668 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1669 << SourceRange(D.getIdentifierLoc());
1670 D.setInvalidType();
1671 SC = FunctionDecl::None;
1673 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1674 // Conversion functions don't have return types, but the parser will
1675 // happily parse something like:
1677 // class X {
1678 // float operator bool();
1679 // };
1681 // The return type will be changed later anyway.
1682 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1683 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1684 << SourceRange(D.getIdentifierLoc());
1687 // Make sure we don't have any parameters.
1688 if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1689 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1691 // Delete the parameters.
1692 D.getTypeObject(0).Fun.freeArgs();
1693 D.setInvalidType();
1696 // Make sure the conversion function isn't variadic.
1697 if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1698 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1699 D.setInvalidType();
1702 // C++ [class.conv.fct]p4:
1703 // The conversion-type-id shall not represent a function type nor
1704 // an array type.
1705 QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1706 if (ConvType->isArrayType()) {
1707 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1708 ConvType = Context.getPointerType(ConvType);
1709 D.setInvalidType();
1710 } else if (ConvType->isFunctionType()) {
1711 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1712 ConvType = Context.getPointerType(ConvType);
1713 D.setInvalidType();
1716 // Rebuild the function type "R" without any parameters (in case any
1717 // of the errors above fired) and with the conversion type as the
1718 // return type.
1719 R = Context.getFunctionType(ConvType, 0, 0, false,
1720 R->getAsFunctionProtoType()->getTypeQuals());
1722 // C++0x explicit conversion operators.
1723 if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1724 Diag(D.getDeclSpec().getExplicitSpecLoc(),
1725 diag::warn_explicit_conversion_functions)
1726 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1729 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1730 /// the declaration of the given C++ conversion function. This routine
1731 /// is responsible for recording the conversion function in the C++
1732 /// class, if possible.
1733 Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1734 assert(Conversion && "Expected to receive a conversion function declaration");
1736 // Set the lexical context of this conversion function
1737 Conversion->setLexicalDeclContext(CurContext);
1739 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1741 // Make sure we aren't redeclaring the conversion function.
1742 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1744 // C++ [class.conv.fct]p1:
1745 // [...] A conversion function is never used to convert a
1746 // (possibly cv-qualified) object to the (possibly cv-qualified)
1747 // same object type (or a reference to it), to a (possibly
1748 // cv-qualified) base class of that type (or a reference to it),
1749 // or to (possibly cv-qualified) void.
1750 // FIXME: Suppress this warning if the conversion function ends up being a
1751 // virtual function that overrides a virtual function in a base class.
1752 QualType ClassType
1753 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1754 if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1755 ConvType = ConvTypeRef->getPointeeType();
1756 if (ConvType->isRecordType()) {
1757 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1758 if (ConvType == ClassType)
1759 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1760 << ClassType;
1761 else if (IsDerivedFrom(ClassType, ConvType))
1762 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1763 << ClassType << ConvType;
1764 } else if (ConvType->isVoidType()) {
1765 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1766 << ClassType << ConvType;
1769 if (Conversion->getPreviousDeclaration()) {
1770 OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1771 for (OverloadedFunctionDecl::function_iterator
1772 Conv = Conversions->function_begin(),
1773 ConvEnd = Conversions->function_end();
1774 Conv != ConvEnd; ++Conv) {
1775 if (*Conv
1776 == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1777 *Conv = Conversion;
1778 return DeclPtrTy::make(Conversion);
1781 assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1782 } else
1783 ClassDecl->addConversionFunction(Context, Conversion);
1785 return DeclPtrTy::make(Conversion);
1788 //===----------------------------------------------------------------------===//
1789 // Namespace Handling
1790 //===----------------------------------------------------------------------===//
1792 /// ActOnStartNamespaceDef - This is called at the start of a namespace
1793 /// definition.
1794 Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1795 SourceLocation IdentLoc,
1796 IdentifierInfo *II,
1797 SourceLocation LBrace) {
1798 NamespaceDecl *Namespc =
1799 NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1800 Namespc->setLBracLoc(LBrace);
1802 Scope *DeclRegionScope = NamespcScope->getParent();
1804 if (II) {
1805 // C++ [namespace.def]p2:
1806 // The identifier in an original-namespace-definition shall not have been
1807 // previously defined in the declarative region in which the
1808 // original-namespace-definition appears. The identifier in an
1809 // original-namespace-definition is the name of the namespace. Subsequently
1810 // in that declarative region, it is treated as an original-namespace-name.
1812 NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1813 true);
1815 if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1816 // This is an extended namespace definition.
1817 // Attach this namespace decl to the chain of extended namespace
1818 // definitions.
1819 OrigNS->setNextNamespace(Namespc);
1820 Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1822 // Remove the previous declaration from the scope.
1823 if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1824 IdResolver.RemoveDecl(OrigNS);
1825 DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1827 } else if (PrevDecl) {
1828 // This is an invalid name redefinition.
1829 Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1830 << Namespc->getDeclName();
1831 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1832 Namespc->setInvalidDecl();
1833 // Continue on to push Namespc as current DeclContext and return it.
1836 PushOnScopeChains(Namespc, DeclRegionScope);
1837 } else {
1838 // FIXME: Handle anonymous namespaces
1841 // Although we could have an invalid decl (i.e. the namespace name is a
1842 // redefinition), push it as current DeclContext and try to continue parsing.
1843 // FIXME: We should be able to push Namespc here, so that the each DeclContext
1844 // for the namespace has the declarations that showed up in that particular
1845 // namespace definition.
1846 PushDeclContext(NamespcScope, Namespc);
1847 return DeclPtrTy::make(Namespc);
1850 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
1851 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1852 void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1853 Decl *Dcl = D.getAs<Decl>();
1854 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1855 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1856 Namespc->setRBracLoc(RBrace);
1857 PopDeclContext();
1860 Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1861 SourceLocation UsingLoc,
1862 SourceLocation NamespcLoc,
1863 const CXXScopeSpec &SS,
1864 SourceLocation IdentLoc,
1865 IdentifierInfo *NamespcName,
1866 AttributeList *AttrList) {
1867 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1868 assert(NamespcName && "Invalid NamespcName.");
1869 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1870 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1872 UsingDirectiveDecl *UDir = 0;
1874 // Lookup namespace name.
1875 LookupResult R = LookupParsedName(S, &SS, NamespcName,
1876 LookupNamespaceName, false);
1877 if (R.isAmbiguous()) {
1878 DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1879 return DeclPtrTy();
1881 if (NamedDecl *NS = R) {
1882 assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1883 // C++ [namespace.udir]p1:
1884 // A using-directive specifies that the names in the nominated
1885 // namespace can be used in the scope in which the
1886 // using-directive appears after the using-directive. During
1887 // unqualified name lookup (3.4.1), the names appear as if they
1888 // were declared in the nearest enclosing namespace which
1889 // contains both the using-directive and the nominated
1890 // namespace. [Note: in this context, “contains” means “contains
1891 // directly or indirectly”. ]
1893 // Find enclosing context containing both using-directive and
1894 // nominated namespace.
