1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements semantic analysis for C++ declarations.
12 //===----------------------------------------------------------------------===//
15 #include "SemaInherit.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclVisitor.h"
19 #include "clang/AST/TypeOrdering.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Parse/DeclSpec.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/Compiler.h"
25 #include <algorithm> // for std::equal
28 using namespace clang
;
30 //===----------------------------------------------------------------------===//
31 // CheckDefaultArgumentVisitor
32 //===----------------------------------------------------------------------===//
35 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36 /// the default argument of a parameter to determine whether it
37 /// contains any ill-formed subexpressions. For example, this will
38 /// diagnose the use of local variables or parameters within the
39 /// default argument expression.
40 class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41 : public StmtVisitor
<CheckDefaultArgumentVisitor
, bool> {
46 CheckDefaultArgumentVisitor(Expr
*defarg
, Sema
*s
)
47 : DefaultArg(defarg
), S(s
) {}
49 bool VisitExpr(Expr
*Node
);
50 bool VisitDeclRefExpr(DeclRefExpr
*DRE
);
51 bool VisitCXXThisExpr(CXXThisExpr
*ThisE
);
54 /// VisitExpr - Visit all of the children of this expression.
55 bool CheckDefaultArgumentVisitor::VisitExpr(Expr
*Node
) {
56 bool IsInvalid
= false;
57 for (Stmt::child_iterator I
= Node
->child_begin(),
58 E
= Node
->child_end(); I
!= E
; ++I
)
59 IsInvalid
|= Visit(*I
);
63 /// VisitDeclRefExpr - Visit a reference to a declaration, to
64 /// determine whether this declaration can be used in the default
65 /// argument expression.
66 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr
*DRE
) {
67 NamedDecl
*Decl
= DRE
->getDecl();
68 if (ParmVarDecl
*Param
= dyn_cast
<ParmVarDecl
>(Decl
)) {
69 // C++ [dcl.fct.default]p9
70 // Default arguments are evaluated each time the function is
71 // called. The order of evaluation of function arguments is
72 // unspecified. Consequently, parameters of a function shall not
73 // be used in default argument expressions, even if they are not
74 // evaluated. Parameters of a function declared before a default
75 // argument expression are in scope and can hide namespace and
76 // class member names.
77 return S
->Diag(DRE
->getSourceRange().getBegin(),
78 diag::err_param_default_argument_references_param
)
79 << Param
->getDeclName() << DefaultArg
->getSourceRange();
80 } else if (VarDecl
*VDecl
= dyn_cast
<VarDecl
>(Decl
)) {
81 // C++ [dcl.fct.default]p7
82 // Local variables shall not be used in default argument
84 if (VDecl
->isBlockVarDecl())
85 return S
->Diag(DRE
->getSourceRange().getBegin(),
86 diag::err_param_default_argument_references_local
)
87 << VDecl
->getDeclName() << DefaultArg
->getSourceRange();
93 /// VisitCXXThisExpr - Visit a C++ "this" expression.
94 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr
*ThisE
) {
95 // C++ [dcl.fct.default]p8:
96 // The keyword this shall not be used in a default argument of a
98 return S
->Diag(ThisE
->getSourceRange().getBegin(),
99 diag::err_param_default_argument_references_this
)
100 << ThisE
->getSourceRange();
104 /// ActOnParamDefaultArgument - Check whether the default argument
105 /// provided for a function parameter is well-formed. If so, attach it
106 /// to the parameter declaration.
108 Sema::ActOnParamDefaultArgument(DeclPtrTy param
, SourceLocation EqualLoc
,
110 if (!param
|| !defarg
.get())
113 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(param
.getAs
<Decl
>());
114 UnparsedDefaultArgLocs
.erase(Param
);
116 ExprOwningPtr
<Expr
> DefaultArg(this, defarg
.takeAs
<Expr
>());
117 QualType ParamType
= Param
->getType();
119 // Default arguments are only permitted in C++
120 if (!getLangOptions().CPlusPlus
) {
121 Diag(EqualLoc
, diag::err_param_default_argument
)
122 << DefaultArg
->getSourceRange();
123 Param
->setInvalidDecl();
127 // C++ [dcl.fct.default]p5
128 // A default argument expression is implicitly converted (clause
129 // 4) to the parameter type. The default argument expression has
130 // the same semantic constraints as the initializer expression in
131 // a declaration of a variable of the parameter type, using the
132 // copy-initialization semantics (8.5).
133 Expr
*DefaultArgPtr
= DefaultArg
.get();
134 bool DefaultInitFailed
= CheckInitializerTypes(DefaultArgPtr
, ParamType
,
136 Param
->getDeclName(),
137 /*DirectInit=*/false);
138 if (DefaultArgPtr
!= DefaultArg
.get()) {
140 DefaultArg
.reset(DefaultArgPtr
);
142 if (DefaultInitFailed
) {
146 // Check that the default argument is well-formed
147 CheckDefaultArgumentVisitor
DefaultArgChecker(DefaultArg
.get(), this);
148 if (DefaultArgChecker
.Visit(DefaultArg
.get())) {
149 Param
->setInvalidDecl();
153 DefaultArgPtr
= MaybeCreateCXXExprWithTemporaries(DefaultArg
.take(),
154 /*DestroyTemps=*/false);
156 // Okay: add the default argument to the parameter
157 Param
->setDefaultArg(DefaultArgPtr
);
160 /// ActOnParamUnparsedDefaultArgument - We've seen a default
161 /// argument for a function parameter, but we can't parse it yet
162 /// because we're inside a class definition. Note that this default
163 /// argument will be parsed later.
164 void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param
,
165 SourceLocation EqualLoc
,
166 SourceLocation ArgLoc
) {
170 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(param
.getAs
<Decl
>());
172 Param
->setUnparsedDefaultArg();
174 UnparsedDefaultArgLocs
[Param
] = ArgLoc
;
177 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178 /// the default argument for the parameter param failed.
179 void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param
) {
183 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(param
.getAs
<Decl
>());
185 Param
->setInvalidDecl();
187 UnparsedDefaultArgLocs
.erase(Param
);
190 /// CheckExtraCXXDefaultArguments - Check for any extra default
191 /// arguments in the declarator, which is not a function declaration
192 /// or definition and therefore is not permitted to have default
193 /// arguments. This routine should be invoked for every declarator
194 /// that is not a function declaration or definition.
195 void Sema::CheckExtraCXXDefaultArguments(Declarator
&D
) {
196 // C++ [dcl.fct.default]p3
197 // A default argument expression shall be specified only in the
198 // parameter-declaration-clause of a function declaration or in a
199 // template-parameter (14.1). It shall not be specified for a
200 // parameter pack. If it is specified in a
201 // parameter-declaration-clause, it shall not occur within a
202 // declarator or abstract-declarator of a parameter-declaration.
203 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
204 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
205 if (chunk
.Kind
== DeclaratorChunk::Function
) {
206 for (unsigned argIdx
= 0, e
= chunk
.Fun
.NumArgs
; argIdx
!= e
; ++argIdx
) {
208 cast
<ParmVarDecl
>(chunk
.Fun
.ArgInfo
[argIdx
].Param
.getAs
<Decl
>());
209 if (Param
->hasUnparsedDefaultArg()) {
210 CachedTokens
*Toks
= chunk
.Fun
.ArgInfo
[argIdx
].DefaultArgTokens
;
211 Diag(Param
->getLocation(), diag::err_param_default_argument_nonfunc
)
212 << SourceRange((*Toks
)[1].getLocation(), Toks
->back().getLocation());
214 chunk
.Fun
.ArgInfo
[argIdx
].DefaultArgTokens
= 0;
215 } else if (Param
->getDefaultArg()) {
216 Diag(Param
->getLocation(), diag::err_param_default_argument_nonfunc
)
217 << Param
->getDefaultArg()->getSourceRange();
218 Param
->setDefaultArg(0);
225 // MergeCXXFunctionDecl - Merge two declarations of the same C++
226 // function, once we already know that they have the same
227 // type. Subroutine of MergeFunctionDecl. Returns true if there was an
228 // error, false otherwise.
229 bool Sema::MergeCXXFunctionDecl(FunctionDecl
*New
, FunctionDecl
*Old
) {
230 bool Invalid
= false;
232 // C++ [dcl.fct.default]p4:
234 // For non-template functions, default arguments can be added in
235 // later declarations of a function in the same
236 // scope. Declarations in different scopes have completely
237 // distinct sets of default arguments. That is, declarations in
238 // inner scopes do not acquire default arguments from
239 // declarations in outer scopes, and vice versa. In a given
240 // function declaration, all parameters subsequent to a
241 // parameter with a default argument shall have default
242 // arguments supplied in this or previous declarations. A
243 // default argument shall not be redefined by a later
244 // declaration (not even to the same value).
245 for (unsigned p
= 0, NumParams
= Old
->getNumParams(); p
< NumParams
; ++p
) {
246 ParmVarDecl
*OldParam
= Old
->getParamDecl(p
);
247 ParmVarDecl
*NewParam
= New
->getParamDecl(p
);
249 if(OldParam
->getDefaultArg() && NewParam
->getDefaultArg()) {
250 Diag(NewParam
->getLocation(),
251 diag::err_param_default_argument_redefinition
)
252 << NewParam
->getDefaultArg()->getSourceRange();
253 Diag(OldParam
->getLocation(), diag::note_previous_definition
);
255 } else if (OldParam
->getDefaultArg()) {
256 // Merge the old default argument into the new parameter
257 NewParam
->setDefaultArg(OldParam
->getDefaultArg());
261 if (CheckEquivalentExceptionSpec(
262 Old
->getType()->getAsFunctionProtoType(), Old
->getLocation(),
263 New
->getType()->getAsFunctionProtoType(), New
->getLocation())) {
270 /// CheckCXXDefaultArguments - Verify that the default arguments for a
271 /// function declaration are well-formed according to C++
272 /// [dcl.fct.default].
273 void Sema::CheckCXXDefaultArguments(FunctionDecl
*FD
) {
274 unsigned NumParams
= FD
->getNumParams();
277 // Find first parameter with a default argument
278 for (p
= 0; p
< NumParams
; ++p
) {
279 ParmVarDecl
*Param
= FD
->getParamDecl(p
);
280 if (Param
->getDefaultArg())
284 // C++ [dcl.fct.default]p4:
285 // In a given function declaration, all parameters
286 // subsequent to a parameter with a default argument shall
287 // have default arguments supplied in this or previous
288 // declarations. A default argument shall not be redefined
289 // by a later declaration (not even to the same value).
290 unsigned LastMissingDefaultArg
= 0;
291 for(; p
< NumParams
; ++p
) {
292 ParmVarDecl
*Param
= FD
->getParamDecl(p
);
293 if (!Param
->getDefaultArg()) {
294 if (Param
->isInvalidDecl())
295 /* We already complained about this parameter. */;
296 else if (Param
->getIdentifier())
297 Diag(Param
->getLocation(),
298 diag::err_param_default_argument_missing_name
)
299 << Param
->getIdentifier();
301 Diag(Param
->getLocation(),
302 diag::err_param_default_argument_missing
);
304 LastMissingDefaultArg
= p
;
308 if (LastMissingDefaultArg
> 0) {
309 // Some default arguments were missing. Clear out all of the
310 // default arguments up to (and including) the last missing
311 // default argument, so that we leave the function parameters
312 // in a semantically valid state.
313 for (p
= 0; p
<= LastMissingDefaultArg
; ++p
) {
314 ParmVarDecl
*Param
= FD
->getParamDecl(p
);
315 if (Param
->hasDefaultArg()) {
316 if (!Param
->hasUnparsedDefaultArg())
317 Param
->getDefaultArg()->Destroy(Context
);
318 Param
->setDefaultArg(0);
324 /// isCurrentClassName - Determine whether the identifier II is the
325 /// name of the class type currently being defined. In the case of
326 /// nested classes, this will only return true if II is the name of
327 /// the innermost class.
328 bool Sema::isCurrentClassName(const IdentifierInfo
&II
, Scope
*,
329 const CXXScopeSpec
*SS
) {
330 CXXRecordDecl
*CurDecl
;
331 if (SS
&& SS
->isSet() && !SS
->isInvalid()) {
332 DeclContext
*DC
= computeDeclContext(*SS
);
333 CurDecl
= dyn_cast_or_null
<CXXRecordDecl
>(DC
);
335 CurDecl
= dyn_cast_or_null
<CXXRecordDecl
>(CurContext
);
338 return &II
== CurDecl
->getIdentifier();
343 /// \brief Check the validity of a C++ base class specifier.
345 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346 /// and returns NULL otherwise.
348 Sema::CheckBaseSpecifier(CXXRecordDecl
*Class
,
349 SourceRange SpecifierRange
,
350 bool Virtual
, AccessSpecifier Access
,
352 SourceLocation BaseLoc
) {
353 // C++ [class.union]p1:
354 // A union shall not have base classes.
355 if (Class
->isUnion()) {
356 Diag(Class
->getLocation(), diag::err_base_clause_on_union
)
361 if (BaseType
->isDependentType())
362 return new CXXBaseSpecifier(SpecifierRange
, Virtual
,
363 Class
->getTagKind() == RecordDecl::TK_class
,
366 // Base specifiers must be record types.
367 if (!BaseType
->isRecordType()) {
368 Diag(BaseLoc
, diag::err_base_must_be_class
) << SpecifierRange
;
372 // C++ [class.union]p1:
373 // A union shall not be used as a base class.
374 if (BaseType
->isUnionType()) {
375 Diag(BaseLoc
, diag::err_union_as_base_class
) << SpecifierRange
;
379 // C++ [class.derived]p2:
380 // The class-name in a base-specifier shall not be an incompletely
382 if (RequireCompleteType(BaseLoc
, BaseType
, diag::err_incomplete_base_class
,
386 // If the base class is polymorphic, the new one is, too.
387 RecordDecl
*BaseDecl
= BaseType
->getAsRecordType()->getDecl();
388 assert(BaseDecl
&& "Record type has no declaration");
389 BaseDecl
= BaseDecl
->getDefinition(Context
);
390 assert(BaseDecl
&& "Base type is not incomplete, but has no definition");
391 if (cast
<CXXRecordDecl
>(BaseDecl
)->isPolymorphic())
392 Class
->setPolymorphic(true);
394 // C++ [dcl.init.aggr]p1:
395 // An aggregate is [...] a class with [...] no base classes [...].
396 Class
->setAggregate(false);
397 Class
->setPOD(false);
400 // C++ [class.ctor]p5:
401 // A constructor is trivial if its class has no virtual base classes.
402 Class
->setHasTrivialConstructor(false);
404 // C++ [class.ctor]p5:
405 // A constructor is trivial if all the direct base classes of its
406 // class have trivial constructors.
407 Class
->setHasTrivialConstructor(cast
<CXXRecordDecl
>(BaseDecl
)->
408 hasTrivialConstructor());
411 // C++ [class.ctor]p3:
412 // A destructor is trivial if all the direct base classes of its class
413 // have trivial destructors.
414 Class
->setHasTrivialDestructor(cast
<CXXRecordDecl
>(BaseDecl
)->
415 hasTrivialDestructor());
417 // Create the base specifier.
418 // FIXME: Allocate via ASTContext?
419 return new CXXBaseSpecifier(SpecifierRange
, Virtual
,
420 Class
->getTagKind() == RecordDecl::TK_class
,
424 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425 /// one entry in the base class list of a class specifier, for
427 /// class foo : public bar, virtual private baz {
428 /// 'public bar' and 'virtual private baz' are each base-specifiers.
430 Sema::ActOnBaseSpecifier(DeclPtrTy classdecl
, SourceRange SpecifierRange
,
431 bool Virtual
, AccessSpecifier Access
,
432 TypeTy
*basetype
, SourceLocation BaseLoc
) {
436 AdjustDeclIfTemplate(classdecl
);
437 CXXRecordDecl
*Class
= cast
<CXXRecordDecl
>(classdecl
.getAs
<Decl
>());
438 QualType BaseType
= QualType::getFromOpaquePtr(basetype
);
439 if (CXXBaseSpecifier
*BaseSpec
= CheckBaseSpecifier(Class
, SpecifierRange
,
447 /// \brief Performs the actual work of attaching the given base class
448 /// specifiers to a C++ class.
449 bool Sema::AttachBaseSpecifiers(CXXRecordDecl
*Class
, CXXBaseSpecifier
**Bases
,
454 // Used to keep track of which base types we have already seen, so
455 // that we can properly diagnose redundant direct base types. Note
456 // that the key is always the unqualified canonical type of the base
458 std::map
<QualType
, CXXBaseSpecifier
*, QualTypeOrdering
> KnownBaseTypes
;
460 // Copy non-redundant base specifiers into permanent storage.
461 unsigned NumGoodBases
= 0;
462 bool Invalid
= false;
463 for (unsigned idx
= 0; idx
< NumBases
; ++idx
) {
465 = Context
.getCanonicalType(Bases
[idx
]->getType());
466 NewBaseType
= NewBaseType
.getUnqualifiedType();
468 if (KnownBaseTypes
[NewBaseType
]) {
470 // A class shall not be specified as a direct base class of a
471 // derived class more than once.
