Fix g++.dg regressions introduced at r115347 (rdar://8529993)
[clang.git] / lib / Sema / SemaDecl.cpp
blob8efd49580f0701f25371f3ae356b57cb4eb07dad
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/ParsedTemplate.h"
31 #include "clang/Parse/ParseDiagnostic.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Lex/HeaderSearch.h"
38 #include "llvm/ADT/Triple.h"
39 #include <algorithm>
40 #include <cstring>
41 #include <functional>
42 using namespace clang;
43 using namespace sema;
45 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49 /// \brief If the identifier refers to a type name within this scope,
50 /// return the declaration of that type.
51 ///
52 /// This routine performs ordinary name lookup of the identifier II
53 /// within the given scope, with optional C++ scope specifier SS, to
54 /// determine whether the name refers to a type. If so, returns an
55 /// opaque pointer (actually a QualType) corresponding to that
56 /// type. Otherwise, returns NULL.
57 ///
58 /// If name lookup results in an ambiguity, this routine will complain
59 /// and then return NULL.
60 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61 Scope *S, CXXScopeSpec *SS,
62 bool isClassName,
63 ParsedType ObjectTypePtr) {
64 // Determine where we will perform name lookup.
65 DeclContext *LookupCtx = 0;
66 if (ObjectTypePtr) {
67 QualType ObjectType = ObjectTypePtr.get();
68 if (ObjectType->isRecordType())
69 LookupCtx = computeDeclContext(ObjectType);
70 } else if (SS && SS->isNotEmpty()) {
71 LookupCtx = computeDeclContext(*SS, false);
73 if (!LookupCtx) {
74 if (isDependentScopeSpecifier(*SS)) {
75 // C++ [temp.res]p3:
76 // A qualified-id that refers to a type and in which the
77 // nested-name-specifier depends on a template-parameter (14.6.2)
78 // shall be prefixed by the keyword typename to indicate that the
79 // qualified-id denotes a type, forming an
80 // elaborated-type-specifier (7.1.5.3).
82 // We therefore do not perform any name lookup if the result would
83 // refer to a member of an unknown specialization.
84 if (!isClassName)
85 return ParsedType();
87 // We know from the grammar that this name refers to a type,
88 // so build a dependent node to describe the type.
89 QualType T =
90 CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91 SourceLocation(), SS->getRange(), NameLoc);
92 return ParsedType::make(T);
95 return ParsedType();
98 if (!LookupCtx->isDependentContext() &&
99 RequireCompleteDeclContext(*SS, LookupCtx))
100 return ParsedType();
103 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104 // lookup for class-names.
105 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106 LookupOrdinaryName;
107 LookupResult Result(*this, &II, NameLoc, Kind);
108 if (LookupCtx) {
109 // Perform "qualified" name lookup into the declaration context we
110 // computed, which is either the type of the base of a member access
111 // expression or the declaration context associated with a prior
112 // nested-name-specifier.
113 LookupQualifiedName(Result, LookupCtx);
115 if (ObjectTypePtr && Result.empty()) {
116 // C++ [basic.lookup.classref]p3:
117 // If the unqualified-id is ~type-name, the type-name is looked up
118 // in the context of the entire postfix-expression. If the type T of
119 // the object expression is of a class type C, the type-name is also
120 // looked up in the scope of class C. At least one of the lookups shall
121 // find a name that refers to (possibly cv-qualified) T.
122 LookupName(Result, S);
124 } else {
125 // Perform unqualified name lookup.
126 LookupName(Result, S);
129 NamedDecl *IIDecl = 0;
130 switch (Result.getResultKind()) {
131 case LookupResult::NotFound:
132 case LookupResult::NotFoundInCurrentInstantiation:
133 case LookupResult::FoundOverloaded:
134 case LookupResult::FoundUnresolvedValue:
135 Result.suppressDiagnostics();
136 return ParsedType();
138 case LookupResult::Ambiguous:
139 // Recover from type-hiding ambiguities by hiding the type. We'll
140 // do the lookup again when looking for an object, and we can
141 // diagnose the error then. If we don't do this, then the error
142 // about hiding the type will be immediately followed by an error
143 // that only makes sense if the identifier was treated like a type.
144 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145 Result.suppressDiagnostics();
146 return ParsedType();
149 // Look to see if we have a type anywhere in the list of results.
150 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151 Res != ResEnd; ++Res) {
152 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153 if (!IIDecl ||
154 (*Res)->getLocation().getRawEncoding() <
155 IIDecl->getLocation().getRawEncoding())
156 IIDecl = *Res;
160 if (!IIDecl) {
161 // None of the entities we found is a type, so there is no way
162 // to even assume that the result is a type. In this case, don't
163 // complain about the ambiguity. The parser will either try to
164 // perform this lookup again (e.g., as an object name), which
165 // will produce the ambiguity, or will complain that it expected
166 // a type name.
167 Result.suppressDiagnostics();
168 return ParsedType();
171 // We found a type within the ambiguous lookup; diagnose the
172 // ambiguity and then return that type. This might be the right
173 // answer, or it might not be, but it suppresses any attempt to
174 // perform the name lookup again.
175 break;
177 case LookupResult::Found:
178 IIDecl = Result.getFoundDecl();
179 break;
182 assert(IIDecl && "Didn't find decl");
184 QualType T;
185 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186 DiagnoseUseOfDecl(IIDecl, NameLoc);
188 if (T.isNull())
189 T = Context.getTypeDeclType(TD);
191 if (SS)
192 T = getElaboratedType(ETK_None, *SS, T);
194 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195 T = Context.getObjCInterfaceType(IDecl);
196 } else {
197 // If it's not plausibly a type, suppress diagnostics.
198 Result.suppressDiagnostics();
199 return ParsedType();
202 return ParsedType::make(T);
205 /// isTagName() - This method is called *for error recovery purposes only*
206 /// to determine if the specified name is a valid tag name ("struct foo"). If
207 /// so, this returns the TST for the tag corresponding to it (TST_enum,
208 /// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
209 /// where the user forgot to specify the tag.
210 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211 // Do a tag name lookup in this scope.
212 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213 LookupName(R, S, false);
214 R.suppressDiagnostics();
215 if (R.getResultKind() == LookupResult::Found)
216 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217 switch (TD->getTagKind()) {
218 default: return DeclSpec::TST_unspecified;
219 case TTK_Struct: return DeclSpec::TST_struct;
220 case TTK_Union: return DeclSpec::TST_union;
221 case TTK_Class: return DeclSpec::TST_class;
222 case TTK_Enum: return DeclSpec::TST_enum;
226 return DeclSpec::TST_unspecified;
229 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230 SourceLocation IILoc,
231 Scope *S,
232 CXXScopeSpec *SS,
233 ParsedType &SuggestedType) {
234 // We don't have anything to suggest (yet).
235 SuggestedType = ParsedType();
237 // There may have been a typo in the name of the type. Look up typo
238 // results, in case we have something that we can suggest.
239 LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240 NotForRedeclaration);
242 if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243 if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244 if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245 !Result->isInvalidDecl()) {
246 // We found a similarly-named type or interface; suggest that.
247 if (!SS || !SS->isSet())
248 Diag(IILoc, diag::err_unknown_typename_suggest)
249 << &II << Lookup.getLookupName()
250 << FixItHint::CreateReplacement(SourceRange(IILoc),
251 Result->getNameAsString());
252 else if (DeclContext *DC = computeDeclContext(*SS, false))
253 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254 << &II << DC << Lookup.getLookupName() << SS->getRange()
255 << FixItHint::CreateReplacement(SourceRange(IILoc),
256 Result->getNameAsString());
257 else
258 llvm_unreachable("could not have corrected a typo here");
260 Diag(Result->getLocation(), diag::note_previous_decl)
261 << Result->getDeclName();
263 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264 return true;
266 } else if (Lookup.empty()) {
267 // We corrected to a keyword.
268 // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269 Diag(IILoc, diag::err_unknown_typename_suggest)
270 << &II << Corrected;
271 return true;
275 if (getLangOptions().CPlusPlus) {
276 // See if II is a class template that the user forgot to pass arguments to.
277 UnqualifiedId Name;
278 Name.setIdentifier(&II, IILoc);
279 CXXScopeSpec EmptySS;
280 TemplateTy TemplateResult;
281 bool MemberOfUnknownSpecialization;
282 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283 Name, ParsedType(), true, TemplateResult,
284 MemberOfUnknownSpecialization) == TNK_Type_template) {
285 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286 Diag(IILoc, diag::err_template_missing_args) << TplName;
287 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289 << TplDecl->getTemplateParameters()->getSourceRange();
291 return true;
295 // FIXME: Should we move the logic that tries to recover from a missing tag
296 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298 if (!SS || (!SS->isSet() && !SS->isInvalid()))
299 Diag(IILoc, diag::err_unknown_typename) << &II;
300 else if (DeclContext *DC = computeDeclContext(*SS, false))
301 Diag(IILoc, diag::err_typename_nested_not_found)
302 << &II << DC << SS->getRange();
303 else if (isDependentScopeSpecifier(*SS)) {
304 Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305 << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306 << SourceRange(SS->getRange().getBegin(), IILoc)
307 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308 SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309 } else {
310 assert(SS && SS->isInvalid() &&
311 "Invalid scope specifier has already been diagnosed");
314 return true;
317 // Determines the context to return to after temporarily entering a
318 // context. This depends in an unnecessarily complicated way on the
319 // exact ordering of callbacks from the parser.
320 DeclContext *Sema::getContainingDC(DeclContext *DC) {
322 // Functions defined inline within classes aren't parsed until we've
323 // finished parsing the top-level class, so the top-level class is
324 // the context we'll need to return to.
325 if (isa<FunctionDecl>(DC)) {
326 DC = DC->getLexicalParent();
328 // A function not defined within a class will always return to its
329 // lexical context.
330 if (!isa<CXXRecordDecl>(DC))
331 return DC;
333 // A C++ inline method/friend is parsed *after* the topmost class
334 // it was declared in is fully parsed ("complete"); the topmost
335 // class is the context we need to return to.
336 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337 DC = RD;
339 // Return the declaration context of the topmost class the inline method is
340 // declared in.
341 return DC;
344 // ObjCMethodDecls are parsed (for some reason) outside the context
345 // of the class.
346 if (isa<ObjCMethodDecl>(DC))
347 return DC->getLexicalParent()->getLexicalParent();
349 return DC->getLexicalParent();
352 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353 assert(getContainingDC(DC) == CurContext &&
354 "The next DeclContext should be lexically contained in the current one.");
355 CurContext = DC;
356 S->setEntity(DC);
359 void Sema::PopDeclContext() {
360 assert(CurContext && "DeclContext imbalance!");
362 CurContext = getContainingDC(CurContext);
363 assert(CurContext && "Popped translation unit!");
366 /// EnterDeclaratorContext - Used when we must lookup names in the context
367 /// of a declarator's nested name specifier.
369 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370 // C++0x [basic.lookup.unqual]p13:
371 // A name used in the definition of a static data member of class
372 // X (after the qualified-id of the static member) is looked up as
373 // if the name was used in a member function of X.
374 // C++0x [basic.lookup.unqual]p14:
375 // If a variable member of a namespace is defined outside of the
376 // scope of its namespace then any name used in the definition of
377 // the variable member (after the declarator-id) is looked up as
378 // if the definition of the variable member occurred in its
379 // namespace.
380 // Both of these imply that we should push a scope whose context
381 // is the semantic context of the declaration. We can't use
382 // PushDeclContext here because that context is not necessarily
383 // lexically contained in the current context. Fortunately,
384 // the containing scope should have the appropriate information.
386 assert(!S->getEntity() && "scope already has entity");
388 #ifndef NDEBUG
389 Scope *Ancestor = S->getParent();
390 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392 #endif
394 CurContext = DC;
395 S->setEntity(DC);
398 void Sema::ExitDeclaratorContext(Scope *S) {
399 assert(S->getEntity() == CurContext && "Context imbalance!");
401 // Switch back to the lexical context. The safety of this is
402 // enforced by an assert in EnterDeclaratorContext.
403 Scope *Ancestor = S->getParent();
404 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405 CurContext = (DeclContext*) Ancestor->getEntity();
407 // We don't need to do anything with the scope, which is going to
408 // disappear.
411 /// \brief Determine whether we allow overloading of the function
412 /// PrevDecl with another declaration.
414 /// This routine determines whether overloading is possible, not
415 /// whether some new function is actually an overload. It will return
416 /// true in C++ (where we can always provide overloads) or, as an
417 /// extension, in C when the previous function is already an
418 /// overloaded function declaration or has the "overloadable"
419 /// attribute.
420 static bool AllowOverloadingOfFunction(LookupResult &Previous,
421 ASTContext &Context) {
422 if (Context.getLangOptions().CPlusPlus)
423 return true;
425 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426 return true;
428 return (Previous.getResultKind() == LookupResult::Found
429 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432 /// Add this decl to the scope shadowed decl chains.
433 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434 // Move up the scope chain until we find the nearest enclosing
435 // non-transparent context. The declaration will be introduced into this
436 // scope.
437 while (S->getEntity() &&
438 ((DeclContext *)S->getEntity())->isTransparentContext())
439 S = S->getParent();
441 // Add scoped declarations into their context, so that they can be
442 // found later. Declarations without a context won't be inserted
443 // into any context.
444 if (AddToContext)
445 CurContext->addDecl(D);
447 // Out-of-line definitions shouldn't be pushed into scope in C++.
448 // Out-of-line variable and function definitions shouldn't even in C.
449 if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450 D->isOutOfLine())
451 return;
453 // Template instantiations should also not be pushed into scope.
454 if (isa<FunctionDecl>(D) &&
455 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456 return;
458 // If this replaces anything in the current scope,
459 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460 IEnd = IdResolver.end();
461 for (; I != IEnd; ++I) {
462 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463 S->RemoveDecl(*I);
464 IdResolver.RemoveDecl(*I);
466 // Should only need to replace one decl.
467 break;
471 S->AddDecl(D);
472 IdResolver.AddDecl(D);
475 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476 return IdResolver.isDeclInScope(D, Ctx, Context, S);
479 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480 DeclContext *TargetDC = DC->getPrimaryContext();
481 do {
482 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483 if (ScopeDC->getPrimaryContext() == TargetDC)
484 return S;
485 } while ((S = S->getParent()));
487 return 0;
490 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491 DeclContext*,
492 ASTContext&);
494 /// Filters out lookup results that don't fall within the given scope
495 /// as determined by isDeclInScope.
496 static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497 DeclContext *Ctx, Scope *S,
498 bool ConsiderLinkage) {
499 LookupResult::Filter F = R.makeFilter();
500 while (F.hasNext()) {
501 NamedDecl *D = F.next();
503 if (SemaRef.isDeclInScope(D, Ctx, S))
504 continue;
506 if (ConsiderLinkage &&
507 isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508 continue;
510 F.erase();
513 F.done();
516 static bool isUsingDecl(NamedDecl *D) {
517 return isa<UsingShadowDecl>(D) ||
518 isa<UnresolvedUsingTypenameDecl>(D) ||
519 isa<UnresolvedUsingValueDecl>(D);
522 /// Removes using shadow declarations from the lookup results.
523 static void RemoveUsingDecls(LookupResult &R) {
524 LookupResult::Filter F = R.makeFilter();
525 while (F.hasNext())
526 if (isUsingDecl(F.next()))
527 F.erase();
529 F.done();
532 /// \brief Check for this common pattern:
533 /// @code
534 /// class S {
535 /// S(const S&); // DO NOT IMPLEMENT
536 /// void operator=(const S&); // DO NOT IMPLEMENT
537 /// };
538 /// @endcode
539 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540 // FIXME: Should check for private access too but access is set after we get
541 // the decl here.
542 if (D->isThisDeclarationADefinition())
543 return false;
545 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546 return CD->isCopyConstructor();
547 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548 return Method->isCopyAssignmentOperator();
549 return false;
552 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553 assert(D);
555 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556 return false;
558 // Ignore class templates.
559 if (D->getDeclContext()->isDependentContext())
560 return false;
562 // We warn for unused decls internal to the translation unit.
563 if (D->getLinkage() == ExternalLinkage)
564 return false;
566 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568 return false;
570 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572 return false;
573 } else {
574 // 'static inline' functions are used in headers; don't warn.
575 if (FD->getStorageClass() == SC_Static &&
576 FD->isInlineSpecified())
577 return false;
580 if (FD->isThisDeclarationADefinition())
581 return !Context.DeclMustBeEmitted(FD);
582 return true;
585 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586 if (VD->isStaticDataMember() &&
587 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588 return false;
590 if ( VD->isFileVarDecl() &&
591 !VD->getType().isConstant(Context))
592 return !Context.DeclMustBeEmitted(VD);
595 return false;
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599 if (!D)
600 return;
602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603 const FunctionDecl *First = FD->getFirstDeclaration();
604 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605 return; // First should already be in the vector.
608 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609 const VarDecl *First = VD->getFirstDeclaration();
610 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611 return; // First should already be in the vector.
614 if (ShouldWarnIfUnusedFileScopedDecl(D))
615 UnusedFileScopedDecls.push_back(D);
618 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619 if (D->isInvalidDecl())
620 return false;
622 if (D->isUsed() || D->hasAttr<UnusedAttr>())
623 return false;
625 // White-list anything that isn't a local variable.
626 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627 !D->getDeclContext()->isFunctionOrMethod())
628 return false;
630 // Types of valid local variables should be complete, so this should succeed.
631 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
633 // White-list anything with an __attribute__((unused)) type.
634 QualType Ty = VD->getType();
636 // Only look at the outermost level of typedef.
637 if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638 if (TT->getDecl()->hasAttr<UnusedAttr>())
639 return false;
642 // If we failed to complete the type for some reason, or if the type is
643 // dependent, don't diagnose the variable.
644 if (Ty->isIncompleteType() || Ty->isDependentType())
645 return false;
647 if (const TagType *TT = Ty->getAs<TagType>()) {
648 const TagDecl *Tag = TT->getDecl();
649 if (Tag->hasAttr<UnusedAttr>())
650 return false;
652 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653 // FIXME: Checking for the presence of a user-declared constructor
654 // isn't completely accurate; we'd prefer to check that the initializer
655 // has no side effects.
656 if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657 return false;
661 // TODO: __attribute__((unused)) templates?
664 return true;
667 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668 if (!ShouldDiagnoseUnusedDecl(D))
669 return;
671 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672 Diag(D->getLocation(), diag::warn_unused_exception_param)
673 << D->getDeclName();
674 else
675 Diag(D->getLocation(), diag::warn_unused_variable)
676 << D->getDeclName();
679 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680 if (S->decl_empty()) return;
681 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682 "Scope shouldn't contain decls!");
684 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685 I != E; ++I) {
686 Decl *TmpD = (*I);
687 assert(TmpD && "This decl didn't get pushed??");
689 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690 NamedDecl *D = cast<NamedDecl>(TmpD);
692 if (!D->getDeclName()) continue;
694 // Diagnose unused variables in this scope.
