RegionStore/BasicStore: do not return UndefinedVal for accesses to concrete addresses...
[clang.git] / lib / Checker / RegionStore.cpp
blob7808872f5dd630d09dba85157003e45e234be754
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Checker/PathSensitive/GRState.h"
24 #include "clang/Checker/PathSensitive/GRStateTrait.h"
25 #include "clang/Checker/PathSensitive/MemRegion.h"
26 #include "llvm/ADT/ImmutableList.h"
27 #include "llvm/ADT/ImmutableMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/Support/raw_ostream.h"
31 using namespace clang;
32 using llvm::Optional;
34 //===----------------------------------------------------------------------===//
35 // Representation of binding keys.
36 //===----------------------------------------------------------------------===//
38 namespace {
39 class BindingKey {
40 public:
41 enum Kind { Direct = 0x0, Default = 0x1 };
42 private:
43 llvm ::PointerIntPair<const MemRegion*, 1> P;
44 uint64_t Offset;
46 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
47 : P(r, (unsigned) k), Offset(offset) {}
48 public:
50 bool isDirect() const { return P.getInt() == Direct; }
52 const MemRegion *getRegion() const { return P.getPointer(); }
53 uint64_t getOffset() const { return Offset; }
55 void Profile(llvm::FoldingSetNodeID& ID) const {
56 ID.AddPointer(P.getOpaqueValue());
57 ID.AddInteger(Offset);
60 static BindingKey Make(const MemRegion *R, Kind k);
62 bool operator<(const BindingKey &X) const {
63 if (P.getOpaqueValue() < X.P.getOpaqueValue())
64 return true;
65 if (P.getOpaqueValue() > X.P.getOpaqueValue())
66 return false;
67 return Offset < X.Offset;
70 bool operator==(const BindingKey &X) const {
71 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
72 Offset == X.Offset;
75 bool isValid() const {
76 return getRegion() != NULL;
79 } // end anonymous namespace
81 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
82 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
83 const RegionRawOffset &O = ER->getAsArrayOffset();
85 // FIXME: There are some ElementRegions for which we cannot compute
86 // raw offsets yet, including regions with symbolic offsets. These will be
87 // ignored by the store.
88 return BindingKey(O.getRegion(), O.getByteOffset(), k);
91 return BindingKey(R, 0, k);
94 namespace llvm {
95 static inline
96 llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
97 os << '(' << K.getRegion() << ',' << K.getOffset()
98 << ',' << (K.isDirect() ? "direct" : "default")
99 << ')';
100 return os;
102 } // end llvm namespace
104 //===----------------------------------------------------------------------===//
105 // Actual Store type.
106 //===----------------------------------------------------------------------===//
108 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
110 //===----------------------------------------------------------------------===//
111 // Fine-grained control of RegionStoreManager.
112 //===----------------------------------------------------------------------===//
114 namespace {
115 struct minimal_features_tag {};
116 struct maximal_features_tag {};
118 class RegionStoreFeatures {
119 bool SupportsFields;
120 public:
121 RegionStoreFeatures(minimal_features_tag) :
122 SupportsFields(false) {}
124 RegionStoreFeatures(maximal_features_tag) :
125 SupportsFields(true) {}
127 void enableFields(bool t) { SupportsFields = t; }
129 bool supportsFields() const { return SupportsFields; }
133 //===----------------------------------------------------------------------===//
134 // Main RegionStore logic.
135 //===----------------------------------------------------------------------===//
137 namespace {
139 class RegionStoreSubRegionMap : public SubRegionMap {
140 public:
141 typedef llvm::ImmutableSet<const MemRegion*> Set;
142 typedef llvm::DenseMap<const MemRegion*, Set> Map;
143 private:
144 Set::Factory F;
145 Map M;
146 public:
147 bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
148 Map::iterator I = M.find(Parent);
150 if (I == M.end()) {
151 M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion)));
152 return true;
155 I->second = F.Add(I->second, SubRegion);
156 return false;
159 void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
161 ~RegionStoreSubRegionMap() {}
163 const Set *getSubRegions(const MemRegion *Parent) const {
164 Map::const_iterator I = M.find(Parent);
165 return I == M.end() ? NULL : &I->second;
168 bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
169 Map::const_iterator I = M.find(Parent);
171 if (I == M.end())
172 return true;
174 Set S = I->second;
175 for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
176 if (!V.Visit(Parent, *SI))
177 return false;
180 return true;
184 void
185 RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
186 const SubRegion *R) {
187 const MemRegion *superR = R->getSuperRegion();
188 if (add(superR, R))
189 if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
190 WL.push_back(sr);
193 class RegionStoreManager : public StoreManager {
194 const RegionStoreFeatures Features;
195 RegionBindings::Factory RBFactory;
197 public:
198 RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
199 : StoreManager(mgr),
200 Features(f),
201 RBFactory(mgr.getAllocator()) {}
203 SubRegionMap *getSubRegionMap(Store store) {
204 return getRegionStoreSubRegionMap(store);
207 RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
209 Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
210 /// getDefaultBinding - Returns an SVal* representing an optional default
211 /// binding associated with a region and its subregions.
212 Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
214 /// setImplicitDefaultValue - Set the default binding for the provided
215 /// MemRegion to the value implicitly defined for compound literals when
216 /// the value is not specified.
217 Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
219 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
220 /// type. 'Array' represents the lvalue of the array being decayed
221 /// to a pointer, and the returned SVal represents the decayed
222 /// version of that lvalue (i.e., a pointer to the first element of
223 /// the array). This is called by GRExprEngine when evaluating
224 /// casts from arrays to pointers.
225 SVal ArrayToPointer(Loc Array);
227 SVal EvalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy);
229 Store getInitialStore(const LocationContext *InitLoc) {
230 return RBFactory.GetEmptyMap().getRoot();
233 //===-------------------------------------------------------------------===//
234 // Binding values to regions.
235 //===-------------------------------------------------------------------===//
237 Store InvalidateRegions(Store store,
238 const MemRegion * const *Begin,
239 const MemRegion * const *End,
240 const Expr *E, unsigned Count,
241 InvalidatedSymbols *IS,
242 bool invalidateGlobals,
243 InvalidatedRegions *Regions);
245 public: // Made public for helper classes.
247 void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
248 RegionStoreSubRegionMap &M);
250 RegionBindings Add(RegionBindings B, BindingKey K, SVal V);
252 RegionBindings Add(RegionBindings B, const MemRegion *R,
253 BindingKey::Kind k, SVal V);
255 const SVal *Lookup(RegionBindings B, BindingKey K);
256 const SVal *Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
258 RegionBindings Remove(RegionBindings B, BindingKey K);
259 RegionBindings Remove(RegionBindings B, const MemRegion *R,
260 BindingKey::Kind k);
262 RegionBindings Remove(RegionBindings B, const MemRegion *R) {
263 return Remove(Remove(B, R, BindingKey::Direct), R, BindingKey::Default);
266 public: // Part of public interface to class.