472 Diag(Bases
[idx
]->getSourceRange().getBegin(),
473 diag::err_duplicate_base_class
)
474 << KnownBaseTypes
[NewBaseType
]->getType()
475 << Bases
[idx
]->getSourceRange();
477 // Delete the duplicate base class specifier; we're going to
478 // overwrite its pointer later.
483 // Okay, add this new base class.
484 KnownBaseTypes
[NewBaseType
] = Bases
[idx
];
485 Bases
[NumGoodBases
++] = Bases
[idx
];
489 // Attach the remaining base class specifiers to the derived class.
490 Class
->setBases(Context
, Bases
, NumGoodBases
);
492 // Delete the remaining (good) base class specifiers, since their
493 // data has been copied into the CXXRecordDecl.
494 for (unsigned idx
= 0; idx
< NumGoodBases
; ++idx
)
500 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
501 /// class, after checking whether there are any duplicate base
503 void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl
, BaseTy
**Bases
,
505 if (!ClassDecl
|| !Bases
|| !NumBases
)
508 AdjustDeclIfTemplate(ClassDecl
);
509 AttachBaseSpecifiers(cast
<CXXRecordDecl
>(ClassDecl
.getAs
<Decl
>()),
510 (CXXBaseSpecifier
**)(Bases
), NumBases
);
513 //===----------------------------------------------------------------------===//
514 // C++ class member Handling
515 //===----------------------------------------------------------------------===//
517 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519 /// bitfield width if there is one and 'InitExpr' specifies the initializer if
522 Sema::ActOnCXXMemberDeclarator(Scope
*S
, AccessSpecifier AS
, Declarator
&D
,
523 ExprTy
*BW
, ExprTy
*InitExpr
, bool Deleted
) {
524 const DeclSpec
&DS
= D
.getDeclSpec();
525 DeclarationName Name
= GetNameForDeclarator(D
);
526 Expr
*BitWidth
= static_cast<Expr
*>(BW
);
527 Expr
*Init
= static_cast<Expr
*>(InitExpr
);
528 SourceLocation Loc
= D
.getIdentifierLoc();
530 bool isFunc
= D
.isFunctionDeclarator();
532 // C++ 9.2p6: A member shall not be declared to have automatic storage
533 // duration (auto, register) or with the extern storage-class-specifier.
534 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535 // data members and cannot be applied to names declared const or static,
536 // and cannot be applied to reference members.
537 switch (DS
.getStorageClassSpec()) {
538 case DeclSpec::SCS_unspecified
:
539 case DeclSpec::SCS_typedef
:
540 case DeclSpec::SCS_static
:
543 case DeclSpec::SCS_mutable
:
545 if (DS
.getStorageClassSpecLoc().isValid())
546 Diag(DS
.getStorageClassSpecLoc(), diag::err_mutable_function
);
548 Diag(DS
.getThreadSpecLoc(), diag::err_mutable_function
);
550 // FIXME: It would be nicer if the keyword was ignored only for this
551 // declarator. Otherwise we could get follow-up errors.
552 D
.getMutableDeclSpec().ClearStorageClassSpecs();
554 QualType T
= GetTypeForDeclarator(D
, S
);
555 diag::kind err
= static_cast<diag::kind
>(0);
556 if (T
->isReferenceType())
557 err
= diag::err_mutable_reference
;
558 else if (T
.isConstQualified())
559 err
= diag::err_mutable_const
;
561 if (DS
.getStorageClassSpecLoc().isValid())
562 Diag(DS
.getStorageClassSpecLoc(), err
);
564 Diag(DS
.getThreadSpecLoc(), err
);
565 // FIXME: It would be nicer if the keyword was ignored only for this
566 // declarator. Otherwise we could get follow-up errors.
567 D
.getMutableDeclSpec().ClearStorageClassSpecs();
572 if (DS
.getStorageClassSpecLoc().isValid())
573 Diag(DS
.getStorageClassSpecLoc(),
574 diag::err_storageclass_invalid_for_member
);
576 Diag(DS
.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member
);
577 D
.getMutableDeclSpec().ClearStorageClassSpecs();
581 D
.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename
&&
582 D
.getNumTypeObjects() == 0) {
583 // Check also for this case:
588 QualType TDType
= QualType::getFromOpaquePtr(DS
.getTypeRep());
589 isFunc
= TDType
->isFunctionType();
592 bool isInstField
= ((DS
.getStorageClassSpec() == DeclSpec::SCS_unspecified
||
593 DS
.getStorageClassSpec() == DeclSpec::SCS_mutable
) &&
598 Member
= HandleField(S
, cast
<CXXRecordDecl
>(CurContext
), Loc
, D
, BitWidth
,
600 assert(Member
&& "HandleField never returns null");
602 Member
= ActOnDeclarator(S
, D
).getAs
<Decl
>();
604 if (BitWidth
) DeleteExpr(BitWidth
);
608 // Non-instance-fields can't have a bitfield.
610 if (Member
->isInvalidDecl()) {
611 // don't emit another diagnostic.
612 } else if (isa
<VarDecl
>(Member
)) {
613 // C++ 9.6p3: A bit-field shall not be a static member.
614 // "static member 'A' cannot be a bit-field"
615 Diag(Loc
, diag::err_static_not_bitfield
)
616 << Name
<< BitWidth
->getSourceRange();
617 } else if (isa
<TypedefDecl
>(Member
)) {
618 // "typedef member 'x' cannot be a bit-field"
619 Diag(Loc
, diag::err_typedef_not_bitfield
)
620 << Name
<< BitWidth
->getSourceRange();
622 // A function typedef ("typedef int f(); f a;").
623 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624 Diag(Loc
, diag::err_not_integral_type_bitfield
)
625 << Name
<< cast
<ValueDecl
>(Member
)->getType()
626 << BitWidth
->getSourceRange();
629 DeleteExpr(BitWidth
);
631 Member
->setInvalidDecl();
634 Member
->setAccess(AS
);
637 assert((Name
|| isInstField
) && "No identifier for non-field ?");
640 AddInitializerToDecl(DeclPtrTy::make(Member
), ExprArg(*this, Init
), false);
641 if (Deleted
) // FIXME: Source location is not very good.
642 SetDeclDeleted(DeclPtrTy::make(Member
), D
.getSourceRange().getBegin());
645 FieldCollector
->Add(cast
<FieldDecl
>(Member
));
648 return DeclPtrTy::make(Member
);
651 /// ActOnMemInitializer - Handle a C++ member initializer.
653 Sema::ActOnMemInitializer(DeclPtrTy ConstructorD
,
655 const CXXScopeSpec
&SS
,
656 IdentifierInfo
*MemberOrBase
,
657 TypeTy
*TemplateTypeTy
,
658 SourceLocation IdLoc
,
659 SourceLocation LParenLoc
,
660 ExprTy
**Args
, unsigned NumArgs
,
661 SourceLocation
*CommaLocs
,
662 SourceLocation RParenLoc
) {
666 CXXConstructorDecl
*Constructor
667 = dyn_cast
<CXXConstructorDecl
>(ConstructorD
.getAs
<Decl
>());
669 // The user wrote a constructor initializer on a function that is
670 // not a C++ constructor. Ignore the error for now, because we may
671 // have more member initializers coming; we'll diagnose it just
672 // once in ActOnMemInitializers.
676 CXXRecordDecl
*ClassDecl
= Constructor
->getParent();
678 // C++ [class.base.init]p2:
679 // Names in a mem-initializer-id are looked up in the scope of the
680 // constructor’s class and, if not found in that scope, are looked
681 // up in the scope containing the constructor’s
682 // definition. [Note: if the constructor’s class contains a member
683 // with the same name as a direct or virtual base class of the
684 // class, a mem-initializer-id naming the member or base class and
685 // composed of a single identifier refers to the class member. A
686 // mem-initializer-id for the hidden base class may be specified
687 // using a qualified name. ]
688 if (!SS
.getScopeRep() && !TemplateTypeTy
) {
689 // Look for a member, first.
690 FieldDecl
*Member
= 0;
691 DeclContext::lookup_result Result
692 = ClassDecl
->lookup(MemberOrBase
);
693 if (Result
.first
!= Result
.second
)
694 Member
= dyn_cast
<FieldDecl
>(*Result
.first
);
696 // FIXME: Handle members of an anonymous union.
699 // FIXME: Perform direct initialization of the member.
700 return new CXXBaseOrMemberInitializer(Member
, (Expr
**)Args
, NumArgs
,
704 // It didn't name a member, so see if it names a class.
705 TypeTy
*BaseTy
= TemplateTypeTy
? TemplateTypeTy
706 : getTypeName(*MemberOrBase
, IdLoc
, S
, &SS
);
708 return Diag(IdLoc
, diag::err_mem_init_not_member_or_class
)
709 << MemberOrBase
<< SourceRange(IdLoc
, RParenLoc
);
711 QualType BaseType
= QualType::getFromOpaquePtr(BaseTy
);
712 if (!BaseType
->isRecordType() && !BaseType
->isDependentType())
713 return Diag(IdLoc
, diag::err_base_init_does_not_name_class
)
714 << BaseType
<< SourceRange(IdLoc
, RParenLoc
);
716 // C++ [class.base.init]p2:
717 // [...] Unless the mem-initializer-id names a nonstatic data
718 // member of the constructor’s class or a direct or virtual base
719 // of that class, the mem-initializer is ill-formed. A
720 // mem-initializer-list can initialize a base class using any
721 // name that denotes that base class type.
723 // First, check for a direct base class.
724 const CXXBaseSpecifier
*DirectBaseSpec
= 0;
725 for (CXXRecordDecl::base_class_const_iterator Base
= ClassDecl
->bases_begin();
726 Base
!= ClassDecl
->bases_end(); ++Base
) {
727 if (Context
.getCanonicalType(BaseType
).getUnqualifiedType() ==
728 Context
.getCanonicalType(Base
->getType()).getUnqualifiedType()) {
729 // We found a direct base of this type. That's what we're
731 DirectBaseSpec
= &*Base
;
736 // Check for a virtual base class.
737 // FIXME: We might be able to short-circuit this if we know in advance that
738 // there are no virtual bases.
739 const CXXBaseSpecifier
*VirtualBaseSpec
= 0;
740 if (!DirectBaseSpec
|| !DirectBaseSpec
->isVirtual()) {
741 // We haven't found a base yet; search the class hierarchy for a
742 // virtual base class.
743 BasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744 /*DetectVirtual=*/false);
745 if (IsDerivedFrom(Context
.getTypeDeclType(ClassDecl
), BaseType
, Paths
)) {
746 for (BasePaths::paths_iterator Path
= Paths
.begin();
747 Path
!= Paths
.end(); ++Path
) {
748 if (Path
->back().Base
->isVirtual()) {
749 VirtualBaseSpec
= Path
->back().Base
;
756 // C++ [base.class.init]p2:
757 // If a mem-initializer-id is ambiguous because it designates both
758 // a direct non-virtual base class and an inherited virtual base
759 // class, the mem-initializer is ill-formed.
760 if (DirectBaseSpec
&& VirtualBaseSpec
)
761 return Diag(IdLoc
, diag::err_base_init_direct_and_virtual
)
762 << MemberOrBase
<< SourceRange(IdLoc
, RParenLoc
);
763 // C++ [base.class.init]p2:
764 // Unless the mem-initializer-id names a nonstatic data membeer of the
765 // constructor's class ot a direst or virtual base of that class, the
766 // mem-initializer is ill-formed.
767 if (!DirectBaseSpec
&& !VirtualBaseSpec
)
768 return Diag(IdLoc
, diag::err_not_direct_base_or_virtual
)
769 << BaseType
<< ClassDecl
->getNameAsCString()
770 << SourceRange(IdLoc
, RParenLoc
);
773 return new CXXBaseOrMemberInitializer(BaseType
, (Expr
**)Args
, NumArgs
,
777 void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl
,
778 SourceLocation ColonLoc
,
779 MemInitTy
**MemInits
, unsigned NumMemInits
) {
780 if (!ConstructorDecl
)
783 CXXConstructorDecl
*Constructor
784 = dyn_cast
<CXXConstructorDecl
>(ConstructorDecl
.getAs
<Decl
>());
787 Diag(ColonLoc
, diag::err_only_constructors_take_base_inits
);
790 llvm::DenseMap
<void*, CXXBaseOrMemberInitializer
*>Members
;
792 for (unsigned i
= 0; i
< NumMemInits
; i
++) {
793 CXXBaseOrMemberInitializer
*Member
=
794 static_cast<CXXBaseOrMemberInitializer
*>(MemInits
[i
]);
795 void *KeyToMember
= Member
->getBaseOrMember();
796 // For fields injected into the class via declaration of an anonymous union,
797 // use its anonymous union class declaration as the unique key.
798 if (FieldDecl
*Field
= Member
->getMember())
799 if (Field
->getDeclContext()->isRecord() &&
800 cast
<RecordDecl
>(Field
->getDeclContext())->isAnonymousStructOrUnion())
801 KeyToMember
= static_cast<void *>(Field
->getDeclContext());
802 CXXBaseOrMemberInitializer
*&PrevMember
= Members
[KeyToMember
];
807 if (FieldDecl
*Field
= Member
->getMember())
808 Diag(Member
->getSourceLocation(),
809 diag::error_multiple_mem_initialization
)
810 << Field
->getNameAsString();
812 Type
*BaseClass
= Member
->getBaseClass();
813 assert(BaseClass
&& "ActOnMemInitializers - neither field or base");
814 Diag(Member
->getSourceLocation(),
815 diag::error_multiple_base_initialization
)
816 << BaseClass
->getDesugaredType(true);
818 Diag(PrevMember
->getSourceLocation(), diag::note_previous_initializer
)
823 Constructor
->setBaseOrMemberInitializers(Context
,
824 reinterpret_cast<CXXBaseOrMemberInitializer
**>(MemInits
),
826 // Also issue warning if order of ctor-initializer list does not match order
827 // of 1) base class declarations and 2) order of non-static data members.
828 llvm::SmallVector
<const void*, 32> AllBaseOrMembers
;
830 CXXRecordDecl
*ClassDecl
831 = cast
<CXXRecordDecl
>(Constructor
->getDeclContext());
832 // Push virtual bases before others.
833 for (CXXRecordDecl::base_class_iterator VBase
=
834 ClassDecl
->vbases_begin(),
835 E
= ClassDecl
->vbases_end(); VBase
!= E
; ++VBase
)
836 AllBaseOrMembers
.push_back(VBase
->getType()->getAsRecordType());
838 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin(),
839 E
= ClassDecl
->bases_end(); Base
!= E
; ++Base
) {
840 // Virtuals are alread in the virtual base list and are constructed
842 if (Base
->isVirtual())
844 AllBaseOrMembers
.push_back(Base
->getType()->getAsRecordType());
847 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin(),
848 E
= ClassDecl
->field_end(); Field
!= E
; ++Field
)
849 AllBaseOrMembers
.push_back(*Field
);
851 int Last
= AllBaseOrMembers
.size();
853 CXXBaseOrMemberInitializer
*PrevMember
= 0;
854 for (unsigned i
= 0; i
< NumMemInits
; i
++) {
855 CXXBaseOrMemberInitializer
*Member
=
856 static_cast<CXXBaseOrMemberInitializer
*>(MemInits
[i
]);
857 void *MemberInCtorList
;
858 if (Member
->isBaseInitializer())
859 MemberInCtorList
= Member
->getBaseClass();
861 MemberInCtorList
= Member
->getMember();
864 for (j
= curIndex
; j
< Last
; j
++)
865 if (MemberInCtorList
== AllBaseOrMembers
[j
])
870 // Initializer as specified in ctor-initializer list is out of order.
871 // Issue a warning diagnostic.
872 if (PrevMember
->isBaseInitializer()) {
873 // Diagnostics is for an initialized base class.
874 Type
*BaseClass
= PrevMember
->getBaseClass();
875 Diag(PrevMember
->getSourceLocation(),
876 diag::warn_base_initialized
)
877 << BaseClass
->getDesugaredType(true);
880 FieldDecl
*Field
= PrevMember
->getMember();
881 Diag(PrevMember
->getSourceLocation(),
882 diag::warn_field_initialized
)
883 << Field
->getNameAsString();
886 if (FieldDecl
*Field
= Member
->getMember())
887 Diag(Member
->getSourceLocation(),
888 diag::note_fieldorbase_initialized_here
) << 0
889 << Field
->getNameAsString();
891 Type
*BaseClass
= Member
->getBaseClass();
892 Diag(Member
->getSourceLocation(),
893 diag::note_fieldorbase_initialized_here
) << 1
894 << BaseClass
->getDesugaredType(true);
898 for (curIndex
=0; curIndex
< Last
; curIndex
++)
899 if (MemberInCtorList
== AllBaseOrMembers
[curIndex
])
905 void Sema::ActOnDefaultCDtorInitializers(DeclPtrTy CDtorDecl
) {
909 if (CXXConstructorDecl
*Constructor
910 = dyn_cast
<CXXConstructorDecl
>(CDtorDecl
.getAs
<Decl
>()))
911 Constructor
->setBaseOrMemberInitializers(Context
,
912 (CXXBaseOrMemberInitializer
**)0, 0);
914 if (CXXDestructorDecl
*Destructor
915 = dyn_cast
<CXXDestructorDecl
>(CDtorDecl
.getAs
<Decl
>()))
916 Destructor
->setBaseOrMemberDestructions(Context
);
920 /// PureVirtualMethodCollector - traverses a class and its superclasses
921 /// and determines if it has any pure virtual methods.