695 if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696 DiagnoseUnusedDecl(D);
698 // Remove this name from our lexical scope.
699 IdResolver.RemoveDecl(D);
703 /// \brief Look for an Objective-C class in the translation unit.
705 /// \param Id The name of the Objective-C class we're looking for. If
706 /// typo-correction fixes this name, the Id will be updated
707 /// to the fixed name.
709 /// \param IdLoc The location of the name in the translation unit.
711 /// \param TypoCorrection If true, this routine will attempt typo correction
712 /// if there is no class with the given name.
714 /// \returns The declaration of the named Objective-C class, or NULL if the
715 /// class could not be found.
716 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717 SourceLocation IdLoc,
718 bool TypoCorrection) {
719 // The third "scope" argument is 0 since we aren't enabling lazy built-in
720 // creation from this context.
721 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
723 if (!IDecl && TypoCorrection) {
724 // Perform typo correction at the given location, but only if we
725 // find an Objective-C class name.
726 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728 (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729 Diag(IdLoc, diag::err_undef_interface_suggest)
730 << Id << IDecl->getDeclName()
731 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732 Diag(IDecl->getLocation(), diag::note_previous_decl)
733 << IDecl->getDeclName();
735 Id = IDecl->getIdentifier();
739 return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
742 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
743 /// from S, where a non-field would be declared. This routine copes
744 /// with the difference between C and C++ scoping rules in structs and
745 /// unions. For example, the following code is well-formed in C but
746 /// ill-formed in C++:
747 /// @code
748 /// struct S6 {
749 /// enum { BAR } e;
750 /// };
752 /// void test_S6() {
753 /// struct S6 a;
754 /// a.e = BAR;
755 /// }
756 /// @endcode
757 /// For the declaration of BAR, this routine will return a different
758 /// scope. The scope S will be the scope of the unnamed enumeration
759 /// within S6. In C++, this routine will return the scope associated
760 /// with S6, because the enumeration's scope is a transparent
761 /// context but structures can contain non-field names. In C, this
762 /// routine will return the translation unit scope, since the
763 /// enumeration's scope is a transparent context and structures cannot
764 /// contain non-field names.
765 Scope *Sema::getNonFieldDeclScope(Scope *S) {
766 while (((S->getFlags() & Scope::DeclScope) == 0) ||
767 (S->getEntity() &&
768 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769 (S->isClassScope() && !getLangOptions().CPlusPlus))
770 S = S->getParent();
771 return S;
774 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775 /// file scope. lazily create a decl for it. ForRedeclaration is true
776 /// if we're creating this built-in in anticipation of redeclaring the
777 /// built-in.
778 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779 Scope *S, bool ForRedeclaration,
780 SourceLocation Loc) {
781 Builtin::ID BID = (Builtin::ID)bid;
783 ASTContext::GetBuiltinTypeError Error;
784 QualType R = Context.GetBuiltinType(BID, Error);
785 switch (Error) {
786 case ASTContext::GE_None:
787 // Okay
788 break;
790 case ASTContext::GE_Missing_stdio:
791 if (ForRedeclaration)
792 Diag(Loc, diag::err_implicit_decl_requires_stdio)
793 << Context.BuiltinInfo.GetName(BID);
794 return 0;
796 case ASTContext::GE_Missing_setjmp:
797 if (ForRedeclaration)
798 Diag(Loc, diag::err_implicit_decl_requires_setjmp)
799 << Context.BuiltinInfo.GetName(BID);
800 return 0;
803 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
804 Diag(Loc, diag::ext_implicit_lib_function_decl)
805 << Context.BuiltinInfo.GetName(BID)
806 << R;
807 if (Context.BuiltinInfo.getHeaderName(BID) &&
808 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
809 != Diagnostic::Ignored)
810 Diag(Loc, diag::note_please_include_header)
811 << Context.BuiltinInfo.getHeaderName(BID)
812 << Context.BuiltinInfo.GetName(BID);
815 FunctionDecl *New = FunctionDecl::Create(Context,
816 Context.getTranslationUnitDecl(),
817 Loc, II, R, /*TInfo=*/0,
818 SC_Extern,
819 SC_None, false,
820 /*hasPrototype=*/true);
821 New->setImplicit();
823 // Create Decl objects for each parameter, adding them to the
824 // FunctionDecl.
825 if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
826 llvm::SmallVector<ParmVarDecl*, 16> Params;
827 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
828 Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
829 FT->getArgType(i), /*TInfo=*/0,
830 SC_None, SC_None, 0));
831 New->setParams(Params.data(), Params.size());
834 AddKnownFunctionAttributes(New);
836 // TUScope is the translation-unit scope to insert this function into.
837 // FIXME: This is hideous. We need to teach PushOnScopeChains to
838 // relate Scopes to DeclContexts, and probably eliminate CurContext
839 // entirely, but we're not there yet.
840 DeclContext *SavedContext = CurContext;
841 CurContext = Context.getTranslationUnitDecl();
842 PushOnScopeChains(New, TUScope);
843 CurContext = SavedContext;
844 return New;
847 /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
848 /// same name and scope as a previous declaration 'Old'. Figure out
849 /// how to resolve this situation, merging decls or emitting
850 /// diagnostics as appropriate. If there was an error, set New to be invalid.
852 void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
853 // If the new decl is known invalid already, don't bother doing any
854 // merging checks.
855 if (New->isInvalidDecl()) return;
857 // Allow multiple definitions for ObjC built-in typedefs.
858 // FIXME: Verify the underlying types are equivalent!
859 if (getLangOptions().ObjC1) {
860 const IdentifierInfo *TypeID = New->getIdentifier();
861 switch (TypeID->getLength()) {
862 default: break;
863 case 2:
864 if (!TypeID->isStr("id"))
865 break;
866 Context.ObjCIdRedefinitionType = New->getUnderlyingType();
867 // Install the built-in type for 'id', ignoring the current definition.
868 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
869 return;
870 case 5:
871 if (!TypeID->isStr("Class"))
872 break;
873 Context.ObjCClassRedefinitionType = New->getUnderlyingType();
874 // Install the built-in type for 'Class', ignoring the current definition.
875 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
876 return;
877 case 3:
878 if (!TypeID->isStr("SEL"))
879 break;
880 Context.ObjCSelRedefinitionType = New->getUnderlyingType();
881 // Install the built-in type for 'SEL', ignoring the current definition.
882 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
883 return;
884 case 8:
885 if (!TypeID->isStr("Protocol"))
886 break;
887 Context.setObjCProtoType(New->getUnderlyingType());
888 return;
890 // Fall through - the typedef name was not a builtin type.
893 // Verify the old decl was also a type.
894 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
895 if (!Old) {
896 Diag(New->getLocation(), diag::err_redefinition_different_kind)
897 << New->getDeclName();
899 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
900 if (OldD->getLocation().isValid())
901 Diag(OldD->getLocation(), diag::note_previous_definition);
903 return New->setInvalidDecl();
906 // If the old declaration is invalid, just give up here.
907 if (Old->isInvalidDecl())
908 return New->setInvalidDecl();
910 // Determine the "old" type we'll use for checking and diagnostics.
911 QualType OldType;
912 if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
913 OldType = OldTypedef->getUnderlyingType();
914 else
915 OldType = Context.getTypeDeclType(Old);
917 // If the typedef types are not identical, reject them in all languages and
918 // with any extensions enabled.
920 if (OldType != New->getUnderlyingType() &&
921 Context.getCanonicalType(OldType) !=
922 Context.getCanonicalType(New->getUnderlyingType())) {
923 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
924 << New->getUnderlyingType() << OldType;
925 if (Old->getLocation().isValid())
926 Diag(Old->getLocation(), diag::note_previous_definition);
927 return New->setInvalidDecl();
930 // The types match. Link up the redeclaration chain if the old
931 // declaration was a typedef.
932 // FIXME: this is a potential source of wierdness if the type
933 // spellings don't match exactly.
934 if (isa<TypedefDecl>(Old))
935 New->setPreviousDeclaration(cast<TypedefDecl>(Old));
937 if (getLangOptions().Microsoft)
938 return;
940 if (getLangOptions().CPlusPlus) {
941 // C++ [dcl.typedef]p2:
942 // In a given non-class scope, a typedef specifier can be used to
943 // redefine the name of any type declared in that scope to refer
944 // to the type to which it already refers.
945 if (!isa<CXXRecordDecl>(CurContext))
946 return;
948 // C++0x [dcl.typedef]p4:
949 // In a given class scope, a typedef specifier can be used to redefine
950 // any class-name declared in that scope that is not also a typedef-name
951 // to refer to the type to which it already refers.
953 // This wording came in via DR424, which was a correction to the
954 // wording in DR56, which accidentally banned code like:
956 // struct S {
957 // typedef struct A { } A;
958 // };
960 // in the C++03 standard. We implement the C++0x semantics, which
961 // allow the above but disallow
963 // struct S {
964 // typedef int I;
965 // typedef int I;
966 // };
968 // since that was the intent of DR56.
969 if (!isa<TypedefDecl >(Old))
970 return;
972 Diag(New->getLocation(), diag::err_redefinition)
973 << New->getDeclName();
974 Diag(Old->getLocation(), diag::note_previous_definition);
975 return New->setInvalidDecl();
978 // If we have a redefinition of a typedef in C, emit a warning. This warning
979 // is normally mapped to an error, but can be controlled with
980 // -Wtypedef-redefinition. If either the original or the redefinition is
981 // in a system header, don't emit this for compatibility with GCC.
982 if (getDiagnostics().getSuppressSystemWarnings() &&
983 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
984 Context.getSourceManager().isInSystemHeader(New->getLocation())))
985 return;
987 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
988 << New->getDeclName();
989 Diag(Old->getLocation(), diag::note_previous_definition);
990 return;
993 /// DeclhasAttr - returns true if decl Declaration already has the target
994 /// attribute.
995 static bool
996 DeclHasAttr(const Decl *D, const Attr *A) {
997 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
998 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
999 if ((*i)->getKind() == A->getKind()) {
1000 // FIXME: Don't hardcode this check
1001 if (OA && isa<OwnershipAttr>(*i))
1002 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1003 return true;
1006 return false;
1009 /// MergeDeclAttributes - append attributes from the Old decl to the New one.
1010 static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1011 if (!Old->hasAttrs())
1012 return;
1013 // Ensure that any moving of objects within the allocated map is done before
1014 // we process them.
1015 if (!New->hasAttrs())
1016 New->setAttrs(AttrVec());
1017 for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1018 ++i) {
1019 // FIXME: Make this more general than just checking for Overloadable.
1020 if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1021 Attr *NewAttr = (*i)->clone(C);
1022 NewAttr->setInherited(true);
1023 New->addAttr(NewAttr);
1028 namespace {
1030 /// Used in MergeFunctionDecl to keep track of function parameters in
1031 /// C.
1032 struct GNUCompatibleParamWarning {
1033 ParmVarDecl *OldParm;
1034 ParmVarDecl *NewParm;
1035 QualType PromotedType;
1040 /// getSpecialMember - get the special member enum for a method.
1041 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1042 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1043 if (Ctor->isCopyConstructor())
1044 return Sema::CXXCopyConstructor;
1046 return Sema::CXXConstructor;
1049 if (isa<CXXDestructorDecl>(MD))
1050 return Sema::CXXDestructor;
1052 assert(MD->isCopyAssignmentOperator() &&
1053 "Must have copy assignment operator");
1054 return Sema::CXXCopyAssignment;
1057 /// canRedefineFunction - checks if a function can be redefined. Currently,
1058 /// only extern inline functions can be redefined, and even then only in
1059 /// GNU89 mode.
1060 static bool canRedefineFunction(const FunctionDecl *FD,
1061 const LangOptions& LangOpts) {
1062 return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1063 FD->isInlineSpecified() &&
1064 FD->getStorageClass() == SC_Extern);
1067 /// MergeFunctionDecl - We just parsed a function 'New' from
1068 /// declarator D which has the same name and scope as a previous
1069 /// declaration 'Old'. Figure out how to resolve this situation,
1070 /// merging decls or emitting diagnostics as appropriate.
1072 /// In C++, New and Old must be declarations that are not
1073 /// overloaded. Use IsOverload to determine whether New and Old are
1074 /// overloaded, and to select the Old declaration that New should be
1075 /// merged with.
1077 /// Returns true if there was an error, false otherwise.
1078 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1079 // Verify the old decl was also a function.
1080 FunctionDecl *Old = 0;
1081 if (FunctionTemplateDecl *OldFunctionTemplate
1082 = dyn_cast<FunctionTemplateDecl>(OldD))
1083 Old = OldFunctionTemplate->getTemplatedDecl();
1084 else
1085 Old = dyn_cast<FunctionDecl>(OldD);
1086 if (!Old) {
1087 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1088 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1089 Diag(Shadow->getTargetDecl()->getLocation(),
1090 diag::note_using_decl_target);
1091 Diag(Shadow->getUsingDecl()->getLocation(),
1092 diag::note_using_decl) << 0;
1093 return true;
1096 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1097 << New->getDeclName();
1098 Diag(OldD->getLocation(), diag::note_previous_definition);
1099 return true;
1102 // Determine whether the previous declaration was a definition,
1103 // implicit declaration, or a declaration.
1104 diag::kind PrevDiag;
1105 if (Old->isThisDeclarationADefinition())
1106 PrevDiag = diag::note_previous_definition;
1107 else if (Old->isImplicit())
1108 PrevDiag = diag::note_previous_implicit_declaration;
1109 else
1110 PrevDiag = diag::note_previous_declaration;
1112 QualType OldQType = Context.getCanonicalType(Old->getType());
1113 QualType NewQType = Context.getCanonicalType(New->getType());
1115 // Don't complain about this if we're in GNU89 mode and the old function
1116 // is an extern inline function.
1117 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1118 New->getStorageClass() == SC_Static &&
1119 Old->getStorageClass() != SC_Static &&
1120 !canRedefineFunction(Old, getLangOptions())) {
1121 Diag(New->getLocation(), diag::err_static_non_static)
1122 << New;
1123 Diag(Old->getLocation(), PrevDiag);
1124 return true;
1127 // If a function is first declared with a calling convention, but is
1128 // later declared or defined without one, the second decl assumes the
1129 // calling convention of the first.
1131 // For the new decl, we have to look at the NON-canonical type to tell the
1132 // difference between a function that really doesn't have a calling
1133 // convention and one that is declared cdecl. That's because in
1134 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1135 // because it is the default calling convention.
1137 // Note also that we DO NOT return at this point, because we still have
1138 // other tests to run.
1139 const FunctionType *OldType = OldQType->getAs<FunctionType>();
1140 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1141 const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1142 const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1143 if (OldTypeInfo.getCC() != CC_Default &&
1144 NewTypeInfo.getCC() == CC_Default) {
1145 NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1146 New->setType(NewQType);
1147 NewQType = Context.getCanonicalType(NewQType);
1148 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1149 NewTypeInfo.getCC())) {
1150 // Calling conventions really aren't compatible, so complain.
1151 Diag(New->getLocation(), diag::err_cconv_change)
1152 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1153 << (OldTypeInfo.getCC() == CC_Default)
1154 << (OldTypeInfo.getCC() == CC_Default ? "" :
1155 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1156 Diag(Old->getLocation(), diag::note_previous_declaration);
1157 return true;
1160 // FIXME: diagnose the other way around?
1161 if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1162 NewQType = Context.getNoReturnType(NewQType);
1163 New->setType(NewQType);
1164 assert(NewQType.isCanonical());
1167 // Merge regparm attribute.
1168 if (OldType->getRegParmType() != NewType->getRegParmType()) {
1169 if (NewType->getRegParmType()) {
1170 Diag(New->getLocation(), diag::err_regparm_mismatch)
1171 << NewType->getRegParmType()
1172 << OldType->getRegParmType();
1173 Diag(Old->getLocation(), diag::note_previous_declaration);
1174 return true;
1177 NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1178 New->setType(NewQType);
1179 assert(NewQType.isCanonical());
1182 if (getLangOptions().CPlusPlus) {
1183 // (C++98 13.1p2):
1184 // Certain function declarations cannot be overloaded:
1185 // -- Function declarations that differ only in the return type
1186 // cannot be overloaded.
1187 QualType OldReturnType
1188 = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1189 QualType NewReturnType
1190 = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1191 QualType ResQT;
1192 if (OldReturnType != NewReturnType) {
1193 if (NewReturnType->isObjCObjectPointerType()
1194 && OldReturnType->isObjCObjectPointerType())
1195 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1196 if (ResQT.isNull()) {
1197 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1198 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1199 return true;
1201 else
1202 NewQType = ResQT;
1205 const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1206 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1207 if (OldMethod && NewMethod) {
1208 // Preserve triviality.
1209 NewMethod->setTrivial(OldMethod->isTrivial());
1211 bool isFriend = NewMethod->getFriendObjectKind();
1213 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1214 // -- Member function declarations with the same name and the
1215 // same parameter types cannot be overloaded if any of them
1216 // is a static member function declaration.
1217 if (OldMethod->isStatic() || NewMethod->isStatic()) {
1218 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1219 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1220 return true;
1223 // C++ [class.mem]p1:
1224 // [...] A member shall not be declared twice in the
1225 // member-specification, except that a nested class or member
1226 // class template can be declared and then later defined.
1227 unsigned NewDiag;
1228 if (isa<CXXConstructorDecl>(OldMethod))
1229 NewDiag = diag::err_constructor_redeclared;
1230 else if (isa<CXXDestructorDecl>(NewMethod))
1231 NewDiag = diag::err_destructor_redeclared;
1232 else if (isa<CXXConversionDecl>(NewMethod))
1233 NewDiag = diag::err_conv_function_redeclared;
1234 else
1235 NewDiag = diag::err_member_redeclared;
1237 Diag(New->getLocation(), NewDiag);
1238 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1240 // Complain if this is an explicit declaration of a special
1241 // member that was initially declared implicitly.
1243 // As an exception, it's okay to befriend such methods in order
1244 // to permit the implicit constructor/destructor/operator calls.
1245 } else if (OldMethod->isImplicit()) {
1246 if (isFriend) {
1247 NewMethod->setImplicit();
1248 } else {
1249 Diag(NewMethod->getLocation(),
1250 diag::err_definition_of_implicitly_declared_member)
1251 << New << getSpecialMember(OldMethod);
1252 return true;
1257 // (C++98 8.3.5p3):
1258 // All declarations for a function shall agree exactly in both the
1259 // return type and the parameter-type-list.
1260 // attributes should be ignored when comparing.