268 Store Bind(Store store, Loc LV, SVal V);
270 // BindDefault is only used to initialize a region with a default value.
271 Store BindDefault(Store store, const MemRegion *R, SVal V) {
272 RegionBindings B = GetRegionBindings(store);
273 assert(!Lookup(B, R, BindingKey::Default));
274 assert(!Lookup(B, R, BindingKey::Direct));
275 return Add(B, R, BindingKey::Default, V).getRoot();
278 Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
279 const LocationContext *LC, SVal V);
281 Store BindDecl(Store store, const VarRegion *VR, SVal InitVal);
283 Store BindDeclWithNoInit(Store store, const VarRegion *) {
284 return store;
287 /// BindStruct - Bind a compound value to a structure.
288 Store BindStruct(Store store, const TypedRegion* R, SVal V);
290 Store BindArray(Store store, const TypedRegion* R, SVal V);
292 /// KillStruct - Set the entire struct to unknown.
293 Store KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
295 Store Remove(Store store, Loc LV);
298 //===------------------------------------------------------------------===//
299 // Loading values from regions.
300 //===------------------------------------------------------------------===//
302 /// The high level logic for this method is this:
303 /// Retrieve (L)
304 /// if L has binding
305 /// return L's binding
306 /// else if L is in killset
307 /// return unknown
308 /// else
309 /// if L is on stack or heap
310 /// return undefined
311 /// else
312 /// return symbolic
313 SVal Retrieve(Store store, Loc L, QualType T = QualType());
315 SVal RetrieveElement(Store store, const ElementRegion *R);
317 SVal RetrieveField(Store store, const FieldRegion *R);
319 SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
321 SVal RetrieveVar(Store store, const VarRegion *R);
323 SVal RetrieveLazySymbol(const TypedRegion *R);
325 SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
326 QualType Ty, const MemRegion *superR);
328 /// Retrieve the values in a struct and return a CompoundVal, used when doing
329 /// struct copy:
330 /// struct s x, y;
331 /// x = y;
332 /// y's value is retrieved by this method.
333 SVal RetrieveStruct(Store store, const TypedRegion* R);
335 SVal RetrieveArray(Store store, const TypedRegion* R);
337 /// Used to lazily generate derived symbols for bindings that are defined
338 /// implicitly by default bindings in a super region.
339 Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
340 const MemRegion *superR,
341 const TypedRegion *R, QualType Ty);
343 /// Get the state and region whose binding this region R corresponds to.
344 std::pair<Store, const MemRegion*>
345 GetLazyBinding(RegionBindings B, const MemRegion *R);
347 Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
348 const TypedRegion *R);
350 //===------------------------------------------------------------------===//
351 // State pruning.
352 //===------------------------------------------------------------------===//
354 /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
355 /// It returns a new Store with these values removed.
356 Store RemoveDeadBindings(Store store, const StackFrameContext *LCtx,
357 SymbolReaper& SymReaper,
358 llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
360 Store EnterStackFrame(const GRState *state, const StackFrameContext *frame);
362 //===------------------------------------------------------------------===//
363 // Region "extents".
364 //===------------------------------------------------------------------===//
366 // FIXME: This method will soon be eliminated; see the note in Store.h.
367 DefinedOrUnknownSVal getSizeInElements(const GRState *state,
368 const MemRegion* R, QualType EleTy);
370 //===------------------------------------------------------------------===//
371 // Utility methods.
372 //===------------------------------------------------------------------===//
374 static inline RegionBindings GetRegionBindings(Store store) {
375 return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
378 void print(Store store, llvm::raw_ostream& Out, const char* nl,
379 const char *sep);
381 void iterBindings(Store store, BindingsHandler& f) {
382 RegionBindings B = GetRegionBindings(store);
383 for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
384 const BindingKey &K = I.getKey();
385 if (!K.isDirect())
386 continue;
387 if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
388 // FIXME: Possibly incorporate the offset?
389 if (!f.HandleBinding(*this, store, R, I.getData()))
390 return;
396 } // end anonymous namespace
398 //===----------------------------------------------------------------------===//
399 // RegionStore creation.
400 //===----------------------------------------------------------------------===//
402 StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) {
403 RegionStoreFeatures F = maximal_features_tag();
404 return new RegionStoreManager(StMgr, F);
407 StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
408 RegionStoreFeatures F = minimal_features_tag();
409 F.enableFields(true);
410 return new RegionStoreManager(StMgr, F);
414 RegionStoreSubRegionMap*
415 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
416 RegionBindings B = GetRegionBindings(store);
417 RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
419 llvm::SmallVector<const SubRegion*, 10> WL;
421 for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
422 if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
423 M->process(WL, R);
425 // We also need to record in the subregion map "intermediate" regions that
426 // don't have direct bindings but are super regions of those that do.
427 while (!WL.empty()) {
428 const SubRegion *R = WL.back();
429 WL.pop_back();
430 M->process(WL, R);
433 return M;
436 //===----------------------------------------------------------------------===//
437 // Region Cluster analysis.
438 //===----------------------------------------------------------------------===//
440 namespace {
441 template <typename DERIVED>
442 class ClusterAnalysis {
443 protected:
444 typedef BumpVector<BindingKey> RegionCluster;
445 typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
446 llvm::DenseMap<const RegionCluster*, unsigned> Visited;
447 typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
448 WorkList;
450 BumpVectorContext BVC;
451 ClusterMap ClusterM;
452 WorkList WL;
454 RegionStoreManager &RM;
455 ASTContext &Ctx;
456 ValueManager &ValMgr;
458 RegionBindings B;
460 const bool includeGlobals;
462 public:
463 ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr,
464 RegionBindings b, const bool includeGlobals)
465 : RM(rm), Ctx(StateMgr.getContext()), ValMgr(StateMgr.getValueManager()),
466 B(b), includeGlobals(includeGlobals) {}
468 RegionBindings getRegionBindings() const { return B; }
470 RegionCluster &AddToCluster(BindingKey K) {
471 const MemRegion *R = K.getRegion();
472 const MemRegion *baseR = R->getBaseRegion();
473 RegionCluster &C = getCluster(baseR);
474 C.push_back(K, BVC);
475 static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
476 return C;
479 bool isVisited(const MemRegion *R) {
480 return (bool) Visited[&getCluster(R->getBaseRegion())];
483 RegionCluster& getCluster(const MemRegion *R) {
484 RegionCluster *&CRef = ClusterM[R];
485 if (!CRef) {
486 void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
487 CRef = new (Mem) RegionCluster(BVC, 10);
489 return *CRef;
492 void GenerateClusters() {
493 // Scan the entire set of bindings and make the region clusters.