922 class VISIBILITY_HIDDEN PureVirtualMethodCollector
{
926 typedef llvm::SmallVector
<const CXXMethodDecl
*, 8> MethodList
;
931 void Collect(const CXXRecordDecl
* RD
, MethodList
& Methods
);
934 PureVirtualMethodCollector(ASTContext
&Ctx
, const CXXRecordDecl
* RD
)
940 // Copy the temporary list to methods, and make sure to ignore any
942 for (size_t i
= 0, e
= List
.size(); i
!= e
; ++i
) {
944 Methods
.push_back(List
[i
]);
948 bool empty() const { return Methods
.empty(); }
950 MethodList::const_iterator
methods_begin() { return Methods
.begin(); }
951 MethodList::const_iterator
methods_end() { return Methods
.end(); }
954 void PureVirtualMethodCollector::Collect(const CXXRecordDecl
* RD
,
955 MethodList
& Methods
) {
956 // First, collect the pure virtual methods for the base classes.
957 for (CXXRecordDecl::base_class_const_iterator Base
= RD
->bases_begin(),
958 BaseEnd
= RD
->bases_end(); Base
!= BaseEnd
; ++Base
) {
959 if (const RecordType
*RT
= Base
->getType()->getAsRecordType()) {
960 const CXXRecordDecl
*BaseDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
961 if (BaseDecl
&& BaseDecl
->isAbstract())
962 Collect(BaseDecl
, Methods
);
966 // Next, zero out any pure virtual methods that this class overrides.
967 typedef llvm::SmallPtrSet
<const CXXMethodDecl
*, 4> MethodSetTy
;
969 MethodSetTy OverriddenMethods
;
970 size_t MethodsSize
= Methods
.size();
972 for (RecordDecl::decl_iterator i
= RD
->decls_begin(), e
= RD
->decls_end();
974 // Traverse the record, looking for methods.
975 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(*i
)) {
976 // If the method is pure virtual, add it to the methods vector.
978 Methods
.push_back(MD
);
982 // Otherwise, record all the overridden methods in our set.
983 for (CXXMethodDecl::method_iterator I
= MD
->begin_overridden_methods(),
984 E
= MD
->end_overridden_methods(); I
!= E
; ++I
) {
985 // Keep track of the overridden methods.
986 OverriddenMethods
.insert(*I
);
991 // Now go through the methods and zero out all the ones we know are
993 for (size_t i
= 0, e
= MethodsSize
; i
!= e
; ++i
) {
994 if (OverriddenMethods
.count(Methods
[i
]))
1001 bool Sema::RequireNonAbstractType(SourceLocation Loc
, QualType T
,
1002 unsigned DiagID
, AbstractDiagSelID SelID
,
1003 const CXXRecordDecl
*CurrentRD
) {
1005 if (!getLangOptions().CPlusPlus
)
1008 if (const ArrayType
*AT
= Context
.getAsArrayType(T
))
1009 return RequireNonAbstractType(Loc
, AT
->getElementType(), DiagID
, SelID
,
1012 if (const PointerType
*PT
= T
->getAsPointerType()) {
1013 // Find the innermost pointer type.
1014 while (const PointerType
*T
= PT
->getPointeeType()->getAsPointerType())
1017 if (const ArrayType
*AT
= Context
.getAsArrayType(PT
->getPointeeType()))
1018 return RequireNonAbstractType(Loc
, AT
->getElementType(), DiagID
, SelID
,
1022 const RecordType
*RT
= T
->getAsRecordType();
1026 const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl());
1030 if (CurrentRD
&& CurrentRD
!= RD
)
1033 if (!RD
->isAbstract())
1036 Diag(Loc
, DiagID
) << RD
->getDeclName() << SelID
;
1038 // Check if we've already emitted the list of pure virtual functions for this
1040 if (PureVirtualClassDiagSet
&& PureVirtualClassDiagSet
->count(RD
))
1043 PureVirtualMethodCollector
Collector(Context
, RD
);
1045 for (PureVirtualMethodCollector::MethodList::const_iterator I
=
1046 Collector
.methods_begin(), E
= Collector
.methods_end(); I
!= E
; ++I
) {
1047 const CXXMethodDecl
*MD
= *I
;
1049 Diag(MD
->getLocation(), diag::note_pure_virtual_function
) <<
1053 if (!PureVirtualClassDiagSet
)
1054 PureVirtualClassDiagSet
.reset(new RecordDeclSetTy
);
1055 PureVirtualClassDiagSet
->insert(RD
);
1061 class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1062 : public DeclVisitor
<AbstractClassUsageDiagnoser
, bool> {
1064 CXXRecordDecl
*AbstractClass
;
1066 bool VisitDeclContext(const DeclContext
*DC
) {
1067 bool Invalid
= false;
1069 for (CXXRecordDecl::decl_iterator I
= DC
->decls_begin(),
1070 E
= DC
->decls_end(); I
!= E
; ++I
)
1071 Invalid
|= Visit(*I
);
1077 AbstractClassUsageDiagnoser(Sema
& SemaRef
, CXXRecordDecl
*ac
)
1078 : SemaRef(SemaRef
), AbstractClass(ac
) {
1079 Visit(SemaRef
.Context
.getTranslationUnitDecl());
1082 bool VisitFunctionDecl(const FunctionDecl
*FD
) {
1083 if (FD
->isThisDeclarationADefinition()) {
1084 // No need to do the check if we're in a definition, because it requires
1085 // that the return/param types are complete.
1086 // because that requires
1087 return VisitDeclContext(FD
);
1090 // Check the return type.
1091 QualType RTy
= FD
->getType()->getAsFunctionType()->getResultType();
1093 SemaRef
.RequireNonAbstractType(FD
->getLocation(), RTy
,
1094 diag::err_abstract_type_in_decl
,
1095 Sema::AbstractReturnType
,
1098 for (FunctionDecl::param_const_iterator I
= FD
->param_begin(),
1099 E
= FD
->param_end(); I
!= E
; ++I
) {
1100 const ParmVarDecl
*VD
= *I
;
1102 SemaRef
.RequireNonAbstractType(VD
->getLocation(),
1103 VD
->getOriginalType(),
1104 diag::err_abstract_type_in_decl
,
1105 Sema::AbstractParamType
,
1112 bool VisitDecl(const Decl
* D
) {
1113 if (const DeclContext
*DC
= dyn_cast
<DeclContext
>(D
))
1114 return VisitDeclContext(DC
);
1121 void Sema::ActOnFinishCXXMemberSpecification(Scope
* S
, SourceLocation RLoc
,
1123 SourceLocation LBrac
,
1124 SourceLocation RBrac
) {
1128 AdjustDeclIfTemplate(TagDecl
);
1129 ActOnFields(S
, RLoc
, TagDecl
,
1130 (DeclPtrTy
*)FieldCollector
->getCurFields(),
1131 FieldCollector
->getCurNumFields(), LBrac
, RBrac
, 0);
1133 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(TagDecl
.getAs
<Decl
>());
1134 if (!RD
->isAbstract()) {
1135 // Collect all the pure virtual methods and see if this is an abstract
1137 PureVirtualMethodCollector
Collector(Context
, RD
);
1138 if (!Collector
.empty())
1139 RD
->setAbstract(true);
1142 if (RD
->isAbstract())
1143 AbstractClassUsageDiagnoser(*this, RD
);
1145 if (RD
->hasTrivialConstructor() || RD
->hasTrivialDestructor()) {
1146 for (RecordDecl::field_iterator i
= RD
->field_begin(), e
= RD
->field_end();
1148 // All the nonstatic data members must have trivial constructors.
1149 QualType FTy
= i
->getType();
1150 while (const ArrayType
*AT
= Context
.getAsArrayType(FTy
))
1151 FTy
= AT
->getElementType();
1153 if (const RecordType
*RT
= FTy
->getAsRecordType()) {
1154 CXXRecordDecl
*FieldRD
= cast
<CXXRecordDecl
>(RT
->getDecl());
1156 if (!FieldRD
->hasTrivialConstructor())
1157 RD
->setHasTrivialConstructor(false);
1158 if (!FieldRD
->hasTrivialDestructor())
1159 RD
->setHasTrivialDestructor(false);
1161 // If RD has neither a trivial constructor nor a trivial destructor
1162 // we don't need to continue checking.
1163 if (!RD
->hasTrivialConstructor() && !RD
->hasTrivialDestructor())
1169 if (!RD
->isDependentType())
1170 AddImplicitlyDeclaredMembersToClass(RD
);
1173 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1174 /// special functions, such as the default constructor, copy
1175 /// constructor, or destructor, to the given C++ class (C++
1176 /// [special]p1). This routine can only be executed just before the
1177 /// definition of the class is complete.
1178 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl
*ClassDecl
) {
1179 QualType ClassType
= Context
.getTypeDeclType(ClassDecl
);
1180 ClassType
= Context
.getCanonicalType(ClassType
);
1182 // FIXME: Implicit declarations have exception specifications, which are
1183 // the union of the specifications of the implicitly called functions.
1185 if (!ClassDecl
->hasUserDeclaredConstructor()) {
1186 // C++ [class.ctor]p5:
1187 // A default constructor for a class X is a constructor of class X
1188 // that can be called without an argument. If there is no
1189 // user-declared constructor for class X, a default constructor is
1190 // implicitly declared. An implicitly-declared default constructor
1191 // is an inline public member of its class.
1192 DeclarationName Name
1193 = Context
.DeclarationNames
.getCXXConstructorName(ClassType
);
1194 CXXConstructorDecl
*DefaultCon
=
1195 CXXConstructorDecl::Create(Context
, ClassDecl
,
1196 ClassDecl
->getLocation(), Name
,
1197 Context
.getFunctionType(Context
.VoidTy
,
1199 /*isExplicit=*/false,
1201 /*isImplicitlyDeclared=*/true);
1202 DefaultCon
->setAccess(AS_public
);
1203 DefaultCon
->setImplicit();
1204 ClassDecl
->addDecl(DefaultCon
);
1207 if (!ClassDecl
->hasUserDeclaredCopyConstructor()) {
1208 // C++ [class.copy]p4:
1209 // If the class definition does not explicitly declare a copy
1210 // constructor, one is declared implicitly.
1212 // C++ [class.copy]p5:
1213 // The implicitly-declared copy constructor for a class X will
1219 bool HasConstCopyConstructor
= true;
1221 // -- each direct or virtual base class B of X has a copy
1222 // constructor whose first parameter is of type const B& or
1223 // const volatile B&, and
1224 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin();
1225 HasConstCopyConstructor
&& Base
!= ClassDecl
->bases_end(); ++Base
) {
1226 const CXXRecordDecl
*BaseClassDecl
1227 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
1228 HasConstCopyConstructor
1229 = BaseClassDecl
->hasConstCopyConstructor(Context
);
1232 // -- for all the nonstatic data members of X that are of a
1233 // class type M (or array thereof), each such class type
1234 // has a copy constructor whose first parameter is of type
1235 // const M& or const volatile M&.
1236 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin();
1237 HasConstCopyConstructor
&& Field
!= ClassDecl
->field_end();
1239 QualType FieldType
= (*Field
)->getType();
1240 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
1241 FieldType
= Array
->getElementType();
1242 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
1243 const CXXRecordDecl
*FieldClassDecl
1244 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
1245 HasConstCopyConstructor
1246 = FieldClassDecl
->hasConstCopyConstructor(Context
);
1250 // Otherwise, the implicitly declared copy constructor will have
1254 QualType ArgType
= ClassType
;
1255 if (HasConstCopyConstructor
)
1256 ArgType
= ArgType
.withConst();
1257 ArgType
= Context
.getLValueReferenceType(ArgType
);
1259 // An implicitly-declared copy constructor is an inline public
1260 // member of its class.
1261 DeclarationName Name
1262 = Context
.DeclarationNames
.getCXXConstructorName(ClassType
);
1263 CXXConstructorDecl
*CopyConstructor
1264 = CXXConstructorDecl::Create(Context
, ClassDecl
,
1265 ClassDecl
->getLocation(), Name
,
1266 Context
.getFunctionType(Context
.VoidTy
,
1269 /*isExplicit=*/false,
1271 /*isImplicitlyDeclared=*/true);
1272 CopyConstructor
->setAccess(AS_public
);
1273 CopyConstructor
->setImplicit();
1275 // Add the parameter to the constructor.
1276 ParmVarDecl
*FromParam
= ParmVarDecl::Create(Context
, CopyConstructor
,
1277 ClassDecl
->getLocation(),
1278 /*IdentifierInfo=*/0,
1279 ArgType
, VarDecl::None
, 0);
1280 CopyConstructor
->setParams(Context
, &FromParam
, 1);
1281 ClassDecl
->addDecl(CopyConstructor
);
1284 if (!ClassDecl
->hasUserDeclaredCopyAssignment()) {
1285 // Note: The following rules are largely analoguous to the copy
1286 // constructor rules. Note that virtual bases are not taken into account
1287 // for determining the argument type of the operator. Note also that
1288 // operators taking an object instead of a reference are allowed.
1290 // C++ [class.copy]p10:
1291 // If the class definition does not explicitly declare a copy
1292 // assignment operator, one is declared implicitly.
1293 // The implicitly-defined copy assignment operator for a class X
1294 // will have the form
1296 // X& X::operator=(const X&)
1299 bool HasConstCopyAssignment
= true;
1301 // -- each direct base class B of X has a copy assignment operator
1302 // whose parameter is of type const B&, const volatile B& or B,
1304 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin();
1305 HasConstCopyAssignment
&& Base
!= ClassDecl
->bases_end(); ++Base
) {
1306 const CXXRecordDecl
*BaseClassDecl
1307 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
1308 HasConstCopyAssignment
= BaseClassDecl
->hasConstCopyAssignment(Context
);
1311 // -- for all the nonstatic data members of X that are of a class
1312 // type M (or array thereof), each such class type has a copy
1313 // assignment operator whose parameter is of type const M&,
1314 // const volatile M& or M.
1315 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin();
1316 HasConstCopyAssignment
&& Field
!= ClassDecl
->field_end();
1318 QualType FieldType
= (*Field
)->getType();
1319 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
1320 FieldType
= Array
->getElementType();
1321 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
1322 const CXXRecordDecl
*FieldClassDecl
1323 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
1324 HasConstCopyAssignment
1325 = FieldClassDecl
->hasConstCopyAssignment(Context
);
1329 // Otherwise, the implicitly declared copy assignment operator will
1332 // X& X::operator=(X&)
1333 QualType ArgType
= ClassType
;
1334 QualType RetType
= Context
.getLValueReferenceType(ArgType
);
1335 if (HasConstCopyAssignment
)
1336 ArgType
= ArgType
.withConst();
1337 ArgType
= Context
.getLValueReferenceType(ArgType
);
1339 // An implicitly-declared copy assignment operator is an inline public
1340 // member of its class.
1341 DeclarationName Name
=
1342 Context
.DeclarationNames
.getCXXOperatorName(OO_Equal
);
1343 CXXMethodDecl
*CopyAssignment
=
1344 CXXMethodDecl::Create(Context
, ClassDecl
, ClassDecl
->getLocation(), Name
,
1345 Context
.getFunctionType(RetType
, &ArgType
, 1,
1347 /*isStatic=*/false, /*isInline=*/true);
1348 CopyAssignment
->setAccess(AS_public
);
1349 CopyAssignment
->setImplicit();
1351 // Add the parameter to the operator.
1352 ParmVarDecl
*FromParam
= ParmVarDecl::Create(Context
, CopyAssignment
,
1353 ClassDecl
->getLocation(),
1354 /*IdentifierInfo=*/0,
1355 ArgType
, VarDecl::None
, 0);
1356 CopyAssignment
->setParams(Context
, &FromParam
, 1);
1358 // Don't call addedAssignmentOperator. There is no way to distinguish an
1359 // implicit from an explicit assignment operator.
1360 ClassDecl
->addDecl(CopyAssignment
);
1363 if (!ClassDecl
->hasUserDeclaredDestructor()) {
1364 // C++ [class.dtor]p2:
1365 // If a class has no user-declared destructor, a destructor is
1366 // declared implicitly. An implicitly-declared destructor is an
1367 // inline public member of its class.