1261 if (Context.getNoReturnType(OldQType, false) ==
1262 Context.getNoReturnType(NewQType, false))
1263 return MergeCompatibleFunctionDecls(New, Old);
1265 // Fall through for conflicting redeclarations and redefinitions.
1268 // C: Function types need to be compatible, not identical. This handles
1269 // duplicate function decls like "void f(int); void f(enum X);" properly.
1270 if (!getLangOptions().CPlusPlus &&
1271 Context.typesAreCompatible(OldQType, NewQType)) {
1272 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1273 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1274 const FunctionProtoType *OldProto = 0;
1275 if (isa<FunctionNoProtoType>(NewFuncType) &&
1276 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1277 // The old declaration provided a function prototype, but the
1278 // new declaration does not. Merge in the prototype.
1279 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1280 llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1281 OldProto->arg_type_end());
1282 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1283 ParamTypes.data(), ParamTypes.size(),
1284 OldProto->isVariadic(),
1285 OldProto->getTypeQuals(),
1286 false, false, 0, 0,
1287 OldProto->getExtInfo());
1288 New->setType(NewQType);
1289 New->setHasInheritedPrototype();
1291 // Synthesize a parameter for each argument type.
1292 llvm::SmallVector<ParmVarDecl*, 16> Params;
1293 for (FunctionProtoType::arg_type_iterator
1294 ParamType = OldProto->arg_type_begin(),
1295 ParamEnd = OldProto->arg_type_end();
1296 ParamType != ParamEnd; ++ParamType) {
1297 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1298 SourceLocation(), 0,
1299 *ParamType, /*TInfo=*/0,
1300 SC_None, SC_None,
1302 Param->setImplicit();
1303 Params.push_back(Param);
1306 New->setParams(Params.data(), Params.size());
1309 return MergeCompatibleFunctionDecls(New, Old);
1312 // GNU C permits a K&R definition to follow a prototype declaration
1313 // if the declared types of the parameters in the K&R definition
1314 // match the types in the prototype declaration, even when the
1315 // promoted types of the parameters from the K&R definition differ
1316 // from the types in the prototype. GCC then keeps the types from
1317 // the prototype.
1319 // If a variadic prototype is followed by a non-variadic K&R definition,
1320 // the K&R definition becomes variadic. This is sort of an edge case, but
1321 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1322 // C99 6.9.1p8.
1323 if (!getLangOptions().CPlusPlus &&
1324 Old->hasPrototype() && !New->hasPrototype() &&
1325 New->getType()->getAs<FunctionProtoType>() &&
1326 Old->getNumParams() == New->getNumParams()) {
1327 llvm::SmallVector<QualType, 16> ArgTypes;
1328 llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1329 const FunctionProtoType *OldProto
1330 = Old->getType()->getAs<FunctionProtoType>();
1331 const FunctionProtoType *NewProto
1332 = New->getType()->getAs<FunctionProtoType>();
1334 // Determine whether this is the GNU C extension.
1335 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1336 NewProto->getResultType());
1337 bool LooseCompatible = !MergedReturn.isNull();
1338 for (unsigned Idx = 0, End = Old->getNumParams();
1339 LooseCompatible && Idx != End; ++Idx) {
1340 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1341 ParmVarDecl *NewParm = New->getParamDecl(Idx);
1342 if (Context.typesAreCompatible(OldParm->getType(),
1343 NewProto->getArgType(Idx))) {
1344 ArgTypes.push_back(NewParm->getType());
1345 } else if (Context.typesAreCompatible(OldParm->getType(),
1346 NewParm->getType(),
1347 /*CompareUnqualified=*/true)) {
1348 GNUCompatibleParamWarning Warn
1349 = { OldParm, NewParm, NewProto->getArgType(Idx) };
1350 Warnings.push_back(Warn);
1351 ArgTypes.push_back(NewParm->getType());
1352 } else
1353 LooseCompatible = false;
1356 if (LooseCompatible) {
1357 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1358 Diag(Warnings[Warn].NewParm->getLocation(),
1359 diag::ext_param_promoted_not_compatible_with_prototype)
1360 << Warnings[Warn].PromotedType
1361 << Warnings[Warn].OldParm->getType();
1362 if (Warnings[Warn].OldParm->getLocation().isValid())
1363 Diag(Warnings[Warn].OldParm->getLocation(),
1364 diag::note_previous_declaration);
1367 New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1368 ArgTypes.size(),
1369 OldProto->isVariadic(), 0,
1370 false, false, 0, 0,
1371 OldProto->getExtInfo()));
1372 return MergeCompatibleFunctionDecls(New, Old);
1375 // Fall through to diagnose conflicting types.
1378 // A function that has already been declared has been redeclared or defined
1379 // with a different type- show appropriate diagnostic
1380 if (unsigned BuiltinID = Old->getBuiltinID()) {
1381 // The user has declared a builtin function with an incompatible
1382 // signature.
1383 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1384 // The function the user is redeclaring is a library-defined
1385 // function like 'malloc' or 'printf'. Warn about the
1386 // redeclaration, then pretend that we don't know about this
1387 // library built-in.
1388 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1389 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1390 << Old << Old->getType();
1391 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1392 Old->setInvalidDecl();
1393 return false;
1396 PrevDiag = diag::note_previous_builtin_declaration;
1399 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1400 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1401 return true;
1404 /// \brief Completes the merge of two function declarations that are
1405 /// known to be compatible.
1407 /// This routine handles the merging of attributes and other
1408 /// properties of function declarations form the old declaration to
1409 /// the new declaration, once we know that New is in fact a
1410 /// redeclaration of Old.
1412 /// \returns false
1413 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1414 // Merge the attributes
1415 MergeDeclAttributes(New, Old, Context);
1417 // Merge the storage class.
1418 if (Old->getStorageClass() != SC_Extern &&
1419 Old->getStorageClass() != SC_None)
1420 New->setStorageClass(Old->getStorageClass());
1422 // Merge "pure" flag.
1423 if (Old->isPure())
1424 New->setPure();
1426 // Merge the "deleted" flag.
1427 if (Old->isDeleted())
1428 New->setDeleted();
1430 if (getLangOptions().CPlusPlus)
1431 return MergeCXXFunctionDecl(New, Old);
1433 return false;
1436 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
1437 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
1438 /// situation, merging decls or emitting diagnostics as appropriate.
1440 /// Tentative definition rules (C99 6.9.2p2) are checked by
1441 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1442 /// definitions here, since the initializer hasn't been attached.
1444 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1445 // If the new decl is already invalid, don't do any other checking.
1446 if (New->isInvalidDecl())
1447 return;
1449 // Verify the old decl was also a variable.
1450 VarDecl *Old = 0;
1451 if (!Previous.isSingleResult() ||
1452 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1453 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1454 << New->getDeclName();
1455 Diag(Previous.getRepresentativeDecl()->getLocation(),
1456 diag::note_previous_definition);
1457 return New->setInvalidDecl();
1460 // C++ [class.mem]p1:
1461 // A member shall not be declared twice in the member-specification [...]
1463 // Here, we need only consider static data members.
1464 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1465 Diag(New->getLocation(), diag::err_duplicate_member)
1466 << New->getIdentifier();
1467 Diag(Old->getLocation(), diag::note_previous_declaration);
1468 New->setInvalidDecl();
1471 MergeDeclAttributes(New, Old, Context);
1473 // Merge the types
1474 QualType MergedT;
1475 if (getLangOptions().CPlusPlus) {
1476 if (Context.hasSameType(New->getType(), Old->getType()))
1477 MergedT = New->getType();
1478 // C++ [basic.link]p10:
1479 // [...] the types specified by all declarations referring to a given
1480 // object or function shall be identical, except that declarations for an
1481 // array object can specify array types that differ by the presence or
1482 // absence of a major array bound (8.3.4).
1483 else if (Old->getType()->isIncompleteArrayType() &&
1484 New->getType()->isArrayType()) {
1485 CanQual<ArrayType> OldArray
1486 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487 CanQual<ArrayType> NewArray
1488 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489 if (OldArray->getElementType() == NewArray->getElementType())
1490 MergedT = New->getType();
1491 } else if (Old->getType()->isArrayType() &&
1492 New->getType()->isIncompleteArrayType()) {
1493 CanQual<ArrayType> OldArray
1494 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495 CanQual<ArrayType> NewArray
1496 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497 if (OldArray->getElementType() == NewArray->getElementType())
1498 MergedT = Old->getType();
1499 } else if (New->getType()->isObjCObjectPointerType()
1500 && Old->getType()->isObjCObjectPointerType()) {
1501 MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1503 } else {
1504 MergedT = Context.mergeTypes(New->getType(), Old->getType());
1506 if (MergedT.isNull()) {
1507 Diag(New->getLocation(), diag::err_redefinition_different_type)
1508 << New->getDeclName();
1509 Diag(Old->getLocation(), diag::note_previous_definition);
1510 return New->setInvalidDecl();
1512 New->setType(MergedT);
1514 // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515 if (New->getStorageClass() == SC_Static &&
1516 (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518 Diag(Old->getLocation(), diag::note_previous_definition);
1519 return New->setInvalidDecl();
1521 // C99 6.2.2p4:
1522 // For an identifier declared with the storage-class specifier
1523 // extern in a scope in which a prior declaration of that
1524 // identifier is visible,23) if the prior declaration specifies
1525 // internal or external linkage, the linkage of the identifier at
1526 // the later declaration is the same as the linkage specified at
1527 // the prior declaration. If no prior declaration is visible, or
1528 // if the prior declaration specifies no linkage, then the
1529 // identifier has external linkage.
1530 if (New->hasExternalStorage() && Old->hasLinkage())
1531 /* Okay */;
1532 else if (New->getStorageClass() != SC_Static &&
1533 Old->getStorageClass() == SC_Static) {
1534 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535 Diag(Old->getLocation(), diag::note_previous_definition);
1536 return New->setInvalidDecl();
1539 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1541 // FIXME: The test for external storage here seems wrong? We still
1542 // need to check for mismatches.
1543 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544 // Don't complain about out-of-line definitions of static members.
1545 !(Old->getLexicalDeclContext()->isRecord() &&
1546 !New->getLexicalDeclContext()->isRecord())) {
1547 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548 Diag(Old->getLocation(), diag::note_previous_definition);
1549 return New->setInvalidDecl();
1552 if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554 Diag(Old->getLocation(), diag::note_previous_definition);
1555 } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557 Diag(Old->getLocation(), diag::note_previous_definition);
1560 // C++ doesn't have tentative definitions, so go right ahead and check here.
1561 const VarDecl *Def;
1562 if (getLangOptions().CPlusPlus &&
1563 New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564 (Def = Old->getDefinition())) {
1565 Diag(New->getLocation(), diag::err_redefinition)
1566 << New->getDeclName();
1567 Diag(Def->getLocation(), diag::note_previous_definition);
1568 New->setInvalidDecl();
1569 return;
1571 // c99 6.2.2 P4.
1572 // For an identifier declared with the storage-class specifier extern in a
1573 // scope in which a prior declaration of that identifier is visible, if
1574 // the prior declaration specifies internal or external linkage, the linkage
1575 // of the identifier at the later declaration is the same as the linkage
1576 // specified at the prior declaration.
1577 // FIXME. revisit this code.
1578 if (New->hasExternalStorage() &&
1579 Old->getLinkage() == InternalLinkage &&
1580 New->getDeclContext() == Old->getDeclContext())
1581 New->setStorageClass(Old->getStorageClass());
1583 // Keep a chain of previous declarations.
1584 New->setPreviousDeclaration(Old);
1586 // Inherit access appropriately.
1587 New->setAccess(Old->getAccess());
1590 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591 /// no declarator (e.g. "struct foo;") is parsed.
1592 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593 DeclSpec &DS) {
1594 // FIXME: Error on auto/register at file scope
1595 // FIXME: Error on inline/virtual/explicit
1596 // FIXME: Warn on useless __thread
1597 // FIXME: Warn on useless const/volatile
1598 // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1599 // FIXME: Warn on useless attributes
1600 Decl *TagD = 0;
1601 TagDecl *Tag = 0;
1602 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1603 DS.getTypeSpecType() == DeclSpec::TST_struct ||
1604 DS.getTypeSpecType() == DeclSpec::TST_union ||
1605 DS.getTypeSpecType() == DeclSpec::TST_enum) {
1606 TagD = DS.getRepAsDecl();
1608 if (!TagD) // We probably had an error
1609 return 0;
1611 // Note that the above type specs guarantee that the
1612 // type rep is a Decl, whereas in many of the others
1613 // it's a Type.
1614 Tag = dyn_cast<TagDecl>(TagD);
1617 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1618 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1619 // or incomplete types shall not be restrict-qualified."
1620 if (TypeQuals & DeclSpec::TQ_restrict)
1621 Diag(DS.getRestrictSpecLoc(),
1622 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1623 << DS.getSourceRange();
1626 if (DS.isFriendSpecified()) {
1627 // If we're dealing with a class template decl, assume that the
1628 // template routines are handling it.
1629 if (TagD && isa<ClassTemplateDecl>(TagD))
1630 return 0;
1631 return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1634 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1635 ProcessDeclAttributeList(S, Record, DS.getAttributes());
1637 if (!Record->getDeclName() && Record->isDefinition() &&
1638 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1639 if (getLangOptions().CPlusPlus ||
1640 Record->getDeclContext()->isRecord())
1641 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1643 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1644 << DS.getSourceRange();
1647 // Microsoft allows unnamed struct/union fields. Don't complain
1648 // about them.
1649 // FIXME: Should we support Microsoft's extensions in this area?
1650 if (Record->getDeclName() && getLangOptions().Microsoft)
1651 return Tag;
1654 if (getLangOptions().CPlusPlus &&
1655 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1656 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1657 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1658 !Enum->getIdentifier() && !Enum->isInvalidDecl())
1659 Diag(Enum->getLocation(), diag::ext_no_declarators)
1660 << DS.getSourceRange();
1662 if (!DS.isMissingDeclaratorOk() &&
1663 DS.getTypeSpecType() != DeclSpec::TST_error) {
1664 // Warn about typedefs of enums without names, since this is an
1665 // extension in both Microsoft and GNU.
1666 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1667 Tag && isa<EnumDecl>(Tag)) {
1668 Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1669 << DS.getSourceRange();
1670 return Tag;
1673 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1674 << DS.getSourceRange();
1677 return TagD;
1680 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1681 /// builds a statement for it and returns it so it is evaluated.
1682 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1683 StmtResult R;
1684 if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1685 Expr *Exp = DS.getRepAsExpr();
1686 QualType Ty = Exp->getType();
1687 if (Ty->isPointerType()) {
1689 Ty = Ty->getAs<PointerType>()->getPointeeType();
1690 while (Ty->isPointerType());
1692 if (Ty->isVariableArrayType()) {
1693 R = ActOnExprStmt(MakeFullExpr(Exp));
1696 return R;
1699 /// We are trying to inject an anonymous member into the given scope;
1700 /// check if there's an existing declaration that can't be overloaded.
1702 /// \return true if this is a forbidden redeclaration
1703 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1704 Scope *S,
1705 DeclContext *Owner,
1706 DeclarationName Name,
1707 SourceLocation NameLoc,
1708 unsigned diagnostic) {
1709 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1710 Sema::ForRedeclaration);
1711 if (!SemaRef.LookupName(R, S)) return false;
1713 if (R.getAsSingle<TagDecl>())
1714 return false;
1716 // Pick a representative declaration.
1717 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1718 assert(PrevDecl && "Expected a non-null Decl");
1720 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1721 return false;
1723 SemaRef.Diag(NameLoc, diagnostic) << Name;
1724 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1726 return true;
1729 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
1730 /// anonymous struct or union AnonRecord into the owning context Owner
1731 /// and scope S. This routine will be invoked just after we realize
1732 /// that an unnamed union or struct is actually an anonymous union or
1733 /// struct, e.g.,
1735 /// @code
1736 /// union {
1737 /// int i;
1738 /// float f;
1739 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1740 /// // f into the surrounding scope.x
1741 /// @endcode
1743 /// This routine is recursive, injecting the names of nested anonymous
1744 /// structs/unions into the owning context and scope as well.
1745 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1746 DeclContext *Owner,
1747 RecordDecl *AnonRecord,
1748 AccessSpecifier AS) {
1749 unsigned diagKind
1750 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1751 : diag::err_anonymous_struct_member_redecl;
1753 bool Invalid = false;
1754 for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1755 FEnd = AnonRecord->field_end();
1756 F != FEnd; ++F) {
1757 if ((*F)->getDeclName()) {
1758 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1759 (*F)->getLocation(), diagKind)) {
1760 // C++ [class.union]p2:
1761 // The names of the members of an anonymous union shall be
1762 // distinct from the names of any other entity in the
1763 // scope in which the anonymous union is declared.
1764 Invalid = true;
1765 } else {
1766 // C++ [class.union]p2:
1767 // For the purpose of name lookup, after the anonymous union
1768 // definition, the members of the anonymous union are
1769 // considered to have been defined in the scope in which the
1770 // anonymous union is declared.
1771 Owner->makeDeclVisibleInContext(*F);
1772 S->AddDecl(*F);
1773 SemaRef.IdResolver.AddDecl(*F);
1775 // That includes picking up the appropriate access specifier.
1776 if (AS != AS_none) (*F)->setAccess(AS);
1778 } else if (const RecordType *InnerRecordType
1779 = (*F)->getType()->getAs<RecordType>()) {
1780 RecordDecl *InnerRecord = InnerRecordType->getDecl();
1781 if (InnerRecord->isAnonymousStructOrUnion())
1782 Invalid = Invalid ||
1783 InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1784 InnerRecord, AS);
1788 return Invalid;
1791 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1792 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
1793 /// illegal input values are mapped to SC_None.
1794 static StorageClass
1795 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1796 switch (StorageClassSpec) {
1797 case DeclSpec::SCS_unspecified: return SC_None;
1798 case DeclSpec::SCS_extern: return SC_Extern;
1799 case DeclSpec::SCS_static: return SC_Static;
1800 case DeclSpec::SCS_auto: return SC_Auto;
1801 case DeclSpec::SCS_register: return SC_Register;
1802 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1803 // Illegal SCSs map to None: error reporting is up to the caller.
1804 case DeclSpec::SCS_mutable: // Fall through.
1805 case DeclSpec::SCS_typedef: return SC_None;
1807 llvm_unreachable("unknown storage class specifier");
1810 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1811 /// a StorageClass. Any error reporting is up to the caller:
1812 /// illegal input values are mapped to SC_None.
1813 static StorageClass
1814 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1815 switch (StorageClassSpec) {
1816 case DeclSpec::SCS_unspecified: return SC_None;
1817 case DeclSpec::SCS_extern: return SC_Extern;
1818 case DeclSpec::SCS_static: return SC_Static;
1819 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1820 // Illegal SCSs map to None: error reporting is up to the caller.