1895 DeclContext *CommonAncestor = cast<DeclContext>(NS);
1896 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1897 CommonAncestor = CommonAncestor->getParent();
1899 UDir = UsingDirectiveDecl::Create(Context,
1900 CurContext, UsingLoc,
1901 NamespcLoc,
1902 SS.getRange(),
1903 (NestedNameSpecifier *)SS.getScopeRep(),
1904 IdentLoc,
1905 cast<NamespaceDecl>(NS),
1906 CommonAncestor);
1907 PushUsingDirective(S, UDir);
1908 } else {
1909 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1912 // FIXME: We ignore attributes for now.
1913 delete AttrList;
1914 return DeclPtrTy::make(UDir);
1917 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1918 // If scope has associated entity, then using directive is at namespace
1919 // or translation unit scope. We add UsingDirectiveDecls, into
1920 // it's lookup structure.
1921 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1922 Ctx->addDecl(UDir);
1923 else
1924 // Otherwise it is block-sope. using-directives will affect lookup
1925 // only to the end of scope.
1926 S->PushUsingDirective(DeclPtrTy::make(UDir));
1930 Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1931 SourceLocation UsingLoc,
1932 const CXXScopeSpec &SS,
1933 SourceLocation IdentLoc,
1934 IdentifierInfo *TargetName,
1935 OverloadedOperatorKind Op,
1936 AttributeList *AttrList,
1937 bool IsTypeName) {
1938 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1939 assert((TargetName || Op) && "Invalid TargetName.");
1940 assert(IdentLoc.isValid() && "Invalid TargetName location.");
1941 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1943 UsingDecl *UsingAlias = 0;
1945 DeclarationName Name;
1946 if (TargetName)
1947 Name = TargetName;
1948 else
1949 Name = Context.DeclarationNames.getCXXOperatorName(Op);
1951 // Lookup target name.
1952 LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1954 if (NamedDecl *NS = R) {
1955 if (IsTypeName && !isa<TypeDecl>(NS)) {
1956 Diag(IdentLoc, diag::err_using_typename_non_type);
1958 UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1959 NS->getLocation(), UsingLoc, NS,
1960 static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1961 IsTypeName);
1962 PushOnScopeChains(UsingAlias, S);
1963 } else {
1964 Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1967 // FIXME: We ignore attributes for now.
1968 delete AttrList;
1969 return DeclPtrTy::make(UsingAlias);
1972 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1973 /// is a namespace alias, returns the namespace it points to.
1974 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1975 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1976 return AD->getNamespace();
1977 return dyn_cast_or_null<NamespaceDecl>(D);
1980 Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1981 SourceLocation NamespaceLoc,
1982 SourceLocation AliasLoc,
1983 IdentifierInfo *Alias,
1984 const CXXScopeSpec &SS,
1985 SourceLocation IdentLoc,
1986 IdentifierInfo *Ident) {
1988 // Lookup the namespace name.
1989 LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1991 // Check if we have a previous declaration with the same name.
1992 if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1993 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1994 // We already have an alias with the same name that points to the same
1995 // namespace, so don't create a new one.
1996 if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1997 return DeclPtrTy();
2000 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2001 diag::err_redefinition_different_kind;
2002 Diag(AliasLoc, DiagID) << Alias;
2003 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2004 return DeclPtrTy();
2007 if (R.isAmbiguous()) {
2008 DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2009 return DeclPtrTy();
2012 if (!R) {
2013 Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2014 return DeclPtrTy();
2017 NamespaceAliasDecl *AliasDecl =
2018 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2019 Alias, SS.getRange(),
2020 (NestedNameSpecifier *)SS.getScopeRep(),
2021 IdentLoc, R);
2023 CurContext->addDecl(AliasDecl);
2024 return DeclPtrTy::make(AliasDecl);
2027 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2028 CXXConstructorDecl *Constructor) {
2029 assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2030 !Constructor->isUsed()) &&
2031 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2033 CXXRecordDecl *ClassDecl
2034 = cast<CXXRecordDecl>(Constructor->getDeclContext());
2035 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2036 // Before the implicitly-declared default constructor for a class is
2037 // implicitly defined, all the implicitly-declared default constructors
2038 // for its base class and its non-static data members shall have been
2039 // implicitly defined.
2040 bool err = false;
2041 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2042 E = ClassDecl->bases_end(); Base != E; ++Base) {
2043 CXXRecordDecl *BaseClassDecl
2044 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2045 if (!BaseClassDecl->hasTrivialConstructor()) {
2046 if (CXXConstructorDecl *BaseCtor =
2047 BaseClassDecl->getDefaultConstructor(Context))
2048 MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2049 else {
2050 Diag(CurrentLocation, diag::err_defining_default_ctor)
2051 << Context.getTagDeclType(ClassDecl) << 1
2052 << Context.getTagDeclType(BaseClassDecl);
2053 Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2054 << Context.getTagDeclType(BaseClassDecl);
2055 err = true;
2059 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2060 E = ClassDecl->field_end(); Field != E; ++Field) {
2061 QualType FieldType = Context.getCanonicalType((*Field)->getType());
2062 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2063 FieldType = Array->getElementType();
2064 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2065 CXXRecordDecl *FieldClassDecl
2066 = cast<CXXRecordDecl>(FieldClassType->getDecl());
2067 if (!FieldClassDecl->hasTrivialConstructor()) {
2068 if (CXXConstructorDecl *FieldCtor =
2069 FieldClassDecl->getDefaultConstructor(Context))
2070 MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2071 else {
2072 Diag(CurrentLocation, diag::err_defining_default_ctor)
2073 << Context.getTagDeclType(ClassDecl) << 0 <<
2074 Context.getTagDeclType(FieldClassDecl);
2075 Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2076 << Context.getTagDeclType(FieldClassDecl);
2077 err = true;
2081 else if (FieldType->isReferenceType()) {
2082 Diag(CurrentLocation, diag::err_unintialized_member)
2083 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2084 Diag((*Field)->getLocation(), diag::note_declared_at);
2085 err = true;
2087 else if (FieldType.isConstQualified()) {
2088 Diag(CurrentLocation, diag::err_unintialized_member)
2089 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2090 Diag((*Field)->getLocation(), diag::note_declared_at);
2091 err = true;
2094 if (!err)
2095 Constructor->setUsed();
2096 else
2097 Constructor->setInvalidDecl();
2100 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2101 CXXDestructorDecl *Destructor) {
2102 assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2103 "DefineImplicitDestructor - call it for implicit default dtor");
2105 CXXRecordDecl *ClassDecl
2106 = cast<CXXRecordDecl>(Destructor->getDeclContext());
2107 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2108 // C++ [class.dtor] p5
2109 // Before the implicitly-declared default destructor for a class is
2110 // implicitly defined, all the implicitly-declared default destructors
2111 // for its base class and its non-static data members shall have been
2112 // implicitly defined.