1368 DeclarationName Name
1369 = Context
.DeclarationNames
.getCXXDestructorName(ClassType
);
1370 CXXDestructorDecl
*Destructor
1371 = CXXDestructorDecl::Create(Context
, ClassDecl
,
1372 ClassDecl
->getLocation(), Name
,
1373 Context
.getFunctionType(Context
.VoidTy
,
1376 /*isImplicitlyDeclared=*/true);
1377 Destructor
->setAccess(AS_public
);
1378 Destructor
->setImplicit();
1379 ClassDecl
->addDecl(Destructor
);
1383 void Sema::ActOnReenterTemplateScope(Scope
*S
, DeclPtrTy TemplateD
) {
1384 TemplateDecl
*Template
= TemplateD
.getAs
<TemplateDecl
>();
1388 TemplateParameterList
*Params
= Template
->getTemplateParameters();
1389 for (TemplateParameterList::iterator Param
= Params
->begin(),
1390 ParamEnd
= Params
->end();
1391 Param
!= ParamEnd
; ++Param
) {
1392 NamedDecl
*Named
= cast
<NamedDecl
>(*Param
);
1393 if (Named
->getDeclName()) {
1394 S
->AddDecl(DeclPtrTy::make(Named
));
1395 IdResolver
.AddDecl(Named
);
1400 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
1401 /// parsing a top-level (non-nested) C++ class, and we are now
1402 /// parsing those parts of the given Method declaration that could
1403 /// not be parsed earlier (C++ [class.mem]p2), such as default
1404 /// arguments. This action should enter the scope of the given
1405 /// Method declaration as if we had just parsed the qualified method
1406 /// name. However, it should not bring the parameters into scope;
1407 /// that will be performed by ActOnDelayedCXXMethodParameter.
1408 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope
*S
, DeclPtrTy MethodD
) {
1413 FunctionDecl
*Method
= cast
<FunctionDecl
>(MethodD
.getAs
<Decl
>());
1415 = Context
.getTypeDeclType(cast
<RecordDecl
>(Method
->getDeclContext()));
1417 NestedNameSpecifier::Create(Context
, 0, false, ClassTy
.getTypePtr()));
1418 ActOnCXXEnterDeclaratorScope(S
, SS
);
1421 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
1422 /// C++ method declaration. We're (re-)introducing the given
1423 /// function parameter into scope for use in parsing later parts of
1424 /// the method declaration. For example, we could see an
1425 /// ActOnParamDefaultArgument event for this parameter.
1426 void Sema::ActOnDelayedCXXMethodParameter(Scope
*S
, DeclPtrTy ParamD
) {
1430 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(ParamD
.getAs
<Decl
>());
1432 // If this parameter has an unparsed default argument, clear it out
1433 // to make way for the parsed default argument.
1434 if (Param
->hasUnparsedDefaultArg())
1435 Param
->setDefaultArg(0);
1437 S
->AddDecl(DeclPtrTy::make(Param
));
1438 if (Param
->getDeclName())
1439 IdResolver
.AddDecl(Param
);
1442 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1443 /// processing the delayed method declaration for Method. The method
1444 /// declaration is now considered finished. There may be a separate
1445 /// ActOnStartOfFunctionDef action later (not necessarily
1446 /// immediately!) for this method, if it was also defined inside the
1448 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope
*S
, DeclPtrTy MethodD
) {
1452 FunctionDecl
*Method
= cast
<FunctionDecl
>(MethodD
.getAs
<Decl
>());
1455 = Context
.getTypeDeclType(cast
<RecordDecl
>(Method
->getDeclContext()));
1457 NestedNameSpecifier::Create(Context
, 0, false, ClassTy
.getTypePtr()));
1458 ActOnCXXExitDeclaratorScope(S
, SS
);
1460 // Now that we have our default arguments, check the constructor
1461 // again. It could produce additional diagnostics or affect whether
1462 // the class has implicitly-declared destructors, among other
1464 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(Method
))
1465 CheckConstructor(Constructor
);
1467 // Check the default arguments, which we may have added.
1468 if (!Method
->isInvalidDecl())
1469 CheckCXXDefaultArguments(Method
);
1472 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1473 /// the well-formedness of the constructor declarator @p D with type @p
1474 /// R. If there are any errors in the declarator, this routine will
1475 /// emit diagnostics and set the invalid bit to true. In any case, the type
1476 /// will be updated to reflect a well-formed type for the constructor and
1478 QualType
Sema::CheckConstructorDeclarator(Declarator
&D
, QualType R
,
1479 FunctionDecl::StorageClass
&SC
) {
1480 bool isVirtual
= D
.getDeclSpec().isVirtualSpecified();
1482 // C++ [class.ctor]p3:
1483 // A constructor shall not be virtual (10.3) or static (9.4). A
1484 // constructor can be invoked for a const, volatile or const
1485 // volatile object. A constructor shall not be declared const,
1486 // volatile, or const volatile (9.3.2).
1488 if (!D
.isInvalidType())
1489 Diag(D
.getIdentifierLoc(), diag::err_constructor_cannot_be
)
1490 << "virtual" << SourceRange(D
.getDeclSpec().getVirtualSpecLoc())
1491 << SourceRange(D
.getIdentifierLoc());
1494 if (SC
== FunctionDecl::Static
) {
1495 if (!D
.isInvalidType())
1496 Diag(D
.getIdentifierLoc(), diag::err_constructor_cannot_be
)
1497 << "static" << SourceRange(D
.getDeclSpec().getStorageClassSpecLoc())
1498 << SourceRange(D
.getIdentifierLoc());
1500 SC
= FunctionDecl::None
;
1503 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(0).Fun
;
1504 if (FTI
.TypeQuals
!= 0) {
1505 if (FTI
.TypeQuals
& QualType::Const
)
1506 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_constructor
)
1507 << "const" << SourceRange(D
.getIdentifierLoc());
1508 if (FTI
.TypeQuals
& QualType::Volatile
)
1509 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_constructor
)
1510 << "volatile" << SourceRange(D
.getIdentifierLoc());
1511 if (FTI
.TypeQuals
& QualType::Restrict
)
1512 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_constructor
)
1513 << "restrict" << SourceRange(D
.getIdentifierLoc());
1516 // Rebuild the function type "R" without any type qualifiers (in
1517 // case any of the errors above fired) and with "void" as the
1518 // return type, since constructors don't have return types. We
1519 // *always* have to do this, because GetTypeForDeclarator will
1520 // put in a result type of "int" when none was specified.
1521 const FunctionProtoType
*Proto
= R
->getAsFunctionProtoType();
1522 return Context
.getFunctionType(Context
.VoidTy
, Proto
->arg_type_begin(),
1523 Proto
->getNumArgs(),
1524 Proto
->isVariadic(), 0);
1527 /// CheckConstructor - Checks a fully-formed constructor for
1528 /// well-formedness, issuing any diagnostics required. Returns true if
1529 /// the constructor declarator is invalid.
1530 void Sema::CheckConstructor(CXXConstructorDecl
*Constructor
) {
1531 CXXRecordDecl
*ClassDecl
1532 = dyn_cast
<CXXRecordDecl
>(Constructor
->getDeclContext());
1534 return Constructor
->setInvalidDecl();
1536 // C++ [class.copy]p3:
1537 // A declaration of a constructor for a class X is ill-formed if
1538 // its first parameter is of type (optionally cv-qualified) X and
1539 // either there are no other parameters or else all other
1540 // parameters have default arguments.
1541 if (!Constructor
->isInvalidDecl() &&
1542 ((Constructor
->getNumParams() == 1) ||
1543 (Constructor
->getNumParams() > 1 &&
1544 Constructor
->getParamDecl(1)->hasDefaultArg()))) {
1545 QualType ParamType
= Constructor
->getParamDecl(0)->getType();
1546 QualType ClassTy
= Context
.getTagDeclType(ClassDecl
);
1547 if (Context
.getCanonicalType(ParamType
).getUnqualifiedType() == ClassTy
) {
1548 SourceLocation ParamLoc
= Constructor
->getParamDecl(0)->getLocation();
1549 Diag(ParamLoc
, diag::err_constructor_byvalue_arg
)
1550 << CodeModificationHint::CreateInsertion(ParamLoc
, " const &");
1551 Constructor
->setInvalidDecl();
1555 // Notify the class that we've added a constructor.
1556 ClassDecl
->addedConstructor(Context
, Constructor
);
1560 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo
&FTI
) {
1561 return (FTI
.NumArgs
== 1 && !FTI
.isVariadic
&& FTI
.ArgInfo
[0].Ident
== 0 &&
1562 FTI
.ArgInfo
[0].Param
&&
1563 FTI
.ArgInfo
[0].Param
.getAs
<ParmVarDecl
>()->getType()->isVoidType());
1566 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1567 /// the well-formednes of the destructor declarator @p D with type @p
1568 /// R. If there are any errors in the declarator, this routine will
1569 /// emit diagnostics and set the declarator to invalid. Even if this happens,
1570 /// will be updated to reflect a well-formed type for the destructor and
1572 QualType
Sema::CheckDestructorDeclarator(Declarator
&D
,
1573 FunctionDecl::StorageClass
& SC
) {
1574 // C++ [class.dtor]p1:
1575 // [...] A typedef-name that names a class is a class-name
1576 // (7.1.3); however, a typedef-name that names a class shall not
1577 // be used as the identifier in the declarator for a destructor
1579 QualType DeclaratorType
= QualType::getFromOpaquePtr(D
.getDeclaratorIdType());
1580 if (isa
<TypedefType
>(DeclaratorType
)) {
1581 Diag(D
.getIdentifierLoc(), diag::err_destructor_typedef_name
)
1586 // C++ [class.dtor]p2:
1587 // A destructor is used to destroy objects of its class type. A
1588 // destructor takes no parameters, and no return type can be
1589 // specified for it (not even void). The address of a destructor
1590 // shall not be taken. A destructor shall not be static. A
1591 // destructor can be invoked for a const, volatile or const
1592 // volatile object. A destructor shall not be declared const,
1593 // volatile or const volatile (9.3.2).
1594 if (SC
== FunctionDecl::Static
) {
1595 if (!D
.isInvalidType())
1596 Diag(D
.getIdentifierLoc(), diag::err_destructor_cannot_be
)
1597 << "static" << SourceRange(D
.getDeclSpec().getStorageClassSpecLoc())
1598 << SourceRange(D
.getIdentifierLoc());
1599 SC
= FunctionDecl::None
;
1602 if (D
.getDeclSpec().hasTypeSpecifier() && !D
.isInvalidType()) {
1603 // Destructors don't have return types, but the parser will
1604 // happily parse something like:
1610 // The return type will be eliminated later.
1611 Diag(D
.getIdentifierLoc(), diag::err_destructor_return_type
)
1612 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
1613 << SourceRange(D
.getIdentifierLoc());
1616 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(0).Fun
;
1617 if (FTI
.TypeQuals
!= 0 && !D
.isInvalidType()) {
1618 if (FTI
.TypeQuals
& QualType::Const
)
1619 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_destructor
)
1620 << "const" << SourceRange(D
.getIdentifierLoc());
1621 if (FTI
.TypeQuals
& QualType::Volatile
)
1622 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_destructor
)
1623 << "volatile" << SourceRange(D
.getIdentifierLoc());
1624 if (FTI
.TypeQuals
& QualType::Restrict
)
1625 Diag(D
.getIdentifierLoc(), diag::err_invalid_qualified_destructor
)
1626 << "restrict" << SourceRange(D
.getIdentifierLoc());
1630 // Make sure we don't have any parameters.
1631 if (FTI
.NumArgs
> 0 && !FTIHasSingleVoidArgument(FTI
)) {
1632 Diag(D
.getIdentifierLoc(), diag::err_destructor_with_params
);
1634 // Delete the parameters.
1639 // Make sure the destructor isn't variadic.
1640 if (FTI
.isVariadic
) {
1641 Diag(D
.getIdentifierLoc(), diag::err_destructor_variadic
);
1645 // Rebuild the function type "R" without any type qualifiers or
1646 // parameters (in case any of the errors above fired) and with
1647 // "void" as the return type, since destructors don't have return
1648 // types. We *always* have to do this, because GetTypeForDeclarator
1649 // will put in a result type of "int" when none was specified.
1650 return Context
.getFunctionType(Context
.VoidTy
, 0, 0, false, 0);
1653 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1654 /// well-formednes of the conversion function declarator @p D with
1655 /// type @p R. If there are any errors in the declarator, this routine
1656 /// will emit diagnostics and return true. Otherwise, it will return
1657 /// false. Either way, the type @p R will be updated to reflect a
1658 /// well-formed type for the conversion operator.
1659 void Sema::CheckConversionDeclarator(Declarator
&D
, QualType
&R
,
1660 FunctionDecl::StorageClass
& SC
) {
1661 // C++ [class.conv.fct]p1:
1662 // Neither parameter types nor return type can be specified. The
1663 // type of a conversion function (8.3.5) is “function taking no
1664 // parameter returning conversion-type-id.”
1665 if (SC
== FunctionDecl::Static
) {
1666 if (!D
.isInvalidType())
1667 Diag(D
.getIdentifierLoc(), diag::err_conv_function_not_member
)
1668 << "static" << SourceRange(D
.getDeclSpec().getStorageClassSpecLoc())
1669 << SourceRange(D
.getIdentifierLoc());
1671 SC
= FunctionDecl::None
;
1673 if (D
.getDeclSpec().hasTypeSpecifier() && !D
.isInvalidType()) {
1674 // Conversion functions don't have return types, but the parser will
1675 // happily parse something like:
1678 // float operator bool();
1681 // The return type will be changed later anyway.
1682 Diag(D
.getIdentifierLoc(), diag::err_conv_function_return_type
)
1683 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
1684 << SourceRange(D
.getIdentifierLoc());
1687 // Make sure we don't have any parameters.
1688 if (R
->getAsFunctionProtoType()->getNumArgs() > 0) {
1689 Diag(D
.getIdentifierLoc(), diag::err_conv_function_with_params
);
1691 // Delete the parameters.
1692 D
.getTypeObject(0).Fun
.freeArgs();
1696 // Make sure the conversion function isn't variadic.
1697 if (R
->getAsFunctionProtoType()->isVariadic() && !D
.isInvalidType()) {
1698 Diag(D
.getIdentifierLoc(), diag::err_conv_function_variadic
);
1702 // C++ [class.conv.fct]p4:
1703 // The conversion-type-id shall not represent a function type nor
1705 QualType ConvType
= QualType::getFromOpaquePtr(D
.getDeclaratorIdType());
1706 if (ConvType
->isArrayType()) {
1707 Diag(D
.getIdentifierLoc(), diag::err_conv_function_to_array
);
1708 ConvType
= Context
.getPointerType(ConvType
);
1710 } else if (ConvType
->isFunctionType()) {
1711 Diag(D
.getIdentifierLoc(), diag::err_conv_function_to_function
);
1712 ConvType
= Context
.getPointerType(ConvType
);
1716 // Rebuild the function type "R" without any parameters (in case any
1717 // of the errors above fired) and with the conversion type as the
1719 R
= Context
.getFunctionType(ConvType
, 0, 0, false,
1720 R
->getAsFunctionProtoType()->getTypeQuals());
1722 // C++0x explicit conversion operators.
1723 if (D
.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x
)
1724 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
1725 diag::warn_explicit_conversion_functions
)
1726 << SourceRange(D
.getDeclSpec().getExplicitSpecLoc());
1729 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1730 /// the declaration of the given C++ conversion function. This routine
1731 /// is responsible for recording the conversion function in the C++
1732 /// class, if possible.
1733 Sema::DeclPtrTy
Sema::ActOnConversionDeclarator(CXXConversionDecl
*Conversion
) {
1734 assert(Conversion
&& "Expected to receive a conversion function declaration");
1736 // Set the lexical context of this conversion function
1737 Conversion
->setLexicalDeclContext(CurContext
);
1739 CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(Conversion
->getDeclContext());
1741 // Make sure we aren't redeclaring the conversion function.
1742 QualType ConvType
= Context
.getCanonicalType(Conversion
->getConversionType());
1744 // C++ [class.conv.fct]p1:
1745 // [...] A conversion function is never used to convert a
1746 // (possibly cv-qualified) object to the (possibly cv-qualified)
1747 // same object type (or a reference to it), to a (possibly
1748 // cv-qualified) base class of that type (or a reference to it),
1749 // or to (possibly cv-qualified) void.
1750 // FIXME: Suppress this warning if the conversion function ends up being a
1751 // virtual function that overrides a virtual function in a base class.