494 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
495 RegionCluster &C = AddToCluster(RI.getKey());
496 if (const MemRegion *R = RI.getData().getAsRegion()) {
497 // Generate a cluster, but don't add the region to the cluster
498 // if there aren't any bindings.
499 getCluster(R->getBaseRegion());
501 if (includeGlobals) {
502 const MemRegion *R = RI.getKey().getRegion();
503 if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
504 AddToWorkList(R, C);
509 bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
510 if (unsigned &visited = Visited[&C])
511 return false;
512 else
513 visited = 1;
515 WL.push_back(std::make_pair(R, &C));
516 return true;
519 bool AddToWorkList(BindingKey K) {
520 return AddToWorkList(K.getRegion());
523 bool AddToWorkList(const MemRegion *R) {
524 const MemRegion *baseR = R->getBaseRegion();
525 return AddToWorkList(baseR, getCluster(baseR));
528 void RunWorkList() {
529 while (!WL.empty()) {
530 const MemRegion *baseR;
531 RegionCluster *C;
532 llvm::tie(baseR, C) = WL.back();
533 WL.pop_back();
535 // First visit the cluster.
536 static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
538 // Next, visit the base region.
539 static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
543 public:
544 void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
545 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
546 void VisitBaseRegion(const MemRegion *baseR) {}
550 //===----------------------------------------------------------------------===//
551 // Binding invalidation.
552 //===----------------------------------------------------------------------===//
554 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
555 const MemRegion *R,
556 RegionStoreSubRegionMap &M) {
558 if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
559 for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
560 I != E; ++I)
561 RemoveSubRegionBindings(B, *I, M);
563 B = Remove(B, R);
566 namespace {
567 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
569 const Expr *Ex;
570 unsigned Count;
571 StoreManager::InvalidatedSymbols *IS;
572 StoreManager::InvalidatedRegions *Regions;
573 public:
574 InvalidateRegionsWorker(RegionStoreManager &rm,
575 GRStateManager &stateMgr,
576 RegionBindings b,
577 const Expr *ex, unsigned count,
578 StoreManager::InvalidatedSymbols *is,
579 StoreManager::InvalidatedRegions *r,
580 bool includeGlobals)
581 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
582 Ex(ex), Count(count), IS(is), Regions(r) {}
584 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
585 void VisitBaseRegion(const MemRegion *baseR);
587 private:
588 void VisitBinding(SVal V);
592 void InvalidateRegionsWorker::VisitBinding(SVal V) {
593 // A symbol? Mark it touched by the invalidation.
594 if (IS)
595 if (SymbolRef Sym = V.getAsSymbol())
596 IS->insert(Sym);
598 if (const MemRegion *R = V.getAsRegion()) {
599 AddToWorkList(R);
600 return;
603 // Is it a LazyCompoundVal? All references get invalidated as well.
604 if (const nonloc::LazyCompoundVal *LCS =
605 dyn_cast<nonloc::LazyCompoundVal>(&V)) {
607 const MemRegion *LazyR = LCS->getRegion();
608 RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
610 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
611 const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
612 if (baseR && baseR->isSubRegionOf(LazyR))
613 VisitBinding(RI.getData());
616 return;
620 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
621 BindingKey *I, BindingKey *E) {
622 for ( ; I != E; ++I) {
623 // Get the old binding. Is it a region? If so, add it to the worklist.
624 const BindingKey &K = *I;
625 if (const SVal *V = RM.Lookup(B, K))
626 VisitBinding(*V);
628 B = RM.Remove(B, K);
632 void InvalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
633 if (IS) {
634 // Symbolic region? Mark that symbol touched by the invalidation.
635 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
636 IS->insert(SR->getSymbol());
639 // BlockDataRegion? If so, invalidate captured variables that are passed
640 // by reference.
641 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
642 for (BlockDataRegion::referenced_vars_iterator
643 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
644 BI != BE; ++BI) {
645 const VarRegion *VR = *BI;
646 const VarDecl *VD = VR->getDecl();
647 if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
648 AddToWorkList(VR);
650 return;
653 // Otherwise, we have a normal data region. Record that we touched the region.
654 if (Regions)
655 Regions->push_back(baseR);
657 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
658 // Invalidate the region by setting its default value to
659 // conjured symbol. The type of the symbol is irrelavant.
660 DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
661 Count);
662 B = RM.Add(B, baseR, BindingKey::Default, V);
663 return;
666 if (!baseR->isBoundable())
667 return;
669 const TypedRegion *TR = cast<TypedRegion>(baseR);
670 QualType T = TR->getValueType();
672 // Invalidate the binding.
673 if (T->isStructureType()) {
674 // Invalidate the region by setting its default value to
675 // conjured symbol. The type of the symbol is irrelavant.
676 DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
677 Count);
678 B = RM.Add(B, baseR, BindingKey::Default, V);
679 return;
682 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
683 // Set the default value of the array to conjured symbol.
684 DefinedOrUnknownSVal V =
685 ValMgr.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
686 B = RM.Add(B, baseR, BindingKey::Default, V);
687 return;
690 if (includeGlobals &&
691 isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
692 // If the region is a global and we are invalidating all globals,
693 // just erase the entry. This causes all globals to be lazily
694 // symbolicated from the same base symbol.
695 B = RM.Remove(B, baseR);
696 return;
700 DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, T, Count);
701 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
702 B = RM.Add(B, baseR, BindingKey::Direct, V);
705 Store RegionStoreManager::InvalidateRegions(Store store,
706 const MemRegion * const *I,
707 const MemRegion * const *E,
708 const Expr *Ex, unsigned Count,
709 InvalidatedSymbols *IS,
710 bool invalidateGlobals,
711 InvalidatedRegions *Regions) {
712 InvalidateRegionsWorker W(*this, StateMgr,
713 RegionStoreManager::GetRegionBindings(store),
714 Ex, Count, IS, Regions, invalidateGlobals);
716 // Scan the bindings and generate the clusters.
717 W.GenerateClusters();
719 // Add I .. E to the worklist.
720 for ( ; I != E; ++I)
721 W.AddToWorkList(*I);
723 W.RunWorkList();
725 // Return the new bindings.
726 RegionBindings B = W.getRegionBindings();
728 if (invalidateGlobals) {
729 // Bind the non-static globals memory space to a new symbol that we will
730 // use to derive the bindings for all non-static globals.