2113 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2114 E = ClassDecl->bases_end(); Base != E; ++Base) {
2115 CXXRecordDecl *BaseClassDecl
2116 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2117 if (!BaseClassDecl->hasTrivialDestructor()) {
2118 if (CXXDestructorDecl *BaseDtor =
2119 const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2120 MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2121 else
2122 assert(false &&
2123 "DefineImplicitDestructor - missing dtor in a base class");
2127 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2128 E = ClassDecl->field_end(); Field != E; ++Field) {
2129 QualType FieldType = Context.getCanonicalType((*Field)->getType());
2130 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2131 FieldType = Array->getElementType();
2132 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2133 CXXRecordDecl *FieldClassDecl
2134 = cast<CXXRecordDecl>(FieldClassType->getDecl());
2135 if (!FieldClassDecl->hasTrivialDestructor()) {
2136 if (CXXDestructorDecl *FieldDtor =
2137 const_cast<CXXDestructorDecl*>(
2138 FieldClassDecl->getDestructor(Context)))
2139 MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2140 else
2141 assert(false &&
2142 "DefineImplicitDestructor - missing dtor in class of a data member");
2146 Destructor->setUsed();
2149 void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2150 CXXMethodDecl *MethodDecl) {
2151 assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2152 MethodDecl->getOverloadedOperator() == OO_Equal &&
2153 !MethodDecl->isUsed()) &&
2154 "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2156 CXXRecordDecl *ClassDecl
2157 = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2159 // C++[class.copy] p12
2160 // Before the implicitly-declared copy assignment operator for a class is
2161 // implicitly defined, all implicitly-declared copy assignment operators
2162 // for its direct base classes and its nonstatic data members shall have
2163 // been implicitly defined.
2164 bool err = false;
2165 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2166 E = ClassDecl->bases_end(); Base != E; ++Base) {
2167 CXXRecordDecl *BaseClassDecl
2168 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2169 if (CXXMethodDecl *BaseAssignOpMethod =
2170 getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2171 MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2173 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2174 E = ClassDecl->field_end(); Field != E; ++Field) {
2175 QualType FieldType = Context.getCanonicalType((*Field)->getType());
2176 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2177 FieldType = Array->getElementType();
2178 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2179 CXXRecordDecl *FieldClassDecl
2180 = cast<CXXRecordDecl>(FieldClassType->getDecl());
2181 if (CXXMethodDecl *FieldAssignOpMethod =
2182 getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2183 MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2185 else if (FieldType->isReferenceType()) {
2186 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2187 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2188 Diag(Field->getLocation(), diag::note_declared_at);
2189 Diag(CurrentLocation, diag::note_first_required_here);
2190 err = true;
2192 else if (FieldType.isConstQualified()) {
2193 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2194 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2195 Diag(Field->getLocation(), diag::note_declared_at);
2196 Diag(CurrentLocation, diag::note_first_required_here);
2197 err = true;
2200 if (!err)
2201 MethodDecl->setUsed();
2204 CXXMethodDecl *
2205 Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2206 CXXRecordDecl *ClassDecl) {
2207 QualType LHSType = Context.getTypeDeclType(ClassDecl);
2208 QualType RHSType(LHSType);
2209 // If class's assignment operator argument is const/volatile qualified,
2210 // look for operator = (const/volatile B&). Otherwise, look for
2211 // operator = (B&).
2212 if (ParmDecl->getType().isConstQualified())
2213 RHSType.addConst();
2214 if (ParmDecl->getType().isVolatileQualified())
2215 RHSType.addVolatile();
2216 ExprOwningPtr<Expr> LHS(this, new (Context) DeclRefExpr(ParmDecl,
2217 LHSType,
2218 SourceLocation()));
2219 ExprOwningPtr<Expr> RHS(this, new (Context) DeclRefExpr(ParmDecl,
2220 RHSType,
2221 SourceLocation()));
2222 Expr *Args[2] = { &*LHS, &*RHS };
2223 OverloadCandidateSet CandidateSet;
2224 AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2225 CandidateSet);
2226 OverloadCandidateSet::iterator Best;
2227 if (BestViableFunction(CandidateSet,
2228 ClassDecl->getLocation(), Best) == OR_Success)
2229 return cast<CXXMethodDecl>(Best->Function);
2230 assert(false &&
2231 "getAssignOperatorMethod - copy assignment operator method not found");
2232 return 0;
2235 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2236 CXXConstructorDecl *CopyConstructor,
2237 unsigned TypeQuals) {
2238 assert((CopyConstructor->isImplicit() &&
2239 CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2240 !CopyConstructor->isUsed()) &&
2241 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2243 CXXRecordDecl *ClassDecl
2244 = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2245 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2246 // C++ [class.copy] p209
2247 // Before the implicitly-declared copy constructor for a class is
2248 // implicitly defined, all the implicitly-declared copy constructors
2249 // for its base class and its non-static data members shall have been
2250 // implicitly defined.
2251 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2252 Base != ClassDecl->bases_end(); ++Base) {
2253 CXXRecordDecl *BaseClassDecl
2254 = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2255 if (CXXConstructorDecl *BaseCopyCtor =
2256 BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2257 MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2259 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2260 FieldEnd = ClassDecl->field_end();
2261 Field != FieldEnd; ++Field) {
2262 QualType FieldType = Context.getCanonicalType((*Field)->getType());
2263 if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2264 FieldType = Array->getElementType();
2265 if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2266 CXXRecordDecl *FieldClassDecl
2267 = cast<CXXRecordDecl>(FieldClassType->getDecl());
2268 if (CXXConstructorDecl *FieldCopyCtor =
2269 FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2270 MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2273 CopyConstructor->setUsed();
2276 void Sema::InitializeVarWithConstructor(VarDecl *VD,
2277 CXXConstructorDecl *Constructor,
2278 QualType DeclInitType,
2279 Expr **Exprs, unsigned NumExprs) {
2280 Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2281 false, Exprs, NumExprs);
2282 MarkDeclarationReferenced(VD->getLocation(), Constructor);
2283 VD->setInit(Context, Temp);
2286 void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2288 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2289 DeclInitType->getAsRecordType()->getDecl());
2290 if (!ClassDecl->hasTrivialDestructor())
2291 if (CXXDestructorDecl *Destructor =
2292 const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2293 MarkDeclarationReferenced(Loc, Destructor);
2296 /// AddCXXDirectInitializerToDecl - This action is called immediately after
2297 /// ActOnDeclarator, when a C++ direct initializer is present.
2298 /// e.g: "int x(1);"
2299 void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2300 SourceLocation LParenLoc,
2301 MultiExprArg Exprs,
2302 SourceLocation *CommaLocs,
2303 SourceLocation RParenLoc) {
2304 unsigned NumExprs = Exprs.size();
2305 assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2306 Decl *RealDecl = Dcl.getAs<Decl>();
2308 // If there is no declaration, there was an error parsing it. Just ignore
2309 // the initializer.
2310 if (RealDecl == 0)
2311 return;
2313 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2314 if (!VDecl) {
2315 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2316 RealDecl->setInvalidDecl();
2317 return;
2320 // FIXME: Need to handle dependent types and expressions here.
2322 // We will treat direct-initialization as a copy-initialization:
2323 // int x(1); -as-> int x = 1;
2324 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2326 // Clients that want to distinguish between the two forms, can check for
2327 // direct initializer using VarDecl::hasCXXDirectInitializer().
