Add include needed for MSVC.
[clang/acc.git] / lib / Sema / SemaChecking.cpp
blob4eed01872246c205b1498b4a089a799749121cdb
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
13 //===----------------------------------------------------------------------===//
15 #include "Sema.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/LiteralSupport.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include <limits>
23 using namespace clang;
25 /// getLocationOfStringLiteralByte - Return a source location that points to the
26 /// specified byte of the specified string literal.
27 ///
28 /// Strings are amazingly complex. They can be formed from multiple tokens and
29 /// can have escape sequences in them in addition to the usual trigraph and
30 /// escaped newline business. This routine handles this complexity.
31 ///
32 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33 unsigned ByteNo) const {
34 assert(!SL->isWide() && "This doesn't work for wide strings yet");
36 // Loop over all of the tokens in this string until we find the one that
37 // contains the byte we're looking for.
38 unsigned TokNo = 0;
39 while (1) {
40 assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41 SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
43 // Get the spelling of the string so that we can get the data that makes up
44 // the string literal, not the identifier for the macro it is potentially
45 // expanded through.
46 SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
48 // Re-lex the token to get its length and original spelling.
49 std::pair<FileID, unsigned> LocInfo =
50 SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51 std::pair<const char *,const char *> Buffer =
52 SourceMgr.getBufferData(LocInfo.first);
53 const char *StrData = Buffer.first+LocInfo.second;
55 // Create a langops struct and enable trigraphs. This is sufficient for
56 // relexing tokens.
57 LangOptions LangOpts;
58 LangOpts.Trigraphs = true;
60 // Create a lexer starting at the beginning of this token.
61 Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62 Buffer.second);
63 Token TheTok;
64 TheLexer.LexFromRawLexer(TheTok);
66 // Use the StringLiteralParser to compute the length of the string in bytes.
67 StringLiteralParser SLP(&TheTok, 1, PP);
68 unsigned TokNumBytes = SLP.GetStringLength();
70 // If the byte is in this token, return the location of the byte.
71 if (ByteNo < TokNumBytes ||
72 (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73 unsigned Offset =
74 StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
76 // Now that we know the offset of the token in the spelling, use the
77 // preprocessor to get the offset in the original source.
78 return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
81 // Move to the next string token.
82 ++TokNo;
83 ByteNo -= TokNumBytes;
88 /// CheckFunctionCall - Check a direct function call for various correctness
89 /// and safety properties not strictly enforced by the C type system.
90 Action::OwningExprResult
91 Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
92 OwningExprResult TheCallResult(Owned(TheCall));
93 // Get the IdentifierInfo* for the called function.
94 IdentifierInfo *FnInfo = FDecl->getIdentifier();
96 // None of the checks below are needed for functions that don't have
97 // simple names (e.g., C++ conversion functions).
98 if (!FnInfo)
99 return move(TheCallResult);
101 switch (FDecl->getBuiltinID(Context)) {
102 case Builtin::BI__builtin___CFStringMakeConstantString:
103 assert(TheCall->getNumArgs() == 1 &&
104 "Wrong # arguments to builtin CFStringMakeConstantString");
105 if (CheckObjCString(TheCall->getArg(0)))
106 return ExprError();
107 return move(TheCallResult);
108 case Builtin::BI__builtin_stdarg_start:
109 case Builtin::BI__builtin_va_start:
110 if (SemaBuiltinVAStart(TheCall))
111 return ExprError();
112 return move(TheCallResult);
113 case Builtin::BI__builtin_isgreater:
114 case Builtin::BI__builtin_isgreaterequal:
115 case Builtin::BI__builtin_isless:
116 case Builtin::BI__builtin_islessequal:
117 case Builtin::BI__builtin_islessgreater:
118 case Builtin::BI__builtin_isunordered:
119 if (SemaBuiltinUnorderedCompare(TheCall))
120 return ExprError();
121 return move(TheCallResult);
122 case Builtin::BI__builtin_return_address:
123 case Builtin::BI__builtin_frame_address:
124 if (SemaBuiltinStackAddress(TheCall))
125 return ExprError();
126 return move(TheCallResult);
127 case Builtin::BI__builtin_shufflevector:
128 return SemaBuiltinShuffleVector(TheCall);
129 // TheCall will be freed by the smart pointer here, but that's fine, since
130 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
131 case Builtin::BI__builtin_prefetch:
132 if (SemaBuiltinPrefetch(TheCall))
133 return ExprError();
134 return move(TheCallResult);
135 case Builtin::BI__builtin_object_size:
136 if (SemaBuiltinObjectSize(TheCall))
137 return ExprError();
138 return move(TheCallResult);
139 case Builtin::BI__builtin_longjmp:
140 if (SemaBuiltinLongjmp(TheCall))
141 return ExprError();
142 return move(TheCallResult);
143 case Builtin::BI__sync_fetch_and_add:
144 case Builtin::BI__sync_fetch_and_sub:
145 case Builtin::BI__sync_fetch_and_or:
146 case Builtin::BI__sync_fetch_and_and:
147 case Builtin::BI__sync_fetch_and_xor:
148 case Builtin::BI__sync_fetch_and_nand:
149 case Builtin::BI__sync_add_and_fetch:
150 case Builtin::BI__sync_sub_and_fetch:
151 case Builtin::BI__sync_and_and_fetch:
152 case Builtin::BI__sync_or_and_fetch:
153 case Builtin::BI__sync_xor_and_fetch:
154 case Builtin::BI__sync_nand_and_fetch:
155 case Builtin::BI__sync_val_compare_and_swap:
156 case Builtin::BI__sync_bool_compare_and_swap:
157 case Builtin::BI__sync_lock_test_and_set:
158 case Builtin::BI__sync_lock_release:
159 if (SemaBuiltinAtomicOverloaded(TheCall))
160 return ExprError();
161 return move(TheCallResult);
164 // FIXME: This mechanism should be abstracted to be less fragile and
165 // more efficient. For example, just map function ids to custom
166 // handlers.