1821 case DeclSpec::SCS_auto: // Fall through.
1822 case DeclSpec::SCS_mutable: // Fall through.
1823 case DeclSpec::SCS_register: // Fall through.
1824 case DeclSpec::SCS_typedef: return SC_None;
1826 llvm_unreachable("unknown storage class specifier");
1829 /// ActOnAnonymousStructOrUnion - Handle the declaration of an
1830 /// anonymous structure or union. Anonymous unions are a C++ feature
1831 /// (C++ [class.union]) and a GNU C extension; anonymous structures
1832 /// are a GNU C and GNU C++ extension.
1833 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1834 AccessSpecifier AS,
1835 RecordDecl *Record) {
1836 DeclContext *Owner = Record->getDeclContext();
1838 // Diagnose whether this anonymous struct/union is an extension.
1839 if (Record->isUnion() && !getLangOptions().CPlusPlus)
1840 Diag(Record->getLocation(), diag::ext_anonymous_union);
1841 else if (!Record->isUnion())
1842 Diag(Record->getLocation(), diag::ext_anonymous_struct);
1844 // C and C++ require different kinds of checks for anonymous
1845 // structs/unions.
1846 bool Invalid = false;
1847 if (getLangOptions().CPlusPlus) {
1848 const char* PrevSpec = 0;
1849 unsigned DiagID;
1850 // C++ [class.union]p3:
1851 // Anonymous unions declared in a named namespace or in the
1852 // global namespace shall be declared static.
1853 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1854 (isa<TranslationUnitDecl>(Owner) ||
1855 (isa<NamespaceDecl>(Owner) &&
1856 cast<NamespaceDecl>(Owner)->getDeclName()))) {
1857 Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1858 Invalid = true;
1860 // Recover by adding 'static'.
1861 DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1862 PrevSpec, DiagID);
1864 // C++ [class.union]p3:
1865 // A storage class is not allowed in a declaration of an
1866 // anonymous union in a class scope.
1867 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1868 isa<RecordDecl>(Owner)) {
1869 Diag(DS.getStorageClassSpecLoc(),
1870 diag::err_anonymous_union_with_storage_spec);
1871 Invalid = true;
1873 // Recover by removing the storage specifier.
1874 DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1875 PrevSpec, DiagID);
1878 // C++ [class.union]p2:
1879 // The member-specification of an anonymous union shall only
1880 // define non-static data members. [Note: nested types and
1881 // functions cannot be declared within an anonymous union. ]
1882 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1883 MemEnd = Record->decls_end();
1884 Mem != MemEnd; ++Mem) {
1885 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1886 // C++ [class.union]p3:
1887 // An anonymous union shall not have private or protected
1888 // members (clause 11).
1889 assert(FD->getAccess() != AS_none);
1890 if (FD->getAccess() != AS_public) {
1891 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1892 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1893 Invalid = true;
1896 if (CheckNontrivialField(FD))
1897 Invalid = true;
1898 } else if ((*Mem)->isImplicit()) {
1899 // Any implicit members are fine.
1900 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1901 // This is a type that showed up in an
1902 // elaborated-type-specifier inside the anonymous struct or
1903 // union, but which actually declares a type outside of the
1904 // anonymous struct or union. It's okay.
1905 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1906 if (!MemRecord->isAnonymousStructOrUnion() &&
1907 MemRecord->getDeclName()) {
1908 // Visual C++ allows type definition in anonymous struct or union.
1909 if (getLangOptions().Microsoft)
1910 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1911 << (int)Record->isUnion();
1912 else {
1913 // This is a nested type declaration.
1914 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1915 << (int)Record->isUnion();
1916 Invalid = true;
1919 } else if (isa<AccessSpecDecl>(*Mem)) {
1920 // Any access specifier is fine.
1921 } else {
1922 // We have something that isn't a non-static data
1923 // member. Complain about it.
1924 unsigned DK = diag::err_anonymous_record_bad_member;
1925 if (isa<TypeDecl>(*Mem))
1926 DK = diag::err_anonymous_record_with_type;
1927 else if (isa<FunctionDecl>(*Mem))
1928 DK = diag::err_anonymous_record_with_function;
1929 else if (isa<VarDecl>(*Mem))
1930 DK = diag::err_anonymous_record_with_static;
1932 // Visual C++ allows type definition in anonymous struct or union.
1933 if (getLangOptions().Microsoft &&
1934 DK == diag::err_anonymous_record_with_type)
1935 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1936 << (int)Record->isUnion();
1937 else {
1938 Diag((*Mem)->getLocation(), DK)
1939 << (int)Record->isUnion();
1940 Invalid = true;
1946 if (!Record->isUnion() && !Owner->isRecord()) {
1947 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1948 << (int)getLangOptions().CPlusPlus;
1949 Invalid = true;
1952 // Mock up a declarator.
1953 Declarator Dc(DS, Declarator::TypeNameContext);
1954 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1955 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1957 // Create a declaration for this anonymous struct/union.
1958 NamedDecl *Anon = 0;
1959 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1960 Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1961 /*IdentifierInfo=*/0,
1962 Context.getTypeDeclType(Record),
1963 TInfo,
1964 /*BitWidth=*/0, /*Mutable=*/false);
1965 Anon->setAccess(AS);
1966 if (getLangOptions().CPlusPlus)
1967 FieldCollector->Add(cast<FieldDecl>(Anon));
1968 } else {
1969 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1970 assert(SCSpec != DeclSpec::SCS_typedef &&
1971 "Parser allowed 'typedef' as storage class VarDecl.");
1972 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1973 if (SCSpec == DeclSpec::SCS_mutable) {
1974 // mutable can only appear on non-static class members, so it's always
1975 // an error here
1976 Diag(Record->getLocation(), diag::err_mutable_nonmember);
1977 Invalid = true;
1978 SC = SC_None;
1980 SCSpec = DS.getStorageClassSpecAsWritten();
1981 VarDecl::StorageClass SCAsWritten
1982 = StorageClassSpecToVarDeclStorageClass(SCSpec);
1984 Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1985 /*IdentifierInfo=*/0,
1986 Context.getTypeDeclType(Record),
1987 TInfo, SC, SCAsWritten);
1989 Anon->setImplicit();
1991 // Add the anonymous struct/union object to the current
1992 // context. We'll be referencing this object when we refer to one of
1993 // its members.
1994 Owner->addDecl(Anon);
1996 // Inject the members of the anonymous struct/union into the owning
1997 // context and into the identifier resolver chain for name lookup
1998 // purposes.
1999 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
2000 Invalid = true;
2002 // Mark this as an anonymous struct/union type. Note that we do not
2003 // do this until after we have already checked and injected the
2004 // members of this anonymous struct/union type, because otherwise
2005 // the members could be injected twice: once by DeclContext when it
2006 // builds its lookup table, and once by
2007 // InjectAnonymousStructOrUnionMembers.
2008 Record->setAnonymousStructOrUnion(true);
2010 if (Invalid)
2011 Anon->setInvalidDecl();
2013 return Anon;
2017 /// GetNameForDeclarator - Determine the full declaration name for the
2018 /// given Declarator.
2019 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2020 return GetNameFromUnqualifiedId(D.getName());
2023 /// \brief Retrieves the declaration name from a parsed unqualified-id.
2024 DeclarationNameInfo
2025 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2026 DeclarationNameInfo NameInfo;
2027 NameInfo.setLoc(Name.StartLocation);
2029 switch (Name.getKind()) {
2031 case UnqualifiedId::IK_Identifier:
2032 NameInfo.setName(Name.Identifier);
2033 NameInfo.setLoc(Name.StartLocation);
2034 return NameInfo;
2036 case UnqualifiedId::IK_OperatorFunctionId:
2037 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2038 Name.OperatorFunctionId.Operator));
2039 NameInfo.setLoc(Name.StartLocation);
2040 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2041 = Name.OperatorFunctionId.SymbolLocations[0];
2042 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2043 = Name.EndLocation.getRawEncoding();
2044 return NameInfo;
2046 case UnqualifiedId::IK_LiteralOperatorId:
2047 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2048 Name.Identifier));
2049 NameInfo.setLoc(Name.StartLocation);
2050 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2051 return NameInfo;
2053 case UnqualifiedId::IK_ConversionFunctionId: {
2054 TypeSourceInfo *TInfo;
2055 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2056 if (Ty.isNull())
2057 return DeclarationNameInfo();
2058 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2059 Context.getCanonicalType(Ty)));
2060 NameInfo.setLoc(Name.StartLocation);
2061 NameInfo.setNamedTypeInfo(TInfo);
2062 return NameInfo;
2065 case UnqualifiedId::IK_ConstructorName: {
2066 TypeSourceInfo *TInfo;
2067 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2068 if (Ty.isNull())
2069 return DeclarationNameInfo();
2070 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2071 Context.getCanonicalType(Ty)));
2072 NameInfo.setLoc(Name.StartLocation);
2073 NameInfo.setNamedTypeInfo(TInfo);
2074 return NameInfo;
2077 case UnqualifiedId::IK_ConstructorTemplateId: {
2078 // In well-formed code, we can only have a constructor
2079 // template-id that refers to the current context, so go there
2080 // to find the actual type being constructed.
2081 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2082 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2083 return DeclarationNameInfo();
2085 // Determine the type of the class being constructed.
2086 QualType CurClassType = Context.getTypeDeclType(CurClass);
2088 // FIXME: Check two things: that the template-id names the same type as
2089 // CurClassType, and that the template-id does not occur when the name
2090 // was qualified.
2092 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2093 Context.getCanonicalType(CurClassType)));
2094 NameInfo.setLoc(Name.StartLocation);
2095 // FIXME: should we retrieve TypeSourceInfo?
2096 NameInfo.setNamedTypeInfo(0);
2097 return NameInfo;
2100 case UnqualifiedId::IK_DestructorName: {
2101 TypeSourceInfo *TInfo;
2102 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2103 if (Ty.isNull())
2104 return DeclarationNameInfo();
2105 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2106 Context.getCanonicalType(Ty)));
2107 NameInfo.setLoc(Name.StartLocation);
2108 NameInfo.setNamedTypeInfo(TInfo);
2109 return NameInfo;
2112 case UnqualifiedId::IK_TemplateId: {
2113 TemplateName TName = Name.TemplateId->Template.get();
2114 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2115 return Context.getNameForTemplate(TName, TNameLoc);
2118 } // switch (Name.getKind())
2120 assert(false && "Unknown name kind");
2121 return DeclarationNameInfo();
2124 /// isNearlyMatchingFunction - Determine whether the C++ functions
2125 /// Declaration and Definition are "nearly" matching. This heuristic
2126 /// is used to improve diagnostics in the case where an out-of-line
2127 /// function definition doesn't match any declaration within
2128 /// the class or namespace.
2129 static bool isNearlyMatchingFunction(ASTContext &Context,
2130 FunctionDecl *Declaration,
2131 FunctionDecl *Definition) {
2132 if (Declaration->param_size() != Definition->param_size())
2133 return false;
2134 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2135 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2136 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2138 if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2139 DefParamTy.getNonReferenceType()))
2140 return false;
2143 return true;
2146 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2147 /// declarator needs to be rebuilt in the current instantiation.
2148 /// Any bits of declarator which appear before the name are valid for
2149 /// consideration here. That's specifically the type in the decl spec
2150 /// and the base type in any member-pointer chunks.
2151 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2152 DeclarationName Name) {
2153 // The types we specifically need to rebuild are:
2154 // - typenames, typeofs, and decltypes
2155 // - types which will become injected class names
2156 // Of course, we also need to rebuild any type referencing such a
2157 // type. It's safest to just say "dependent", but we call out a
2158 // few cases here.
2160 DeclSpec &DS = D.getMutableDeclSpec();
2161 switch (DS.getTypeSpecType()) {
2162 case DeclSpec::TST_typename:
2163 case DeclSpec::TST_typeofType:
2164 case DeclSpec::TST_decltype: {
2165 // Grab the type from the parser.
2166 TypeSourceInfo *TSI = 0;
2167 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2168 if (T.isNull() || !T->isDependentType()) break;
2170 // Make sure there's a type source info. This isn't really much
2171 // of a waste; most dependent types should have type source info
2172 // attached already.
2173 if (!TSI)
2174 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2176 // Rebuild the type in the current instantiation.
2177 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2178 if (!TSI) return true;
2180 // Store the new type back in the decl spec.
2181 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2182 DS.UpdateTypeRep(LocType);
2183 break;
2186 case DeclSpec::TST_typeofExpr: {
2187 Expr *E = DS.getRepAsExpr();
2188 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2189 if (Result.isInvalid()) return true;
2190 DS.UpdateExprRep(Result.get());
2191 break;
2194 default:
2195 // Nothing to do for these decl specs.
2196 break;
2199 // It doesn't matter what order we do this in.
2200 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2201 DeclaratorChunk &Chunk = D.getTypeObject(I);
2203 // The only type information in the declarator which can come
2204 // before the declaration name is the base type of a member
2205 // pointer.
2206 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2207 continue;
2209 // Rebuild the scope specifier in-place.
2210 CXXScopeSpec &SS = Chunk.Mem.Scope();
2211 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2212 return true;
2215 return false;
2218 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2219 return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2222 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2223 MultiTemplateParamsArg TemplateParamLists,
2224 bool IsFunctionDefinition) {
2225 // TODO: consider using NameInfo for diagnostic.
2226 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2227 DeclarationName Name = NameInfo.getName();
2229 // All of these full declarators require an identifier. If it doesn't have
2230 // one, the ParsedFreeStandingDeclSpec action should be used.
2231 if (!Name) {
2232 if (!D.isInvalidType()) // Reject this if we think it is valid.
2233 Diag(D.getDeclSpec().getSourceRange().getBegin(),
2234 diag::err_declarator_need_ident)
2235 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2236 return 0;
2239 // The scope passed in may not be a decl scope. Zip up the scope tree until
2240 // we find one that is.
2241 while ((S->getFlags() & Scope::DeclScope) == 0 ||
2242 (S->getFlags() & Scope::TemplateParamScope) != 0)
2243 S = S->getParent();
2245 DeclContext *DC = CurContext;
2246 if (D.getCXXScopeSpec().isInvalid())
2247 D.setInvalidType();
2248 else if (D.getCXXScopeSpec().isSet()) {
2249 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2250 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2251 if (!DC) {
2252 // If we could not compute the declaration context, it's because the
2253 // declaration context is dependent but does not refer to a class,
2254 // class template, or class template partial specialization. Complain
2255 // and return early, to avoid the coming semantic disaster.
2256 Diag(D.getIdentifierLoc(),
2257 diag::err_template_qualified_declarator_no_match)
2258 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2259 << D.getCXXScopeSpec().getRange();
2260 return 0;
2263 bool IsDependentContext = DC->isDependentContext();
2265 if (!IsDependentContext &&
2266 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2267 return 0;
2269 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2270 Diag(D.getIdentifierLoc(),
2271 diag::err_member_def_undefined_record)
2272 << Name << DC << D.getCXXScopeSpec().getRange();
2273 D.setInvalidType();
2276 // Check whether we need to rebuild the type of the given
2277 // declaration in the current instantiation.
2278 if (EnteringContext && IsDependentContext &&
2279 TemplateParamLists.size() != 0) {
2280 ContextRAII SavedContext(*this, DC);
2281 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2282 D.setInvalidType();
2286 NamedDecl *New;
2288 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2289 QualType R = TInfo->getType();
2291 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2292 ForRedeclaration);
2294 // See if this is a redefinition of a variable in the same scope.
2295 if (!D.getCXXScopeSpec().isSet()) {
2296 bool IsLinkageLookup = false;
2298 // If the declaration we're planning to build will be a function
2299 // or object with linkage, then look for another declaration with
2300 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2301 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2302 /* Do nothing*/;
2303 else if (R->isFunctionType()) {
2304 if (CurContext->isFunctionOrMethod() ||
2305 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2306 IsLinkageLookup = true;
2307 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2308 IsLinkageLookup = true;
2309 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2310 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2311 IsLinkageLookup = true;
2313 if (IsLinkageLookup)
2314 Previous.clear(LookupRedeclarationWithLinkage);
2316 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2317 } else { // Something like "int foo::x;"
2318 LookupQualifiedName(Previous, DC);
2320 // Don't consider using declarations as previous declarations for
2321 // out-of-line members.
2322 RemoveUsingDecls(Previous);
2324 // C++ 7.3.1.2p2:
2325 // Members (including explicit specializations of templates) of a named
2326 // namespace can also be defined outside that namespace by explicit
2327 // qualification of the name being defined, provided that the entity being
2328 // defined was already declared in the namespace and the definition appears
2329 // after the point of declaration in a namespace that encloses the
2330 // declarations namespace.
2332 // Note that we only check the context at this point. We don't yet
2333 // have enough information to make sure that PrevDecl is actually
2334 // the declaration we want to match. For example, given:
2336 // class X {
2337 // void f();
2338 // void f(float);
2339 // };
2341 // void X::f(int) { } // ill-formed
2343 // In this case, PrevDecl will point to the overload set
2344 // containing the two f's declared in X, but neither of them
2345 // matches.
2347 // First check whether we named the global scope.
2348 if (isa<TranslationUnitDecl>(DC)) {
2349 Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2350 << Name << D.getCXXScopeSpec().getRange();
2351 } else {
2352 DeclContext *Cur = CurContext;
2353 while (isa<LinkageSpecDecl>(Cur))
2354 Cur = Cur->getParent();
2355 if (!Cur->Encloses(DC)) {
2356 // The qualifying scope doesn't enclose the original declaration.
2357 // Emit diagnostic based on current scope.
2358 SourceLocation L = D.getIdentifierLoc();
2359 SourceRange R = D.getCXXScopeSpec().getRange();
2360 if (isa<FunctionDecl>(Cur))
2361 Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2362 else
2363 Diag(L, diag::err_invalid_declarator_scope)
2364 << Name << cast<NamedDecl>(DC) << R;
2365 D.setInvalidType();
2370 if (Previous.isSingleResult() &&
2371 Previous.getFoundDecl()->isTemplateParameter()) {
2372 // Maybe we will complain about the shadowed template parameter.
2373 if (!D.isInvalidType())
2374 if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2375 Previous.getFoundDecl()))
2376 D.setInvalidType();
2378 // Just pretend that we didn't see the previous declaration.
2379 Previous.clear();
2382 // In C++, the previous declaration we find might be a tag type
2383 // (class or enum). In this case, the new declaration will hide the
2384 // tag type. Note that this does does not apply if we're declaring a
2385 // typedef (C++ [dcl.typedef]p4).