2328 // A major benefit is that clients that don't particularly care about which
2329 // exactly form was it (like the CodeGen) can handle both cases without
2330 // special case code.
2332 // C++ 8.5p11:
2333 // The form of initialization (using parentheses or '=') is generally
2334 // insignificant, but does matter when the entity being initialized has a
2335 // class type.
2336 QualType DeclInitType = VDecl->getType();
2337 if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2338 DeclInitType = Array->getElementType();
2340 // FIXME: This isn't the right place to complete the type.
2341 if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2342 diag::err_typecheck_decl_incomplete_type)) {
2343 VDecl->setInvalidDecl();
2344 return;
2347 if (VDecl->getType()->isRecordType()) {
2348 CXXConstructorDecl *Constructor
2349 = PerformInitializationByConstructor(DeclInitType,
2350 (Expr **)Exprs.get(), NumExprs,
2351 VDecl->getLocation(),
2352 SourceRange(VDecl->getLocation(),
2353 RParenLoc),
2354 VDecl->getDeclName(),
2355 IK_Direct);
2356 if (!Constructor)
2357 RealDecl->setInvalidDecl();
2358 else {
2359 VDecl->setCXXDirectInitializer(true);
2360 InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2361 (Expr**)Exprs.release(), NumExprs);
2362 // FIXME. Must do all that is needed to destroy the object
2363 // on scope exit. For now, just mark the destructor as used.
2364 MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2366 return;
2369 if (NumExprs > 1) {
2370 Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2371 << SourceRange(VDecl->getLocation(), RParenLoc);
2372 RealDecl->setInvalidDecl();
2373 return;
2376 // Let clients know that initialization was done with a direct initializer.
2377 VDecl->setCXXDirectInitializer(true);
2379 assert(NumExprs == 1 && "Expected 1 expression");
2380 // Set the init expression, handles conversions.
2381 AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2382 /*DirectInit=*/true);
2385 /// PerformInitializationByConstructor - Perform initialization by
2386 /// constructor (C++ [dcl.init]p14), which may occur as part of
2387 /// direct-initialization or copy-initialization. We are initializing
2388 /// an object of type @p ClassType with the given arguments @p
2389 /// Args. @p Loc is the location in the source code where the
2390 /// initializer occurs (e.g., a declaration, member initializer,
2391 /// functional cast, etc.) while @p Range covers the whole
2392 /// initialization. @p InitEntity is the entity being initialized,
2393 /// which may by the name of a declaration or a type. @p Kind is the
2394 /// kind of initialization we're performing, which affects whether
2395 /// explicit constructors will be considered. When successful, returns
2396 /// the constructor that will be used to perform the initialization;
2397 /// when the initialization fails, emits a diagnostic and returns
2398 /// null.
2399 CXXConstructorDecl *
2400 Sema::PerformInitializationByConstructor(QualType ClassType,
2401 Expr **Args, unsigned NumArgs,
2402 SourceLocation Loc, SourceRange Range,
2403 DeclarationName InitEntity,
2404 InitializationKind Kind) {
2405 const RecordType *ClassRec = ClassType->getAsRecordType();
2406 assert(ClassRec && "Can only initialize a class type here");
2408 // C++ [dcl.init]p14:
2410 // If the initialization is direct-initialization, or if it is
2411 // copy-initialization where the cv-unqualified version of the
2412 // source type is the same class as, or a derived class of, the
2413 // class of the destination, constructors are considered. The
2414 // applicable constructors are enumerated (13.3.1.3), and the
2415 // best one is chosen through overload resolution (13.3). The
2416 // constructor so selected is called to initialize the object,
2417 // with the initializer expression(s) as its argument(s). If no
2418 // constructor applies, or the overload resolution is ambiguous,
2419 // the initialization is ill-formed.
2420 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2421 OverloadCandidateSet CandidateSet;
2423 // Add constructors to the overload set.
2424 DeclarationName ConstructorName
2425 = Context.DeclarationNames.getCXXConstructorName(
2426 Context.getCanonicalType(ClassType.getUnqualifiedType()));
2427 DeclContext::lookup_const_iterator Con, ConEnd;
2428 for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2429 Con != ConEnd; ++Con) {
2430 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2431 if ((Kind == IK_Direct) ||
2432 (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2433 (Kind == IK_Default && Constructor->isDefaultConstructor()))
2434 AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2437 // FIXME: When we decide not to synthesize the implicitly-declared
2438 // constructors, we'll need to make them appear here.
2440 OverloadCandidateSet::iterator Best;
2441 switch (BestViableFunction(CandidateSet, Loc, Best)) {
2442 case OR_Success:
2443 // We found a constructor. Return it.
2444 return cast<CXXConstructorDecl>(Best->Function);
2446 case OR_No_Viable_Function:
2447 if (InitEntity)
2448 Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2449 << InitEntity << Range;
2450 else
2451 Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2452 << ClassType << Range;
2453 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2454 return 0;
2456 case OR_Ambiguous:
2457 if (InitEntity)
2458 Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2459 else
2460 Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2461 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2462 return 0;
2464 case OR_Deleted:
2465 if (InitEntity)
2466 Diag(Loc, diag::err_ovl_deleted_init)
2467 << Best->Function->isDeleted()
2468 << InitEntity << Range;
2469 else
2470 Diag(Loc, diag::err_ovl_deleted_init)
2471 << Best->Function->isDeleted()
2472 << InitEntity << Range;
2473 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2474 return 0;
2477 return 0;
2480 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
2481 /// determine whether they are reference-related,
2482 /// reference-compatible, reference-compatible with added
2483 /// qualification, or incompatible, for use in C++ initialization by
2484 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2485 /// type, and the first type (T1) is the pointee type of the reference
2486 /// type being initialized.
2487 Sema::ReferenceCompareResult
2488 Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2489 bool& DerivedToBase) {
2490 assert(!T1->isReferenceType() &&
2491 "T1 must be the pointee type of the reference type");
2492 assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2494 T1 = Context.getCanonicalType(T1);
2495 T2 = Context.getCanonicalType(T2);
2496 QualType UnqualT1 = T1.getUnqualifiedType();
2497 QualType UnqualT2 = T2.getUnqualifiedType();
2499 // C++ [dcl.init.ref]p4:
2500 // Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2501 // reference-related to “cv2 T2” if T1 is the same type as T2, or
2502 // T1 is a base class of T2.
2503 if (UnqualT1 == UnqualT2)
2504 DerivedToBase = false;
2505 else if (IsDerivedFrom(UnqualT2, UnqualT1))
2506 DerivedToBase = true;
2507 else
2508 return Ref_Incompatible;
2510 // At this point, we know that T1 and T2 are reference-related (at
2511 // least).
2513 // C++ [dcl.init.ref]p4:
2514 // "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2515 // reference-related to T2 and cv1 is the same cv-qualification
2516 // as, or greater cv-qualification than, cv2. For purposes of
2517 // overload resolution, cases for which cv1 is greater
2518 // cv-qualification than cv2 are identified as
2519 // reference-compatible with added qualification (see 13.3.3.2).