1753 = Context
.getCanonicalType(Context
.getTypeDeclType(ClassDecl
));
1754 if (const ReferenceType
*ConvTypeRef
= ConvType
->getAsReferenceType())
1755 ConvType
= ConvTypeRef
->getPointeeType();
1756 if (ConvType
->isRecordType()) {
1757 ConvType
= Context
.getCanonicalType(ConvType
).getUnqualifiedType();
1758 if (ConvType
== ClassType
)
1759 Diag(Conversion
->getLocation(), diag::warn_conv_to_self_not_used
)
1761 else if (IsDerivedFrom(ClassType
, ConvType
))
1762 Diag(Conversion
->getLocation(), diag::warn_conv_to_base_not_used
)
1763 << ClassType
<< ConvType
;
1764 } else if (ConvType
->isVoidType()) {
1765 Diag(Conversion
->getLocation(), diag::warn_conv_to_void_not_used
)
1766 << ClassType
<< ConvType
;
1769 if (Conversion
->getPreviousDeclaration()) {
1770 OverloadedFunctionDecl
*Conversions
= ClassDecl
->getConversionFunctions();
1771 for (OverloadedFunctionDecl::function_iterator
1772 Conv
= Conversions
->function_begin(),
1773 ConvEnd
= Conversions
->function_end();
1774 Conv
!= ConvEnd
; ++Conv
) {
1776 == cast_or_null
<NamedDecl
>(Conversion
->getPreviousDeclaration())) {
1778 return DeclPtrTy::make(Conversion
);
1781 assert(Conversion
->isInvalidDecl() && "Conversion should not get here.");
1783 ClassDecl
->addConversionFunction(Context
, Conversion
);
1785 return DeclPtrTy::make(Conversion
);
1788 //===----------------------------------------------------------------------===//
1789 // Namespace Handling
1790 //===----------------------------------------------------------------------===//
1792 /// ActOnStartNamespaceDef - This is called at the start of a namespace
1794 Sema::DeclPtrTy
Sema::ActOnStartNamespaceDef(Scope
*NamespcScope
,
1795 SourceLocation IdentLoc
,
1797 SourceLocation LBrace
) {
1798 NamespaceDecl
*Namespc
=
1799 NamespaceDecl::Create(Context
, CurContext
, IdentLoc
, II
);
1800 Namespc
->setLBracLoc(LBrace
);
1802 Scope
*DeclRegionScope
= NamespcScope
->getParent();
1805 // C++ [namespace.def]p2:
1806 // The identifier in an original-namespace-definition shall not have been
1807 // previously defined in the declarative region in which the
1808 // original-namespace-definition appears. The identifier in an
1809 // original-namespace-definition is the name of the namespace. Subsequently
1810 // in that declarative region, it is treated as an original-namespace-name.
1812 NamedDecl
*PrevDecl
= LookupName(DeclRegionScope
, II
, LookupOrdinaryName
,
1815 if (NamespaceDecl
*OrigNS
= dyn_cast_or_null
<NamespaceDecl
>(PrevDecl
)) {
1816 // This is an extended namespace definition.
1817 // Attach this namespace decl to the chain of extended namespace
1819 OrigNS
->setNextNamespace(Namespc
);
1820 Namespc
->setOriginalNamespace(OrigNS
->getOriginalNamespace());
1822 // Remove the previous declaration from the scope.
1823 if (DeclRegionScope
->isDeclScope(DeclPtrTy::make(OrigNS
))) {
1824 IdResolver
.RemoveDecl(OrigNS
);
1825 DeclRegionScope
->RemoveDecl(DeclPtrTy::make(OrigNS
));
1827 } else if (PrevDecl
) {
1828 // This is an invalid name redefinition.
1829 Diag(Namespc
->getLocation(), diag::err_redefinition_different_kind
)
1830 << Namespc
->getDeclName();
1831 Diag(PrevDecl
->getLocation(), diag::note_previous_definition
);
1832 Namespc
->setInvalidDecl();
1833 // Continue on to push Namespc as current DeclContext and return it.
1836 PushOnScopeChains(Namespc
, DeclRegionScope
);
1838 // FIXME: Handle anonymous namespaces
1841 // Although we could have an invalid decl (i.e. the namespace name is a
1842 // redefinition), push it as current DeclContext and try to continue parsing.
1843 // FIXME: We should be able to push Namespc here, so that the each DeclContext
1844 // for the namespace has the declarations that showed up in that particular
1845 // namespace definition.
1846 PushDeclContext(NamespcScope
, Namespc
);
1847 return DeclPtrTy::make(Namespc
);
1850 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
1851 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1852 void Sema::ActOnFinishNamespaceDef(DeclPtrTy D
, SourceLocation RBrace
) {
1853 Decl
*Dcl
= D
.getAs
<Decl
>();
1854 NamespaceDecl
*Namespc
= dyn_cast_or_null
<NamespaceDecl
>(Dcl
);
1855 assert(Namespc
&& "Invalid parameter, expected NamespaceDecl");
1856 Namespc
->setRBracLoc(RBrace
);
1860 Sema::DeclPtrTy
Sema::ActOnUsingDirective(Scope
*S
,
1861 SourceLocation UsingLoc
,
1862 SourceLocation NamespcLoc
,
1863 const CXXScopeSpec
&SS
,
1864 SourceLocation IdentLoc
,
1865 IdentifierInfo
*NamespcName
,
1866 AttributeList
*AttrList
) {
1867 assert(!SS
.isInvalid() && "Invalid CXXScopeSpec.");
1868 assert(NamespcName
&& "Invalid NamespcName.");
1869 assert(IdentLoc
.isValid() && "Invalid NamespceName location.");
1870 assert(S
->getFlags() & Scope::DeclScope
&& "Invalid Scope.");
1872 UsingDirectiveDecl
*UDir
= 0;
1874 // Lookup namespace name.
1875 LookupResult R
= LookupParsedName(S
, &SS
, NamespcName
,
1876 LookupNamespaceName
, false);
1877 if (R
.isAmbiguous()) {
1878 DiagnoseAmbiguousLookup(R
, NamespcName
, IdentLoc
);
1881 if (NamedDecl
*NS
= R
) {
1882 assert(isa
<NamespaceDecl
>(NS
) && "expected namespace decl");
1883 // C++ [namespace.udir]p1:
1884 // A using-directive specifies that the names in the nominated
1885 // namespace can be used in the scope in which the
1886 // using-directive appears after the using-directive. During
1887 // unqualified name lookup (3.4.1), the names appear as if they
1888 // were declared in the nearest enclosing namespace which
1889 // contains both the using-directive and the nominated
1890 // namespace. [Note: in this context, “contains” means “contains
1891 // directly or indirectly”. ]
1893 // Find enclosing context containing both using-directive and
1894 // nominated namespace.
1895 DeclContext
*CommonAncestor
= cast
<DeclContext
>(NS
);
1896 while (CommonAncestor
&& !CommonAncestor
->Encloses(CurContext
))
1897 CommonAncestor
= CommonAncestor
->getParent();
1899 UDir
= UsingDirectiveDecl::Create(Context
,
1900 CurContext
, UsingLoc
,
1903 (NestedNameSpecifier
*)SS
.getScopeRep(),
1905 cast
<NamespaceDecl
>(NS
),
1907 PushUsingDirective(S
, UDir
);
1909 Diag(IdentLoc
, diag::err_expected_namespace_name
) << SS
.getRange();
1912 // FIXME: We ignore attributes for now.
1914 return DeclPtrTy::make(UDir
);
1917 void Sema::PushUsingDirective(Scope
*S
, UsingDirectiveDecl
*UDir
) {
1918 // If scope has associated entity, then using directive is at namespace
1919 // or translation unit scope. We add UsingDirectiveDecls, into
1920 // it's lookup structure.
1921 if (DeclContext
*Ctx
= static_cast<DeclContext
*>(S
->getEntity()))
1924 // Otherwise it is block-sope. using-directives will affect lookup
1925 // only to the end of scope.
1926 S
->PushUsingDirective(DeclPtrTy::make(UDir
));
1930 Sema::DeclPtrTy
Sema::ActOnUsingDeclaration(Scope
*S
,
1931 SourceLocation UsingLoc
,
1932 const CXXScopeSpec
&SS
,
1933 SourceLocation IdentLoc
,
1934 IdentifierInfo
*TargetName
,
1935 OverloadedOperatorKind Op
,
1936 AttributeList
*AttrList
,
1938 assert(!SS
.isInvalid() && "Invalid CXXScopeSpec.");
1939 assert((TargetName
|| Op
) && "Invalid TargetName.");
1940 assert(IdentLoc
.isValid() && "Invalid TargetName location.");
1941 assert(S
->getFlags() & Scope::DeclScope
&& "Invalid Scope.");
1943 UsingDecl
*UsingAlias
= 0;
1945 DeclarationName Name
;
1949 Name
= Context
.DeclarationNames
.getCXXOperatorName(Op
);
1951 // Lookup target name.
1952 LookupResult R
= LookupParsedName(S
, &SS
, Name
, LookupOrdinaryName
, false);
1954 if (NamedDecl
*NS
= R
) {
1955 if (IsTypeName
&& !isa
<TypeDecl
>(NS
)) {
1956 Diag(IdentLoc
, diag::err_using_typename_non_type
);
1958 UsingAlias
= UsingDecl::Create(Context
, CurContext
, IdentLoc
, SS
.getRange(),
1959 NS
->getLocation(), UsingLoc
, NS
,
1960 static_cast<NestedNameSpecifier
*>(SS
.getScopeRep()),
1962 PushOnScopeChains(UsingAlias
, S
);
1964 Diag(IdentLoc
, diag::err_using_requires_qualname
) << SS
.getRange();
1967 // FIXME: We ignore attributes for now.
1969 return DeclPtrTy::make(UsingAlias
);
1972 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1973 /// is a namespace alias, returns the namespace it points to.
1974 static inline NamespaceDecl
*getNamespaceDecl(NamedDecl
*D
) {
1975 if (NamespaceAliasDecl
*AD
= dyn_cast_or_null
<NamespaceAliasDecl
>(D
))
1976 return AD
->getNamespace();
1977 return dyn_cast_or_null
<NamespaceDecl
>(D
);
1980 Sema::DeclPtrTy
Sema::ActOnNamespaceAliasDef(Scope
*S
,
1981 SourceLocation NamespaceLoc
,
1982 SourceLocation AliasLoc
,
1983 IdentifierInfo
*Alias
,
1984 const CXXScopeSpec
&SS
,
1985 SourceLocation IdentLoc
,
1986 IdentifierInfo
*Ident
) {
1988 // Lookup the namespace name.
1989 LookupResult R
= LookupParsedName(S
, &SS
, Ident
, LookupNamespaceName
, false);
1991 // Check if we have a previous declaration with the same name.
1992 if (NamedDecl
*PrevDecl
= LookupName(S
, Alias
, LookupOrdinaryName
, true)) {
1993 if (NamespaceAliasDecl
*AD
= dyn_cast
<NamespaceAliasDecl
>(PrevDecl
)) {
1994 // We already have an alias with the same name that points to the same
1995 // namespace, so don't create a new one.
1996 if (!R
.isAmbiguous() && AD
->getNamespace() == getNamespaceDecl(R
))
2000 unsigned DiagID
= isa
<NamespaceDecl
>(PrevDecl
) ? diag::err_redefinition
:
2001 diag::err_redefinition_different_kind
;
2002 Diag(AliasLoc
, DiagID
) << Alias
;
2003 Diag(PrevDecl
->getLocation(), diag::note_previous_definition
);
2007 if (R
.isAmbiguous()) {
2008 DiagnoseAmbiguousLookup(R
, Ident
, IdentLoc
);
2013 Diag(NamespaceLoc
, diag::err_expected_namespace_name
) << SS
.getRange();
2017 NamespaceAliasDecl
*AliasDecl
=
2018 NamespaceAliasDecl::Create(Context
, CurContext
, NamespaceLoc
, AliasLoc
,
2019 Alias
, SS
.getRange(),
2020 (NestedNameSpecifier
*)SS
.getScopeRep(),
2023 CurContext
->addDecl(AliasDecl
);
2024 return DeclPtrTy::make(AliasDecl
);
2027 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation
,
2028 CXXConstructorDecl
*Constructor
) {
2029 assert((Constructor
->isImplicit() && Constructor
->isDefaultConstructor() &&
2030 !Constructor
->isUsed()) &&
2031 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2033 CXXRecordDecl
*ClassDecl
2034 = cast
<CXXRecordDecl
>(Constructor
->getDeclContext());
2035 assert(ClassDecl
&& "DefineImplicitDefaultConstructor - invalid constructor");
2036 // Before the implicitly-declared default constructor for a class is
2037 // implicitly defined, all the implicitly-declared default constructors
2038 // for its base class and its non-static data members shall have been
2039 // implicitly defined.
2041 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin(),
2042 E
= ClassDecl
->bases_end(); Base
!= E
; ++Base
) {
2043 CXXRecordDecl
*BaseClassDecl
2044 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
2045 if (!BaseClassDecl
->hasTrivialConstructor()) {
2046 if (CXXConstructorDecl
*BaseCtor
=
2047 BaseClassDecl
->getDefaultConstructor(Context
))
2048 MarkDeclarationReferenced(CurrentLocation
, BaseCtor
);
2050 Diag(CurrentLocation
, diag::err_defining_default_ctor
)
2051 << Context
.getTagDeclType(ClassDecl
) << 1
2052 << Context
.getTagDeclType(BaseClassDecl
);
2053 Diag(BaseClassDecl
->getLocation(), diag::note_previous_class_decl
)
2054 << Context
.getTagDeclType(BaseClassDecl
);
2059 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin(),
2060 E
= ClassDecl
->field_end(); Field
!= E
; ++Field
) {
2061 QualType FieldType
= Context
.getCanonicalType((*Field
)->getType());
2062 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
2063 FieldType
= Array
->getElementType();
2064 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
2065 CXXRecordDecl
*FieldClassDecl
2066 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
2067 if (!FieldClassDecl
->hasTrivialConstructor()) {
2068 if (CXXConstructorDecl
*FieldCtor
=
2069 FieldClassDecl
->getDefaultConstructor(Context
))
2070 MarkDeclarationReferenced(CurrentLocation
, FieldCtor
);
2072 Diag(CurrentLocation
, diag::err_defining_default_ctor
)
2073 << Context
.getTagDeclType(ClassDecl
) << 0 <<
2074 Context
.getTagDeclType(FieldClassDecl
);
2075 Diag(FieldClassDecl
->getLocation(), diag::note_previous_class_decl
)
2076 << Context
.getTagDeclType(FieldClassDecl
);
2081 else if (FieldType
->isReferenceType()) {
2082 Diag(CurrentLocation
, diag::err_unintialized_member
)
2083 << Context
.getTagDeclType(ClassDecl
) << 0 << Field
->getDeclName();
2084 Diag((*Field
)->getLocation(), diag::note_declared_at
);
2087 else if (FieldType
.isConstQualified()) {
2088 Diag(CurrentLocation
, diag::err_unintialized_member
)
2089 << Context
.getTagDeclType(ClassDecl
) << 1 << Field
->getDeclName();
2090 Diag((*Field
)->getLocation(), diag::note_declared_at
);
2095 Constructor
->setUsed();
2097 Constructor
->setInvalidDecl();
2100 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation
,
2101 CXXDestructorDecl
*Destructor
) {
2102 assert((Destructor
->isImplicit() && !Destructor
->isUsed()) &&
2103 "DefineImplicitDestructor - call it for implicit default dtor");
2105 CXXRecordDecl
*ClassDecl
2106 = cast
<CXXRecordDecl
>(Destructor
->getDeclContext());
2107 assert(ClassDecl
&& "DefineImplicitDestructor - invalid destructor");
2108 // C++ [class.dtor] p5
2109 // Before the implicitly-declared default destructor for a class is
2110 // implicitly defined, all the implicitly-declared default destructors
2111 // for its base class and its non-static data members shall have been
2112 // implicitly defined.
2113 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin(),
2114 E
= ClassDecl
->bases_end(); Base
!= E
; ++Base
) {
2115 CXXRecordDecl
*BaseClassDecl
2116 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
2117 if (!BaseClassDecl
->hasTrivialDestructor()) {
2118 if (CXXDestructorDecl
*BaseDtor
=
2119 const_cast<CXXDestructorDecl
*>(BaseClassDecl
->getDestructor(Context
)))
2120 MarkDeclarationReferenced(CurrentLocation
, BaseDtor
);
2123 "DefineImplicitDestructor - missing dtor in a base class");
2127 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin(),
2128 E
= ClassDecl
->field_end(); Field
!= E
; ++Field
) {
2129 QualType FieldType
= Context
.getCanonicalType((*Field
)->getType());
2130 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
2131 FieldType
= Array
->getElementType();
2132 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
2133 CXXRecordDecl
*FieldClassDecl
2134 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
2135 if (!FieldClassDecl
->hasTrivialDestructor()) {
2136 if (CXXDestructorDecl
*FieldDtor
=
2137 const_cast<CXXDestructorDecl
*>(
2138 FieldClassDecl
->getDestructor(Context
)))
2139 MarkDeclarationReferenced(CurrentLocation
, FieldDtor
);
2142 "DefineImplicitDestructor - missing dtor in class of a data member");
2146 Destructor
->setUsed();
2149 void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation
,
2150 CXXMethodDecl
*MethodDecl
) {
2151 assert((MethodDecl
->isImplicit() && MethodDecl
->isOverloadedOperator() &&
2152 MethodDecl
->getOverloadedOperator() == OO_Equal
&&
2153 !MethodDecl
->isUsed()) &&
2154 "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2156 CXXRecordDecl
*ClassDecl
2157 = cast
<CXXRecordDecl
>(MethodDecl
->getDeclContext());
2159 // C++[class.copy] p12
2160 // Before the implicitly-declared copy assignment operator for a class is
2161 // implicitly defined, all implicitly-declared copy assignment operators
2162 // for its direct base classes and its nonstatic data members shall have
2163 // been implicitly defined.