2386 if (Previous.isSingleTagDecl() &&
2387 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2388 Previous.clear();
2390 bool Redeclaration = false;
2391 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2392 if (TemplateParamLists.size()) {
2393 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2394 return 0;
2397 New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2398 } else if (R->isFunctionType()) {
2399 New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2400 move(TemplateParamLists),
2401 IsFunctionDefinition, Redeclaration);
2402 } else {
2403 New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2404 move(TemplateParamLists),
2405 Redeclaration);
2408 if (New == 0)
2409 return 0;
2411 // If this has an identifier and is not an invalid redeclaration or
2412 // function template specialization, add it to the scope stack.
2413 if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2414 PushOnScopeChains(New, S);
2416 return New;
2419 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2420 /// types into constant array types in certain situations which would otherwise
2421 /// be errors (for GCC compatibility).
2422 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2423 ASTContext &Context,
2424 bool &SizeIsNegative,
2425 llvm::APSInt &Oversized) {
2426 // This method tries to turn a variable array into a constant
2427 // array even when the size isn't an ICE. This is necessary
2428 // for compatibility with code that depends on gcc's buggy
2429 // constant expression folding, like struct {char x[(int)(char*)2];}
2430 SizeIsNegative = false;
2431 Oversized = 0;
2433 if (T->isDependentType())
2434 return QualType();
2436 QualifierCollector Qs;
2437 const Type *Ty = Qs.strip(T);
2439 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2440 QualType Pointee = PTy->getPointeeType();
2441 QualType FixedType =
2442 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2443 Oversized);
2444 if (FixedType.isNull()) return FixedType;
2445 FixedType = Context.getPointerType(FixedType);
2446 return Qs.apply(FixedType);
2449 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2450 if (!VLATy)
2451 return QualType();
2452 // FIXME: We should probably handle this case
2453 if (VLATy->getElementType()->isVariablyModifiedType())
2454 return QualType();
2456 Expr::EvalResult EvalResult;
2457 if (!VLATy->getSizeExpr() ||
2458 !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2459 !EvalResult.Val.isInt())
2460 return QualType();
2462 // Check whether the array size is negative.
2463 llvm::APSInt &Res = EvalResult.Val.getInt();
2464 if (Res.isSigned() && Res.isNegative()) {
2465 SizeIsNegative = true;
2466 return QualType();
2469 // Check whether the array is too large to be addressed.
2470 unsigned ActiveSizeBits
2471 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2472 Res);
2473 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2474 Oversized = Res;
2475 return QualType();
2478 return Context.getConstantArrayType(VLATy->getElementType(),
2479 Res, ArrayType::Normal, 0);
2482 /// \brief Register the given locally-scoped external C declaration so
2483 /// that it can be found later for redeclarations
2484 void
2485 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2486 const LookupResult &Previous,
2487 Scope *S) {
2488 assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2489 "Decl is not a locally-scoped decl!");
2490 // Note that we have a locally-scoped external with this name.
2491 LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2493 if (!Previous.isSingleResult())
2494 return;
2496 NamedDecl *PrevDecl = Previous.getFoundDecl();
2498 // If there was a previous declaration of this variable, it may be
2499 // in our identifier chain. Update the identifier chain with the new
2500 // declaration.
2501 if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2502 // The previous declaration was found on the identifer resolver
2503 // chain, so remove it from its scope.
2504 while (S && !S->isDeclScope(PrevDecl))
2505 S = S->getParent();
2507 if (S)
2508 S->RemoveDecl(PrevDecl);
2512 /// \brief Diagnose function specifiers on a declaration of an identifier that
2513 /// does not identify a function.
2514 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2515 // FIXME: We should probably indicate the identifier in question to avoid
2516 // confusion for constructs like "inline int a(), b;"
2517 if (D.getDeclSpec().isInlineSpecified())
2518 Diag(D.getDeclSpec().getInlineSpecLoc(),
2519 diag::err_inline_non_function);
2521 if (D.getDeclSpec().isVirtualSpecified())
2522 Diag(D.getDeclSpec().getVirtualSpecLoc(),
2523 diag::err_virtual_non_function);
2525 if (D.getDeclSpec().isExplicitSpecified())
2526 Diag(D.getDeclSpec().getExplicitSpecLoc(),
2527 diag::err_explicit_non_function);
2530 NamedDecl*
2531 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2532 QualType R, TypeSourceInfo *TInfo,
2533 LookupResult &Previous, bool &Redeclaration) {
2534 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2535 if (D.getCXXScopeSpec().isSet()) {
2536 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2537 << D.getCXXScopeSpec().getRange();
2538 D.setInvalidType();
2539 // Pretend we didn't see the scope specifier.
2540 DC = CurContext;
2541 Previous.clear();
2544 if (getLangOptions().CPlusPlus) {
2545 // Check that there are no default arguments (C++ only).
2546 CheckExtraCXXDefaultArguments(D);
2549 DiagnoseFunctionSpecifiers(D);
2551 if (D.getDeclSpec().isThreadSpecified())
2552 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2554 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2555 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2556 << D.getName().getSourceRange();
2557 return 0;
2560 TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2561 if (!NewTD) return 0;
2563 // Handle attributes prior to checking for duplicates in MergeVarDecl
2564 ProcessDeclAttributes(S, NewTD, D);
2566 // C99 6.7.7p2: If a typedef name specifies a variably modified type
2567 // then it shall have block scope.
2568 // Note that variably modified types must be fixed before merging the decl so
2569 // that redeclarations will match.
2570 QualType T = NewTD->getUnderlyingType();
2571 if (T->isVariablyModifiedType()) {
2572 getCurFunction()->setHasBranchProtectedScope();
2574 if (S->getFnParent() == 0) {
2575 bool SizeIsNegative;
2576 llvm::APSInt Oversized;
2577 QualType FixedTy =
2578 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2579 Oversized);
2580 if (!FixedTy.isNull()) {
2581 Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2582 NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2583 } else {
2584 if (SizeIsNegative)
2585 Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2586 else if (T->isVariableArrayType())
2587 Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2588 else if (Oversized.getBoolValue())
2589 Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2590 << Oversized.toString(10);
2591 else
2592 Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2593 NewTD->setInvalidDecl();
2598 // Merge the decl with the existing one if appropriate. If the decl is
2599 // in an outer scope, it isn't the same thing.
2600 FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2601 if (!Previous.empty()) {
2602 Redeclaration = true;
2603 MergeTypeDefDecl(NewTD, Previous);
2606 // If this is the C FILE type, notify the AST context.
2607 if (IdentifierInfo *II = NewTD->getIdentifier())
2608 if (!NewTD->isInvalidDecl() &&
2609 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2610 if (II->isStr("FILE"))
2611 Context.setFILEDecl(NewTD);
2612 else if (II->isStr("jmp_buf"))
2613 Context.setjmp_bufDecl(NewTD);
2614 else if (II->isStr("sigjmp_buf"))
2615 Context.setsigjmp_bufDecl(NewTD);
2616 else if (II->isStr("__builtin_va_list"))
2617 Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2620 return NewTD;
2623 /// \brief Determines whether the given declaration is an out-of-scope
2624 /// previous declaration.
2626 /// This routine should be invoked when name lookup has found a
2627 /// previous declaration (PrevDecl) that is not in the scope where a
2628 /// new declaration by the same name is being introduced. If the new
2629 /// declaration occurs in a local scope, previous declarations with
2630 /// linkage may still be considered previous declarations (C99
2631 /// 6.2.2p4-5, C++ [basic.link]p6).
2633 /// \param PrevDecl the previous declaration found by name
2634 /// lookup
2636 /// \param DC the context in which the new declaration is being
2637 /// declared.
2639 /// \returns true if PrevDecl is an out-of-scope previous declaration
2640 /// for a new delcaration with the same name.
2641 static bool
2642 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2643 ASTContext &Context) {
2644 if (!PrevDecl)
2645 return false;
2647 if (!PrevDecl->hasLinkage())
2648 return false;
2650 if (Context.getLangOptions().CPlusPlus) {
2651 // C++ [basic.link]p6:
2652 // If there is a visible declaration of an entity with linkage
2653 // having the same name and type, ignoring entities declared
2654 // outside the innermost enclosing namespace scope, the block
2655 // scope declaration declares that same entity and receives the
2656 // linkage of the previous declaration.
2657 DeclContext *OuterContext = DC->getRedeclContext();
2658 if (!OuterContext->isFunctionOrMethod())
2659 // This rule only applies to block-scope declarations.
2660 return false;
2662 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2663 if (PrevOuterContext->isRecord())
2664 // We found a member function: ignore it.
2665 return false;
2667 // Find the innermost enclosing namespace for the new and
2668 // previous declarations.
2669 OuterContext = OuterContext->getEnclosingNamespaceContext();
2670 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2672 // The previous declaration is in a different namespace, so it
2673 // isn't the same function.
2674 if (!OuterContext->Equals(PrevOuterContext))
2675 return false;
2678 return true;
2681 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2682 CXXScopeSpec &SS = D.getCXXScopeSpec();
2683 if (!SS.isSet()) return;
2684 DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2685 SS.getRange());
2688 NamedDecl*
2689 Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2690 QualType R, TypeSourceInfo *TInfo,
2691 LookupResult &Previous,
2692 MultiTemplateParamsArg TemplateParamLists,
2693 bool &Redeclaration) {
2694 DeclarationName Name = GetNameForDeclarator(D).getName();
2696 // Check that there are no default arguments (C++ only).
2697 if (getLangOptions().CPlusPlus)
2698 CheckExtraCXXDefaultArguments(D);
2700 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2701 assert(SCSpec != DeclSpec::SCS_typedef &&
2702 "Parser allowed 'typedef' as storage class VarDecl.");
2703 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2704 if (SCSpec == DeclSpec::SCS_mutable) {
2705 // mutable can only appear on non-static class members, so it's always
2706 // an error here
2707 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2708 D.setInvalidType();
2709 SC = SC_None;
2711 SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2712 VarDecl::StorageClass SCAsWritten
2713 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2715 IdentifierInfo *II = Name.getAsIdentifierInfo();
2716 if (!II) {
2717 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2718 << Name.getAsString();
2719 return 0;
2722 DiagnoseFunctionSpecifiers(D);
2724 if (!DC->isRecord() && S->getFnParent() == 0) {
2725 // C99 6.9p2: The storage-class specifiers auto and register shall not
2726 // appear in the declaration specifiers in an external declaration.
2727 if (SC == SC_Auto || SC == SC_Register) {
2729 // If this is a register variable with an asm label specified, then this
2730 // is a GNU extension.
2731 if (SC == SC_Register && D.getAsmLabel())
2732 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2733 else
2734 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2735 D.setInvalidType();
2738 if (DC->isRecord() && !CurContext->isRecord()) {
2739 // This is an out-of-line definition of a static data member.
2740 if (SC == SC_Static) {
2741 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2742 diag::err_static_out_of_line)
2743 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2744 } else if (SC == SC_None)
2745 SC = SC_Static;
2747 if (SC == SC_Static) {
2748 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2749 if (RD->isLocalClass())
2750 Diag(D.getIdentifierLoc(),
2751 diag::err_static_data_member_not_allowed_in_local_class)
2752 << Name << RD->getDeclName();
2756 // Match up the template parameter lists with the scope specifier, then
2757 // determine whether we have a template or a template specialization.
2758 bool isExplicitSpecialization = false;
2759 unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2760 bool Invalid = false;
2761 if (TemplateParameterList *TemplateParams
2762 = MatchTemplateParametersToScopeSpecifier(
2763 D.getDeclSpec().getSourceRange().getBegin(),
2764 D.getCXXScopeSpec(),
2765 (TemplateParameterList**)TemplateParamLists.get(),
2766 TemplateParamLists.size(),
2767 /*never a friend*/ false,
2768 isExplicitSpecialization,
2769 Invalid)) {
2770 // All but one template parameter lists have been matching.
2771 --NumMatchedTemplateParamLists;
2773 if (TemplateParams->size() > 0) {
2774 // There is no such thing as a variable template.
2775 Diag(D.getIdentifierLoc(), diag::err_template_variable)
2776 << II
2777 << SourceRange(TemplateParams->getTemplateLoc(),
2778 TemplateParams->getRAngleLoc());
2779 return 0;
2780 } else {
2781 // There is an extraneous 'template<>' for this variable. Complain
2782 // about it, but allow the declaration of the variable.
2783 Diag(TemplateParams->getTemplateLoc(),
2784 diag::err_template_variable_noparams)
2785 << II
2786 << SourceRange(TemplateParams->getTemplateLoc(),
2787 TemplateParams->getRAngleLoc());
2789 isExplicitSpecialization = true;
2793 VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2794 II, R, TInfo, SC, SCAsWritten);
2796 if (D.isInvalidType() || Invalid)
2797 NewVD->setInvalidDecl();
2799 SetNestedNameSpecifier(NewVD, D);
2801 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2802 NewVD->setTemplateParameterListsInfo(Context,
2803 NumMatchedTemplateParamLists,
2804 (TemplateParameterList**)TemplateParamLists.release());
2807 if (D.getDeclSpec().isThreadSpecified()) {
2808 if (NewVD->hasLocalStorage())
2809 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2810 else if (!Context.Target.isTLSSupported())
2811 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2812 else
2813 NewVD->setThreadSpecified(true);
2816 // Set the lexical context. If the declarator has a C++ scope specifier, the
2817 // lexical context will be different from the semantic context.
2818 NewVD->setLexicalDeclContext(CurContext);
2820 // Handle attributes prior to checking for duplicates in MergeVarDecl
2821 ProcessDeclAttributes(S, NewVD, D);
2823 // Handle GNU asm-label extension (encoded as an attribute).
2824 if (Expr *E = (Expr*) D.getAsmLabel()) {
2825 // The parser guarantees this is a string.
2826 StringLiteral *SE = cast<StringLiteral>(E);
2827 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2828 Context, SE->getString()));
2831 // Diagnose shadowed variables before filtering for scope.
2832 if (!D.getCXXScopeSpec().isSet())
2833 CheckShadow(S, NewVD, Previous);
2835 // Don't consider existing declarations that are in a different
2836 // scope and are out-of-semantic-context declarations (if the new
2837 // declaration has linkage).
2838 FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2840 // Merge the decl with the existing one if appropriate.
2841 if (!Previous.empty()) {
2842 if (Previous.isSingleResult() &&
2843 isa<FieldDecl>(Previous.getFoundDecl()) &&
2844 D.getCXXScopeSpec().isSet()) {
2845 // The user tried to define a non-static data member
2846 // out-of-line (C++ [dcl.meaning]p1).
2847 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2848 << D.getCXXScopeSpec().getRange();
2849 Previous.clear();
2850 NewVD->setInvalidDecl();
2852 } else if (D.getCXXScopeSpec().isSet()) {
2853 // No previous declaration in the qualifying scope.
2854 Diag(D.getIdentifierLoc(), diag::err_no_member)
2855 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2856 << D.getCXXScopeSpec().getRange();
2857 NewVD->setInvalidDecl();
2860 CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2862 // This is an explicit specialization of a static data member. Check it.
2863 if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2864 CheckMemberSpecialization(NewVD, Previous))
2865 NewVD->setInvalidDecl();
2867 // attributes declared post-definition are currently ignored
2868 // FIXME: This should be handled in attribute merging, not
2869 // here.
2870 if (Previous.isSingleResult()) {
2871 VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2872 if (Def && (Def = Def->getDefinition()) &&
2873 Def != NewVD && D.hasAttributes()) {
2874 Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2875 Diag(Def->getLocation(), diag::note_previous_definition);
2879 // If this is a locally-scoped extern C variable, update the map of
2880 // such variables.
2881 if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2882 !NewVD->isInvalidDecl())
2883 RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2885 // If there's a #pragma GCC visibility in scope, and this isn't a class
2886 // member, set the visibility of this variable.
2887 if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2888 AddPushedVisibilityAttribute(NewVD);
2890 MarkUnusedFileScopedDecl(NewVD);
2892 return NewVD;
2895 /// \brief Diagnose variable or built-in function shadowing. Implements
2896 /// -Wshadow.
2898 /// This method is called whenever a VarDecl is added to a "useful"
2899 /// scope.
2901 /// \param S the scope in which the shadowing name is being declared
2902 /// \param R the lookup of the name
2904 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2905 // Return if warning is ignored.
2906 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2907 return;
2909 // Don't diagnose declarations at file scope. The scope might not
2910 // have a DeclContext if (e.g.) we're parsing a function prototype.
2911 DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2912 if (NewDC && NewDC->isFileContext())
2913 return;
2915 // Only diagnose if we're shadowing an unambiguous field or variable.
2916 if (R.getResultKind() != LookupResult::Found)
2917 return;
2919 NamedDecl* ShadowedDecl = R.getFoundDecl();
2920 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2921 return;
2923 DeclContext *OldDC = ShadowedDecl->getDeclContext();
2925 // Only warn about certain kinds of shadowing for class members.
2926 if (NewDC && NewDC->isRecord()) {
2927 // In particular, don't warn about shadowing non-class members.
2928 if (!OldDC->isRecord())
2929 return;
2931 // TODO: should we warn about static data members shadowing
2932 // static data members from base classes?
2934 // TODO: don't diagnose for inaccessible shadowed members.
2935 // This is hard to do perfectly because we might friend the
2936 // shadowing context, but that's just a false negative.
2939 // Determine what kind of declaration we're shadowing.
2940 unsigned Kind;
2941 if (isa<RecordDecl>(OldDC)) {
2942 if (isa<FieldDecl>(ShadowedDecl))
2943 Kind = 3; // field
2944 else
2945 Kind = 2; // static data member
2946 } else if (OldDC->isFileContext())
2947 Kind = 1; // global
2948 else
2949 Kind = 0; // local
2951 DeclarationName Name = R.getLookupName();
2953 // Emit warning and note.
2954 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2955 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2958 /// \brief Check -Wshadow without the advantage of a previous lookup.
2959 void Sema::CheckShadow(Scope *S, VarDecl *D) {
2960 LookupResult R(*this, D->getDeclName(), D->getLocation(),
2961 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2962 LookupName(R, S);
2963 CheckShadow(S, D, R);
2966 /// \brief Perform semantic checking on a newly-created variable
2967 /// declaration.
2969 /// This routine performs all of the type-checking required for a
2970 /// variable declaration once it has been built. It is used both to
2971 /// check variables after they have been parsed and their declarators
2972 /// have been translated into a declaration, and to check variables
2973 /// that have been instantiated from a template.
2975 /// Sets NewVD->isInvalidDecl() if an error was encountered.
2976 void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2977 LookupResult &Previous,
2978 bool &Redeclaration) {
2979 // If the decl is already known invalid, don't check it.
2980 if (NewVD->isInvalidDecl())
2981 return;
2983 QualType T = NewVD->getType();
2985 if (T->isObjCObjectType()) {
2986 Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2987 return NewVD->setInvalidDecl();
2990 // Emit an error if an address space was applied to decl with local storage.