168 // Printf checking.
169 if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
170 if (Format->getType() == "printf") {
171 bool HasVAListArg = Format->getFirstArg() == 0;
172 if (!HasVAListArg) {
173 if (const FunctionProtoType *Proto
174 = FDecl->getType()->getAsFunctionProtoType())
175 HasVAListArg = !Proto->isVariadic();
177 CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
178 HasVAListArg ? 0 : Format->getFirstArg() - 1);
181 for (const Attr *attr = FDecl->getAttrs();
182 attr; attr = attr->getNext()) {
183 if (const NonNullAttr *NonNull = dyn_cast<NonNullAttr>(attr))
184 CheckNonNullArguments(NonNull, TheCall);
187 return move(TheCallResult);
190 Action::OwningExprResult
191 Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
193 OwningExprResult TheCallResult(Owned(TheCall));
194 // Printf checking.
195 const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
196 if (!Format)
197 return move(TheCallResult);
198 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
199 if (!V)
200 return move(TheCallResult);
201 QualType Ty = V->getType();
202 if (!Ty->isBlockPointerType())
203 return move(TheCallResult);
204 if (Format->getType() == "printf") {
205 bool HasVAListArg = Format->getFirstArg() == 0;
206 if (!HasVAListArg) {
207 const FunctionType *FT =
208 Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
209 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
210 HasVAListArg = !Proto->isVariadic();
212 CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
213 HasVAListArg ? 0 : Format->getFirstArg() - 1);
215 return move(TheCallResult);
218 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
219 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
220 /// type of its first argument. The main ActOnCallExpr routines have already
221 /// promoted the types of arguments because all of these calls are prototyped as
222 /// void(...).
224 /// This function goes through and does final semantic checking for these
225 /// builtins,
226 bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
227 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
228 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
230 // Ensure that we have at least one argument to do type inference from.
231 if (TheCall->getNumArgs() < 1)
232 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
233 << 0 << TheCall->getCallee()->getSourceRange();
235 // Inspect the first argument of the atomic builtin. This should always be
236 // a pointer type, whose element is an integral scalar or pointer type.
237 // Because it is a pointer type, we don't have to worry about any implicit
238 // casts here.
239 Expr *FirstArg = TheCall->getArg(0);
240 if (!FirstArg->getType()->isPointerType())
241 return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
242 << FirstArg->getType() << FirstArg->getSourceRange();
244 QualType ValType = FirstArg->getType()->getAsPointerType()->getPointeeType();
245 if (!ValType->isIntegerType() && !ValType->isPointerType() &&
246 !ValType->isBlockPointerType())
247 return Diag(DRE->getLocStart(),
248 diag::err_atomic_builtin_must_be_pointer_intptr)
249 << FirstArg->getType() << FirstArg->getSourceRange();
251 // We need to figure out which concrete builtin this maps onto. For example,
252 // __sync_fetch_and_add with a 2 byte object turns into
253 // __sync_fetch_and_add_2.
254 #define BUILTIN_ROW(x) \
255 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
256 Builtin::BI##x##_8, Builtin::BI##x##_16 }
258 static const unsigned BuiltinIndices[][5] = {
259 BUILTIN_ROW(__sync_fetch_and_add),
260 BUILTIN_ROW(__sync_fetch_and_sub),
261 BUILTIN_ROW(__sync_fetch_and_or),
262 BUILTIN_ROW(__sync_fetch_and_and),
263 BUILTIN_ROW(__sync_fetch_and_xor),
264 BUILTIN_ROW(__sync_fetch_and_nand),
266 BUILTIN_ROW(__sync_add_and_fetch),
267 BUILTIN_ROW(__sync_sub_and_fetch),
268 BUILTIN_ROW(__sync_and_and_fetch),
269 BUILTIN_ROW(__sync_or_and_fetch),
270 BUILTIN_ROW(__sync_xor_and_fetch),
271 BUILTIN_ROW(__sync_nand_and_fetch),
273 BUILTIN_ROW(__sync_val_compare_and_swap),
274 BUILTIN_ROW(__sync_bool_compare_and_swap),
275 BUILTIN_ROW(__sync_lock_test_and_set),
276 BUILTIN_ROW(__sync_lock_release)
278 #undef BUILTIN_ROW
280 // Determine the index of the size.
281 unsigned SizeIndex;
282 switch (Context.getTypeSize(ValType)/8) {
283 case 1: SizeIndex = 0; break;
284 case 2: SizeIndex = 1; break;
285 case 4: SizeIndex = 2; break;
286 case 8: SizeIndex = 3; break;
287 case 16: SizeIndex = 4; break;
288 default:
289 return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
290 << FirstArg->getType() << FirstArg->getSourceRange();
293 // Each of these builtins has one pointer argument, followed by some number of
294 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
295 // that we ignore. Find out which row of BuiltinIndices to read from as well
296 // as the number of fixed args.
297 unsigned BuiltinID = FDecl->getBuiltinID(Context);
298 unsigned BuiltinIndex, NumFixed = 1;
299 switch (BuiltinID) {
300 default: assert(0 && "Unknown overloaded atomic builtin!");
301 case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
302 case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
303 case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
304 case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
305 case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
306 case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
308 case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
309 case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
310 case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
311 case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 9; break;
312 case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
313 case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
315 case Builtin::BI__sync_val_compare_and_swap:
316 BuiltinIndex = 12;
317 NumFixed = 2;
318 break;
319 case Builtin::BI__sync_bool_compare_and_swap:
320 BuiltinIndex = 13;
321 NumFixed = 2;
322 break;
323 case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
324 case Builtin::BI__sync_lock_release:
325 BuiltinIndex = 15;
326 NumFixed = 0;
327 break;
330 // Now that we know how many fixed arguments we expect, first check that we
331 // have at least that many.