2165 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin(),
2166 E
= ClassDecl
->bases_end(); Base
!= E
; ++Base
) {
2167 CXXRecordDecl
*BaseClassDecl
2168 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
2169 if (CXXMethodDecl
*BaseAssignOpMethod
=
2170 getAssignOperatorMethod(MethodDecl
->getParamDecl(0), BaseClassDecl
))
2171 MarkDeclarationReferenced(CurrentLocation
, BaseAssignOpMethod
);
2173 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin(),
2174 E
= ClassDecl
->field_end(); Field
!= E
; ++Field
) {
2175 QualType FieldType
= Context
.getCanonicalType((*Field
)->getType());
2176 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
2177 FieldType
= Array
->getElementType();
2178 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
2179 CXXRecordDecl
*FieldClassDecl
2180 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
2181 if (CXXMethodDecl
*FieldAssignOpMethod
=
2182 getAssignOperatorMethod(MethodDecl
->getParamDecl(0), FieldClassDecl
))
2183 MarkDeclarationReferenced(CurrentLocation
, FieldAssignOpMethod
);
2185 else if (FieldType
->isReferenceType()) {
2186 Diag(ClassDecl
->getLocation(), diag::err_uninitialized_member_for_assign
)
2187 << Context
.getTagDeclType(ClassDecl
) << 0 << Field
->getDeclName();
2188 Diag(Field
->getLocation(), diag::note_declared_at
);
2189 Diag(CurrentLocation
, diag::note_first_required_here
);
2192 else if (FieldType
.isConstQualified()) {
2193 Diag(ClassDecl
->getLocation(), diag::err_uninitialized_member_for_assign
)
2194 << Context
.getTagDeclType(ClassDecl
) << 1 << Field
->getDeclName();
2195 Diag(Field
->getLocation(), diag::note_declared_at
);
2196 Diag(CurrentLocation
, diag::note_first_required_here
);
2201 MethodDecl
->setUsed();
2205 Sema::getAssignOperatorMethod(ParmVarDecl
*ParmDecl
,
2206 CXXRecordDecl
*ClassDecl
) {
2207 QualType LHSType
= Context
.getTypeDeclType(ClassDecl
);
2208 QualType
RHSType(LHSType
);
2209 // If class's assignment operator argument is const/volatile qualified,
2210 // look for operator = (const/volatile B&). Otherwise, look for
2212 if (ParmDecl
->getType().isConstQualified())
2214 if (ParmDecl
->getType().isVolatileQualified())
2215 RHSType
.addVolatile();
2216 ExprOwningPtr
<Expr
> LHS(this, new (Context
) DeclRefExpr(ParmDecl
,
2219 ExprOwningPtr
<Expr
> RHS(this, new (Context
) DeclRefExpr(ParmDecl
,
2222 Expr
*Args
[2] = { &*LHS
, &*RHS
};
2223 OverloadCandidateSet CandidateSet
;
2224 AddMemberOperatorCandidates(clang::OO_Equal
, SourceLocation(), Args
, 2,
2226 OverloadCandidateSet::iterator Best
;
2227 if (BestViableFunction(CandidateSet
,
2228 ClassDecl
->getLocation(), Best
) == OR_Success
)
2229 return cast
<CXXMethodDecl
>(Best
->Function
);
2231 "getAssignOperatorMethod - copy assignment operator method not found");
2235 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation
,
2236 CXXConstructorDecl
*CopyConstructor
,
2237 unsigned TypeQuals
) {
2238 assert((CopyConstructor
->isImplicit() &&
2239 CopyConstructor
->isCopyConstructor(Context
, TypeQuals
) &&
2240 !CopyConstructor
->isUsed()) &&
2241 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2243 CXXRecordDecl
*ClassDecl
2244 = cast
<CXXRecordDecl
>(CopyConstructor
->getDeclContext());
2245 assert(ClassDecl
&& "DefineImplicitCopyConstructor - invalid constructor");
2246 // C++ [class.copy] p209
2247 // Before the implicitly-declared copy constructor for a class is
2248 // implicitly defined, all the implicitly-declared copy constructors
2249 // for its base class and its non-static data members shall have been
2250 // implicitly defined.
2251 for (CXXRecordDecl::base_class_iterator Base
= ClassDecl
->bases_begin();
2252 Base
!= ClassDecl
->bases_end(); ++Base
) {
2253 CXXRecordDecl
*BaseClassDecl
2254 = cast
<CXXRecordDecl
>(Base
->getType()->getAsRecordType()->getDecl());
2255 if (CXXConstructorDecl
*BaseCopyCtor
=
2256 BaseClassDecl
->getCopyConstructor(Context
, TypeQuals
))
2257 MarkDeclarationReferenced(CurrentLocation
, BaseCopyCtor
);
2259 for (CXXRecordDecl::field_iterator Field
= ClassDecl
->field_begin(),
2260 FieldEnd
= ClassDecl
->field_end();
2261 Field
!= FieldEnd
; ++Field
) {
2262 QualType FieldType
= Context
.getCanonicalType((*Field
)->getType());
2263 if (const ArrayType
*Array
= Context
.getAsArrayType(FieldType
))
2264 FieldType
= Array
->getElementType();
2265 if (const RecordType
*FieldClassType
= FieldType
->getAsRecordType()) {
2266 CXXRecordDecl
*FieldClassDecl
2267 = cast
<CXXRecordDecl
>(FieldClassType
->getDecl());
2268 if (CXXConstructorDecl
*FieldCopyCtor
=
2269 FieldClassDecl
->getCopyConstructor(Context
, TypeQuals
))
2270 MarkDeclarationReferenced(CurrentLocation
, FieldCopyCtor
);
2273 CopyConstructor
->setUsed();
2276 void Sema::InitializeVarWithConstructor(VarDecl
*VD
,
2277 CXXConstructorDecl
*Constructor
,
2278 QualType DeclInitType
,
2279 Expr
**Exprs
, unsigned NumExprs
) {
2280 Expr
*Temp
= CXXConstructExpr::Create(Context
, DeclInitType
, Constructor
,
2281 false, Exprs
, NumExprs
);
2282 MarkDeclarationReferenced(VD
->getLocation(), Constructor
);
2283 VD
->setInit(Context
, Temp
);
2286 void Sema::MarkDestructorReferenced(SourceLocation Loc
, QualType DeclInitType
)
2288 CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(
2289 DeclInitType
->getAsRecordType()->getDecl());
2290 if (!ClassDecl
->hasTrivialDestructor())
2291 if (CXXDestructorDecl
*Destructor
=
2292 const_cast<CXXDestructorDecl
*>(ClassDecl
->getDestructor(Context
)))
2293 MarkDeclarationReferenced(Loc
, Destructor
);
2296 /// AddCXXDirectInitializerToDecl - This action is called immediately after
2297 /// ActOnDeclarator, when a C++ direct initializer is present.
2298 /// e.g: "int x(1);"
2299 void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl
,
2300 SourceLocation LParenLoc
,
2302 SourceLocation
*CommaLocs
,
2303 SourceLocation RParenLoc
) {
2304 unsigned NumExprs
= Exprs
.size();
2305 assert(NumExprs
!= 0 && Exprs
.get() && "missing expressions");
2306 Decl
*RealDecl
= Dcl
.getAs
<Decl
>();
2308 // If there is no declaration, there was an error parsing it. Just ignore
2313 VarDecl
*VDecl
= dyn_cast
<VarDecl
>(RealDecl
);
2315 Diag(RealDecl
->getLocation(), diag::err_illegal_initializer
);
2316 RealDecl
->setInvalidDecl();
2320 // FIXME: Need to handle dependent types and expressions here.
2322 // We will treat direct-initialization as a copy-initialization:
2323 // int x(1); -as-> int x = 1;
2324 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2326 // Clients that want to distinguish between the two forms, can check for
2327 // direct initializer using VarDecl::hasCXXDirectInitializer().
2328 // A major benefit is that clients that don't particularly care about which
2329 // exactly form was it (like the CodeGen) can handle both cases without
2330 // special case code.
2333 // The form of initialization (using parentheses or '=') is generally
2334 // insignificant, but does matter when the entity being initialized has a
2336 QualType DeclInitType
= VDecl
->getType();
2337 if (const ArrayType
*Array
= Context
.getAsArrayType(DeclInitType
))
2338 DeclInitType
= Array
->getElementType();
2340 // FIXME: This isn't the right place to complete the type.
2341 if (RequireCompleteType(VDecl
->getLocation(), VDecl
->getType(),
2342 diag::err_typecheck_decl_incomplete_type
)) {
2343 VDecl
->setInvalidDecl();
2347 if (VDecl
->getType()->isRecordType()) {
2348 CXXConstructorDecl
*Constructor
2349 = PerformInitializationByConstructor(DeclInitType
,
2350 (Expr
**)Exprs
.get(), NumExprs
,
2351 VDecl
->getLocation(),
2352 SourceRange(VDecl
->getLocation(),
2354 VDecl
->getDeclName(),
2357 RealDecl
->setInvalidDecl();
2359 VDecl
->setCXXDirectInitializer(true);
2360 InitializeVarWithConstructor(VDecl
, Constructor
, DeclInitType
,
2361 (Expr
**)Exprs
.release(), NumExprs
);
2362 // FIXME. Must do all that is needed to destroy the object
2363 // on scope exit. For now, just mark the destructor as used.
2364 MarkDestructorReferenced(VDecl
->getLocation(), DeclInitType
);
2370 Diag(CommaLocs
[0], diag::err_builtin_direct_init_more_than_one_arg
)
2371 << SourceRange(VDecl
->getLocation(), RParenLoc
);
2372 RealDecl
->setInvalidDecl();
2376 // Let clients know that initialization was done with a direct initializer.
2377 VDecl
->setCXXDirectInitializer(true);
2379 assert(NumExprs
== 1 && "Expected 1 expression");
2380 // Set the init expression, handles conversions.
2381 AddInitializerToDecl(Dcl
, ExprArg(*this, Exprs
.release()[0]),
2382 /*DirectInit=*/true);
2385 /// PerformInitializationByConstructor - Perform initialization by
2386 /// constructor (C++ [dcl.init]p14), which may occur as part of
2387 /// direct-initialization or copy-initialization. We are initializing
2388 /// an object of type @p ClassType with the given arguments @p
2389 /// Args. @p Loc is the location in the source code where the
2390 /// initializer occurs (e.g., a declaration, member initializer,
2391 /// functional cast, etc.) while @p Range covers the whole
2392 /// initialization. @p InitEntity is the entity being initialized,
2393 /// which may by the name of a declaration or a type. @p Kind is the
2394 /// kind of initialization we're performing, which affects whether
2395 /// explicit constructors will be considered. When successful, returns
2396 /// the constructor that will be used to perform the initialization;
2397 /// when the initialization fails, emits a diagnostic and returns
2399 CXXConstructorDecl
*
2400 Sema::PerformInitializationByConstructor(QualType ClassType
,
2401 Expr
**Args
, unsigned NumArgs
,
2402 SourceLocation Loc
, SourceRange Range
,
2403 DeclarationName InitEntity
,
2404 InitializationKind Kind
) {
2405 const RecordType
*ClassRec
= ClassType
->getAsRecordType();
2406 assert(ClassRec
&& "Can only initialize a class type here");
2408 // C++ [dcl.init]p14:
2410 // If the initialization is direct-initialization, or if it is
2411 // copy-initialization where the cv-unqualified version of the
2412 // source type is the same class as, or a derived class of, the
2413 // class of the destination, constructors are considered. The
2414 // applicable constructors are enumerated (13.3.1.3), and the
2415 // best one is chosen through overload resolution (13.3). The
2416 // constructor so selected is called to initialize the object,
2417 // with the initializer expression(s) as its argument(s). If no
2418 // constructor applies, or the overload resolution is ambiguous,
2419 // the initialization is ill-formed.
2420 const CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(ClassRec
->getDecl());
2421 OverloadCandidateSet CandidateSet
;
2423 // Add constructors to the overload set.
2424 DeclarationName ConstructorName
2425 = Context
.DeclarationNames
.getCXXConstructorName(
2426 Context
.getCanonicalType(ClassType
.getUnqualifiedType()));
2427 DeclContext::lookup_const_iterator Con
, ConEnd
;
2428 for (llvm::tie(Con
, ConEnd
) = ClassDecl
->lookup(ConstructorName
);
2429 Con
!= ConEnd
; ++Con
) {
2430 CXXConstructorDecl
*Constructor
= cast
<CXXConstructorDecl
>(*Con
);
2431 if ((Kind
== IK_Direct
) ||
2432 (Kind
== IK_Copy
&& Constructor
->isConvertingConstructor()) ||
2433 (Kind
== IK_Default
&& Constructor
->isDefaultConstructor()))
2434 AddOverloadCandidate(Constructor
, Args
, NumArgs
, CandidateSet
);
2437 // FIXME: When we decide not to synthesize the implicitly-declared
2438 // constructors, we'll need to make them appear here.
2440 OverloadCandidateSet::iterator Best
;
2441 switch (BestViableFunction(CandidateSet
, Loc
, Best
)) {
2443 // We found a constructor. Return it.
2444 return cast
<CXXConstructorDecl
>(Best
->Function
);
2446 case OR_No_Viable_Function
:
2448 Diag(Loc
, diag::err_ovl_no_viable_function_in_init
)
2449 << InitEntity
<< Range
;
2451 Diag(Loc
, diag::err_ovl_no_viable_function_in_init
)
2452 << ClassType
<< Range
;
2453 PrintOverloadCandidates(CandidateSet
, /*OnlyViable=*/false);
2458 Diag(Loc
, diag::err_ovl_ambiguous_init
) << InitEntity
<< Range
;
2460 Diag(Loc
, diag::err_ovl_ambiguous_init
) << ClassType
<< Range
;
2461 PrintOverloadCandidates(CandidateSet
, /*OnlyViable=*/true);
2466 Diag(Loc
, diag::err_ovl_deleted_init
)
2467 << Best
->Function
->isDeleted()
2468 << InitEntity
<< Range
;
2470 Diag(Loc
, diag::err_ovl_deleted_init
)
2471 << Best
->Function
->isDeleted()
2472 << InitEntity
<< Range
;
2473 PrintOverloadCandidates(CandidateSet
, /*OnlyViable=*/true);
2480 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
2481 /// determine whether they are reference-related,
2482 /// reference-compatible, reference-compatible with added
2483 /// qualification, or incompatible, for use in C++ initialization by
2484 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2485 /// type, and the first type (T1) is the pointee type of the reference
2486 /// type being initialized.
2487 Sema::ReferenceCompareResult
2488 Sema::CompareReferenceRelationship(QualType T1
, QualType T2
,
2489 bool& DerivedToBase
) {
2490 assert(!T1
->isReferenceType() &&
2491 "T1 must be the pointee type of the reference type");
2492 assert(!T2
->isReferenceType() && "T2 cannot be a reference type");
2494 T1
= Context
.getCanonicalType(T1
);
2495 T2
= Context
.getCanonicalType(T2
);
2496 QualType UnqualT1
= T1
.getUnqualifiedType();
2497 QualType UnqualT2
= T2
.getUnqualifiedType();
2499 // C++ [dcl.init.ref]p4:
2500 // Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2501 // reference-related to “cv2 T2” if T1 is the same type as T2, or
2502 // T1 is a base class of T2.
2503 if (UnqualT1
== UnqualT2
)
2504 DerivedToBase
= false;
2505 else if (IsDerivedFrom(UnqualT2
, UnqualT1
))
2506 DerivedToBase
= true;
2508 return Ref_Incompatible
;
2510 // At this point, we know that T1 and T2 are reference-related (at
2513 // C++ [dcl.init.ref]p4:
2514 // "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2515 // reference-related to T2 and cv1 is the same cv-qualification
2516 // as, or greater cv-qualification than, cv2. For purposes of
2517 // overload resolution, cases for which cv1 is greater
2518 // cv-qualification than cv2 are identified as
2519 // reference-compatible with added qualification (see 13.3.3.2).
2520 if (T1
.getCVRQualifiers() == T2
.getCVRQualifiers())
2521 return Ref_Compatible
;
2522 else if (T1
.isMoreQualifiedThan(T2
))
2523 return Ref_Compatible_With_Added_Qualification
;
2528 /// CheckReferenceInit - Check the initialization of a reference
2529 /// variable with the given initializer (C++ [dcl.init.ref]). Init is
2530 /// the initializer (either a simple initializer or an initializer
2531 /// list), and DeclType is the type of the declaration. When ICS is
2532 /// non-null, this routine will compute the implicit conversion
2533 /// sequence according to C++ [over.ics.ref] and will not produce any
2534 /// diagnostics; when ICS is null, it will emit diagnostics when any
2535 /// errors are found. Either way, a return value of true indicates
2536 /// that there was a failure, a return value of false indicates that
2537 /// the reference initialization succeeded.
2539 /// When @p SuppressUserConversions, user-defined conversions are
2541 /// When @p AllowExplicit, we also permit explicit user-defined
2542 /// conversion functions.