731 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
732 SVal V =
733 ValMgr.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
734 /* symbol type, doesn't matter */ Ctx.IntTy,
735 Count);
736 B = Add(B, BindingKey::Make(GS, BindingKey::Default), V);
738 // Even if there are no bindings in the global scope, we still need to
739 // record that we touched it.
740 if (Regions)
741 Regions->push_back(GS);
744 return B.getRoot();
747 //===----------------------------------------------------------------------===//
748 // Extents for regions.
749 //===----------------------------------------------------------------------===//
751 DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
752 const MemRegion *R,
753 QualType EleTy) {
754 SVal Size = cast<SubRegion>(R)->getExtent(ValMgr);
755 SValuator &SVator = ValMgr.getSValuator();
756 const llvm::APSInt *SizeInt = SVator.getKnownValue(state, Size);
757 if (!SizeInt)
758 return UnknownVal();
760 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
762 if (Ctx.getAsVariableArrayType(EleTy)) {
763 // FIXME: We need to track extra state to properly record the size
764 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
765 // we don't have a divide-by-zero below.
766 return UnknownVal();
769 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
771 // If a variable is reinterpreted as a type that doesn't fit into a larger
772 // type evenly, round it down.
773 // This is a signed value, since it's used in arithmetic with signed indices.
774 return ValMgr.makeIntVal(RegionSize / EleSize, false);
777 //===----------------------------------------------------------------------===//
778 // Location and region casting.
779 //===----------------------------------------------------------------------===//
781 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
782 /// type. 'Array' represents the lvalue of the array being decayed
783 /// to a pointer, and the returned SVal represents the decayed
784 /// version of that lvalue (i.e., a pointer to the first element of
785 /// the array). This is called by GRExprEngine when evaluating casts
786 /// from arrays to pointers.
787 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
788 if (!isa<loc::MemRegionVal>(Array))
789 return UnknownVal();
791 const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
792 const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
794 if (!ArrayR)
795 return UnknownVal();
797 // Strip off typedefs from the ArrayRegion's ValueType.
798 QualType T = ArrayR->getValueType().getDesugaredType();
799 ArrayType *AT = cast<ArrayType>(T);
800 T = AT->getElementType();
802 NonLoc ZeroIdx = ValMgr.makeZeroArrayIndex();
803 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
806 //===----------------------------------------------------------------------===//
807 // Pointer arithmetic.
808 //===----------------------------------------------------------------------===//
810 SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R,
811 QualType resultTy) {
812 // Assume the base location is MemRegionVal.
813 if (!isa<loc::MemRegionVal>(L))
814 return UnknownVal();
816 // Special case for zero RHS.
817 if (R.isZeroConstant()) {
818 switch (Op) {
819 default:
820 // Handle it normally.
821 break;
822 case BO_Add:
823 case BO_Sub:
824 // FIXME: does this need to be casted to match resultTy?
825 return L;
829 const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
830 const ElementRegion *ER = 0;
832 switch (MR->getKind()) {
833 case MemRegion::SymbolicRegionKind: {
834 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
835 SymbolRef Sym = SR->getSymbol();
836 QualType T = Sym->getType(Ctx);
837 QualType EleTy;
839 if (const PointerType *PT = T->getAs<PointerType>())
840 EleTy = PT->getPointeeType();
841 else
842 EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();
844 const NonLoc &ZeroIdx = ValMgr.makeZeroArrayIndex();
845 ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, Ctx);
846 break;
848 case MemRegion::AllocaRegionKind: {
849 const AllocaRegion *AR = cast<AllocaRegion>(MR);
850 QualType EleTy = Ctx.CharTy; // Create an ElementRegion of bytes.
851 NonLoc ZeroIdx = ValMgr.makeZeroArrayIndex();
852 ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, Ctx);
853 break;
856 case MemRegion::ElementRegionKind: {
857 ER = cast<ElementRegion>(MR);
858 break;
861 // Not yet handled.
862 case MemRegion::VarRegionKind:
863 case MemRegion::StringRegionKind: {
866 // Fall-through.
867 case MemRegion::CompoundLiteralRegionKind:
868 case MemRegion::FieldRegionKind:
869 case MemRegion::ObjCIvarRegionKind:
870 case MemRegion::CXXObjectRegionKind:
871 return UnknownVal();
873 case MemRegion::FunctionTextRegionKind:
874 case MemRegion::BlockTextRegionKind:
875 case MemRegion::BlockDataRegionKind:
876 // Technically this can happen if people do funny things with casts.
877 return UnknownVal();
879 case MemRegion::CXXThisRegionKind:
880 assert(0 &&
881 "Cannot perform pointer arithmetic on implicit argument 'this'");
882 case MemRegion::GenericMemSpaceRegionKind:
883 case MemRegion::StackLocalsSpaceRegionKind:
884 case MemRegion::StackArgumentsSpaceRegionKind:
885 case MemRegion::HeapSpaceRegionKind:
886 case MemRegion::NonStaticGlobalSpaceRegionKind:
887 case MemRegion::StaticGlobalSpaceRegionKind:
888 case MemRegion::UnknownSpaceRegionKind:
889 assert(0 && "Cannot perform pointer arithmetic on a MemSpace");
890 return UnknownVal();
893 SVal Idx = ER->getIndex();
894 nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
896 // For now, only support:
897 // (a) concrete integer indices that can easily be resolved
898 // (b) 0 + symbolic index
899 if (Base) {
900 if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) {
901 // FIXME: Should use SValuator here.
902 SVal NewIdx =
903 Base->evalBinOp(ValMgr, Op,
904 cast<nonloc::ConcreteInt>(ValMgr.convertToArrayIndex(*Offset)));
906 if (!isa<NonLoc>(NewIdx))
907 return UnknownVal();
909 const MemRegion* NewER =
910 MRMgr.getElementRegion(ER->getElementType(), cast<NonLoc>(NewIdx),
911 ER->getSuperRegion(), Ctx);
912 return ValMgr.makeLoc(NewER);
914 if (0 == Base->getValue()) {
915 const MemRegion* NewER =
916 MRMgr.getElementRegion(ER->getElementType(), R,
917 ER->getSuperRegion(), Ctx);
918 return ValMgr.makeLoc(NewER);
922 return UnknownVal();
925 //===----------------------------------------------------------------------===//
926 // Loading values from regions.
927 //===----------------------------------------------------------------------===//
929 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
930 const MemRegion *R) {
932 if (const SVal *V = Lookup(B, R, BindingKey::Direct))
933 return *V;
935 return Optional<SVal>();
938 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
939 const MemRegion *R) {
940 if (R->isBoundable())
941 if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
942 if (TR->getValueType()->isUnionType())
943 return UnknownVal();
945 if (const SVal *V = Lookup(B, R, BindingKey::Default))
946 return *V;
948 return Optional<SVal>();
951 SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
952 assert(!isa<UnknownVal>(L) && "location unknown");
953 assert(!isa<UndefinedVal>(L) && "location undefined");
955 // For access to concrete addresses, return UnknownVal. Checks
956 // for null dereferences (and similar errors) are done by checkers, not
957 // the Store.