2991 // This includes arrays of objects with address space qualifiers, but not
2992 // automatic variables that point to other address spaces.
2993 // ISO/IEC TR 18037 S5.1.2
2994 if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2995 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2996 return NewVD->setInvalidDecl();
2999 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3000 && !NewVD->hasAttr<BlocksAttr>())
3001 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3003 bool isVM = T->isVariablyModifiedType();
3004 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3005 NewVD->hasAttr<BlocksAttr>())
3006 getCurFunction()->setHasBranchProtectedScope();
3008 if ((isVM && NewVD->hasLinkage()) ||
3009 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3010 bool SizeIsNegative;
3011 llvm::APSInt Oversized;
3012 QualType FixedTy =
3013 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3014 Oversized);
3016 if (FixedTy.isNull() && T->isVariableArrayType()) {
3017 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3018 // FIXME: This won't give the correct result for
3019 // int a[10][n];
3020 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3022 if (NewVD->isFileVarDecl())
3023 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3024 << SizeRange;
3025 else if (NewVD->getStorageClass() == SC_Static)
3026 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3027 << SizeRange;
3028 else
3029 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3030 << SizeRange;
3031 return NewVD->setInvalidDecl();
3034 if (FixedTy.isNull()) {
3035 if (NewVD->isFileVarDecl())
3036 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3037 else
3038 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3039 return NewVD->setInvalidDecl();
3042 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3043 NewVD->setType(FixedTy);
3046 if (Previous.empty() && NewVD->isExternC()) {
3047 // Since we did not find anything by this name and we're declaring
3048 // an extern "C" variable, look for a non-visible extern "C"
3049 // declaration with the same name.
3050 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3051 = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3052 if (Pos != LocallyScopedExternalDecls.end())
3053 Previous.addDecl(Pos->second);
3056 if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3057 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3058 << T;
3059 return NewVD->setInvalidDecl();
3062 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3063 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3064 return NewVD->setInvalidDecl();
3067 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3068 Diag(NewVD->getLocation(), diag::err_block_on_vm);
3069 return NewVD->setInvalidDecl();
3072 // Function pointers and references cannot have qualified function type, only
3073 // function pointer-to-members can do that.
3074 QualType Pointee;
3075 unsigned PtrOrRef = 0;
3076 if (const PointerType *Ptr = T->getAs<PointerType>())
3077 Pointee = Ptr->getPointeeType();
3078 else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3079 Pointee = Ref->getPointeeType();
3080 PtrOrRef = 1;
3082 if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3083 Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3084 Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3085 << PtrOrRef;
3086 return NewVD->setInvalidDecl();
3089 if (!Previous.empty()) {
3090 Redeclaration = true;
3091 MergeVarDecl(NewVD, Previous);
3095 /// \brief Data used with FindOverriddenMethod
3096 struct FindOverriddenMethodData {
3097 Sema *S;
3098 CXXMethodDecl *Method;
3101 /// \brief Member lookup function that determines whether a given C++
3102 /// method overrides a method in a base class, to be used with
3103 /// CXXRecordDecl::lookupInBases().
3104 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3105 CXXBasePath &Path,
3106 void *UserData) {
3107 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3109 FindOverriddenMethodData *Data
3110 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3112 DeclarationName Name = Data->Method->getDeclName();
3114 // FIXME: Do we care about other names here too?
3115 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3116 // We really want to find the base class destructor here.
3117 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3118 CanQualType CT = Data->S->Context.getCanonicalType(T);
3120 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3123 for (Path.Decls = BaseRecord->lookup(Name);
3124 Path.Decls.first != Path.Decls.second;
3125 ++Path.Decls.first) {
3126 NamedDecl *D = *Path.Decls.first;
3127 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3128 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3129 return true;
3133 return false;
3136 /// AddOverriddenMethods - See if a method overrides any in the base classes,
3137 /// and if so, check that it's a valid override and remember it.
3138 void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3139 // Look for virtual methods in base classes that this method might override.
3140 CXXBasePaths Paths;
3141 FindOverriddenMethodData Data;
3142 Data.Method = MD;
3143 Data.S = this;
3144 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3145 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3146 E = Paths.found_decls_end(); I != E; ++I) {
3147 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3148 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3149 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3150 !CheckOverridingFunctionAttributes(MD, OldMD))
3151 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3157 NamedDecl*
3158 Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3159 QualType R, TypeSourceInfo *TInfo,
3160 LookupResult &Previous,
3161 MultiTemplateParamsArg TemplateParamLists,
3162 bool IsFunctionDefinition, bool &Redeclaration) {
3163 assert(R.getTypePtr()->isFunctionType());
3165 // TODO: consider using NameInfo for diagnostic.
3166 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3167 DeclarationName Name = NameInfo.getName();
3168 FunctionDecl::StorageClass SC = SC_None;
3169 switch (D.getDeclSpec().getStorageClassSpec()) {
3170 default: assert(0 && "Unknown storage class!");
3171 case DeclSpec::SCS_auto:
3172 case DeclSpec::SCS_register:
3173 case DeclSpec::SCS_mutable:
3174 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3175 diag::err_typecheck_sclass_func);
3176 D.setInvalidType();
3177 break;
3178 case DeclSpec::SCS_unspecified: SC = SC_None; break;
3179 case DeclSpec::SCS_extern: SC = SC_Extern; break;
3180 case DeclSpec::SCS_static: {
3181 if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3182 // C99 6.7.1p5:
3183 // The declaration of an identifier for a function that has
3184 // block scope shall have no explicit storage-class specifier
3185 // other than extern
3186 // See also (C++ [dcl.stc]p4).
3187 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3188 diag::err_static_block_func);
3189 SC = SC_None;
3190 } else
3191 SC = SC_Static;
3192 break;
3194 case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3197 if (D.getDeclSpec().isThreadSpecified())
3198 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3200 bool isFriend = D.getDeclSpec().isFriendSpecified();
3201 bool isInline = D.getDeclSpec().isInlineSpecified();
3202 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3203 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3205 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3206 FunctionDecl::StorageClass SCAsWritten
3207 = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3209 // Check that the return type is not an abstract class type.
3210 // For record types, this is done by the AbstractClassUsageDiagnoser once
3211 // the class has been completely parsed.
3212 if (!DC->isRecord() &&
3213 RequireNonAbstractType(D.getIdentifierLoc(),
3214 R->getAs<FunctionType>()->getResultType(),
3215 diag::err_abstract_type_in_decl,
3216 AbstractReturnType))
3217 D.setInvalidType();
3219 // Do not allow returning a objc interface by-value.
3220 if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3221 Diag(D.getIdentifierLoc(),
3222 diag::err_object_cannot_be_passed_returned_by_value) << 0
3223 << R->getAs<FunctionType>()->getResultType();
3224 D.setInvalidType();
3227 bool isVirtualOkay = false;
3228 FunctionDecl *NewFD;
3230 if (isFriend) {
3231 // C++ [class.friend]p5
3232 // A function can be defined in a friend declaration of a
3233 // class . . . . Such a function is implicitly inline.
3234 isInline |= IsFunctionDefinition;
3237 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3238 // This is a C++ constructor declaration.
3239 assert(DC->isRecord() &&
3240 "Constructors can only be declared in a member context");
3242 R = CheckConstructorDeclarator(D, R, SC);
3244 // Create the new declaration
3245 NewFD = CXXConstructorDecl::Create(Context,
3246 cast<CXXRecordDecl>(DC),
3247 NameInfo, R, TInfo,
3248 isExplicit, isInline,
3249 /*isImplicitlyDeclared=*/false);
3250 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3251 // This is a C++ destructor declaration.
3252 if (DC->isRecord()) {
3253 R = CheckDestructorDeclarator(D, R, SC);
3255 NewFD = CXXDestructorDecl::Create(Context,
3256 cast<CXXRecordDecl>(DC),
3257 NameInfo, R,
3258 isInline,
3259 /*isImplicitlyDeclared=*/false);
3260 NewFD->setTypeSourceInfo(TInfo);
3262 isVirtualOkay = true;
3263 } else {
3264 Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3266 // Create a FunctionDecl to satisfy the function definition parsing
3267 // code path.
3268 NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3269 Name, R, TInfo, SC, SCAsWritten, isInline,
3270 /*hasPrototype=*/true);
3271 D.setInvalidType();
3273 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3274 if (!DC->isRecord()) {
3275 Diag(D.getIdentifierLoc(),
3276 diag::err_conv_function_not_member);
3277 return 0;
3280 CheckConversionDeclarator(D, R, SC);
3281 NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3282 NameInfo, R, TInfo,
3283 isInline, isExplicit);
3285 isVirtualOkay = true;
3286 } else if (DC->isRecord()) {
3287 // If the of the function is the same as the name of the record, then this
3288 // must be an invalid constructor that has a return type.
3289 // (The parser checks for a return type and makes the declarator a
3290 // constructor if it has no return type).
3291 // must have an invalid constructor that has a return type
3292 if (Name.getAsIdentifierInfo() &&
3293 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3294 Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3295 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3296 << SourceRange(D.getIdentifierLoc());
3297 return 0;
3300 bool isStatic = SC == SC_Static;
3302 // [class.free]p1:
3303 // Any allocation function for a class T is a static member
3304 // (even if not explicitly declared static).
3305 if (Name.getCXXOverloadedOperator() == OO_New ||
3306 Name.getCXXOverloadedOperator() == OO_Array_New)
3307 isStatic = true;
3309 // [class.free]p6 Any deallocation function for a class X is a static member
3310 // (even if not explicitly declared static).
3311 if (Name.getCXXOverloadedOperator() == OO_Delete ||
3312 Name.getCXXOverloadedOperator() == OO_Array_Delete)
3313 isStatic = true;
3315 // This is a C++ method declaration.
3316 NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3317 NameInfo, R, TInfo,
3318 isStatic, SCAsWritten, isInline);
3320 isVirtualOkay = !isStatic;
3321 } else {
3322 // Determine whether the function was written with a
3323 // prototype. This true when:
3324 // - we're in C++ (where every function has a prototype),
3325 // - there is a prototype in the declarator, or
3326 // - the type R of the function is some kind of typedef or other reference
3327 // to a type name (which eventually refers to a function type).
3328 bool HasPrototype =
3329 getLangOptions().CPlusPlus ||
3330 (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3331 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3333 NewFD = FunctionDecl::Create(Context, DC,
3334 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3335 HasPrototype);
3338 if (D.isInvalidType())
3339 NewFD->setInvalidDecl();
3341 SetNestedNameSpecifier(NewFD, D);
3343 // Set the lexical context. If the declarator has a C++
3344 // scope specifier, or is the object of a friend declaration, the
3345 // lexical context will be different from the semantic context.
3346 NewFD->setLexicalDeclContext(CurContext);
3348 // Match up the template parameter lists with the scope specifier, then
3349 // determine whether we have a template or a template specialization.
3350 FunctionTemplateDecl *FunctionTemplate = 0;
3351 bool isExplicitSpecialization = false;
3352 bool isFunctionTemplateSpecialization = false;
3353 unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3354 bool Invalid = false;
3355 if (TemplateParameterList *TemplateParams
3356 = MatchTemplateParametersToScopeSpecifier(
3357 D.getDeclSpec().getSourceRange().getBegin(),
3358 D.getCXXScopeSpec(),
3359 (TemplateParameterList**)TemplateParamLists.get(),
3360 TemplateParamLists.size(),
3361 isFriend,
3362 isExplicitSpecialization,
3363 Invalid)) {
3364 // All but one template parameter lists have been matching.
3365 --NumMatchedTemplateParamLists;
3367 if (TemplateParams->size() > 0) {
3368 // This is a function template
3370 // Check that we can declare a template here.
3371 if (CheckTemplateDeclScope(S, TemplateParams))
3372 return 0;
3374 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3375 NewFD->getLocation(),
3376 Name, TemplateParams,
3377 NewFD);
3378 FunctionTemplate->setLexicalDeclContext(CurContext);
3379 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3380 } else {
3381 // This is a function template specialization.
3382 isFunctionTemplateSpecialization = true;
3384 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3385 if (isFriend && isFunctionTemplateSpecialization) {
3386 // We want to remove the "template<>", found here.
3387 SourceRange RemoveRange = TemplateParams->getSourceRange();
3389 // If we remove the template<> and the name is not a
3390 // template-id, we're actually silently creating a problem:
3391 // the friend declaration will refer to an untemplated decl,
3392 // and clearly the user wants a template specialization. So
3393 // we need to insert '<>' after the name.
3394 SourceLocation InsertLoc;
3395 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3396 InsertLoc = D.getName().getSourceRange().getEnd();
3397 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3400 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3401 << Name << RemoveRange
3402 << FixItHint::CreateRemoval(RemoveRange)
3403 << FixItHint::CreateInsertion(InsertLoc, "<>");
3408 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3409 NewFD->setTemplateParameterListsInfo(Context,
3410 NumMatchedTemplateParamLists,
3411 (TemplateParameterList**)TemplateParamLists.release());
3414 if (Invalid) {
3415 NewFD->setInvalidDecl();
3416 if (FunctionTemplate)
3417 FunctionTemplate->setInvalidDecl();
3420 // C++ [dcl.fct.spec]p5:
3421 // The virtual specifier shall only be used in declarations of
3422 // nonstatic class member functions that appear within a
3423 // member-specification of a class declaration; see 10.3.
3425 if (isVirtual && !NewFD->isInvalidDecl()) {
3426 if (!isVirtualOkay) {
3427 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3428 diag::err_virtual_non_function);
3429 } else if (!CurContext->isRecord()) {
3430 // 'virtual' was specified outside of the class.
3431 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3432 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3433 } else {
3434 // Okay: Add virtual to the method.
3435 NewFD->setVirtualAsWritten(true);
3439 // C++ [dcl.fct.spec]p3:
3440 // The inline specifier shall not appear on a block scope function declaration.
3441 if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3442 if (CurContext->isFunctionOrMethod()) {
3443 // 'inline' is not allowed on block scope function declaration.
3444 Diag(D.getDeclSpec().getInlineSpecLoc(),
3445 diag::err_inline_declaration_block_scope) << Name
3446 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3450 // C++ [dcl.fct.spec]p6:
3451 // The explicit specifier shall be used only in the declaration of a
3452 // constructor or conversion function within its class definition; see 12.3.1
3453 // and 12.3.2.
3454 if (isExplicit && !NewFD->isInvalidDecl()) {
3455 if (!CurContext->isRecord()) {
3456 // 'explicit' was specified outside of the class.
3457 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3458 diag::err_explicit_out_of_class)
3459 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3460 } else if (!isa<CXXConstructorDecl>(NewFD) &&
3461 !isa<CXXConversionDecl>(NewFD)) {
3462 // 'explicit' was specified on a function that wasn't a constructor
3463 // or conversion function.
3464 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3465 diag::err_explicit_non_ctor_or_conv_function)
3466 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3470 // Filter out previous declarations that don't match the scope.
3471 FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3473 if (isFriend) {
3474 // DC is the namespace in which the function is being declared.
3475 assert((DC->isFileContext() || !Previous.empty()) &&
3476 "previously-undeclared friend function being created "
3477 "in a non-namespace context");
3479 // For now, claim that the objects have no previous declaration.
3480 if (FunctionTemplate) {
3481 FunctionTemplate->setObjectOfFriendDecl(false);
3482 FunctionTemplate->setAccess(AS_public);
3484 NewFD->setObjectOfFriendDecl(false);
3485 NewFD->setAccess(AS_public);
3488 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3489 !CurContext->isRecord()) {
3490 // C++ [class.static]p1:
3491 // A data or function member of a class may be declared static
3492 // in a class definition, in which case it is a static member of
3493 // the class.
3495 // Complain about the 'static' specifier if it's on an out-of-line
3496 // member function definition.
3497 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3498 diag::err_static_out_of_line)
3499 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3502 // Handle GNU asm-label extension (encoded as an attribute).
3503 if (Expr *E = (Expr*) D.getAsmLabel()) {
3504 // The parser guarantees this is a string.
3505 StringLiteral *SE = cast<StringLiteral>(E);
3506 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3507 SE->getString()));
3510 // Copy the parameter declarations from the declarator D to the function
3511 // declaration NewFD, if they are available. First scavenge them into Params.
3512 llvm::SmallVector<ParmVarDecl*, 16> Params;
3513 if (D.getNumTypeObjects() > 0) {
3514 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3516 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3517 // function that takes no arguments, not a function that takes a
3518 // single void argument.
3519 // We let through "const void" here because Sema::GetTypeForDeclarator
3520 // already checks for that case.
3521 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3522 FTI.ArgInfo[0].Param &&
3523 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3524 // Empty arg list, don't push any params.
3525 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3527 // In C++, the empty parameter-type-list must be spelled "void"; a
3528 // typedef of void is not permitted.
3529 if (getLangOptions().CPlusPlus &&
3530 Param->getType().getUnqualifiedType() != Context.VoidTy)
3531 Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3532 // FIXME: Leaks decl?
3533 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3534 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3535 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3536 assert(Param->getDeclContext() != NewFD && "Was set before ?");
3537 Param->setDeclContext(NewFD);
3538 Params.push_back(Param);
3540 if (Param->isInvalidDecl())
3541 NewFD->setInvalidDecl();
3545 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3546 // When we're declaring a function with a typedef, typeof, etc as in the
3547 // following example, we'll need to synthesize (unnamed)
3548 // parameters for use in the declaration.
3550 // @code
3551 // typedef void fn(int);
3552 // fn f;
3553 // @endcode
3555 // Synthesize a parameter for each argument type.
3556 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3557 AE = FT->arg_type_end(); AI != AE; ++AI) {
3558 ParmVarDecl *Param =
3559 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3560 Params.push_back(Param);
3562 } else {
3563 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3564 "Should not need args for typedef of non-prototype fn");
3566 // Finally, we know we have the right number of parameters, install them.
3567 NewFD->setParams(Params.data(), Params.size());
3569 // If the declarator is a template-id, translate the parser's template
3570 // argument list into our AST format.
3571 bool HasExplicitTemplateArgs = false;
3572 TemplateArgumentListInfo TemplateArgs;
3573 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3574 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3575 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3576 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3577 ASTTemplateArgsPtr TemplateArgsPtr(*this,
3578 TemplateId->getTemplateArgs(),
3579 TemplateId->NumArgs);
3580 translateTemplateArguments(TemplateArgsPtr,
3581 TemplateArgs);
3582 TemplateArgsPtr.release();
3584 HasExplicitTemplateArgs = true;
3586 if (FunctionTemplate) {
3587 // FIXME: Diagnose function template with explicit template
3588 // arguments.