332 if (TheCall->getNumArgs() < 1+NumFixed)
333 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
334 << 0 << TheCall->getCallee()->getSourceRange();
337 // Get the decl for the concrete builtin from this, we can tell what the
338 // concrete integer type we should convert to is.
339 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
340 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
341 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
342 FunctionDecl *NewBuiltinDecl =
343 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
344 TUScope, false, DRE->getLocStart()));
345 const FunctionProtoType *BuiltinFT =
346 NewBuiltinDecl->getType()->getAsFunctionProtoType();
347 ValType = BuiltinFT->getArgType(0)->getAsPointerType()->getPointeeType();
349 // If the first type needs to be converted (e.g. void** -> int*), do it now.
350 if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
351 ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
352 TheCall->setArg(0, FirstArg);
355 // Next, walk the valid ones promoting to the right type.
356 for (unsigned i = 0; i != NumFixed; ++i) {
357 Expr *Arg = TheCall->getArg(i+1);
359 // If the argument is an implicit cast, then there was a promotion due to
360 // "...", just remove it now.
361 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
362 Arg = ICE->getSubExpr();
363 ICE->setSubExpr(0);
364 ICE->Destroy(Context);
365 TheCall->setArg(i+1, Arg);
368 // GCC does an implicit conversion to the pointer or integer ValType. This
369 // can fail in some cases (1i -> int**), check for this error case now.
370 if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
371 return true;
373 // Okay, we have something that *can* be converted to the right type. Check
374 // to see if there is a potentially weird extension going on here. This can
375 // happen when you do an atomic operation on something like an char* and
376 // pass in 42. The 42 gets converted to char. This is even more strange
377 // for things like 45.123 -> char, etc.
378 // FIXME: Do this check.
379 ImpCastExprToType(Arg, ValType, false);
380 TheCall->setArg(i+1, Arg);
383 // Switch the DeclRefExpr to refer to the new decl.
384 DRE->setDecl(NewBuiltinDecl);
385 DRE->setType(NewBuiltinDecl->getType());
387 // Set the callee in the CallExpr.
388 // FIXME: This leaks the original parens and implicit casts.
389 Expr *PromotedCall = DRE;
390 UsualUnaryConversions(PromotedCall);
391 TheCall->setCallee(PromotedCall);
394 // Change the result type of the call to match the result type of the decl.
395 TheCall->setType(NewBuiltinDecl->getResultType());
396 return false;
400 /// CheckObjCString - Checks that the argument to the builtin
401 /// CFString constructor is correct
402 /// FIXME: GCC currently emits the following warning:
403 /// "warning: input conversion stopped due to an input byte that does not
404 /// belong to the input codeset UTF-8"
405 /// Note: It might also make sense to do the UTF-16 conversion here (would
406 /// simplify the backend).
407 bool Sema::CheckObjCString(Expr *Arg) {
408 Arg = Arg->IgnoreParenCasts();
409 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
411 if (!Literal || Literal->isWide()) {
412 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
413 << Arg->getSourceRange();
414 return true;
417 const char *Data = Literal->getStrData();
418 unsigned Length = Literal->getByteLength();
420 for (unsigned i = 0; i < Length; ++i) {
421 if (!Data[i]) {
422 Diag(getLocationOfStringLiteralByte(Literal, i),
423 diag::warn_cfstring_literal_contains_nul_character)
424 << Arg->getSourceRange();
425 break;
429 return false;
432 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
433 /// Emit an error and return true on failure, return false on success.
434 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
435 Expr *Fn = TheCall->getCallee();
436 if (TheCall->getNumArgs() > 2) {
437 Diag(TheCall->getArg(2)->getLocStart(),
438 diag::err_typecheck_call_too_many_args)
439 << 0 /*function call*/ << Fn->getSourceRange()
440 << SourceRange(TheCall->getArg(2)->getLocStart(),
441 (*(TheCall->arg_end()-1))->getLocEnd());
442 return true;
445 if (TheCall->getNumArgs() < 2) {
446 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
447 << 0 /*function call*/;
450 // Determine whether the current function is variadic or not.
451 bool isVariadic;
452 if (CurBlock)
453 isVariadic = CurBlock->isVariadic;
454 else if (getCurFunctionDecl()) {
455 if (FunctionProtoType* FTP =
456 dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
457 isVariadic = FTP->isVariadic();
458 else
459 isVariadic = false;
460 } else {
461 isVariadic = getCurMethodDecl()->isVariadic();
464 if (!isVariadic) {
465 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
466 return true;
469 // Verify that the second argument to the builtin is the last argument of the
470 // current function or method.
471 bool SecondArgIsLastNamedArgument = false;
472 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
474 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
475 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
476 // FIXME: This isn't correct for methods (results in bogus warning).
477 // Get the last formal in the current function.
478 const ParmVarDecl *LastArg;
479 if (CurBlock)
480 LastArg = *(CurBlock->TheDecl->param_end()-1);
481 else if (FunctionDecl *FD = getCurFunctionDecl())
482 LastArg = *(FD->param_end()-1);
483 else
484 LastArg = *(getCurMethodDecl()->param_end()-1);
485 SecondArgIsLastNamedArgument = PV == LastArg;
489 if (!SecondArgIsLastNamedArgument)
490 Diag(TheCall->getArg(1)->getLocStart(),
491 diag::warn_second_parameter_of_va_start_not_last_named_argument);
492 return false;
495 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
496 /// friends. This is declared to take (...), so we have to check everything.
497 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
498 if (TheCall->getNumArgs() < 2)
499 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
500 << 0 /*function call*/;
501 if (TheCall->getNumArgs() > 2)
502 return Diag(TheCall->getArg(2)->getLocStart(),
503 diag::err_typecheck_call_too_many_args)
504 << 0 /*function call*/
505 << SourceRange(TheCall->getArg(2)->getLocStart(),
506 (*(TheCall->arg_end()-1))->getLocEnd());
508 Expr *OrigArg0 = TheCall->getArg(0);
509 Expr *OrigArg1 = TheCall->getArg(1);
511 // Do standard promotions between the two arguments, returning their common
512 // type.