2520 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2521 return Ref_Compatible;
2522 else if (T1.isMoreQualifiedThan(T2))
2523 return Ref_Compatible_With_Added_Qualification;
2524 else
2525 return Ref_Related;
2528 /// CheckReferenceInit - Check the initialization of a reference
2529 /// variable with the given initializer (C++ [dcl.init.ref]). Init is
2530 /// the initializer (either a simple initializer or an initializer
2531 /// list), and DeclType is the type of the declaration. When ICS is
2532 /// non-null, this routine will compute the implicit conversion
2533 /// sequence according to C++ [over.ics.ref] and will not produce any
2534 /// diagnostics; when ICS is null, it will emit diagnostics when any
2535 /// errors are found. Either way, a return value of true indicates
2536 /// that there was a failure, a return value of false indicates that
2537 /// the reference initialization succeeded.
2539 /// When @p SuppressUserConversions, user-defined conversions are
2540 /// suppressed.
2541 /// When @p AllowExplicit, we also permit explicit user-defined
2542 /// conversion functions.
2543 /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2544 bool
2545 Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2546 ImplicitConversionSequence *ICS,
2547 bool SuppressUserConversions,
2548 bool AllowExplicit, bool ForceRValue) {
2549 assert(DeclType->isReferenceType() && "Reference init needs a reference");
2551 QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2552 QualType T2 = Init->getType();
2554 // If the initializer is the address of an overloaded function, try
2555 // to resolve the overloaded function. If all goes well, T2 is the
2556 // type of the resulting function.
2557 if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2558 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2559 ICS != 0);
2560 if (Fn) {
2561 // Since we're performing this reference-initialization for
2562 // real, update the initializer with the resulting function.
2563 if (!ICS) {
2564 if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2565 return true;
2567 FixOverloadedFunctionReference(Init, Fn);
2570 T2 = Fn->getType();
2574 // Compute some basic properties of the types and the initializer.
2575 bool isRValRef = DeclType->isRValueReferenceType();
2576 bool DerivedToBase = false;
2577 Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2578 Init->isLvalue(Context);
2579 ReferenceCompareResult RefRelationship
2580 = CompareReferenceRelationship(T1, T2, DerivedToBase);
2582 // Most paths end in a failed conversion.
2583 if (ICS)
2584 ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2586 // C++ [dcl.init.ref]p5:
2587 // A reference to type “cv1 T1” is initialized by an expression
2588 // of type “cv2 T2” as follows:
2590 // -- If the initializer expression
2592 // Rvalue references cannot bind to lvalues (N2812).
2593 // There is absolutely no situation where they can. In particular, note that
2594 // this is ill-formed, even if B has a user-defined conversion to A&&:
2595 // B b;
2596 // A&& r = b;
2597 if (isRValRef && InitLvalue == Expr::LV_Valid) {
2598 if (!ICS)
2599 Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2600 << Init->getSourceRange();
2601 return true;
2604 bool BindsDirectly = false;
2605 // -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2606 // reference-compatible with “cv2 T2,” or
2608 // Note that the bit-field check is skipped if we are just computing
2609 // the implicit conversion sequence (C++ [over.best.ics]p2).
2610 if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2611 RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2612 BindsDirectly = true;
2614 if (ICS) {
2615 // C++ [over.ics.ref]p1:
2616 // When a parameter of reference type binds directly (8.5.3)
2617 // to an argument expression, the implicit conversion sequence
2618 // is the identity conversion, unless the argument expression
2619 // has a type that is a derived class of the parameter type,
2620 // in which case the implicit conversion sequence is a
2621 // derived-to-base Conversion (13.3.3.1).
2622 ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2623 ICS->Standard.First = ICK_Identity;
2624 ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2625 ICS->Standard.Third = ICK_Identity;
2626 ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2627 ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2628 ICS->Standard.ReferenceBinding = true;
2629 ICS->Standard.DirectBinding = true;
2630 ICS->Standard.RRefBinding = false;
2631 ICS->Standard.CopyConstructor = 0;
2633 // Nothing more to do: the inaccessibility/ambiguity check for
2634 // derived-to-base conversions is suppressed when we're
2635 // computing the implicit conversion sequence (C++
2636 // [over.best.ics]p2).
2637 return false;
2638 } else {
2639 // Perform the conversion.
2640 // FIXME: Binding to a subobject of the lvalue is going to require more
2641 // AST annotation than this.
2642 ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2646 // -- has a class type (i.e., T2 is a class type) and can be
2647 // implicitly converted to an lvalue of type “cv3 T3,”
2648 // where “cv1 T1” is reference-compatible with “cv3 T3”
2649 // 92) (this conversion is selected by enumerating the
2650 // applicable conversion functions (13.3.1.6) and choosing
2651 // the best one through overload resolution (13.3)),
2652 if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2653 // FIXME: Look for conversions in base classes!
2654 CXXRecordDecl *T2RecordDecl
2655 = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2657 OverloadCandidateSet CandidateSet;
2658 OverloadedFunctionDecl *Conversions
2659 = T2RecordDecl->getConversionFunctions();
2660 for (OverloadedFunctionDecl::function_iterator Func
2661 = Conversions->function_begin();
2662 Func != Conversions->function_end(); ++Func) {
2663 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2665 // If the conversion function doesn't return a reference type,
2666 // it can't be considered for this conversion.
2667 if (Conv->getConversionType()->isLValueReferenceType() &&
2668 (AllowExplicit || !Conv->isExplicit()))
2669 AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2672 OverloadCandidateSet::iterator Best;
2673 switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2674 case OR_Success:
2675 // This is a direct binding.
2676 BindsDirectly = true;
2678 if (ICS) {
2679 // C++ [over.ics.ref]p1:
2681 // [...] If the parameter binds directly to the result of
2682 // applying a conversion function to the argument
2683 // expression, the implicit conversion sequence is a
2684 // user-defined conversion sequence (13.3.3.1.2), with the
2685 // second standard conversion sequence either an identity
2686 // conversion or, if the conversion function returns an
2687 // entity of a type that is a derived class of the parameter
2688 // type, a derived-to-base Conversion.
2689 ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2690 ICS->UserDefined.Before = Best->Conversions[0].Standard;
2691 ICS->UserDefined.After = Best->FinalConversion;
2692 ICS->UserDefined.ConversionFunction = Best->Function;
2693 assert(ICS->UserDefined.After.ReferenceBinding &&
2694 ICS->UserDefined.After.DirectBinding &&
2695 "Expected a direct reference binding!");
2696 return false;
2697 } else {
2698 // Perform the conversion.
2699 // FIXME: Binding to a subobject of the lvalue is going to require more
2700 // AST annotation than this.
2701 ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2703 break;
2705 case OR_Ambiguous:
2706 assert(false && "Ambiguous reference binding conversions not implemented.");
2707 return true;
2709 case OR_No_Viable_Function:
2710 case OR_Deleted:
2711 // There was no suitable conversion, or we found a deleted
2712 // conversion; continue with other checks.