958 // FIXME: We can consider lazily symbolicating such memory, but we really
959 // should defer this when we can reason easily about symbolicating arrays
960 // of bytes.
961 if (isa<loc::ConcreteInt>(L)) {
962 return UnknownVal();
965 const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
967 if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
968 if (T.isNull()) {
969 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
970 T = SR->getSymbol()->getType(Ctx);
972 MR = GetElementZeroRegion(MR, T);
975 if (isa<CodeTextRegion>(MR)) {
976 assert(0 && "Why load from a code text region?");
977 return UnknownVal();
980 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
981 // instead of 'Loc', and have the other Loc cases handled at a higher level.
982 const TypedRegion *R = cast<TypedRegion>(MR);
983 QualType RTy = R->getValueType();
985 // FIXME: We should eventually handle funny addressing. e.g.:
987 // int x = ...;
988 // int *p = &x;
989 // char *q = (char*) p;
990 // char c = *q; // returns the first byte of 'x'.
992 // Such funny addressing will occur due to layering of regions.
994 if (RTy->isStructureOrClassType())
995 return RetrieveStruct(store, R);
997 // FIXME: Handle unions.
998 if (RTy->isUnionType())
999 return UnknownVal();
1001 if (RTy->isArrayType())
1002 return RetrieveArray(store, R);
1004 // FIXME: handle Vector types.
1005 if (RTy->isVectorType())
1006 return UnknownVal();
1008 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1009 return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
1011 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1012 // FIXME: Here we actually perform an implicit conversion from the loaded
1013 // value to the element type. Eventually we want to compose these values
1014 // more intelligently. For example, an 'element' can encompass multiple
1015 // bound regions (e.g., several bound bytes), or could be a subset of
1016 // a larger value.
1017 return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
1020 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1021 // FIXME: Here we actually perform an implicit conversion from the loaded
1022 // value to the ivar type. What we should model is stores to ivars
1023 // that blow past the extent of the ivar. If the address of the ivar is
1024 // reinterpretted, it is possible we stored a different value that could
1025 // fit within the ivar. Either we need to cast these when storing them
1026 // or reinterpret them lazily (as we do here).
1027 return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
1030 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1031 // FIXME: Here we actually perform an implicit conversion from the loaded
1032 // value to the variable type. What we should model is stores to variables
1033 // that blow past the extent of the variable. If the address of the
1034 // variable is reinterpretted, it is possible we stored a different value
1035 // that could fit within the variable. Either we need to cast these when
1036 // storing them or reinterpret them lazily (as we do here).
1037 return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
1040 RegionBindings B = GetRegionBindings(store);
1041 const SVal *V = Lookup(B, R, BindingKey::Direct);
1043 // Check if the region has a binding.
1044 if (V)
1045 return *V;
1047 // The location does not have a bound value. This means that it has
1048 // the value it had upon its creation and/or entry to the analyzed
1049 // function/method. These are either symbolic values or 'undefined'.
1050 if (R->hasStackNonParametersStorage()) {
1051 // All stack variables are considered to have undefined values
1052 // upon creation. All heap allocated blocks are considered to
1053 // have undefined values as well unless they are explicitly bound
1054 // to specific values.
1055 return UndefinedVal();
1058 // All other values are symbolic.
1059 return ValMgr.getRegionValueSymbolVal(R);
1062 std::pair<Store, const MemRegion *>
1063 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) {
1064 if (Optional<SVal> OV = getDirectBinding(B, R))
1065 if (const nonloc::LazyCompoundVal *V =
1066 dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1067 return std::make_pair(V->getStore(), V->getRegion());
1069 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1070 const std::pair<Store, const MemRegion *> &X =
1071 GetLazyBinding(B, ER->getSuperRegion());
1073 if (X.second)
1074 return std::make_pair(X.first,
1075 MRMgr.getElementRegionWithSuper(ER, X.second));
1077 else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1078 const std::pair<Store, const MemRegion *> &X =
1079 GetLazyBinding(B, FR->getSuperRegion());
1081 if (X.second)
1082 return std::make_pair(X.first,
1083 MRMgr.getFieldRegionWithSuper(FR, X.second));
1085 // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1086 // possible for a valid lazy binding.
1087 return std::make_pair((Store) 0, (const MemRegion *) 0);
1090 SVal RegionStoreManager::RetrieveElement(Store store,
1091 const ElementRegion* R) {
1092 // Check if the region has a binding.
1093 RegionBindings B = GetRegionBindings(store);
1094 if (const Optional<SVal> &V = getDirectBinding(B, R))
1095 return *V;
1097 const MemRegion* superR = R->getSuperRegion();
1099 // Check if the region is an element region of a string literal.
1100 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1101 // FIXME: Handle loads from strings where the literal is treated as
1102 // an integer, e.g., *((unsigned int*)"hello")
1103 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1104 if (T != Ctx.getCanonicalType(R->getElementType()))
1105 return UnknownVal();
1107 const StringLiteral *Str = StrR->getStringLiteral();
1108 SVal Idx = R->getIndex();
1109 if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1110 int64_t i = CI->getValue().getSExtValue();
1111 int64_t byteLength = Str->getByteLength();
1112 // Technically, only i == byteLength is guaranteed to be null.
1113 // However, such overflows should be caught before reaching this point;
1114 // the only time such an access would be made is if a string literal was
1115 // used to initialize a larger array.
1116 char c = (i >= byteLength) ? '\0' : Str->getString()[i];
1117 return ValMgr.makeIntVal(c, T);
1121 // Check for loads from a code text region. For such loads, just give up.
1122 if (isa<CodeTextRegion>(superR))
1123 return UnknownVal();
1125 // Handle the case where we are indexing into a larger scalar object.
1126 // For example, this handles:
1127 // int x = ...
1128 // char *y = &x;
1129 // return *y;
1130 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1131 const RegionRawOffset &O = R->getAsArrayOffset();
1132 if (const TypedRegion *baseR = dyn_cast_or_null<TypedRegion>(O.getRegion())) {
1133 QualType baseT = baseR->getValueType();
1134 if (baseT->isScalarType()) {
1135 QualType elemT = R->getElementType();
1136 if (elemT->isScalarType()) {
1137 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1138 if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1139 if (SymbolRef parentSym = V->getAsSymbol())
1140 return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
1142 if (V->isUnknownOrUndef())
1143 return *V;
1144 // Other cases: give up. We are indexing into a larger object
1145 // that has some value, but we don't know how to handle that yet.