513 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
515 // Make sure any conversions are pushed back into the call; this is
516 // type safe since unordered compare builtins are declared as "_Bool
517 // foo(...)".
518 TheCall->setArg(0, OrigArg0);
519 TheCall->setArg(1, OrigArg1);
521 if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
522 return false;
524 // If the common type isn't a real floating type, then the arguments were
525 // invalid for this operation.
526 if (!Res->isRealFloatingType())
527 return Diag(OrigArg0->getLocStart(),
528 diag::err_typecheck_call_invalid_ordered_compare)
529 << OrigArg0->getType() << OrigArg1->getType()
530 << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
532 return false;
535 bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
536 // The signature for these builtins is exact; the only thing we need
537 // to check is that the argument is a constant.
538 SourceLocation Loc;
539 if (!TheCall->getArg(0)->isTypeDependent() &&
540 !TheCall->getArg(0)->isValueDependent() &&
541 !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
542 return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
544 return false;
547 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
548 // This is declared to take (...), so we have to check everything.
549 Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
550 if (TheCall->getNumArgs() < 3)
551 return ExprError(Diag(TheCall->getLocEnd(),
552 diag::err_typecheck_call_too_few_args)
553 << 0 /*function call*/ << TheCall->getSourceRange());
555 unsigned numElements = std::numeric_limits<unsigned>::max();
556 if (!TheCall->getArg(0)->isTypeDependent() &&
557 !TheCall->getArg(1)->isTypeDependent()) {
558 QualType FAType = TheCall->getArg(0)->getType();
559 QualType SAType = TheCall->getArg(1)->getType();
561 if (!FAType->isVectorType() || !SAType->isVectorType()) {
562 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
563 << SourceRange(TheCall->getArg(0)->getLocStart(),
564 TheCall->getArg(1)->getLocEnd());
565 return ExprError();
568 if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
569 Context.getCanonicalType(SAType).getUnqualifiedType()) {
570 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
571 << SourceRange(TheCall->getArg(0)->getLocStart(),
572 TheCall->getArg(1)->getLocEnd());
573 return ExprError();
576 numElements = FAType->getAsVectorType()->getNumElements();
577 if (TheCall->getNumArgs() != numElements+2) {
578 if (TheCall->getNumArgs() < numElements+2)
579 return ExprError(Diag(TheCall->getLocEnd(),
580 diag::err_typecheck_call_too_few_args)
581 << 0 /*function call*/ << TheCall->getSourceRange());
582 return ExprError(Diag(TheCall->getLocEnd(),
583 diag::err_typecheck_call_too_many_args)
584 << 0 /*function call*/ << TheCall->getSourceRange());
588 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
589 if (TheCall->getArg(i)->isTypeDependent() ||
590 TheCall->getArg(i)->isValueDependent())
591 continue;
593 llvm::APSInt Result(32);
594 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
595 return ExprError(Diag(TheCall->getLocStart(),
596 diag::err_shufflevector_nonconstant_argument)
597 << TheCall->getArg(i)->getSourceRange());
599 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
600 return ExprError(Diag(TheCall->getLocStart(),
601 diag::err_shufflevector_argument_too_large)
602 << TheCall->getArg(i)->getSourceRange());
605 llvm::SmallVector<Expr*, 32> exprs;
607 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
608 exprs.push_back(TheCall->getArg(i));
609 TheCall->setArg(i, 0);
612 return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
613 exprs[0]->getType(),
614 TheCall->getCallee()->getLocStart(),
615 TheCall->getRParenLoc()));
618 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
619 // This is declared to take (const void*, ...) and can take two
620 // optional constant int args.
621 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
622 unsigned NumArgs = TheCall->getNumArgs();
624 if (NumArgs > 3)
625 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
626 << 0 /*function call*/ << TheCall->getSourceRange();
628 // Argument 0 is checked for us and the remaining arguments must be
629 // constant integers.
630 for (unsigned i = 1; i != NumArgs; ++i) {
631 Expr *Arg = TheCall->getArg(i);
632 if (Arg->isTypeDependent())
633 continue;
635 QualType RWType = Arg->getType();
637 const BuiltinType *BT = RWType->getAsBuiltinType();
638 llvm::APSInt Result;
639 if (!BT || BT->getKind() != BuiltinType::Int)
640 return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
641 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
643 if (Arg->isValueDependent())
644 continue;
646 if (!Arg->isIntegerConstantExpr(Result, Context))
647 return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
648 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
650 // FIXME: gcc issues a warning and rewrites these to 0. These
651 // seems especially odd for the third argument since the default
652 // is 3.
653 if (i == 1) {
654 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
655 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
656 << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
657 } else {
658 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
659 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
660 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
664 return false;
667 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
668 /// int type). This simply type checks that type is one of the defined
669 /// constants (0-3).
670 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
671 Expr *Arg = TheCall->getArg(1);
672 if (Arg->isTypeDependent())
673 return false;
675 QualType ArgType = Arg->getType();
676 const BuiltinType *BT = ArgType->getAsBuiltinType();
677 llvm::APSInt Result(32);
678 if (!BT || BT->getKind() != BuiltinType::Int)
679 return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
680 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
682 if (Arg->isValueDependent())
683 return false;
685 if (!Arg->isIntegerConstantExpr(Result, Context)) {
686 return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
687 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
690 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
691 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
692 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
695 return false;
698 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
699 /// This checks that val is a constant 1.