2713 break;
2717 if (BindsDirectly) {
2718 // C++ [dcl.init.ref]p4:
2719 // [...] In all cases where the reference-related or
2720 // reference-compatible relationship of two types is used to
2721 // establish the validity of a reference binding, and T1 is a
2722 // base class of T2, a program that necessitates such a binding
2723 // is ill-formed if T1 is an inaccessible (clause 11) or
2724 // ambiguous (10.2) base class of T2.
2726 // Note that we only check this condition when we're allowed to
2727 // complain about errors, because we should not be checking for
2728 // ambiguity (or inaccessibility) unless the reference binding
2729 // actually happens.
2730 if (DerivedToBase)
2731 return CheckDerivedToBaseConversion(T2, T1,
2732 Init->getSourceRange().getBegin(),
2733 Init->getSourceRange());
2734 else
2735 return false;
2738 // -- Otherwise, the reference shall be to a non-volatile const
2739 // type (i.e., cv1 shall be const), or the reference shall be an
2740 // rvalue reference and the initializer expression shall be an rvalue.
2741 if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2742 if (!ICS)
2743 Diag(Init->getSourceRange().getBegin(),
2744 diag::err_not_reference_to_const_init)
2745 << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2746 << T2 << Init->getSourceRange();
2747 return true;
2750 // -- If the initializer expression is an rvalue, with T2 a
2751 // class type, and “cv1 T1” is reference-compatible with
2752 // “cv2 T2,” the reference is bound in one of the
2753 // following ways (the choice is implementation-defined):
2755 // -- The reference is bound to the object represented by
2756 // the rvalue (see 3.10) or to a sub-object within that
2757 // object.
2759 // -- A temporary of type “cv1 T2” [sic] is created, and
2760 // a constructor is called to copy the entire rvalue
2761 // object into the temporary. The reference is bound to
2762 // the temporary or to a sub-object within the
2763 // temporary.
2765 // The constructor that would be used to make the copy
2766 // shall be callable whether or not the copy is actually
2767 // done.
2769 // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2770 // freedom, so we will always take the first option and never build
2771 // a temporary in this case. FIXME: We will, however, have to check
2772 // for the presence of a copy constructor in C++98/03 mode.
2773 if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2774 RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2775 if (ICS) {
2776 ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2777 ICS->Standard.First = ICK_Identity;
2778 ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2779 ICS->Standard.Third = ICK_Identity;
2780 ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2781 ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2782 ICS->Standard.ReferenceBinding = true;
2783 ICS->Standard.DirectBinding = false;
2784 ICS->Standard.RRefBinding = isRValRef;
2785 ICS->Standard.CopyConstructor = 0;
2786 } else {
2787 // FIXME: Binding to a subobject of the rvalue is going to require more
2788 // AST annotation than this.
2789 ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2791 return false;
2794 // -- Otherwise, a temporary of type “cv1 T1” is created and
2795 // initialized from the initializer expression using the
2796 // rules for a non-reference copy initialization (8.5). The
2797 // reference is then bound to the temporary. If T1 is
2798 // reference-related to T2, cv1 must be the same
2799 // cv-qualification as, or greater cv-qualification than,
2800 // cv2; otherwise, the program is ill-formed.
2801 if (RefRelationship == Ref_Related) {
2802 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2803 // we would be reference-compatible or reference-compatible with
2804 // added qualification. But that wasn't the case, so the reference
2805 // initialization fails.
2806 if (!ICS)
2807 Diag(Init->getSourceRange().getBegin(),
2808 diag::err_reference_init_drops_quals)
2809 << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2810 << T2 << Init->getSourceRange();
2811 return true;
2814 // If at least one of the types is a class type, the types are not
2815 // related, and we aren't allowed any user conversions, the
2816 // reference binding fails. This case is important for breaking
2817 // recursion, since TryImplicitConversion below will attempt to
2818 // create a temporary through the use of a copy constructor.
2819 if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2820 (T1->isRecordType() || T2->isRecordType())) {
2821 if (!ICS)
2822 Diag(Init->getSourceRange().getBegin(),
2823 diag::err_typecheck_convert_incompatible)
2824 << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2825 return true;
2828 // Actually try to convert the initializer to T1.
2829 if (ICS) {
2830 // C++ [over.ics.ref]p2:
2832 // When a parameter of reference type is not bound directly to
2833 // an argument expression, the conversion sequence is the one
2834 // required to convert the argument expression to the
2835 // underlying type of the reference according to
2836 // 13.3.3.1. Conceptually, this conversion sequence corresponds
2837 // to copy-initializing a temporary of the underlying type with
2838 // the argument expression. Any difference in top-level
2839 // cv-qualification is subsumed by the initialization itself
2840 // and does not constitute a conversion.
2841 *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2842 // Of course, that's still a reference binding.
2843 if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2844 ICS->Standard.ReferenceBinding = true;
2845 ICS->Standard.RRefBinding = isRValRef;
2846 } else if(ICS->ConversionKind ==
2847 ImplicitConversionSequence::UserDefinedConversion) {
2848 ICS->UserDefined.After.ReferenceBinding = true;
2849 ICS->UserDefined.After.RRefBinding = isRValRef;
2851 return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2852 } else {
2853 return PerformImplicitConversion(Init, T1, "initializing");
2857 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
2858 /// of this overloaded operator is well-formed. If so, returns false;
2859 /// otherwise, emits appropriate diagnostics and returns true.
2860 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2861 assert(FnDecl && FnDecl->isOverloadedOperator() &&
2862 "Expected an overloaded operator declaration");
2864 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2866 // C++ [over.oper]p5:
2867 // The allocation and deallocation functions, operator new,
2868 // operator new[], operator delete and operator delete[], are
2869 // described completely in 3.7.3. The attributes and restrictions
2870 // found in the rest of this subclause do not apply to them unless
2871 // explicitly stated in 3.7.3.
2872 // FIXME: Write a separate routine for checking this. For now, just allow it.
2873 if (Op == OO_New || Op == OO_Array_New ||
2874 Op == OO_Delete || Op == OO_Array_Delete)
2875 return false;
2877 // C++ [over.oper]p6:
2878 // An operator function shall either be a non-static member
2879 // function or be a non-member function and have at least one
2880 // parameter whose type is a class, a reference to a class, an
2881 // enumeration, or a reference to an enumeration.
2882 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2883 if (MethodDecl->isStatic())
2884 return Diag(FnDecl->getLocation(),
2885 diag::err_operator_overload_static) << FnDecl->getDeclName();
2886 } else {
2887 bool ClassOrEnumParam = false;
2888 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2889 ParamEnd = FnDecl->param_end();
2890 Param != ParamEnd; ++Param) {
2891 QualType ParamType = (*Param)->getType().getNonReferenceType();
2892 if (ParamType->isDependentType() || ParamType->isRecordType() ||
2893 ParamType->isEnumeralType()) {
2894 ClassOrEnumParam = true;
2895 break;
2899 if (!ClassOrEnumParam)
2900 return Diag(FnDecl->getLocation(),
2901 diag::err_operator_overload_needs_class_or_enum)
2902 << FnDecl->getDeclName();
2905 // C++ [over.oper]p8:
2906 // An operator function cannot have default arguments (8.3.6),
2907 // except where explicitly stated below.