1146 return UnknownVal();
1152 return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1155 SVal RegionStoreManager::RetrieveField(Store store,
1156 const FieldRegion* R) {
1158 // Check if the region has a binding.
1159 RegionBindings B = GetRegionBindings(store);
1160 if (const Optional<SVal> &V = getDirectBinding(B, R))
1161 return *V;
1163 QualType Ty = R->getValueType();
1164 return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1167 Optional<SVal>
1168 RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1169 const MemRegion *superR,
1170 const TypedRegion *R,
1171 QualType Ty) {
1173 if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1174 if (SymbolRef parentSym = D->getAsSymbol())
1175 return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
1177 if (D->isZeroConstant())
1178 return ValMgr.makeZeroVal(Ty);
1180 if (D->isUnknownOrUndef())
1181 return *D;
1183 assert(0 && "Unknown default value");
1186 return Optional<SVal>();
1189 SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1190 const TypedRegion *R,
1191 QualType Ty,
1192 const MemRegion *superR) {
1194 // At this point we have already checked in either RetrieveElement or
1195 // RetrieveField if 'R' has a direct binding.
1197 RegionBindings B = GetRegionBindings(store);
1199 while (superR) {
1200 if (const Optional<SVal> &D =
1201 RetrieveDerivedDefaultValue(B, superR, R, Ty))
1202 return *D;
1204 // If our super region is a field or element itself, walk up the region
1205 // hierarchy to see if there is a default value installed in an ancestor.
1206 if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1207 superR = SR->getSuperRegion();
1208 continue;
1210 break;
1213 // Lazy binding?
1214 Store lazyBindingStore = NULL;
1215 const MemRegion *lazyBindingRegion = NULL;
1216 llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R);
1218 if (lazyBindingRegion) {
1219 if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1220 return RetrieveElement(lazyBindingStore, ER);
1221 return RetrieveField(lazyBindingStore,
1222 cast<FieldRegion>(lazyBindingRegion));
1225 if (R->hasStackNonParametersStorage()) {
1226 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1227 // Currently we don't reason specially about Clang-style vectors. Check
1228 // if superR is a vector and if so return Unknown.
1229 if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
1230 if (typedSuperR->getValueType()->isVectorType())
1231 return UnknownVal();
1234 // FIXME: We also need to take ElementRegions with symbolic indexes into
1235 // account.
1236 if (!ER->getIndex().isConstant())
1237 return UnknownVal();
1240 return UndefinedVal();
1243 // All other values are symbolic.
1244 return ValMgr.getRegionValueSymbolVal(R);
1247 SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1249 // Check if the region has a binding.
1250 RegionBindings B = GetRegionBindings(store);
1252 if (const Optional<SVal> &V = getDirectBinding(B, R))
1253 return *V;
1255 const MemRegion *superR = R->getSuperRegion();
1257 // Check if the super region has a default binding.
1258 if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1259 if (SymbolRef parentSym = V->getAsSymbol())
1260 return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
1262 // Other cases: give up.
1263 return UnknownVal();
1266 return RetrieveLazySymbol(R);
1269 SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1271 // Check if the region has a binding.
1272 RegionBindings B = GetRegionBindings(store);
1274 if (const Optional<SVal> &V = getDirectBinding(B, R))
1275 return *V;
1277 // Lazily derive a value for the VarRegion.
1278 const VarDecl *VD = R->getDecl();
1279 QualType T = VD->getType();
1280 const MemSpaceRegion *MS = R->getMemorySpace();
1282 if (isa<UnknownSpaceRegion>(MS) ||
1283 isa<StackArgumentsSpaceRegion>(MS))
1284 return ValMgr.getRegionValueSymbolVal(R);
1286 if (isa<GlobalsSpaceRegion>(MS)) {
1287 if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1288 // Is 'VD' declared constant? If so, retrieve the constant value.
1289 QualType CT = Ctx.getCanonicalType(T);
1290 if (CT.isConstQualified()) {
1291 const Expr *Init = VD->getInit();
1292 // Do the null check first, as we want to call 'IgnoreParenCasts'.
1293 if (Init)
1294 if (const IntegerLiteral *IL =
1295 dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1296 const nonloc::ConcreteInt &V = ValMgr.makeIntVal(IL);
1297 return ValMgr.getSValuator().EvalCast(V, Init->getType(),
1298 IL->getType());
1302 if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1303 return V.getValue();
1305 return ValMgr.getRegionValueSymbolVal(R);
1308 if (T->isIntegerType())
1309 return ValMgr.makeIntVal(0, T);
1310 if (T->isPointerType())
1311 return ValMgr.makeNull();
1313 return UnknownVal();
1316 return UndefinedVal();
1319 SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {
1320 // All other values are symbolic.
1321 return ValMgr.getRegionValueSymbolVal(R);
1324 SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
1325 QualType T = R->getValueType();
1326 assert(T->isStructureOrClassType());
1327 return ValMgr.makeLazyCompoundVal(store, R);
1330 SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
1331 assert(Ctx.getAsConstantArrayType(R->getValueType()));
1332 return ValMgr.makeLazyCompoundVal(store, R);
1335 //===----------------------------------------------------------------------===//
1336 // Binding values to regions.
1337 //===----------------------------------------------------------------------===//
1339 Store RegionStoreManager::Remove(Store store, Loc L) {
1340 if (isa<loc::MemRegionVal>(L))
1341 if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1342 return Remove(GetRegionBindings(store), R).getRoot();
1344 return store;
1347 Store RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1348 if (isa<loc::ConcreteInt>(L))
1349 return store;
1351 // If we get here, the location should be a region.
1352 const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1354 // Check if the region is a struct region.
1355 if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
1356 if (TR->getValueType()->isStructureOrClassType())
1357 return BindStruct(store, TR, V);
1359 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1360 if (ER->getIndex().isZeroConstant()) {
1361 if (const TypedRegion *superR =
1362 dyn_cast<TypedRegion>(ER->getSuperRegion())) {
1363 QualType superTy = superR->getValueType();
1364 // For now, just invalidate the fields of the struct/union/class.
1365 // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1366 // FIXME: Precisely handle the fields of the record.
1367 if (superTy->isStructureOrClassType())
1368 return KillStruct(store, superR, UnknownVal());
1372 else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1373 // Binding directly to a symbolic region should be treated as binding
1374 // to element 0.
1375 QualType T = SR->getSymbol()->getType(Ctx);
1377 // FIXME: Is this the right way to handle symbols that are references?