700 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
701 Expr *Arg = TheCall->getArg(1);
702 if (Arg->isTypeDependent() || Arg->isValueDependent())
703 return false;
705 llvm::APSInt Result(32);
706 if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
707 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
708 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
710 return false;
713 // Handle i > 1 ? "x" : "y", recursivelly
714 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
715 bool HasVAListArg,
716 unsigned format_idx, unsigned firstDataArg) {
717 if (E->isTypeDependent() || E->isValueDependent())
718 return false;
720 switch (E->getStmtClass()) {
721 case Stmt::ConditionalOperatorClass: {
722 const ConditionalOperator *C = cast<ConditionalOperator>(E);
723 return SemaCheckStringLiteral(C->getLHS(), TheCall,
724 HasVAListArg, format_idx, firstDataArg)
725 && SemaCheckStringLiteral(C->getRHS(), TheCall,
726 HasVAListArg, format_idx, firstDataArg);
729 case Stmt::ImplicitCastExprClass: {
730 const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
731 return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
732 format_idx, firstDataArg);
735 case Stmt::ParenExprClass: {
736 const ParenExpr *Expr = cast<ParenExpr>(E);
737 return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
738 format_idx, firstDataArg);
741 case Stmt::DeclRefExprClass: {
742 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
744 // As an exception, do not flag errors for variables binding to
745 // const string literals.
746 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
747 bool isConstant = false;
748 QualType T = DR->getType();
750 if (const ArrayType *AT = Context.getAsArrayType(T)) {
751 isConstant = AT->getElementType().isConstant(Context);
753 else if (const PointerType *PT = T->getAsPointerType()) {
754 isConstant = T.isConstant(Context) &&
755 PT->getPointeeType().isConstant(Context);
758 if (isConstant) {
759 const VarDecl *Def = 0;
760 if (const Expr *Init = VD->getDefinition(Def))
761 return SemaCheckStringLiteral(Init, TheCall,
762 HasVAListArg, format_idx, firstDataArg);
765 // For vprintf* functions (i.e., HasVAListArg==true), we add a
766 // special check to see if the format string is a function parameter
767 // of the function calling the printf function. If the function
768 // has an attribute indicating it is a printf-like function, then we
769 // should suppress warnings concerning non-literals being used in a call
770 // to a vprintf function. For example:
772 // void
773 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
774 // va_list ap;
775 // va_start(ap, fmt);
776 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
777 // ...
780 // FIXME: We don't have full attribute support yet, so just check to see
781 // if the argument is a DeclRefExpr that references a parameter. We'll
782 // add proper support for checking the attribute later.
783 if (HasVAListArg)
784 if (isa<ParmVarDecl>(VD))
785 return true;
788 return false;
791 case Stmt::CallExprClass: {
792 const CallExpr *CE = cast<CallExpr>(E);
793 if (const ImplicitCastExpr *ICE
794 = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
795 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
796 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
797 if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
798 unsigned ArgIndex = FA->getFormatIdx();
799 const Expr *Arg = CE->getArg(ArgIndex - 1);
801 return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
802 format_idx, firstDataArg);
808 return false;
810 case Stmt::ObjCStringLiteralClass:
811 case Stmt::StringLiteralClass: {
812 const StringLiteral *StrE = NULL;
814 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
815 StrE = ObjCFExpr->getString();
816 else
817 StrE = cast<StringLiteral>(E);
819 if (StrE) {
820 CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
821 firstDataArg);
822 return true;
825 return false;
828 default:
829 return false;
833 void
834 Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
836 for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
837 i != e; ++i) {
838 const Expr *ArgExpr = TheCall->getArg(*i);
839 if (ArgExpr->isNullPointerConstant(Context))
840 Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
841 << ArgExpr->getSourceRange();
845 /// CheckPrintfArguments - Check calls to printf (and similar functions) for
846 /// correct use of format strings.
848 /// HasVAListArg - A predicate indicating whether the printf-like
849 /// function is passed an explicit va_arg argument (e.g., vprintf)
851 /// format_idx - The index into Args for the format string.
853 /// Improper format strings to functions in the printf family can be
854 /// the source of bizarre bugs and very serious security holes. A
855 /// good source of information is available in the following paper
856 /// (which includes additional references):
858 /// FormatGuard: Automatic Protection From printf Format String
859 /// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
861 /// Functionality implemented:
863 /// We can statically check the following properties for string
864 /// literal format strings for non v.*printf functions (where the
865 /// arguments are passed directly):
867 /// (1) Are the number of format conversions equal to the number of
868 /// data arguments?
870 /// (2) Does each format conversion correctly match the type of the
871 /// corresponding data argument? (TODO)
873 /// Moreover, for all printf functions we can:
875 /// (3) Check for a missing format string (when not caught by type checking).
877 /// (4) Check for no-operation flags; e.g. using "#" with format
878 /// conversion 'c' (TODO)
880 /// (5) Check the use of '%n', a major source of security holes.
882 /// (6) Check for malformed format conversions that don't specify anything.
884 /// (7) Check for empty format strings. e.g: printf("");
886 /// (8) Check that the format string is a wide literal.
888 /// (9) Also check the arguments of functions with the __format__ attribute.
889 /// (TODO).
891 /// All of these checks can be done by parsing the format string.
893 /// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
894 void
895 Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
896 unsigned format_idx, unsigned firstDataArg) {
897 const Expr *Fn = TheCall->getCallee();
899 // CHECK: printf-like function is called with no format string.
900 if (format_idx >= TheCall->getNumArgs()) {
901 Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
902 << Fn->getSourceRange();
903 return;
906 const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
908 // CHECK: format string is not a string literal.
910 // Dynamically generated format strings are difficult to
911 // automatically vet at compile time. Requiring that format strings
912 // are string literals: (1) permits the checking of format strings by
913 // the compiler and thereby (2) can practically remove the source of
914 // many format string exploits.
916 // Format string can be either ObjC string (e.g. @"%d") or
917 // C string (e.g. "%d")
918 // ObjC string uses the same format specifiers as C string, so we can use
919 // the same format string checking logic for both ObjC and C strings.
920 if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
921 firstDataArg))
922 return; // Literal format string found, check done!