2909 // Only the function-call operator allows default arguments
2910 // (C++ [over.call]p1).
2911 if (Op != OO_Call) {
2912 for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2913 Param != FnDecl->param_end(); ++Param) {
2914 if ((*Param)->hasUnparsedDefaultArg())
2915 return Diag((*Param)->getLocation(),
2916 diag::err_operator_overload_default_arg)
2917 << FnDecl->getDeclName();
2918 else if (Expr *DefArg = (*Param)->getDefaultArg())
2919 return Diag((*Param)->getLocation(),
2920 diag::err_operator_overload_default_arg)
2921 << FnDecl->getDeclName() << DefArg->getSourceRange();
2925 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2926 { false, false, false }
2927 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2928 , { Unary, Binary, MemberOnly }
2929 #include "clang/Basic/OperatorKinds.def"
2932 bool CanBeUnaryOperator = OperatorUses[Op][0];
2933 bool CanBeBinaryOperator = OperatorUses[Op][1];
2934 bool MustBeMemberOperator = OperatorUses[Op][2];
2936 // C++ [over.oper]p8:
2937 // [...] Operator functions cannot have more or fewer parameters
2938 // than the number required for the corresponding operator, as
2939 // described in the rest of this subclause.
2940 unsigned NumParams = FnDecl->getNumParams()
2941 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2942 if (Op != OO_Call &&
2943 ((NumParams == 1 && !CanBeUnaryOperator) ||
2944 (NumParams == 2 && !CanBeBinaryOperator) ||
2945 (NumParams < 1) || (NumParams > 2))) {
2946 // We have the wrong number of parameters.
2947 unsigned ErrorKind;
2948 if (CanBeUnaryOperator && CanBeBinaryOperator) {
2949 ErrorKind = 2; // 2 -> unary or binary.
2950 } else if (CanBeUnaryOperator) {
2951 ErrorKind = 0; // 0 -> unary
2952 } else {
2953 assert(CanBeBinaryOperator &&
2954 "All non-call overloaded operators are unary or binary!");
2955 ErrorKind = 1; // 1 -> binary
2958 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2959 << FnDecl->getDeclName() << NumParams << ErrorKind;
2962 // Overloaded operators other than operator() cannot be variadic.
2963 if (Op != OO_Call &&
2964 FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2965 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2966 << FnDecl->getDeclName();
2969 // Some operators must be non-static member functions.
2970 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2971 return Diag(FnDecl->getLocation(),
2972 diag::err_operator_overload_must_be_member)
2973 << FnDecl->getDeclName();
2976 // C++ [over.inc]p1:
2977 // The user-defined function called operator++ implements the
2978 // prefix and postfix ++ operator. If this function is a member
2979 // function with no parameters, or a non-member function with one
2980 // parameter of class or enumeration type, it defines the prefix
2981 // increment operator ++ for objects of that type. If the function
2982 // is a member function with one parameter (which shall be of type
2983 // int) or a non-member function with two parameters (the second
2984 // of which shall be of type int), it defines the postfix
2985 // increment operator ++ for objects of that type.
2986 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2987 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2988 bool ParamIsInt = false;
2989 if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2990 ParamIsInt = BT->getKind() == BuiltinType::Int;
2992 if (!ParamIsInt)
2993 return Diag(LastParam->getLocation(),
2994 diag::err_operator_overload_post_incdec_must_be_int)
2995 << LastParam->getType() << (Op == OO_MinusMinus);
2998 // Notify the class if it got an assignment operator.
2999 if (Op == OO_Equal) {
3000 // Would have returned earlier otherwise.
3001 assert(isa<CXXMethodDecl>(FnDecl) &&
3002 "Overloaded = not member, but not filtered.");
3003 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3004 Method->getParent()->addedAssignmentOperator(Context, Method);
3007 return false;
3010 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3011 /// linkage specification, including the language and (if present)
3012 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3013 /// the location of the language string literal, which is provided
3014 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3015 /// the '{' brace. Otherwise, this linkage specification does not
3016 /// have any braces.
3017 Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3018 SourceLocation ExternLoc,
3019 SourceLocation LangLoc,
3020 const char *Lang,
3021 unsigned StrSize,
3022 SourceLocation LBraceLoc) {
3023 LinkageSpecDecl::LanguageIDs Language;
3024 if (strncmp(Lang, "\"C\"", StrSize) == 0)
3025 Language = LinkageSpecDecl::lang_c;
3026 else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3027 Language = LinkageSpecDecl::lang_cxx;
3028 else {
3029 Diag(LangLoc, diag::err_bad_language);
3030 return DeclPtrTy();
3033 // FIXME: Add all the various semantics of linkage specifications
3035 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3036 LangLoc, Language,
3037 LBraceLoc.isValid());
3038 CurContext->addDecl(D);
3039 PushDeclContext(S, D);
3040 return DeclPtrTy::make(D);
3043 /// ActOnFinishLinkageSpecification - Completely the definition of
3044 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
3045 /// valid, it's the position of the closing '}' brace in a linkage
3046 /// specification that uses braces.
3047 Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3048 DeclPtrTy LinkageSpec,
3049 SourceLocation RBraceLoc) {
3050 if (LinkageSpec)
3051 PopDeclContext();
3052 return LinkageSpec;
3055 /// \brief Perform semantic analysis for the variable declaration that
3056 /// occurs within a C++ catch clause, returning the newly-created
3057 /// variable.
3058 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3059 IdentifierInfo *Name,
3060 SourceLocation Loc,
3061 SourceRange Range) {
3062 bool Invalid = false;
3064 // Arrays and functions decay.
3065 if (ExDeclType->isArrayType())
3066 ExDeclType = Context.getArrayDecayedType(ExDeclType);
3067 else if (ExDeclType->isFunctionType())
3068 ExDeclType = Context.getPointerType(ExDeclType);
3070 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3071 // The exception-declaration shall not denote a pointer or reference to an
3072 // incomplete type, other than [cv] void*.
3073 // N2844 forbids rvalue references.
3074 if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3075 Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3076 Invalid = true;
3079 QualType BaseType = ExDeclType;
3080 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3081 unsigned DK = diag::err_catch_incomplete;
3082 if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3083 BaseType = Ptr->getPointeeType();
3084 Mode = 1;
3085 DK = diag::err_catch_incomplete_ptr;
3086 } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3087 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3088 BaseType = Ref->getPointeeType();
3089 Mode = 2;
3090 DK = diag::err_catch_incomplete_ref;
3092 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3093 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3094 Invalid = true;
3096 if (!Invalid && !ExDeclType->isDependentType() &&
3097 RequireNonAbstractType(Loc, ExDeclType,
3098 diag::err_abstract_type_in_decl,
3099 AbstractVariableType))
3100 Invalid = true;
3102 // FIXME: Need to test for ability to copy-construct and destroy the
3103 // exception variable.
3105 // FIXME: Need to check for abstract classes.
3107 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3108 Name, ExDeclType, VarDecl::None,
3109 Range.getBegin());
3111 if (Invalid)
3112 ExDecl->setInvalidDecl();
3114 return ExDecl;
3117 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3118 /// handler.