1378 if (const PointerType *PT = T->getAs<PointerType>())
1379 T = PT->getPointeeType();
1380 else
1381 T = T->getAs<ReferenceType>()->getPointeeType();
1383 R = GetElementZeroRegion(SR, T);
1386 // Perform the binding.
1387 RegionBindings B = GetRegionBindings(store);
1388 return Add(B, R, BindingKey::Direct, V).getRoot();
1391 Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1392 SVal InitVal) {
1394 QualType T = VR->getDecl()->getType();
1396 if (T->isArrayType())
1397 return BindArray(store, VR, InitVal);
1398 if (T->isStructureOrClassType())
1399 return BindStruct(store, VR, InitVal);
1401 return Bind(store, ValMgr.makeLoc(VR), InitVal);
1404 // FIXME: this method should be merged into Bind().
1405 Store RegionStoreManager::BindCompoundLiteral(Store store,
1406 const CompoundLiteralExpr *CL,
1407 const LocationContext *LC,
1408 SVal V) {
1409 return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1414 Store RegionStoreManager::setImplicitDefaultValue(Store store,
1415 const MemRegion *R,
1416 QualType T) {
1417 RegionBindings B = GetRegionBindings(store);
1418 SVal V;
1420 if (Loc::IsLocType(T))
1421 V = ValMgr.makeNull();
1422 else if (T->isIntegerType())
1423 V = ValMgr.makeZeroVal(T);
1424 else if (T->isStructureOrClassType() || T->isArrayType()) {
1425 // Set the default value to a zero constant when it is a structure
1426 // or array. The type doesn't really matter.
1427 V = ValMgr.makeZeroVal(Ctx.IntTy);
1429 else {
1430 return store;
1433 return Add(B, R, BindingKey::Default, V).getRoot();
1436 Store RegionStoreManager::BindArray(Store store, const TypedRegion* R,
1437 SVal Init) {
1439 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1440 QualType ElementTy = AT->getElementType();
1441 Optional<uint64_t> Size;
1443 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1444 Size = CAT->getSize().getZExtValue();
1446 // Check if the init expr is a string literal.
1447 if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1448 const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1450 // Treat the string as a lazy compound value.
1451 nonloc::LazyCompoundVal LCV =
1452 cast<nonloc::LazyCompoundVal>(ValMgr.makeLazyCompoundVal(store, S));
1453 return CopyLazyBindings(LCV, store, R);
1456 // Handle lazy compound values.
1457 if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1458 return CopyLazyBindings(*LCV, store, R);
1460 // Remaining case: explicit compound values.
1462 if (Init.isUnknown())
1463 return setImplicitDefaultValue(store, R, ElementTy);
1465 nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1466 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1467 uint64_t i = 0;
1469 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1470 // The init list might be shorter than the array length.
1471 if (VI == VE)
1472 break;
1474 const NonLoc &Idx = ValMgr.makeArrayIndex(i);
1475 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1477 if (ElementTy->isStructureOrClassType())
1478 store = BindStruct(store, ER, *VI);
1479 else if (ElementTy->isArrayType())
1480 store = BindArray(store, ER, *VI);
1481 else
1482 store = Bind(store, ValMgr.makeLoc(ER), *VI);
1485 // If the init list is shorter than the array length, set the
1486 // array default value.
1487 if (Size.hasValue() && i < Size.getValue())
1488 store = setImplicitDefaultValue(store, R, ElementTy);
1490 return store;
1493 Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
1494 SVal V) {
1496 if (!Features.supportsFields())
1497 return store;
1499 QualType T = R->getValueType();
1500 assert(T->isStructureOrClassType());
1502 const RecordType* RT = T->getAs<RecordType>();
1503 RecordDecl* RD = RT->getDecl();
1505 if (!RD->isDefinition())
1506 return store;
1508 // Handle lazy compound values.
1509 if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1510 return CopyLazyBindings(*LCV, store, R);
1512 // We may get non-CompoundVal accidentally due to imprecise cast logic or
1513 // that we are binding symbolic struct value. Kill the field values, and if
1514 // the value is symbolic go and bind it as a "default" binding.
1515 if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1516 SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1517 return KillStruct(store, R, SV);
1520 nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1521 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1523 RecordDecl::field_iterator FI, FE;
1525 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
1527 if (VI == VE)
1528 break;
1530 QualType FTy = (*FI)->getType();
1531 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1533 if (FTy->isArrayType())
1534 store = BindArray(store, FR, *VI);
1535 else if (FTy->isStructureOrClassType())
1536 store = BindStruct(store, FR, *VI);
1537 else
1538 store = Bind(store, ValMgr.makeLoc(FR), *VI);
1541 // There may be fewer values in the initialize list than the fields of struct.
1542 if (FI != FE) {
1543 RegionBindings B = GetRegionBindings(store);
1544 B = Add(B, R, BindingKey::Default, ValMgr.makeIntVal(0, false));
1545 store = B.getRoot();
1548 return store;
1551 Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1552 SVal DefaultVal) {
1553 RegionBindings B = GetRegionBindings(store);
1554 llvm::OwningPtr<RegionStoreSubRegionMap>
1555 SubRegions(getRegionStoreSubRegionMap(store));
1556 RemoveSubRegionBindings(B, R, *SubRegions);
1558 // Set the default value of the struct region to "unknown".
1559 return Add(B, R, BindingKey::Default, DefaultVal).getRoot();
1562 Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1563 Store store, const TypedRegion *R) {
1565 // Nuke the old bindings stemming from R.
1566 RegionBindings B = GetRegionBindings(store);
1568 llvm::OwningPtr<RegionStoreSubRegionMap>
1569 SubRegions(getRegionStoreSubRegionMap(store));
1571 // B and DVM are updated after the call to RemoveSubRegionBindings.
1572 RemoveSubRegionBindings(B, R, *SubRegions.get());
1574 // Now copy the bindings. This amounts to just binding 'V' to 'R'. This
1575 // results in a zero-copy algorithm.
1576 return Add(B, R, BindingKey::Direct, V).getRoot();
1579 //===----------------------------------------------------------------------===//
1580 // "Raw" retrievals and bindings.
1581 //===----------------------------------------------------------------------===//
1584 RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K, SVal V) {
1585 if (!K.isValid())
1586 return B;
1587 return RBFactory.Add(B, K, V);
1590 RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R,
1591 BindingKey::Kind k, SVal V) {
1592 return Add(B, BindingKey::Make(R, k), V);
1595 const SVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
1596 if (!K.isValid())
1597 return NULL;
1598 return B.lookup(K);
1601 const SVal *RegionStoreManager::Lookup(RegionBindings B,
1602 const MemRegion *R,
1603 BindingKey::Kind k) {
1604 return Lookup(B, BindingKey::Make(R, k));
1607 RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
1608 if (!K.isValid())
1609 return B;
1610 return RBFactory.Remove(B, K);
1613 RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R,
1614 BindingKey::Kind k){
1615 return Remove(B, BindingKey::Make(R, k));
1618 //===----------------------------------------------------------------------===//
1619 // State pruning.