924 // If there are no arguments specified, warn with -Wformat-security, otherwise
925 // warn only with -Wformat-nonliteral.
926 if (TheCall->getNumArgs() == format_idx+1)
927 Diag(TheCall->getArg(format_idx)->getLocStart(),
928 diag::warn_printf_nonliteral_noargs)
929 << OrigFormatExpr->getSourceRange();
930 else
931 Diag(TheCall->getArg(format_idx)->getLocStart(),
932 diag::warn_printf_nonliteral)
933 << OrigFormatExpr->getSourceRange();
936 void Sema::CheckPrintfString(const StringLiteral *FExpr,
937 const Expr *OrigFormatExpr,
938 const CallExpr *TheCall, bool HasVAListArg,
939 unsigned format_idx, unsigned firstDataArg) {
941 const ObjCStringLiteral *ObjCFExpr =
942 dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
944 // CHECK: is the format string a wide literal?
945 if (FExpr->isWide()) {
946 Diag(FExpr->getLocStart(),
947 diag::warn_printf_format_string_is_wide_literal)
948 << OrigFormatExpr->getSourceRange();
949 return;
952 // Str - The format string. NOTE: this is NOT null-terminated!
953 const char *Str = FExpr->getStrData();
955 // CHECK: empty format string?
956 unsigned StrLen = FExpr->getByteLength();
958 if (StrLen == 0) {
959 Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
960 << OrigFormatExpr->getSourceRange();
961 return;
964 // We process the format string using a binary state machine. The
965 // current state is stored in CurrentState.
966 enum {
967 state_OrdChr,
968 state_Conversion
969 } CurrentState = state_OrdChr;
971 // numConversions - The number of conversions seen so far. This is
972 // incremented as we traverse the format string.
973 unsigned numConversions = 0;
975 // numDataArgs - The number of data arguments after the format
976 // string. This can only be determined for non vprintf-like
977 // functions. For those functions, this value is 1 (the sole
978 // va_arg argument).
979 unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
981 // Inspect the format string.
982 unsigned StrIdx = 0;
984 // LastConversionIdx - Index within the format string where we last saw
985 // a '%' character that starts a new format conversion.
986 unsigned LastConversionIdx = 0;
988 for (; StrIdx < StrLen; ++StrIdx) {
990 // Is the number of detected conversion conversions greater than
991 // the number of matching data arguments? If so, stop.
992 if (!HasVAListArg && numConversions > numDataArgs) break;
994 // Handle "\0"
995 if (Str[StrIdx] == '\0') {
996 // The string returned by getStrData() is not null-terminated,
997 // so the presence of a null character is likely an error.
998 Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
999 diag::warn_printf_format_string_contains_null_char)
1000 << OrigFormatExpr->getSourceRange();
1001 return;
1004 // Ordinary characters (not processing a format conversion).
1005 if (CurrentState == state_OrdChr) {
1006 if (Str[StrIdx] == '%') {
1007 CurrentState = state_Conversion;
1008 LastConversionIdx = StrIdx;
1010 continue;
1013 // Seen '%'. Now processing a format conversion.
1014 switch (Str[StrIdx]) {
1015 // Handle dynamic precision or width specifier.
1016 case '*': {
1017 ++numConversions;
1019 if (!HasVAListArg) {
1020 if (numConversions > numDataArgs) {
1021 SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1023 if (Str[StrIdx-1] == '.')
1024 Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1025 << OrigFormatExpr->getSourceRange();
1026 else
1027 Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1028 << OrigFormatExpr->getSourceRange();
1030 // Don't do any more checking. We'll just emit spurious errors.
1031 return;
1034 // Perform type checking on width/precision specifier.
1035 const Expr *E = TheCall->getArg(format_idx+numConversions);
1036 if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
1037 if (BT->getKind() == BuiltinType::Int)
1038 break;
1040 SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1042 if (Str[StrIdx-1] == '.')
1043 Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1044 << E->getType() << E->getSourceRange();
1045 else
1046 Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1047 << E->getType() << E->getSourceRange();
1049 break;
1053 // Characters which can terminate a format conversion
1054 // (e.g. "%d"). Characters that specify length modifiers or
1055 // other flags are handled by the default case below.
1057 // FIXME: additional checks will go into the following cases.
1058 case 'i':
1059 case 'd':
1060 case 'o':
1061 case 'u':
1062 case 'x':
1063 case 'X':
1064 case 'D':
1065 case 'O':
1066 case 'U':
1067 case 'e':
1068 case 'E':
1069 case 'f':
1070 case 'F':
1071 case 'g':
1072 case 'G':
1073 case 'a':
1074 case 'A':
1075 case 'c':
1076 case 'C':
1077 case 'S':
1078 case 's':
1079 case 'p':
1080 ++numConversions;
1081 CurrentState = state_OrdChr;
1082 break;
1084 case 'm':
1085 // FIXME: Warn in situations where this isn't supported!
1086 CurrentState = state_OrdChr;
1087 break;
1089 // CHECK: Are we using "%n"? Issue a warning.
1090 case 'n': {
1091 ++numConversions;
1092 CurrentState = state_OrdChr;
1093 SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1094 LastConversionIdx);
1096 Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1097 break;
1100 // Handle "%@"
1101 case '@':
1102 // %@ is allowed in ObjC format strings only.
1103 if(ObjCFExpr != NULL)
1104 CurrentState = state_OrdChr;
1105 else {
1106 // Issue a warning: invalid format conversion.
1107 SourceLocation Loc =
1108 getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1110 Diag(Loc, diag::warn_printf_invalid_conversion)
1111 << std::string(Str+LastConversionIdx,
1112 Str+std::min(LastConversionIdx+2, StrLen))
1113 << OrigFormatExpr->getSourceRange();
1115 ++numConversions;
1116 break;
1118 // Handle "%%"
1119 case '%':
1120 // Sanity check: Was the first "%" character the previous one?