3119 Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3120 QualType ExDeclType = GetTypeForDeclarator(D, S);
3122 bool Invalid = D.isInvalidType();
3123 IdentifierInfo *II = D.getIdentifier();
3124 if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3125 // The scope should be freshly made just for us. There is just no way
3126 // it contains any previous declaration.
3127 assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3128 if (PrevDecl->isTemplateParameter()) {
3129 // Maybe we will complain about the shadowed template parameter.
3130 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3134 if (D.getCXXScopeSpec().isSet() && !Invalid) {
3135 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3136 << D.getCXXScopeSpec().getRange();
3137 Invalid = true;
3140 VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3141 D.getIdentifier(),
3142 D.getIdentifierLoc(),
3143 D.getDeclSpec().getSourceRange());
3145 if (Invalid)
3146 ExDecl->setInvalidDecl();
3148 // Add the exception declaration into this scope.
3149 if (II)
3150 PushOnScopeChains(ExDecl, S);
3151 else
3152 CurContext->addDecl(ExDecl);
3154 ProcessDeclAttributes(S, ExDecl, D);
3155 return DeclPtrTy::make(ExDecl);
3158 Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3159 ExprArg assertexpr,
3160 ExprArg assertmessageexpr) {
3161 Expr *AssertExpr = (Expr *)assertexpr.get();
3162 StringLiteral *AssertMessage =
3163 cast<StringLiteral>((Expr *)assertmessageexpr.get());
3165 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3166 llvm::APSInt Value(32);
3167 if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3168 Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3169 AssertExpr->getSourceRange();
3170 return DeclPtrTy();
3173 if (Value == 0) {
3174 std::string str(AssertMessage->getStrData(),
3175 AssertMessage->getByteLength());
3176 Diag(AssertLoc, diag::err_static_assert_failed)
3177 << str << AssertExpr->getSourceRange();
3181 assertexpr.release();
3182 assertmessageexpr.release();
3183 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3184 AssertExpr, AssertMessage);
3186 CurContext->addDecl(Decl);
3187 return DeclPtrTy::make(Decl);
3190 bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3191 if (!(S->getFlags() & Scope::ClassScope)) {
3192 Diag(FriendLoc, diag::err_friend_decl_outside_class);
3193 return true;
3196 return false;
3199 void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3200 Decl *Dcl = dcl.getAs<Decl>();
3201 FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3202 if (!Fn) {
3203 Diag(DelLoc, diag::err_deleted_non_function);
3204 return;
3206 if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3207 Diag(DelLoc, diag::err_deleted_decl_not_first);
3208 Diag(Prev->getLocation(), diag::note_previous_declaration);
3209 // If the declaration wasn't the first, we delete the function anyway for
3210 // recovery.
3212 Fn->setDeleted();
3215 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3216 for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3217 ++CI) {
3218 Stmt *SubStmt = *CI;
3219 if (!SubStmt)
3220 continue;
3221 if (isa<ReturnStmt>(SubStmt))
3222 Self.Diag(SubStmt->getSourceRange().getBegin(),
3223 diag::err_return_in_constructor_handler);
3224 if (!isa<Expr>(SubStmt))
3225 SearchForReturnInStmt(Self, SubStmt);
3229 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3230 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3231 CXXCatchStmt *Handler = TryBlock->getHandler(I);
3232 SearchForReturnInStmt(*this, Handler);
3236 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3237 const CXXMethodDecl *Old) {
3238 QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3239 QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3241 QualType CNewTy = Context.getCanonicalType(NewTy);
3242 QualType COldTy = Context.getCanonicalType(OldTy);
3244 if (CNewTy == COldTy &&
3245 CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3246 return false;
3248 // Check if the return types are covariant
3249 QualType NewClassTy, OldClassTy;
3251 /// Both types must be pointers or references to classes.
3252 if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3253 if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3254 NewClassTy = NewPT->getPointeeType();
3255 OldClassTy = OldPT->getPointeeType();
3257 } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3258 if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3259 NewClassTy = NewRT->getPointeeType();
3260 OldClassTy = OldRT->getPointeeType();
3264 // The return types aren't either both pointers or references to a class type.
3265 if (NewClassTy.isNull()) {
3266 Diag(New->getLocation(),
3267 diag::err_different_return_type_for_overriding_virtual_function)
3268 << New->getDeclName() << NewTy << OldTy;
3269 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3271 return true;
3274 if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3275 // Check if the new class derives from the old class.
3276 if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3277 Diag(New->getLocation(),
3278 diag::err_covariant_return_not_derived)
3279 << New->getDeclName() << NewTy << OldTy;
3280 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3281 return true;
3284 // Check if we the conversion from derived to base is valid.
3285 if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3286 diag::err_covariant_return_inaccessible_base,
3287 diag::err_covariant_return_ambiguous_derived_to_base_conv,
3288 // FIXME: Should this point to the return type?
3289 New->getLocation(), SourceRange(), New->getDeclName())) {
3290 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3291 return true;
3295 // The qualifiers of the return types must be the same.
3296 if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3297 Diag(New->getLocation(),
3298 diag::err_covariant_return_type_different_qualifications)
3299 << New->getDeclName() << NewTy << OldTy;
3300 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3301 return true;
3305 // The new class type must have the same or less qualifiers as the old type.
3306 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3307 Diag(New->getLocation(),
3308 diag::err_covariant_return_type_class_type_more_qualified)
3309 << New->getDeclName() << NewTy << OldTy;
3310 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3311 return true;
3314 return false;
3317 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3318 const CXXMethodDecl *Old)
3320 return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3321 diag::note_overridden_virtual_function,
3322 Old->getType()->getAsFunctionProtoType(),
3323 Old->getLocation(),
3324 New->getType()->getAsFunctionProtoType(),
3325 New->getLocation());
3328 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3329 /// initializer for the declaration 'Dcl'.
3330 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3331 /// static data member of class X, names should be looked up in the scope of
3332 /// class X.
3333 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3334 Decl *D = Dcl.getAs<Decl>();
3335 // If there is no declaration, there was an error parsing it.
3336 if (D == 0)
3337 return;
3339 // Check whether it is a declaration with a nested name specifier like
3340 // int foo::bar;
3341 if (!D->isOutOfLine())
3342 return;
3344 // C++ [basic.lookup.unqual]p13
3346 // A name used in the definition of a static data member of class X
3347 // (after the qualified-id of the static member) is looked up as if the name
3348 // was used in a member function of X.
3350 // Change current context into the context of the initializing declaration.
3351 EnterDeclaratorContext(S, D->getDeclContext());
3354 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3355 /// initializer for the declaration 'Dcl'.
3356 void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3357 Decl *D = Dcl.getAs<Decl>();
3358 // If there is no declaration, there was an error parsing it.
3359 if (D == 0)
3360 return;
3362 // Check whether it is a declaration with a nested name specifier like
3363 // int foo::bar;
3364 if (!D->isOutOfLine())
3365 return;
3367 assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3368 ExitDeclaratorContext(S);