2543 /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2545 Sema::CheckReferenceInit(Expr
*&Init
, QualType DeclType
,
2546 ImplicitConversionSequence
*ICS
,
2547 bool SuppressUserConversions
,
2548 bool AllowExplicit
, bool ForceRValue
) {
2549 assert(DeclType
->isReferenceType() && "Reference init needs a reference");
2551 QualType T1
= DeclType
->getAsReferenceType()->getPointeeType();
2552 QualType T2
= Init
->getType();
2554 // If the initializer is the address of an overloaded function, try
2555 // to resolve the overloaded function. If all goes well, T2 is the
2556 // type of the resulting function.
2557 if (Context
.getCanonicalType(T2
) == Context
.OverloadTy
) {
2558 FunctionDecl
*Fn
= ResolveAddressOfOverloadedFunction(Init
, DeclType
,
2561 // Since we're performing this reference-initialization for
2562 // real, update the initializer with the resulting function.
2564 if (DiagnoseUseOfDecl(Fn
, Init
->getSourceRange().getBegin()))
2567 FixOverloadedFunctionReference(Init
, Fn
);
2574 // Compute some basic properties of the types and the initializer.
2575 bool isRValRef
= DeclType
->isRValueReferenceType();
2576 bool DerivedToBase
= false;
2577 Expr::isLvalueResult InitLvalue
= ForceRValue
? Expr::LV_InvalidExpression
:
2578 Init
->isLvalue(Context
);
2579 ReferenceCompareResult RefRelationship
2580 = CompareReferenceRelationship(T1
, T2
, DerivedToBase
);
2582 // Most paths end in a failed conversion.
2584 ICS
->ConversionKind
= ImplicitConversionSequence::BadConversion
;
2586 // C++ [dcl.init.ref]p5:
2587 // A reference to type “cv1 T1” is initialized by an expression
2588 // of type “cv2 T2” as follows:
2590 // -- If the initializer expression
2592 // Rvalue references cannot bind to lvalues (N2812).
2593 // There is absolutely no situation where they can. In particular, note that
2594 // this is ill-formed, even if B has a user-defined conversion to A&&:
2597 if (isRValRef
&& InitLvalue
== Expr::LV_Valid
) {
2599 Diag(Init
->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref
)
2600 << Init
->getSourceRange();
2604 bool BindsDirectly
= false;
2605 // -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2606 // reference-compatible with “cv2 T2,” or
2608 // Note that the bit-field check is skipped if we are just computing
2609 // the implicit conversion sequence (C++ [over.best.ics]p2).
2610 if (InitLvalue
== Expr::LV_Valid
&& (ICS
|| !Init
->getBitField()) &&
2611 RefRelationship
>= Ref_Compatible_With_Added_Qualification
) {
2612 BindsDirectly
= true;
2615 // C++ [over.ics.ref]p1:
2616 // When a parameter of reference type binds directly (8.5.3)
2617 // to an argument expression, the implicit conversion sequence
2618 // is the identity conversion, unless the argument expression
2619 // has a type that is a derived class of the parameter type,
2620 // in which case the implicit conversion sequence is a
2621 // derived-to-base Conversion (13.3.3.1).
2622 ICS
->ConversionKind
= ImplicitConversionSequence::StandardConversion
;
2623 ICS
->Standard
.First
= ICK_Identity
;
2624 ICS
->Standard
.Second
= DerivedToBase
? ICK_Derived_To_Base
: ICK_Identity
;
2625 ICS
->Standard
.Third
= ICK_Identity
;
2626 ICS
->Standard
.FromTypePtr
= T2
.getAsOpaquePtr();
2627 ICS
->Standard
.ToTypePtr
= T1
.getAsOpaquePtr();
2628 ICS
->Standard
.ReferenceBinding
= true;
2629 ICS
->Standard
.DirectBinding
= true;
2630 ICS
->Standard
.RRefBinding
= false;
2631 ICS
->Standard
.CopyConstructor
= 0;
2633 // Nothing more to do: the inaccessibility/ambiguity check for
2634 // derived-to-base conversions is suppressed when we're
2635 // computing the implicit conversion sequence (C++
2636 // [over.best.ics]p2).
2639 // Perform the conversion.
2640 // FIXME: Binding to a subobject of the lvalue is going to require more
2641 // AST annotation than this.
2642 ImpCastExprToType(Init
, T1
, /*isLvalue=*/true);
2646 // -- has a class type (i.e., T2 is a class type) and can be
2647 // implicitly converted to an lvalue of type “cv3 T3,”
2648 // where “cv1 T1” is reference-compatible with “cv3 T3”
2649 // 92) (this conversion is selected by enumerating the
2650 // applicable conversion functions (13.3.1.6) and choosing
2651 // the best one through overload resolution (13.3)),
2652 if (!isRValRef
&& !SuppressUserConversions
&& T2
->isRecordType()) {
2653 // FIXME: Look for conversions in base classes!
2654 CXXRecordDecl
*T2RecordDecl
2655 = dyn_cast
<CXXRecordDecl
>(T2
->getAsRecordType()->getDecl());
2657 OverloadCandidateSet CandidateSet
;
2658 OverloadedFunctionDecl
*Conversions
2659 = T2RecordDecl
->getConversionFunctions();
2660 for (OverloadedFunctionDecl::function_iterator Func
2661 = Conversions
->function_begin();
2662 Func
!= Conversions
->function_end(); ++Func
) {
2663 CXXConversionDecl
*Conv
= cast
<CXXConversionDecl
>(*Func
);
2665 // If the conversion function doesn't return a reference type,
2666 // it can't be considered for this conversion.
2667 if (Conv
->getConversionType()->isLValueReferenceType() &&
2668 (AllowExplicit
|| !Conv
->isExplicit()))
2669 AddConversionCandidate(Conv
, Init
, DeclType
, CandidateSet
);
2672 OverloadCandidateSet::iterator Best
;
2673 switch (BestViableFunction(CandidateSet
, Init
->getLocStart(), Best
)) {
2675 // This is a direct binding.
2676 BindsDirectly
= true;
2679 // C++ [over.ics.ref]p1:
2681 // [...] If the parameter binds directly to the result of
2682 // applying a conversion function to the argument
2683 // expression, the implicit conversion sequence is a
2684 // user-defined conversion sequence (13.3.3.1.2), with the
2685 // second standard conversion sequence either an identity
2686 // conversion or, if the conversion function returns an
2687 // entity of a type that is a derived class of the parameter
2688 // type, a derived-to-base Conversion.
2689 ICS
->ConversionKind
= ImplicitConversionSequence::UserDefinedConversion
;
2690 ICS
->UserDefined
.Before
= Best
->Conversions
[0].Standard
;
2691 ICS
->UserDefined
.After
= Best
->FinalConversion
;
2692 ICS
->UserDefined
.ConversionFunction
= Best
->Function
;
2693 assert(ICS
->UserDefined
.After
.ReferenceBinding
&&
2694 ICS
->UserDefined
.After
.DirectBinding
&&
2695 "Expected a direct reference binding!");
2698 // Perform the conversion.
2699 // FIXME: Binding to a subobject of the lvalue is going to require more
2700 // AST annotation than this.
2701 ImpCastExprToType(Init
, T1
, /*isLvalue=*/true);
2706 assert(false && "Ambiguous reference binding conversions not implemented.");
2709 case OR_No_Viable_Function
:
2711 // There was no suitable conversion, or we found a deleted
2712 // conversion; continue with other checks.
2717 if (BindsDirectly
) {
2718 // C++ [dcl.init.ref]p4:
2719 // [...] In all cases where the reference-related or
2720 // reference-compatible relationship of two types is used to
2721 // establish the validity of a reference binding, and T1 is a
2722 // base class of T2, a program that necessitates such a binding
2723 // is ill-formed if T1 is an inaccessible (clause 11) or
2724 // ambiguous (10.2) base class of T2.
2726 // Note that we only check this condition when we're allowed to
2727 // complain about errors, because we should not be checking for
2728 // ambiguity (or inaccessibility) unless the reference binding
2729 // actually happens.
2731 return CheckDerivedToBaseConversion(T2
, T1
,
2732 Init
->getSourceRange().getBegin(),
2733 Init
->getSourceRange());
2738 // -- Otherwise, the reference shall be to a non-volatile const
2739 // type (i.e., cv1 shall be const), or the reference shall be an
2740 // rvalue reference and the initializer expression shall be an rvalue.
2741 if (!isRValRef
&& T1
.getCVRQualifiers() != QualType::Const
) {
2743 Diag(Init
->getSourceRange().getBegin(),
2744 diag::err_not_reference_to_const_init
)
2745 << T1
<< (InitLvalue
!= Expr::LV_Valid
? "temporary" : "value")
2746 << T2
<< Init
->getSourceRange();
2750 // -- If the initializer expression is an rvalue, with T2 a
2751 // class type, and “cv1 T1” is reference-compatible with
2752 // “cv2 T2,” the reference is bound in one of the
2753 // following ways (the choice is implementation-defined):
2755 // -- The reference is bound to the object represented by
2756 // the rvalue (see 3.10) or to a sub-object within that
2759 // -- A temporary of type “cv1 T2” [sic] is created, and
2760 // a constructor is called to copy the entire rvalue
2761 // object into the temporary. The reference is bound to
2762 // the temporary or to a sub-object within the
2765 // The constructor that would be used to make the copy
2766 // shall be callable whether or not the copy is actually
2769 // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2770 // freedom, so we will always take the first option and never build
2771 // a temporary in this case. FIXME: We will, however, have to check
2772 // for the presence of a copy constructor in C++98/03 mode.
2773 if (InitLvalue
!= Expr::LV_Valid
&& T2
->isRecordType() &&
2774 RefRelationship
>= Ref_Compatible_With_Added_Qualification
) {
2776 ICS
->ConversionKind
= ImplicitConversionSequence::StandardConversion
;
2777 ICS
->Standard
.First
= ICK_Identity
;
2778 ICS
->Standard
.Second
= DerivedToBase
? ICK_Derived_To_Base
: ICK_Identity
;
2779 ICS
->Standard
.Third
= ICK_Identity
;
2780 ICS
->Standard
.FromTypePtr
= T2
.getAsOpaquePtr();
2781 ICS
->Standard
.ToTypePtr
= T1
.getAsOpaquePtr();
2782 ICS
->Standard
.ReferenceBinding
= true;
2783 ICS
->Standard
.DirectBinding
= false;
2784 ICS
->Standard
.RRefBinding
= isRValRef
;
2785 ICS
->Standard
.CopyConstructor
= 0;
2787 // FIXME: Binding to a subobject of the rvalue is going to require more
2788 // AST annotation than this.
2789 ImpCastExprToType(Init
, T1
, /*isLvalue=*/false);
2794 // -- Otherwise, a temporary of type “cv1 T1” is created and
2795 // initialized from the initializer expression using the
2796 // rules for a non-reference copy initialization (8.5). The
2797 // reference is then bound to the temporary. If T1 is
2798 // reference-related to T2, cv1 must be the same
2799 // cv-qualification as, or greater cv-qualification than,
2800 // cv2; otherwise, the program is ill-formed.
2801 if (RefRelationship
== Ref_Related
) {
2802 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2803 // we would be reference-compatible or reference-compatible with
2804 // added qualification. But that wasn't the case, so the reference
2805 // initialization fails.
2807 Diag(Init
->getSourceRange().getBegin(),
2808 diag::err_reference_init_drops_quals
)
2809 << T1
<< (InitLvalue
!= Expr::LV_Valid
? "temporary" : "value")
2810 << T2
<< Init
->getSourceRange();
2814 // If at least one of the types is a class type, the types are not
2815 // related, and we aren't allowed any user conversions, the
2816 // reference binding fails. This case is important for breaking
2817 // recursion, since TryImplicitConversion below will attempt to
2818 // create a temporary through the use of a copy constructor.
2819 if (SuppressUserConversions
&& RefRelationship
== Ref_Incompatible
&&
2820 (T1
->isRecordType() || T2
->isRecordType())) {
2822 Diag(Init
->getSourceRange().getBegin(),
2823 diag::err_typecheck_convert_incompatible
)
2824 << DeclType
<< Init
->getType() << "initializing" << Init
->getSourceRange();
2828 // Actually try to convert the initializer to T1.
2830 // C++ [over.ics.ref]p2:
2832 // When a parameter of reference type is not bound directly to
2833 // an argument expression, the conversion sequence is the one
2834 // required to convert the argument expression to the
2835 // underlying type of the reference according to
2836 // 13.3.3.1. Conceptually, this conversion sequence corresponds
2837 // to copy-initializing a temporary of the underlying type with
2838 // the argument expression. Any difference in top-level
2839 // cv-qualification is subsumed by the initialization itself
2840 // and does not constitute a conversion.
2841 *ICS
= TryImplicitConversion(Init
, T1
, SuppressUserConversions
);
2842 // Of course, that's still a reference binding.
2843 if (ICS
->ConversionKind
== ImplicitConversionSequence::StandardConversion
) {
2844 ICS
->Standard
.ReferenceBinding
= true;
2845 ICS
->Standard
.RRefBinding
= isRValRef
;
2846 } else if(ICS
->ConversionKind
==
2847 ImplicitConversionSequence::UserDefinedConversion
) {
2848 ICS
->UserDefined
.After
.ReferenceBinding
= true;
2849 ICS
->UserDefined
.After
.RRefBinding
= isRValRef
;
2851 return ICS
->ConversionKind
== ImplicitConversionSequence::BadConversion
;
2853 return PerformImplicitConversion(Init
, T1
, "initializing");
2857 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
2858 /// of this overloaded operator is well-formed. If so, returns false;
2859 /// otherwise, emits appropriate diagnostics and returns true.
2860 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl
*FnDecl
) {
2861 assert(FnDecl
&& FnDecl
->isOverloadedOperator() &&
2862 "Expected an overloaded operator declaration");
2864 OverloadedOperatorKind Op
= FnDecl
->getOverloadedOperator();
2866 // C++ [over.oper]p5:
2867 // The allocation and deallocation functions, operator new,
2868 // operator new[], operator delete and operator delete[], are
2869 // described completely in 3.7.3. The attributes and restrictions
2870 // found in the rest of this subclause do not apply to them unless
2871 // explicitly stated in 3.7.3.
2872 // FIXME: Write a separate routine for checking this. For now, just allow it.
2873 if (Op
== OO_New
|| Op
== OO_Array_New
||
2874 Op
== OO_Delete
|| Op
== OO_Array_Delete
)
2877 // C++ [over.oper]p6:
2878 // An operator function shall either be a non-static member
2879 // function or be a non-member function and have at least one
2880 // parameter whose type is a class, a reference to a class, an
2881 // enumeration, or a reference to an enumeration.
2882 if (CXXMethodDecl
*MethodDecl
= dyn_cast
<CXXMethodDecl
>(FnDecl
)) {
2883 if (MethodDecl
->isStatic())
2884 return Diag(FnDecl
->getLocation(),
2885 diag::err_operator_overload_static
) << FnDecl
->getDeclName();
2887 bool ClassOrEnumParam
= false;
2888 for (FunctionDecl::param_iterator Param
= FnDecl
->param_begin(),
2889 ParamEnd
= FnDecl
->param_end();
2890 Param
!= ParamEnd
; ++Param
) {
2891 QualType ParamType
= (*Param
)->getType().getNonReferenceType();
2892 if (ParamType
->isDependentType() || ParamType
->isRecordType() ||
2893 ParamType
->isEnumeralType()) {
2894 ClassOrEnumParam
= true;
2899 if (!ClassOrEnumParam
)
2900 return Diag(FnDecl
->getLocation(),
2901 diag::err_operator_overload_needs_class_or_enum
)
2902 << FnDecl
->getDeclName();
2905 // C++ [over.oper]p8:
2906 // An operator function cannot have default arguments (8.3.6),
2907 // except where explicitly stated below.
2909 // Only the function-call operator allows default arguments
2910 // (C++ [over.call]p1).
2911 if (Op
!= OO_Call
) {
2912 for (FunctionDecl::param_iterator Param
= FnDecl
->param_begin();
2913 Param
!= FnDecl
->param_end(); ++Param
) {
2914 if ((*Param
)->hasUnparsedDefaultArg())
2915 return Diag((*Param
)->getLocation(),
2916 diag::err_operator_overload_default_arg
)
2917 << FnDecl
->getDeclName();
2918 else if (Expr
*DefArg
= (*Param
)->getDefaultArg())
2919 return Diag((*Param
)->getLocation(),
2920 diag::err_operator_overload_default_arg
)
2921 << FnDecl
->getDeclName() << DefArg
->getSourceRange();
2925 static const bool OperatorUses
[NUM_OVERLOADED_OPERATORS
][3] = {
2926 { false, false, false }
2927 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2928 , { Unary, Binary, MemberOnly }
2929 #include "clang/Basic/OperatorKinds.def"
2932 bool CanBeUnaryOperator
= OperatorUses
[Op
][0];
2933 bool CanBeBinaryOperator
= OperatorUses
[Op
][1];
2934 bool MustBeMemberOperator
= OperatorUses
[Op
][2];
2936 // C++ [over.oper]p8:
2937 // [...] Operator functions cannot have more or fewer parameters
2938 // than the number required for the corresponding operator, as
2939 // described in the rest of this subclause.