1121 // If not, we will assume that we have a malformed format
1122 // conversion, and that the current "%" character is the start
1123 // of a new conversion.
1124 if (StrIdx - LastConversionIdx == 1)
1125 CurrentState = state_OrdChr;
1126 else {
1127 // Issue a warning: invalid format conversion.
1128 SourceLocation Loc =
1129 getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1131 Diag(Loc, diag::warn_printf_invalid_conversion)
1132 << std::string(Str+LastConversionIdx, Str+StrIdx)
1133 << OrigFormatExpr->getSourceRange();
1135 // This conversion is broken. Advance to the next format
1136 // conversion.
1137 LastConversionIdx = StrIdx;
1138 ++numConversions;
1140 break;
1142 default:
1143 // This case catches all other characters: flags, widths, etc.
1144 // We should eventually process those as well.
1145 break;
1149 if (CurrentState == state_Conversion) {
1150 // Issue a warning: invalid format conversion.
1151 SourceLocation Loc =
1152 getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1154 Diag(Loc, diag::warn_printf_invalid_conversion)
1155 << std::string(Str+LastConversionIdx,
1156 Str+std::min(LastConversionIdx+2, StrLen))
1157 << OrigFormatExpr->getSourceRange();
1158 return;
1161 if (!HasVAListArg) {
1162 // CHECK: Does the number of format conversions exceed the number
1163 // of data arguments?
1164 if (numConversions > numDataArgs) {
1165 SourceLocation Loc =
1166 getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1168 Diag(Loc, diag::warn_printf_insufficient_data_args)
1169 << OrigFormatExpr->getSourceRange();
1171 // CHECK: Does the number of data arguments exceed the number of
1172 // format conversions in the format string?
1173 else if (numConversions < numDataArgs)
1174 Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1175 diag::warn_printf_too_many_data_args)
1176 << OrigFormatExpr->getSourceRange();
1180 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1182 static DeclRefExpr* EvalVal(Expr *E);
1183 static DeclRefExpr* EvalAddr(Expr* E);
1185 /// CheckReturnStackAddr - Check if a return statement returns the address
1186 /// of a stack variable.
1187 void
1188 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1189 SourceLocation ReturnLoc) {
1191 // Perform checking for returned stack addresses.
1192 if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1193 if (DeclRefExpr *DR = EvalAddr(RetValExp))
1194 Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1195 << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1197 // Skip over implicit cast expressions when checking for block expressions.
1198 if (ImplicitCastExpr *IcExpr =
1199 dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
1200 RetValExp = IcExpr->getSubExpr();
1202 if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1203 if (C->hasBlockDeclRefExprs())
1204 Diag(C->getLocStart(), diag::err_ret_local_block)
1205 << C->getSourceRange();
1207 // Perform checking for stack values returned by reference.
1208 else if (lhsType->isReferenceType()) {
1209 // Check for a reference to the stack
1210 if (DeclRefExpr *DR = EvalVal(RetValExp))
1211 Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1212 << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1216 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1217 /// check if the expression in a return statement evaluates to an address
1218 /// to a location on the stack. The recursion is used to traverse the
1219 /// AST of the return expression, with recursion backtracking when we
1220 /// encounter a subexpression that (1) clearly does not lead to the address
1221 /// of a stack variable or (2) is something we cannot determine leads to
1222 /// the address of a stack variable based on such local checking.
1224 /// EvalAddr processes expressions that are pointers that are used as
1225 /// references (and not L-values). EvalVal handles all other values.
1226 /// At the base case of the recursion is a check for a DeclRefExpr* in
1227 /// the refers to a stack variable.
1229 /// This implementation handles:
1231 /// * pointer-to-pointer casts
1232 /// * implicit conversions from array references to pointers
1233 /// * taking the address of fields
1234 /// * arbitrary interplay between "&" and "*" operators
1235 /// * pointer arithmetic from an address of a stack variable
1236 /// * taking the address of an array element where the array is on the stack
1237 static DeclRefExpr* EvalAddr(Expr *E) {
1238 // We should only be called for evaluating pointer expressions.
1239 assert((E->getType()->isPointerType() ||
1240 E->getType()->isBlockPointerType() ||
1241 E->getType()->isObjCQualifiedIdType()) &&
1242 "EvalAddr only works on pointers");
1244 // Our "symbolic interpreter" is just a dispatch off the currently
1245 // viewed AST node. We then recursively traverse the AST by calling
1246 // EvalAddr and EvalVal appropriately.
1247 switch (E->getStmtClass()) {
1248 case Stmt::ParenExprClass:
1249 // Ignore parentheses.
1250 return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1252 case Stmt::UnaryOperatorClass: {
1253 // The only unary operator that make sense to handle here
1254 // is AddrOf. All others don't make sense as pointers.
1255 UnaryOperator *U = cast<UnaryOperator>(E);
1257 if (U->getOpcode() == UnaryOperator::AddrOf)
1258 return EvalVal(U->getSubExpr());
1259 else
1260 return NULL;
1263 case Stmt::BinaryOperatorClass: {
1264 // Handle pointer arithmetic. All other binary operators are not valid
1265 // in this context.
1266 BinaryOperator *B = cast<BinaryOperator>(E);
1267 BinaryOperator::Opcode op = B->getOpcode();
1269 if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1270 return NULL;
1272 Expr *Base = B->getLHS();
1274 // Determine which argument is the real pointer base. It could be
1275 // the RHS argument instead of the LHS.
1276 if (!Base->getType()->isPointerType()) Base = B->getRHS();
1278 assert (Base->getType()->isPointerType());
1279 return EvalAddr(Base);
1282 // For conditional operators we need to see if either the LHS or RHS are
1283 // valid DeclRefExpr*s. If one of them is valid, we return it.
1284 case Stmt::ConditionalOperatorClass: {
1285 ConditionalOperator *C = cast<ConditionalOperator>(E);
1287 // Handle the GNU extension for missing LHS.