3589 HasExplicitTemplateArgs = false;
3590 } else if (!isFunctionTemplateSpecialization &&
3591 !D.getDeclSpec().isFriendSpecified()) {
3592 // We have encountered something that the user meant to be a
3593 // specialization (because it has explicitly-specified template
3594 // arguments) but that was not introduced with a "template<>" (or had
3595 // too few of them).
3596 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3597 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3598 << FixItHint::CreateInsertion(
3599 D.getDeclSpec().getSourceRange().getBegin(),
3600 "template<> ");
3601 isFunctionTemplateSpecialization = true;
3602 } else {
3603 // "friend void foo<>(int);" is an implicit specialization decl.
3604 isFunctionTemplateSpecialization = true;
3606 } else if (isFriend && isFunctionTemplateSpecialization) {
3607 // This combination is only possible in a recovery case; the user
3608 // wrote something like:
3609 // template <> friend void foo(int);
3610 // which we're recovering from as if the user had written:
3611 // friend void foo<>(int);
3612 // Go ahead and fake up a template id.
3613 HasExplicitTemplateArgs = true;
3614 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3615 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3618 // If it's a friend (and only if it's a friend), it's possible
3619 // that either the specialized function type or the specialized
3620 // template is dependent, and therefore matching will fail. In
3621 // this case, don't check the specialization yet.
3622 if (isFunctionTemplateSpecialization && isFriend &&
3623 (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3624 assert(HasExplicitTemplateArgs &&
3625 "friend function specialization without template args");
3626 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3627 Previous))
3628 NewFD->setInvalidDecl();
3629 } else if (isFunctionTemplateSpecialization) {
3630 if (CheckFunctionTemplateSpecialization(NewFD,
3631 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3632 Previous))
3633 NewFD->setInvalidDecl();
3634 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3635 if (CheckMemberSpecialization(NewFD, Previous))
3636 NewFD->setInvalidDecl();
3639 // Perform semantic checking on the function declaration.
3640 bool OverloadableAttrRequired = false; // FIXME: HACK!
3641 CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3642 Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3644 assert((NewFD->isInvalidDecl() || !Redeclaration ||
3645 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3646 "previous declaration set still overloaded");
3648 NamedDecl *PrincipalDecl = (FunctionTemplate
3649 ? cast<NamedDecl>(FunctionTemplate)
3650 : NewFD);
3652 if (isFriend && Redeclaration) {
3653 AccessSpecifier Access = AS_public;
3654 if (!NewFD->isInvalidDecl())
3655 Access = NewFD->getPreviousDeclaration()->getAccess();
3657 NewFD->setAccess(Access);
3658 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3660 PrincipalDecl->setObjectOfFriendDecl(true);
3663 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3664 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3665 PrincipalDecl->setNonMemberOperator();
3667 // If we have a function template, check the template parameter
3668 // list. This will check and merge default template arguments.
3669 if (FunctionTemplate) {
3670 FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3671 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3672 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3673 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3674 : TPC_FunctionTemplate);
3677 if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3678 if (isFriend || !CurContext->isRecord()) {
3679 // Fake up an access specifier if it's supposed to be a class member.
3680 if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3681 NewFD->setAccess(AS_public);
3683 // An out-of-line member function declaration must also be a
3684 // definition (C++ [dcl.meaning]p1).
3685 // Note that this is not the case for explicit specializations of
3686 // function templates or member functions of class templates, per
3687 // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3688 // for compatibility with old SWIG code which likes to generate them.
3689 if (!IsFunctionDefinition && !isFriend &&
3690 !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3691 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3692 << D.getCXXScopeSpec().getRange();
3694 if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3695 // The user tried to provide an out-of-line definition for a
3696 // function that is a member of a class or namespace, but there
3697 // was no such member function declared (C++ [class.mfct]p2,
3698 // C++ [namespace.memdef]p2). For example:
3700 // class X {
3701 // void f() const;
3702 // };
3704 // void X::f() { } // ill-formed
3706 // Complain about this problem, and attempt to suggest close
3707 // matches (e.g., those that differ only in cv-qualifiers and
3708 // whether the parameter types are references).
3709 Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3710 << Name << DC << D.getCXXScopeSpec().getRange();
3711 NewFD->setInvalidDecl();
3713 LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3714 ForRedeclaration);
3715 LookupQualifiedName(Prev, DC);
3716 assert(!Prev.isAmbiguous() &&
3717 "Cannot have an ambiguity in previous-declaration lookup");
3718 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3719 Func != FuncEnd; ++Func) {
3720 if (isa<FunctionDecl>(*Func) &&
3721 isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3722 Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3725 } else {
3726 // The user provided a superfluous scope specifier inside a class definition:
3728 // class X {
3729 // void X::f();
3730 // };
3731 Diag(NewFD->getLocation(), diag::warn_member_extra_qualification)
3732 << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3736 // Handle attributes. We need to have merged decls when handling attributes
3737 // (for example to check for conflicts, etc).
3738 // FIXME: This needs to happen before we merge declarations. Then,
3739 // let attribute merging cope with attribute conflicts.
3740 ProcessDeclAttributes(S, NewFD, D);
3742 // attributes declared post-definition are currently ignored
3743 // FIXME: This should happen during attribute merging
3744 if (Redeclaration && Previous.isSingleResult()) {
3745 const FunctionDecl *Def;
3746 FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3747 if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3748 Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3749 Diag(Def->getLocation(), diag::note_previous_definition);
3753 AddKnownFunctionAttributes(NewFD);
3755 if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3756 // If a function name is overloadable in C, then every function
3757 // with that name must be marked "overloadable".
3758 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3759 << Redeclaration << NewFD;
3760 if (!Previous.empty())
3761 Diag(Previous.getRepresentativeDecl()->getLocation(),
3762 diag::note_attribute_overloadable_prev_overload);
3763 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3766 if (NewFD->hasAttr<OverloadableAttr>() &&
3767 !NewFD->getType()->getAs<FunctionProtoType>()) {
3768 Diag(NewFD->getLocation(),
3769 diag::err_attribute_overloadable_no_prototype)
3770 << NewFD;
3772 // Turn this into a variadic function with no parameters.
3773 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3774 QualType R = Context.getFunctionType(FT->getResultType(),
3775 0, 0, true, 0, false, false, 0, 0,
3776 FT->getExtInfo());
3777 NewFD->setType(R);
3780 // If there's a #pragma GCC visibility in scope, and this isn't a class
3781 // member, set the visibility of this function.
3782 if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3783 AddPushedVisibilityAttribute(NewFD);
3785 // If this is a locally-scoped extern C function, update the
3786 // map of such names.
3787 if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3788 && !NewFD->isInvalidDecl())
3789 RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3791 // Set this FunctionDecl's range up to the right paren.
3792 NewFD->setLocEnd(D.getSourceRange().getEnd());
3794 if (FunctionTemplate && NewFD->isInvalidDecl())
3795 FunctionTemplate->setInvalidDecl();
3797 if (FunctionTemplate)
3798 return FunctionTemplate;
3800 MarkUnusedFileScopedDecl(NewFD);
3802 return NewFD;
3805 /// \brief Perform semantic checking of a new function declaration.
3807 /// Performs semantic analysis of the new function declaration
3808 /// NewFD. This routine performs all semantic checking that does not
3809 /// require the actual declarator involved in the declaration, and is
3810 /// used both for the declaration of functions as they are parsed
3811 /// (called via ActOnDeclarator) and for the declaration of functions
3812 /// that have been instantiated via C++ template instantiation (called
3813 /// via InstantiateDecl).
3815 /// \param IsExplicitSpecialiation whether this new function declaration is
3816 /// an explicit specialization of the previous declaration.
3818 /// This sets NewFD->isInvalidDecl() to true if there was an error.
3819 void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3820 LookupResult &Previous,
3821 bool IsExplicitSpecialization,
3822 bool &Redeclaration,
3823 bool &OverloadableAttrRequired) {
3824 // If NewFD is already known erroneous, don't do any of this checking.
3825 if (NewFD->isInvalidDecl()) {
3826 // If this is a class member, mark the class invalid immediately.
3827 // This avoids some consistency errors later.
3828 if (isa<CXXMethodDecl>(NewFD))
3829 cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3831 return;
3834 if (NewFD->getResultType()->isVariablyModifiedType()) {
3835 // Functions returning a variably modified type violate C99 6.7.5.2p2
3836 // because all functions have linkage.
3837 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3838 return NewFD->setInvalidDecl();
3841 if (NewFD->isMain())
3842 CheckMain(NewFD);
3844 // Check for a previous declaration of this name.
3845 if (Previous.empty() && NewFD->isExternC()) {
3846 // Since we did not find anything by this name and we're declaring
3847 // an extern "C" function, look for a non-visible extern "C"
3848 // declaration with the same name.
3849 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3850 = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3851 if (Pos != LocallyScopedExternalDecls.end())
3852 Previous.addDecl(Pos->second);
3855 // Merge or overload the declaration with an existing declaration of
3856 // the same name, if appropriate.
3857 if (!Previous.empty()) {
3858 // Determine whether NewFD is an overload of PrevDecl or
3859 // a declaration that requires merging. If it's an overload,
3860 // there's no more work to do here; we'll just add the new
3861 // function to the scope.
3863 NamedDecl *OldDecl = 0;
3864 if (!AllowOverloadingOfFunction(Previous, Context)) {
3865 Redeclaration = true;
3866 OldDecl = Previous.getFoundDecl();
3867 } else {
3868 if (!getLangOptions().CPlusPlus)
3869 OverloadableAttrRequired = true;
3871 switch (CheckOverload(S, NewFD, Previous, OldDecl,
3872 /*NewIsUsingDecl*/ false)) {
3873 case Ovl_Match:
3874 Redeclaration = true;
3875 break;
3877 case Ovl_NonFunction:
3878 Redeclaration = true;
3879 break;
3881 case Ovl_Overload:
3882 Redeclaration = false;
3883 break;
3887 if (Redeclaration) {
3888 // NewFD and OldDecl represent declarations that need to be
3889 // merged.
3890 if (MergeFunctionDecl(NewFD, OldDecl))
3891 return NewFD->setInvalidDecl();
3893 Previous.clear();
3894 Previous.addDecl(OldDecl);
3896 if (FunctionTemplateDecl *OldTemplateDecl
3897 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3898 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3899 FunctionTemplateDecl *NewTemplateDecl
3900 = NewFD->getDescribedFunctionTemplate();
3901 assert(NewTemplateDecl && "Template/non-template mismatch");
3902 if (CXXMethodDecl *Method
3903 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3904 Method->setAccess(OldTemplateDecl->getAccess());
3905 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3908 // If this is an explicit specialization of a member that is a function
3909 // template, mark it as a member specialization.
3910 if (IsExplicitSpecialization &&
3911 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3912 NewTemplateDecl->setMemberSpecialization();
3913 assert(OldTemplateDecl->isMemberSpecialization());
3915 } else {
3916 if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3917 NewFD->setAccess(OldDecl->getAccess());
3918 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3923 // Semantic checking for this function declaration (in isolation).
3924 if (getLangOptions().CPlusPlus) {
3925 // C++-specific checks.
3926 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3927 CheckConstructor(Constructor);
3928 } else if (CXXDestructorDecl *Destructor =
3929 dyn_cast<CXXDestructorDecl>(NewFD)) {
3930 CXXRecordDecl *Record = Destructor->getParent();
3931 QualType ClassType = Context.getTypeDeclType(Record);
3933 // FIXME: Shouldn't we be able to perform this check even when the class
3934 // type is dependent? Both gcc and edg can handle that.
3935 if (!ClassType->isDependentType()) {
3936 DeclarationName Name
3937 = Context.DeclarationNames.getCXXDestructorName(
3938 Context.getCanonicalType(ClassType));
3939 // NewFD->getDeclName().dump();
3940 // Name.dump();
3941 if (NewFD->getDeclName() != Name) {
3942 Diag(NewFD->getLocation(), diag::err_destructor_name);
3943 return NewFD->setInvalidDecl();
3946 } else if (CXXConversionDecl *Conversion
3947 = dyn_cast<CXXConversionDecl>(NewFD)) {
3948 ActOnConversionDeclarator(Conversion);
3951 // Find any virtual functions that this function overrides.
3952 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3953 if (!Method->isFunctionTemplateSpecialization() &&
3954 !Method->getDescribedFunctionTemplate())
3955 AddOverriddenMethods(Method->getParent(), Method);
3958 // Extra checking for C++ overloaded operators (C++ [over.oper]).
3959 if (NewFD->isOverloadedOperator() &&
3960 CheckOverloadedOperatorDeclaration(NewFD))
3961 return NewFD->setInvalidDecl();
3963 // Extra checking for C++0x literal operators (C++0x [over.literal]).
3964 if (NewFD->getLiteralIdentifier() &&
3965 CheckLiteralOperatorDeclaration(NewFD))
3966 return NewFD->setInvalidDecl();
3968 // In C++, check default arguments now that we have merged decls. Unless
3969 // the lexical context is the class, because in this case this is done
3970 // during delayed parsing anyway.
3971 if (!CurContext->isRecord())
3972 CheckCXXDefaultArguments(NewFD);
3976 void Sema::CheckMain(FunctionDecl* FD) {
3977 // C++ [basic.start.main]p3: A program that declares main to be inline
3978 // or static is ill-formed.
3979 // C99 6.7.4p4: In a hosted environment, the inline function specifier
3980 // shall not appear in a declaration of main.
3981 // static main is not an error under C99, but we should warn about it.
3982 bool isInline = FD->isInlineSpecified();
3983 bool isStatic = FD->getStorageClass() == SC_Static;
3984 if (isInline || isStatic) {
3985 unsigned diagID = diag::warn_unusual_main_decl;
3986 if (isInline || getLangOptions().CPlusPlus)
3987 diagID = diag::err_unusual_main_decl;
3989 int which = isStatic + (isInline << 1) - 1;
3990 Diag(FD->getLocation(), diagID) << which;
3993 QualType T = FD->getType();
3994 assert(T->isFunctionType() && "function decl is not of function type");
3995 const FunctionType* FT = T->getAs<FunctionType>();
3997 if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3998 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3999 TypeLoc TL = TSI->getTypeLoc();
4000 const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4001 diag::err_main_returns_nonint);
4002 if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4003 D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4004 "int");
4006 FD->setInvalidDecl(true);
4009 // Treat protoless main() as nullary.
4010 if (isa<FunctionNoProtoType>(FT)) return;
4012 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4013 unsigned nparams = FTP->getNumArgs();
4014 assert(FD->getNumParams() == nparams);
4016 bool HasExtraParameters = (nparams > 3);
4018 // Darwin passes an undocumented fourth argument of type char**. If
4019 // other platforms start sprouting these, the logic below will start
4020 // getting shifty.
4021 if (nparams == 4 &&
4022 Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4023 HasExtraParameters = false;
4025 if (HasExtraParameters) {
4026 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4027 FD->setInvalidDecl(true);
4028 nparams = 3;
4031 // FIXME: a lot of the following diagnostics would be improved
4032 // if we had some location information about types.
4034 QualType CharPP =
4035 Context.getPointerType(Context.getPointerType(Context.CharTy));
4036 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4038 for (unsigned i = 0; i < nparams; ++i) {
4039 QualType AT = FTP->getArgType(i);
4041 bool mismatch = true;
4043 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4044 mismatch = false;
4045 else if (Expected[i] == CharPP) {
4046 // As an extension, the following forms are okay:
4047 // char const **
4048 // char const * const *
4049 // char * const *
4051 QualifierCollector qs;
4052 const PointerType* PT;
4053 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4054 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4055 (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4056 qs.removeConst();
4057 mismatch = !qs.empty();
4061 if (mismatch) {
4062 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4063 // TODO: suggest replacing given type with expected type
4064 FD->setInvalidDecl(true);
4068 if (nparams == 1 && !FD->isInvalidDecl()) {
4069 Diag(FD->getLocation(), diag::warn_main_one_arg);
4073 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4074 // FIXME: Need strict checking. In C89, we need to check for
4075 // any assignment, increment, decrement, function-calls, or
4076 // commas outside of a sizeof. In C99, it's the same list,
4077 // except that the aforementioned are allowed in unevaluated
4078 // expressions. Everything else falls under the
4079 // "may accept other forms of constant expressions" exception.
4080 // (We never end up here for C++, so the constant expression
4081 // rules there don't matter.)
4082 if (Init->isConstantInitializer(Context, false))
4083 return false;
4084 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4085 << Init->getSourceRange();
4086 return true;
4089 void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4090 AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4093 /// AddInitializerToDecl - Adds the initializer Init to the
4094 /// declaration dcl. If DirectInit is true, this is C++ direct
4095 /// initialization rather than copy initialization.
4096 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4097 // If there is no declaration, there was an error parsing it. Just ignore
4098 // the initializer.
4099 if (RealDecl == 0)
4100 return;
4102 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4103 // With declarators parsed the way they are, the parser cannot
4104 // distinguish between a normal initializer and a pure-specifier.
4105 // Thus this grotesque test.
4106 IntegerLiteral *IL;
4107 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4108 Context.getCanonicalType(IL->getType()) == Context.IntTy)
4109 CheckPureMethod(Method, Init->getSourceRange());
4110 else {
4111 Diag(Method->getLocation(), diag::err_member_function_initialization)
4112 << Method->getDeclName() << Init->getSourceRange();
4113 Method->setInvalidDecl();
4115 return;
4118 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4119 if (!VDecl) {
4120 if (getLangOptions().CPlusPlus &&
4121 RealDecl->getLexicalDeclContext()->isRecord() &&
4122 isa<NamedDecl>(RealDecl))
4123 Diag(RealDecl->getLocation(), diag::err_member_initialization);
4124 else
4125 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4126 RealDecl->setInvalidDecl();
4127 return;
4132 // A definition must end up with a complete type, which means it must be
4133 // complete with the restriction that an array type might be completed by the
4134 // initializer; note that later code assumes this restriction.
4135 QualType BaseDeclType = VDecl->getType();
4136 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4137 BaseDeclType = Array->getElementType();
4138 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4139 diag::err_typecheck_decl_incomplete_type)) {
4140 RealDecl->setInvalidDecl();
4141 return;
4144 // The variable can not have an abstract class type.
4145 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4146 diag::err_abstract_type_in_decl,
4147 AbstractVariableType))
4148 VDecl->setInvalidDecl();
4150 const VarDecl *Def;
4151 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4152 Diag(VDecl->getLocation(), diag::err_redefinition)
4153 << VDecl->getDeclName();
4154 Diag(Def->getLocation(), diag::note_previous_definition);
4155 VDecl->setInvalidDecl();
4156 return;
4159 // C++ [class.static.data]p4
4160 // If a static data member is of const integral or const
4161 // enumeration type, its declaration in the class definition can
4162 // specify a constant-initializer which shall be an integral
4163 // constant expression (5.19). In that case, the member can appear
4164 // in integral constant expressions. The member shall still be
4165 // defined in a namespace scope if it is used in the program and the
4166 // namespace scope definition shall not contain an initializer.