2940 unsigned NumParams
= FnDecl
->getNumParams()
2941 + (isa
<CXXMethodDecl
>(FnDecl
)? 1 : 0);
2942 if (Op
!= OO_Call
&&
2943 ((NumParams
== 1 && !CanBeUnaryOperator
) ||
2944 (NumParams
== 2 && !CanBeBinaryOperator
) ||
2945 (NumParams
< 1) || (NumParams
> 2))) {
2946 // We have the wrong number of parameters.
2948 if (CanBeUnaryOperator
&& CanBeBinaryOperator
) {
2949 ErrorKind
= 2; // 2 -> unary or binary.
2950 } else if (CanBeUnaryOperator
) {
2951 ErrorKind
= 0; // 0 -> unary
2953 assert(CanBeBinaryOperator
&&
2954 "All non-call overloaded operators are unary or binary!");
2955 ErrorKind
= 1; // 1 -> binary
2958 return Diag(FnDecl
->getLocation(), diag::err_operator_overload_must_be
)
2959 << FnDecl
->getDeclName() << NumParams
<< ErrorKind
;
2962 // Overloaded operators other than operator() cannot be variadic.
2963 if (Op
!= OO_Call
&&
2964 FnDecl
->getType()->getAsFunctionProtoType()->isVariadic()) {
2965 return Diag(FnDecl
->getLocation(), diag::err_operator_overload_variadic
)
2966 << FnDecl
->getDeclName();
2969 // Some operators must be non-static member functions.
2970 if (MustBeMemberOperator
&& !isa
<CXXMethodDecl
>(FnDecl
)) {
2971 return Diag(FnDecl
->getLocation(),
2972 diag::err_operator_overload_must_be_member
)
2973 << FnDecl
->getDeclName();
2976 // C++ [over.inc]p1:
2977 // The user-defined function called operator++ implements the
2978 // prefix and postfix ++ operator. If this function is a member
2979 // function with no parameters, or a non-member function with one
2980 // parameter of class or enumeration type, it defines the prefix
2981 // increment operator ++ for objects of that type. If the function
2982 // is a member function with one parameter (which shall be of type
2983 // int) or a non-member function with two parameters (the second
2984 // of which shall be of type int), it defines the postfix
2985 // increment operator ++ for objects of that type.
2986 if ((Op
== OO_PlusPlus
|| Op
== OO_MinusMinus
) && NumParams
== 2) {
2987 ParmVarDecl
*LastParam
= FnDecl
->getParamDecl(FnDecl
->getNumParams() - 1);
2988 bool ParamIsInt
= false;
2989 if (const BuiltinType
*BT
= LastParam
->getType()->getAsBuiltinType())
2990 ParamIsInt
= BT
->getKind() == BuiltinType::Int
;
2993 return Diag(LastParam
->getLocation(),
2994 diag::err_operator_overload_post_incdec_must_be_int
)
2995 << LastParam
->getType() << (Op
== OO_MinusMinus
);
2998 // Notify the class if it got an assignment operator.
2999 if (Op
== OO_Equal
) {
3000 // Would have returned earlier otherwise.
3001 assert(isa
<CXXMethodDecl
>(FnDecl
) &&
3002 "Overloaded = not member, but not filtered.");
3003 CXXMethodDecl
*Method
= cast
<CXXMethodDecl
>(FnDecl
);
3004 Method
->getParent()->addedAssignmentOperator(Context
, Method
);
3010 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3011 /// linkage specification, including the language and (if present)
3012 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3013 /// the location of the language string literal, which is provided
3014 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3015 /// the '{' brace. Otherwise, this linkage specification does not
3016 /// have any braces.
3017 Sema::DeclPtrTy
Sema::ActOnStartLinkageSpecification(Scope
*S
,
3018 SourceLocation ExternLoc
,
3019 SourceLocation LangLoc
,
3022 SourceLocation LBraceLoc
) {
3023 LinkageSpecDecl::LanguageIDs Language
;
3024 if (strncmp(Lang
, "\"C\"", StrSize
) == 0)
3025 Language
= LinkageSpecDecl::lang_c
;
3026 else if (strncmp(Lang
, "\"C++\"", StrSize
) == 0)
3027 Language
= LinkageSpecDecl::lang_cxx
;
3029 Diag(LangLoc
, diag::err_bad_language
);
3033 // FIXME: Add all the various semantics of linkage specifications
3035 LinkageSpecDecl
*D
= LinkageSpecDecl::Create(Context
, CurContext
,
3037 LBraceLoc
.isValid());
3038 CurContext
->addDecl(D
);
3039 PushDeclContext(S
, D
);
3040 return DeclPtrTy::make(D
);
3043 /// ActOnFinishLinkageSpecification - Completely the definition of
3044 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
3045 /// valid, it's the position of the closing '}' brace in a linkage
3046 /// specification that uses braces.
3047 Sema::DeclPtrTy
Sema::ActOnFinishLinkageSpecification(Scope
*S
,
3048 DeclPtrTy LinkageSpec
,
3049 SourceLocation RBraceLoc
) {
3055 /// \brief Perform semantic analysis for the variable declaration that
3056 /// occurs within a C++ catch clause, returning the newly-created
3058 VarDecl
*Sema::BuildExceptionDeclaration(Scope
*S
, QualType ExDeclType
,
3059 IdentifierInfo
*Name
,
3061 SourceRange Range
) {
3062 bool Invalid
= false;
3064 // Arrays and functions decay.
3065 if (ExDeclType
->isArrayType())
3066 ExDeclType
= Context
.getArrayDecayedType(ExDeclType
);
3067 else if (ExDeclType
->isFunctionType())
3068 ExDeclType
= Context
.getPointerType(ExDeclType
);
3070 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3071 // The exception-declaration shall not denote a pointer or reference to an
3072 // incomplete type, other than [cv] void*.
3073 // N2844 forbids rvalue references.
3074 if(!ExDeclType
->isDependentType() && ExDeclType
->isRValueReferenceType()) {
3075 Diag(Loc
, diag::err_catch_rvalue_ref
) << Range
;
3079 QualType BaseType
= ExDeclType
;
3080 int Mode
= 0; // 0 for direct type, 1 for pointer, 2 for reference
3081 unsigned DK
= diag::err_catch_incomplete
;
3082 if (const PointerType
*Ptr
= BaseType
->getAsPointerType()) {
3083 BaseType
= Ptr
->getPointeeType();
3085 DK
= diag::err_catch_incomplete_ptr
;
3086 } else if(const ReferenceType
*Ref
= BaseType
->getAsReferenceType()) {
3087 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3088 BaseType
= Ref
->getPointeeType();
3090 DK
= diag::err_catch_incomplete_ref
;
3092 if (!Invalid
&& (Mode
== 0 || !BaseType
->isVoidType()) &&
3093 !BaseType
->isDependentType() && RequireCompleteType(Loc
, BaseType
, DK
))
3096 if (!Invalid
&& !ExDeclType
->isDependentType() &&
3097 RequireNonAbstractType(Loc
, ExDeclType
,
3098 diag::err_abstract_type_in_decl
,
3099 AbstractVariableType
))
3102 // FIXME: Need to test for ability to copy-construct and destroy the
3103 // exception variable.
3105 // FIXME: Need to check for abstract classes.
3107 VarDecl
*ExDecl
= VarDecl::Create(Context
, CurContext
, Loc
,
3108 Name
, ExDeclType
, VarDecl::None
,
3112 ExDecl
->setInvalidDecl();
3117 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3119 Sema::DeclPtrTy
Sema::ActOnExceptionDeclarator(Scope
*S
, Declarator
&D
) {
3120 QualType ExDeclType
= GetTypeForDeclarator(D
, S
);
3122 bool Invalid
= D
.isInvalidType();
3123 IdentifierInfo
*II
= D
.getIdentifier();
3124 if (NamedDecl
*PrevDecl
= LookupName(S
, II
, LookupOrdinaryName
)) {
3125 // The scope should be freshly made just for us. There is just no way
3126 // it contains any previous declaration.
3127 assert(!S
->isDeclScope(DeclPtrTy::make(PrevDecl
)));
3128 if (PrevDecl
->isTemplateParameter()) {
3129 // Maybe we will complain about the shadowed template parameter.
3130 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
3134 if (D
.getCXXScopeSpec().isSet() && !Invalid
) {
3135 Diag(D
.getIdentifierLoc(), diag::err_qualified_catch_declarator
)
3136 << D
.getCXXScopeSpec().getRange();
3140 VarDecl
*ExDecl
= BuildExceptionDeclaration(S
, ExDeclType
,
3142 D
.getIdentifierLoc(),
3143 D
.getDeclSpec().getSourceRange());
3146 ExDecl
->setInvalidDecl();
3148 // Add the exception declaration into this scope.
3150 PushOnScopeChains(ExDecl
, S
);
3152 CurContext
->addDecl(ExDecl
);
3154 ProcessDeclAttributes(S
, ExDecl
, D
);
3155 return DeclPtrTy::make(ExDecl
);
3158 Sema::DeclPtrTy
Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc
,
3160 ExprArg assertmessageexpr
) {
3161 Expr
*AssertExpr
= (Expr
*)assertexpr
.get();
3162 StringLiteral
*AssertMessage
=
3163 cast
<StringLiteral
>((Expr
*)assertmessageexpr
.get());
3165 if (!AssertExpr
->isTypeDependent() && !AssertExpr
->isValueDependent()) {
3166 llvm::APSInt
Value(32);
3167 if (!AssertExpr
->isIntegerConstantExpr(Value
, Context
)) {
3168 Diag(AssertLoc
, diag::err_static_assert_expression_is_not_constant
) <<
3169 AssertExpr
->getSourceRange();
3174 std::string
str(AssertMessage
->getStrData(),
3175 AssertMessage
->getByteLength());
3176 Diag(AssertLoc
, diag::err_static_assert_failed
)
3177 << str
<< AssertExpr
->getSourceRange();
3181 assertexpr
.release();
3182 assertmessageexpr
.release();
3183 Decl
*Decl
= StaticAssertDecl::Create(Context
, CurContext
, AssertLoc
,
3184 AssertExpr
, AssertMessage
);
3186 CurContext
->addDecl(Decl
);
3187 return DeclPtrTy::make(Decl
);
3190 bool Sema::ActOnFriendDecl(Scope
*S
, SourceLocation FriendLoc
, DeclPtrTy Dcl
) {
3191 if (!(S
->getFlags() & Scope::ClassScope
)) {
3192 Diag(FriendLoc
, diag::err_friend_decl_outside_class
);
3199 void Sema::SetDeclDeleted(DeclPtrTy dcl
, SourceLocation DelLoc
) {
3200 Decl
*Dcl
= dcl
.getAs
<Decl
>();
3201 FunctionDecl
*Fn
= dyn_cast
<FunctionDecl
>(Dcl
);
3203 Diag(DelLoc
, diag::err_deleted_non_function
);
3206 if (const FunctionDecl
*Prev
= Fn
->getPreviousDeclaration()) {
3207 Diag(DelLoc
, diag::err_deleted_decl_not_first
);
3208 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
3209 // If the declaration wasn't the first, we delete the function anyway for
3215 static void SearchForReturnInStmt(Sema
&Self
, Stmt
*S
) {
3216 for (Stmt::child_iterator CI
= S
->child_begin(), E
= S
->child_end(); CI
!= E
;
3218 Stmt
*SubStmt
= *CI
;
3221 if (isa
<ReturnStmt
>(SubStmt
))
3222 Self
.Diag(SubStmt
->getSourceRange().getBegin(),
3223 diag::err_return_in_constructor_handler
);
3224 if (!isa
<Expr
>(SubStmt
))
3225 SearchForReturnInStmt(Self
, SubStmt
);
3229 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt
*TryBlock
) {
3230 for (unsigned I
= 0, E
= TryBlock
->getNumHandlers(); I
!= E
; ++I
) {
3231 CXXCatchStmt
*Handler
= TryBlock
->getHandler(I
);
3232 SearchForReturnInStmt(*this, Handler
);
3236 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl
*New
,
3237 const CXXMethodDecl
*Old
) {
3238 QualType NewTy
= New
->getType()->getAsFunctionType()->getResultType();
3239 QualType OldTy
= Old
->getType()->getAsFunctionType()->getResultType();
3241 QualType CNewTy
= Context
.getCanonicalType(NewTy
);
3242 QualType COldTy
= Context
.getCanonicalType(OldTy
);
3244 if (CNewTy
== COldTy
&&
3245 CNewTy
.getCVRQualifiers() == COldTy
.getCVRQualifiers())
3248 // Check if the return types are covariant
3249 QualType NewClassTy
, OldClassTy
;
3251 /// Both types must be pointers or references to classes.
3252 if (PointerType
*NewPT
= dyn_cast
<PointerType
>(NewTy
)) {
3253 if (PointerType
*OldPT
= dyn_cast
<PointerType
>(OldTy
)) {
3254 NewClassTy
= NewPT
->getPointeeType();
3255 OldClassTy
= OldPT
->getPointeeType();
3257 } else if (ReferenceType
*NewRT
= dyn_cast
<ReferenceType
>(NewTy
)) {
3258 if (ReferenceType
*OldRT
= dyn_cast
<ReferenceType
>(OldTy
)) {
3259 NewClassTy
= NewRT
->getPointeeType();
3260 OldClassTy
= OldRT
->getPointeeType();
3264 // The return types aren't either both pointers or references to a class type.
3265 if (NewClassTy
.isNull()) {
3266 Diag(New
->getLocation(),
3267 diag::err_different_return_type_for_overriding_virtual_function
)
3268 << New
->getDeclName() << NewTy
<< OldTy
;
3269 Diag(Old
->getLocation(), diag::note_overridden_virtual_function
);
3274 if (NewClassTy
.getUnqualifiedType() != OldClassTy
.getUnqualifiedType()) {
3275 // Check if the new class derives from the old class.
3276 if (!IsDerivedFrom(NewClassTy
, OldClassTy
)) {
3277 Diag(New
->getLocation(),
3278 diag::err_covariant_return_not_derived
)
3279 << New
->getDeclName() << NewTy
<< OldTy
;
3280 Diag(Old
->getLocation(), diag::note_overridden_virtual_function
);
3284 // Check if we the conversion from derived to base is valid.
3285 if (CheckDerivedToBaseConversion(NewClassTy
, OldClassTy
,
3286 diag::err_covariant_return_inaccessible_base
,
3287 diag::err_covariant_return_ambiguous_derived_to_base_conv
,
3288 // FIXME: Should this point to the return type?
3289 New
->getLocation(), SourceRange(), New
->getDeclName())) {
3290 Diag(Old
->getLocation(), diag::note_overridden_virtual_function
);
3295 // The qualifiers of the return types must be the same.
3296 if (CNewTy
.getCVRQualifiers() != COldTy
.getCVRQualifiers()) {
3297 Diag(New
->getLocation(),
3298 diag::err_covariant_return_type_different_qualifications
)
3299 << New
->getDeclName() << NewTy
<< OldTy
;
3300 Diag(Old
->getLocation(), diag::note_overridden_virtual_function
);
3305 // The new class type must have the same or less qualifiers as the old type.
3306 if (NewClassTy
.isMoreQualifiedThan(OldClassTy
)) {
3307 Diag(New
->getLocation(),
3308 diag::err_covariant_return_type_class_type_more_qualified
)
3309 << New
->getDeclName() << NewTy
<< OldTy
;
3310 Diag(Old
->getLocation(), diag::note_overridden_virtual_function
);
3317 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl
*New
,
3318 const CXXMethodDecl
*Old
)
3320 return CheckExceptionSpecSubset(diag::err_override_exception_spec
,
3321 diag::note_overridden_virtual_function
,
3322 Old
->getType()->getAsFunctionProtoType(),
3324 New
->getType()->getAsFunctionProtoType(),
3325 New
->getLocation());
3328 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3329 /// initializer for the declaration 'Dcl'.
3330 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3331 /// static data member of class X, names should be looked up in the scope of
3333 void Sema::ActOnCXXEnterDeclInitializer(Scope
*S
, DeclPtrTy Dcl
) {
3334 Decl
*D
= Dcl
.getAs
<Decl
>();
3335 // If there is no declaration, there was an error parsing it.
3339 // Check whether it is a declaration with a nested name specifier like
3341 if (!D
->isOutOfLine())
3344 // C++ [basic.lookup.unqual]p13
3346 // A name used in the definition of a static data member of class X
3347 // (after the qualified-id of the static member) is looked up as if the name
3348 // was used in a member function of X.
3350 // Change current context into the context of the initializing declaration.
3351 EnterDeclaratorContext(S
, D
->getDeclContext());
3354 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3355 /// initializer for the declaration 'Dcl'.
3356 void Sema::ActOnCXXExitDeclInitializer(Scope
*S
, DeclPtrTy Dcl
) {
3357 Decl
*D
= Dcl
.getAs
<Decl
>();
3358 // If there is no declaration, there was an error parsing it.
3362 // Check whether it is a declaration with a nested name specifier like
3364 if (!D
->isOutOfLine())
3367 assert(S
->getEntity() == D
->getDeclContext() && "Context imbalance!");
3368 ExitDeclaratorContext(S
);