1288 if (Expr *lhsExpr = C->getLHS())
1289 if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1290 return LHS;
1292 return EvalAddr(C->getRHS());
1295 // For casts, we need to handle conversions from arrays to
1296 // pointer values, and pointer-to-pointer conversions.
1297 case Stmt::ImplicitCastExprClass:
1298 case Stmt::CStyleCastExprClass:
1299 case Stmt::CXXFunctionalCastExprClass: {
1300 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1301 QualType T = SubExpr->getType();
1303 if (SubExpr->getType()->isPointerType() ||
1304 SubExpr->getType()->isBlockPointerType() ||
1305 SubExpr->getType()->isObjCQualifiedIdType())
1306 return EvalAddr(SubExpr);
1307 else if (T->isArrayType())
1308 return EvalVal(SubExpr);
1309 else
1310 return 0;
1313 // C++ casts. For dynamic casts, static casts, and const casts, we
1314 // are always converting from a pointer-to-pointer, so we just blow
1315 // through the cast. In the case the dynamic cast doesn't fail (and
1316 // return NULL), we take the conservative route and report cases
1317 // where we return the address of a stack variable. For Reinterpre
1318 // FIXME: The comment about is wrong; we're not always converting
1319 // from pointer to pointer. I'm guessing that this code should also
1320 // handle references to objects.
1321 case Stmt::CXXStaticCastExprClass:
1322 case Stmt::CXXDynamicCastExprClass:
1323 case Stmt::CXXConstCastExprClass:
1324 case Stmt::CXXReinterpretCastExprClass: {
1325 Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1326 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1327 return EvalAddr(S);
1328 else
1329 return NULL;
1332 // Everything else: we simply don't reason about them.
1333 default:
1334 return NULL;
1339 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
1340 /// See the comments for EvalAddr for more details.
1341 static DeclRefExpr* EvalVal(Expr *E) {
1343 // We should only be called for evaluating non-pointer expressions, or
1344 // expressions with a pointer type that are not used as references but instead
1345 // are l-values (e.g., DeclRefExpr with a pointer type).
1347 // Our "symbolic interpreter" is just a dispatch off the currently
1348 // viewed AST node. We then recursively traverse the AST by calling
1349 // EvalAddr and EvalVal appropriately.
1350 switch (E->getStmtClass()) {
1351 case Stmt::DeclRefExprClass:
1352 case Stmt::QualifiedDeclRefExprClass: {
1353 // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
1354 // at code that refers to a variable's name. We check if it has local
1355 // storage within the function, and if so, return the expression.
1356 DeclRefExpr *DR = cast<DeclRefExpr>(E);
1358 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1359 if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1361 return NULL;
1364 case Stmt::ParenExprClass:
1365 // Ignore parentheses.
1366 return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1368 case Stmt::UnaryOperatorClass: {
1369 // The only unary operator that make sense to handle here
1370 // is Deref. All others don't resolve to a "name." This includes
1371 // handling all sorts of rvalues passed to a unary operator.
1372 UnaryOperator *U = cast<UnaryOperator>(E);
1374 if (U->getOpcode() == UnaryOperator::Deref)
1375 return EvalAddr(U->getSubExpr());
1377 return NULL;
1380 case Stmt::ArraySubscriptExprClass: {
1381 // Array subscripts are potential references to data on the stack. We
1382 // retrieve the DeclRefExpr* for the array variable if it indeed
1383 // has local storage.
1384 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1387 case Stmt::ConditionalOperatorClass: {
1388 // For conditional operators we need to see if either the LHS or RHS are
1389 // non-NULL DeclRefExpr's. If one is non-NULL, we return it.
1390 ConditionalOperator *C = cast<ConditionalOperator>(E);
1392 // Handle the GNU extension for missing LHS.
1393 if (Expr *lhsExpr = C->getLHS())
1394 if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1395 return LHS;
1397 return EvalVal(C->getRHS());
1400 // Accesses to members are potential references to data on the stack.
1401 case Stmt::MemberExprClass: {
1402 MemberExpr *M = cast<MemberExpr>(E);
1404 // Check for indirect access. We only want direct field accesses.
1405 if (!M->isArrow())
1406 return EvalVal(M->getBase());
1407 else
1408 return NULL;
1411 // Everything else: we simply don't reason about them.
1412 default:
1413 return NULL;
1417 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1419 /// Check for comparisons of floating point operands using != and ==.
1420 /// Issue a warning if these are no self-comparisons, as they are not likely
1421 /// to do what the programmer intended.
1422 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1423 bool EmitWarning = true;
1425 Expr* LeftExprSansParen = lex->IgnoreParens();
1426 Expr* RightExprSansParen = rex->IgnoreParens();
1428 // Special case: check for x == x (which is OK).
1429 // Do not emit warnings for such cases.
1430 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1431 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1432 if (DRL->getDecl() == DRR->getDecl())
1433 EmitWarning = false;
1436 // Special case: check for comparisons against literals that can be exactly
1437 // represented by APFloat. In such cases, do not emit a warning. This
1438 // is a heuristic: often comparison against such literals are used to
1439 // detect if a value in a variable has not changed. This clearly can
1440 // lead to false negatives.
1441 if (EmitWarning) {
1442 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1443 if (FLL->isExact())
1444 EmitWarning = false;
1446 else
1447 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1448 if (FLR->isExact())
1449 EmitWarning = false;
1453 // Check for comparisons with builtin types.
1454 if (EmitWarning)
1455 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1456 if (CL->isBuiltinCall(Context))
1457 EmitWarning = false;
1459 if (EmitWarning)
1460 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1461 if (CR->isBuiltinCall(Context))
1462 EmitWarning = false;
1464 // Emit the diagnostic.
1465 if (EmitWarning)
1466 Diag(loc, diag::warn_floatingpoint_eq)
1467 << lex->getSourceRange() << rex->getSourceRange();