1620 //===----------------------------------------------------------------------===//
1622 namespace {
1623 class RemoveDeadBindingsWorker :
1624 public ClusterAnalysis<RemoveDeadBindingsWorker> {
1625 llvm::SmallVector<const SymbolicRegion*, 12> Postponed;
1626 SymbolReaper &SymReaper;
1627 const StackFrameContext *CurrentLCtx;
1629 public:
1630 RemoveDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr,
1631 RegionBindings b, SymbolReaper &symReaper,
1632 const StackFrameContext *LCtx)
1633 : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b,
1634 /* includeGlobals = */ false),
1635 SymReaper(symReaper), CurrentLCtx(LCtx) {}
1637 // Called by ClusterAnalysis.
1638 void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1639 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1641 void VisitBindingKey(BindingKey K);
1642 bool UpdatePostponed();
1643 void VisitBinding(SVal V);
1647 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1648 RegionCluster &C) {
1650 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1651 if (SymReaper.isLive(VR))
1652 AddToWorkList(baseR, C);
1654 return;
1657 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1658 if (SymReaper.isLive(SR->getSymbol()))
1659 AddToWorkList(SR, C);
1660 else
1661 Postponed.push_back(SR);
1663 return;
1666 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1667 AddToWorkList(baseR, C);
1668 return;
1671 // CXXThisRegion in the current or parent location context is live.
1672 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1673 const StackArgumentsSpaceRegion *StackReg =
1674 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1675 const StackFrameContext *RegCtx = StackReg->getStackFrame();
1676 if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1677 AddToWorkList(TR, C);
1681 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1682 BindingKey *I, BindingKey *E) {
1683 for ( ; I != E; ++I)
1684 VisitBindingKey(*I);
1687 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
1688 // Is it a LazyCompoundVal? All referenced regions are live as well.
1689 if (const nonloc::LazyCompoundVal *LCS =
1690 dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1692 const MemRegion *LazyR = LCS->getRegion();
1693 RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1694 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1695 const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1696 if (baseR && baseR->isSubRegionOf(LazyR))
1697 VisitBinding(RI.getData());
1699 return;
1702 // If V is a region, then add it to the worklist.
1703 if (const MemRegion *R = V.getAsRegion())
1704 AddToWorkList(R);
1706 // Update the set of live symbols.
1707 for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
1708 SI!=SE;++SI)
1709 SymReaper.markLive(*SI);
1712 void RemoveDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1713 const MemRegion *R = K.getRegion();
1715 // Mark this region "live" by adding it to the worklist. This will cause
1716 // use to visit all regions in the cluster (if we haven't visited them
1717 // already).
1718 if (AddToWorkList(R)) {
1719 // Mark the symbol for any live SymbolicRegion as "live". This means we
1720 // should continue to track that symbol.
1721 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1722 SymReaper.markLive(SymR->getSymbol());
1724 // For BlockDataRegions, enqueue the VarRegions for variables marked
1725 // with __block (passed-by-reference).
1726 // via BlockDeclRefExprs.
1727 if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1728 for (BlockDataRegion::referenced_vars_iterator
1729 RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1730 RI != RE; ++RI) {
1731 if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1732 AddToWorkList(*RI);
1735 // No possible data bindings on a BlockDataRegion.
1736 return;
1740 // Visit the data binding for K.
1741 if (const SVal *V = RM.Lookup(B, K))
1742 VisitBinding(*V);
1745 bool RemoveDeadBindingsWorker::UpdatePostponed() {
1746 // See if any postponed SymbolicRegions are actually live now, after
1747 // having done a scan.
1748 bool changed = false;
1750 for (llvm::SmallVectorImpl<const SymbolicRegion*>::iterator
1751 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1752 if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1753 if (SymReaper.isLive(SR->getSymbol())) {
1754 changed |= AddToWorkList(SR);
1755 *I = NULL;
1760 return changed;
1763 Store RegionStoreManager::RemoveDeadBindings(Store store,
1764 const StackFrameContext *LCtx,
1765 SymbolReaper& SymReaper,
1766 llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
1768 RegionBindings B = GetRegionBindings(store);
1769 RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1770 W.GenerateClusters();
1772 // Enqueue the region roots onto the worklist.
1773 for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
1774 E=RegionRoots.end(); I!=E; ++I)
1775 W.AddToWorkList(*I);
1777 do W.RunWorkList(); while (W.UpdatePostponed());
1779 // We have now scanned the store, marking reachable regions and symbols
1780 // as live. We now remove all the regions that are dead from the store
1781 // as well as update DSymbols with the set symbols that are now dead.
1782 for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1783 const BindingKey &K = I.getKey();
1785 // If the cluster has been visited, we know the region has been marked.
1786 if (W.isVisited(K.getRegion()))
1787 continue;
1789 // Remove the dead entry.
1790 B = Remove(B, K);
1792 // Mark all non-live symbols that this binding references as dead.
1793 if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1794 SymReaper.maybeDead(SymR->getSymbol());
1796 SVal X = I.getData();
1797 SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1798 for (; SI != SE; ++SI)
1799 SymReaper.maybeDead(*SI);
1802 return B.getRoot();
1806 Store RegionStoreManager::EnterStackFrame(const GRState *state,
1807 const StackFrameContext *frame) {
1808 FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1809 FunctionDecl::param_const_iterator PI = FD->param_begin();
1810 Store store = state->getStore();
1812 if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1813 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1815 // Copy the arg expression value to the arg variables.
1816 for (; AI != AE; ++AI, ++PI) {
1817 SVal ArgVal = state->getSVal(*AI);
1818 store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal);
1820 } else if (const CXXConstructExpr *CE =
1821 dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1822 CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1823 AE = CE->arg_end();
1825 // Copy the arg expression value to the arg variables.
1826 for (; AI != AE; ++AI, ++PI) {
1827 SVal ArgVal = state->getSVal(*AI);
1828 store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal);
1830 } else
1831 llvm_unreachable("Unhandled call expression.");
1833 return store;
1836 //===----------------------------------------------------------------------===//
1837 // Utility methods.
1838 //===----------------------------------------------------------------------===//
1840 void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
1841 const char* nl, const char *sep) {
1842 RegionBindings B = GetRegionBindings(store);
1843 OS << "Store (direct and default bindings):" << nl;
1845 for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1846 OS << ' ' << I.getKey() << " : " << I.getData() << nl;