4168 // We already performed a redefinition check above, but for static
4169 // data members we also need to check whether there was an in-class
4170 // declaration with an initializer.
4171 const VarDecl* PrevInit = 0;
4172 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4173 Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4174 Diag(PrevInit->getLocation(), diag::note_previous_definition);
4175 return;
4178 if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4179 getCurFunction()->setHasBranchProtectedScope();
4181 // Capture the variable that is being initialized and the style of
4182 // initialization.
4183 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4185 // FIXME: Poor source location information.
4186 InitializationKind Kind
4187 = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4188 Init->getLocStart(),
4189 Init->getLocEnd())
4190 : InitializationKind::CreateCopy(VDecl->getLocation(),
4191 Init->getLocStart());
4193 // Get the decls type and save a reference for later, since
4194 // CheckInitializerTypes may change it.
4195 QualType DclT = VDecl->getType(), SavT = DclT;
4196 if (VDecl->isBlockVarDecl()) {
4197 if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4198 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4199 VDecl->setInvalidDecl();
4200 } else if (!VDecl->isInvalidDecl()) {
4201 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4202 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4203 MultiExprArg(*this, &Init, 1),
4204 &DclT);
4205 if (Result.isInvalid()) {
4206 VDecl->setInvalidDecl();
4207 return;
4210 Init = Result.takeAs<Expr>();
4212 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4213 // Don't check invalid declarations to avoid emitting useless diagnostics.
4214 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4215 if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4216 CheckForConstantInitializer(Init, DclT);
4219 } else if (VDecl->isStaticDataMember() &&
4220 VDecl->getLexicalDeclContext()->isRecord()) {
4221 // This is an in-class initialization for a static data member, e.g.,
4223 // struct S {
4224 // static const int value = 17;
4225 // };
4227 // Try to perform the initialization regardless.
4228 if (!VDecl->isInvalidDecl()) {
4229 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4230 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4231 MultiExprArg(*this, &Init, 1),
4232 &DclT);
4233 if (Result.isInvalid()) {
4234 VDecl->setInvalidDecl();
4235 return;
4238 Init = Result.takeAs<Expr>();
4241 // C++ [class.mem]p4:
4242 // A member-declarator can contain a constant-initializer only
4243 // if it declares a static member (9.4) of const integral or
4244 // const enumeration type, see 9.4.2.
4245 QualType T = VDecl->getType();
4247 // Do nothing on dependent types.
4248 if (T->isDependentType()) {
4250 // Require constness.
4251 } else if (!T.isConstQualified()) {
4252 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4253 << Init->getSourceRange();
4254 VDecl->setInvalidDecl();
4256 // We allow integer constant expressions in all cases.
4257 } else if (T->isIntegralOrEnumerationType()) {
4258 if (!Init->isValueDependent()) {
4259 // Check whether the expression is a constant expression.
4260 llvm::APSInt Value;
4261 SourceLocation Loc;
4262 if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4263 Diag(Loc, diag::err_in_class_initializer_non_constant)
4264 << Init->getSourceRange();
4265 VDecl->setInvalidDecl();
4269 // We allow floating-point constants as an extension in C++03, and
4270 // C++0x has far more complicated rules that we don't really
4271 // implement fully.
4272 } else {
4273 bool Allowed = false;
4274 if (getLangOptions().CPlusPlus0x) {
4275 Allowed = T->isLiteralType();
4276 } else if (T->isFloatingType()) { // also permits complex, which is ok
4277 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4278 << T << Init->getSourceRange();
4279 Allowed = true;
4282 if (!Allowed) {
4283 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4284 << T << Init->getSourceRange();
4285 VDecl->setInvalidDecl();
4287 // TODO: there are probably expressions that pass here that shouldn't.
4288 } else if (!Init->isValueDependent() &&
4289 !Init->isConstantInitializer(Context, false)) {
4290 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4291 << Init->getSourceRange();
4292 VDecl->setInvalidDecl();
4295 } else if (VDecl->isFileVarDecl()) {
4296 if (VDecl->getStorageClass() == SC_Extern &&
4297 (!getLangOptions().CPlusPlus ||
4298 !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4299 Diag(VDecl->getLocation(), diag::warn_extern_init);
4300 if (!VDecl->isInvalidDecl()) {
4301 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4302 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4303 MultiExprArg(*this, &Init, 1),
4304 &DclT);
4305 if (Result.isInvalid()) {
4306 VDecl->setInvalidDecl();
4307 return;
4310 Init = Result.takeAs<Expr>();
4313 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4314 // Don't check invalid declarations to avoid emitting useless diagnostics.
4315 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4316 // C99 6.7.8p4. All file scoped initializers need to be constant.
4317 CheckForConstantInitializer(Init, DclT);
4320 // If the type changed, it means we had an incomplete type that was
4321 // completed by the initializer. For example:
4322 // int ary[] = { 1, 3, 5 };
4323 // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4324 if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4325 VDecl->setType(DclT);
4326 Init->setType(DclT);
4329 // Check any implicit conversions within the expression.
4330 CheckImplicitConversions(Init, VDecl->getLocation());
4332 Init = MaybeCreateCXXExprWithTemporaries(Init);
4333 // Attach the initializer to the decl.
4334 VDecl->setInit(Init);
4336 if (getLangOptions().CPlusPlus) {
4337 if (!VDecl->isInvalidDecl() &&
4338 !VDecl->getDeclContext()->isDependentContext() &&
4339 VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4340 !Init->isConstantInitializer(Context,
4341 VDecl->getType()->isReferenceType()))
4342 Diag(VDecl->getLocation(), diag::warn_global_constructor)
4343 << Init->getSourceRange();
4345 // Make sure we mark the destructor as used if necessary.
4346 QualType InitType = VDecl->getType();
4347 while (const ArrayType *Array = Context.getAsArrayType(InitType))
4348 InitType = Context.getBaseElementType(Array);
4349 if (const RecordType *Record = InitType->getAs<RecordType>())
4350 FinalizeVarWithDestructor(VDecl, Record);
4353 return;
4356 /// ActOnInitializerError - Given that there was an error parsing an
4357 /// initializer for the given declaration, try to return to some form
4358 /// of sanity.
4359 void Sema::ActOnInitializerError(Decl *D) {
4360 // Our main concern here is re-establishing invariants like "a
4361 // variable's type is either dependent or complete".
4362 if (!D || D->isInvalidDecl()) return;
4364 VarDecl *VD = dyn_cast<VarDecl>(D);
4365 if (!VD) return;
4367 QualType Ty = VD->getType();
4368 if (Ty->isDependentType()) return;
4370 // Require a complete type.
4371 if (RequireCompleteType(VD->getLocation(),
4372 Context.getBaseElementType(Ty),
4373 diag::err_typecheck_decl_incomplete_type)) {
4374 VD->setInvalidDecl();
4375 return;
4378 // Require an abstract type.
4379 if (RequireNonAbstractType(VD->getLocation(), Ty,
4380 diag::err_abstract_type_in_decl,
4381 AbstractVariableType)) {
4382 VD->setInvalidDecl();
4383 return;
4386 // Don't bother complaining about constructors or destructors,
4387 // though.
4390 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4391 bool TypeContainsUndeducedAuto) {
4392 // If there is no declaration, there was an error parsing it. Just ignore it.
4393 if (RealDecl == 0)
4394 return;
4396 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4397 QualType Type = Var->getType();
4399 // C++0x [dcl.spec.auto]p3
4400 if (TypeContainsUndeducedAuto) {
4401 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4402 << Var->getDeclName() << Type;
4403 Var->setInvalidDecl();
4404 return;
4407 switch (Var->isThisDeclarationADefinition()) {
4408 case VarDecl::Definition:
4409 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4410 break;
4412 // We have an out-of-line definition of a static data member
4413 // that has an in-class initializer, so we type-check this like
4414 // a declaration.
4416 // Fall through
4418 case VarDecl::DeclarationOnly:
4419 // It's only a declaration.
4421 // Block scope. C99 6.7p7: If an identifier for an object is
4422 // declared with no linkage (C99 6.2.2p6), the type for the
4423 // object shall be complete.
4424 if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4425 !Var->getLinkage() && !Var->isInvalidDecl() &&
4426 RequireCompleteType(Var->getLocation(), Type,
4427 diag::err_typecheck_decl_incomplete_type))
4428 Var->setInvalidDecl();
4430 // Make sure that the type is not abstract.
4431 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4432 RequireNonAbstractType(Var->getLocation(), Type,
4433 diag::err_abstract_type_in_decl,
4434 AbstractVariableType))
4435 Var->setInvalidDecl();
4436 return;
4438 case VarDecl::TentativeDefinition:
4439 // File scope. C99 6.9.2p2: A declaration of an identifier for an
4440 // object that has file scope without an initializer, and without a
4441 // storage-class specifier or with the storage-class specifier "static",
4442 // constitutes a tentative definition. Note: A tentative definition with
4443 // external linkage is valid (C99 6.2.2p5).
4444 if (!Var->isInvalidDecl()) {
4445 if (const IncompleteArrayType *ArrayT
4446 = Context.getAsIncompleteArrayType(Type)) {
4447 if (RequireCompleteType(Var->getLocation(),
4448 ArrayT->getElementType(),
4449 diag::err_illegal_decl_array_incomplete_type))
4450 Var->setInvalidDecl();
4451 } else if (Var->getStorageClass() == SC_Static) {
4452 // C99 6.9.2p3: If the declaration of an identifier for an object is
4453 // a tentative definition and has internal linkage (C99 6.2.2p3), the
4454 // declared type shall not be an incomplete type.
4455 // NOTE: code such as the following
4456 // static struct s;
4457 // struct s { int a; };
4458 // is accepted by gcc. Hence here we issue a warning instead of
4459 // an error and we do not invalidate the static declaration.
4460 // NOTE: to avoid multiple warnings, only check the first declaration.
4461 if (Var->getPreviousDeclaration() == 0)
4462 RequireCompleteType(Var->getLocation(), Type,
4463 diag::ext_typecheck_decl_incomplete_type);
4467 // Record the tentative definition; we're done.
4468 if (!Var->isInvalidDecl())
4469 TentativeDefinitions.push_back(Var);
4470 return;
4473 // Provide a specific diagnostic for uninitialized variable
4474 // definitions with incomplete array type.
4475 if (Type->isIncompleteArrayType()) {
4476 Diag(Var->getLocation(),
4477 diag::err_typecheck_incomplete_array_needs_initializer);
4478 Var->setInvalidDecl();
4479 return;
4482 // Provide a specific diagnostic for uninitialized variable
4483 // definitions with reference type.
4484 if (Type->isReferenceType()) {
4485 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4486 << Var->getDeclName()
4487 << SourceRange(Var->getLocation(), Var->getLocation());
4488 Var->setInvalidDecl();
4489 return;
4492 // Do not attempt to type-check the default initializer for a
4493 // variable with dependent type.
4494 if (Type->isDependentType())
4495 return;
4497 if (Var->isInvalidDecl())
4498 return;
4500 if (RequireCompleteType(Var->getLocation(),
4501 Context.getBaseElementType(Type),
4502 diag::err_typecheck_decl_incomplete_type)) {
4503 Var->setInvalidDecl();
4504 return;
4507 // The variable can not have an abstract class type.
4508 if (RequireNonAbstractType(Var->getLocation(), Type,
4509 diag::err_abstract_type_in_decl,
4510 AbstractVariableType)) {
4511 Var->setInvalidDecl();
4512 return;
4515 const RecordType *Record
4516 = Context.getBaseElementType(Type)->getAs<RecordType>();
4517 if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4518 cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4519 // C++03 [dcl.init]p9:
4520 // If no initializer is specified for an object, and the
4521 // object is of (possibly cv-qualified) non-POD class type (or
4522 // array thereof), the object shall be default-initialized; if
4523 // the object is of const-qualified type, the underlying class
4524 // type shall have a user-declared default
4525 // constructor. Otherwise, if no initializer is specified for
4526 // a non- static object, the object and its subobjects, if
4527 // any, have an indeterminate initial value); if the object
4528 // or any of its subobjects are of const-qualified type, the
4529 // program is ill-formed.
4530 // FIXME: DPG thinks it is very fishy that C++0x disables this.
4531 } else {
4532 // Check for jumps past the implicit initializer. C++0x
4533 // clarifies that this applies to a "variable with automatic
4534 // storage duration", not a "local variable".
4535 if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4536 getCurFunction()->setHasBranchProtectedScope();
4538 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4539 InitializationKind Kind
4540 = InitializationKind::CreateDefault(Var->getLocation());
4542 InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4543 ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4544 MultiExprArg(*this, 0, 0));
4545 if (Init.isInvalid())
4546 Var->setInvalidDecl();
4547 else if (Init.get()) {
4548 Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4550 if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4551 Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4552 !Var->getDeclContext()->isDependentContext() &&
4553 !Var->getInit()->isConstantInitializer(Context, false))
4554 Diag(Var->getLocation(), diag::warn_global_constructor);
4558 if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4559 FinalizeVarWithDestructor(Var, Record);
4563 Sema::DeclGroupPtrTy
4564 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4565 Decl **Group, unsigned NumDecls) {
4566 llvm::SmallVector<Decl*, 8> Decls;
4568 if (DS.isTypeSpecOwned())
4569 Decls.push_back(DS.getRepAsDecl());
4571 for (unsigned i = 0; i != NumDecls; ++i)
4572 if (Decl *D = Group[i])
4573 Decls.push_back(D);
4575 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4576 Decls.data(), Decls.size()));
4580 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4581 /// to introduce parameters into function prototype scope.
4582 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4583 const DeclSpec &DS = D.getDeclSpec();
4585 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4586 VarDecl::StorageClass StorageClass = SC_None;
4587 VarDecl::StorageClass StorageClassAsWritten = SC_None;
4588 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4589 StorageClass = SC_Register;
4590 StorageClassAsWritten = SC_Register;
4591 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4592 Diag(DS.getStorageClassSpecLoc(),
4593 diag::err_invalid_storage_class_in_func_decl);
4594 D.getMutableDeclSpec().ClearStorageClassSpecs();
4597 if (D.getDeclSpec().isThreadSpecified())
4598 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4600 DiagnoseFunctionSpecifiers(D);
4602 // Check that there are no default arguments inside the type of this
4603 // parameter (C++ only).
4604 if (getLangOptions().CPlusPlus)
4605 CheckExtraCXXDefaultArguments(D);
4607 TagDecl *OwnedDecl = 0;
4608 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4609 QualType parmDeclType = TInfo->getType();
4611 if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4612 // C++ [dcl.fct]p6:
4613 // Types shall not be defined in return or parameter types.
4614 Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4615 << Context.getTypeDeclType(OwnedDecl);
4618 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4619 IdentifierInfo *II = D.getIdentifier();
4620 if (II) {
4621 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4622 ForRedeclaration);
4623 LookupName(R, S);
4624 if (R.isSingleResult()) {
4625 NamedDecl *PrevDecl = R.getFoundDecl();
4626 if (PrevDecl->isTemplateParameter()) {
4627 // Maybe we will complain about the shadowed template parameter.
4628 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4629 // Just pretend that we didn't see the previous declaration.
4630 PrevDecl = 0;
4631 } else if (S->isDeclScope(PrevDecl)) {
4632 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4633 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4635 // Recover by removing the name
4636 II = 0;
4637 D.SetIdentifier(0, D.getIdentifierLoc());
4638 D.setInvalidType(true);
4643 // Temporarily put parameter variables in the translation unit, not
4644 // the enclosing context. This prevents them from accidentally
4645 // looking like class members in C++.
4646 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4647 TInfo, parmDeclType, II,
4648 D.getIdentifierLoc(),
4649 StorageClass, StorageClassAsWritten);
4651 if (D.isInvalidType())
4652 New->setInvalidDecl();
4654 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4655 if (D.getCXXScopeSpec().isSet()) {
4656 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4657 << D.getCXXScopeSpec().getRange();
4658 New->setInvalidDecl();
4661 // Add the parameter declaration into this scope.
4662 S->AddDecl(New);
4663 if (II)
4664 IdResolver.AddDecl(New);
4666 ProcessDeclAttributes(S, New, D);
4668 if (New->hasAttr<BlocksAttr>()) {
4669 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4671 return New;
4674 /// \brief Synthesizes a variable for a parameter arising from a
4675 /// typedef.
4676 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4677 SourceLocation Loc,
4678 QualType T) {
4679 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4680 T, Context.getTrivialTypeSourceInfo(T, Loc),
4681 SC_None, SC_None, 0);
4682 Param->setImplicit();
4683 return Param;
4686 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4687 ParmVarDecl * const *ParamEnd) {
4688 if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4689 Diagnostic::Ignored)
4690 return;
4692 // Don't diagnose unused-parameter errors in template instantiations; we
4693 // will already have done so in the template itself.
4694 if (!ActiveTemplateInstantiations.empty())
4695 return;
4697 for (; Param != ParamEnd; ++Param) {
4698 if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4699 !(*Param)->hasAttr<UnusedAttr>()) {
4700 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4701 << (*Param)->getDeclName();
4706 ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4707 TypeSourceInfo *TSInfo, QualType T,
4708 IdentifierInfo *Name,
4709 SourceLocation NameLoc,
4710 VarDecl::StorageClass StorageClass,
4711 VarDecl::StorageClass StorageClassAsWritten) {
4712 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4713 adjustParameterType(T), TSInfo,
4714 StorageClass, StorageClassAsWritten,
4717 // Parameters can not be abstract class types.
4718 // For record types, this is done by the AbstractClassUsageDiagnoser once
4719 // the class has been completely parsed.
4720 if (!CurContext->isRecord() &&
4721 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4722 AbstractParamType))
4723 New->setInvalidDecl();
4725 // Parameter declarators cannot be interface types. All ObjC objects are
4726 // passed by reference.
4727 if (T->isObjCObjectType()) {
4728 Diag(NameLoc,
4729 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4730 New->setInvalidDecl();
4733 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4734 // duration shall not be qualified by an address-space qualifier."
4735 // Since all parameters have automatic store duration, they can not have
4736 // an address space.
4737 if (T.getAddressSpace() != 0) {
4738 Diag(NameLoc, diag::err_arg_with_address_space);
4739 New->setInvalidDecl();
4742 return New;
4745 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4746 SourceLocation LocAfterDecls) {
4747 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4748 "Not a function declarator!");
4749 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4751 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4752 // for a K&R function.
4753 if (!FTI.hasPrototype) {
4754 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4755 --i;
4756 if (FTI.ArgInfo[i].Param == 0) {
4757 llvm::SmallString<256> Code;
4758 llvm::raw_svector_ostream(Code) << " int "
4759 << FTI.ArgInfo[i].Ident->getName()
4760 << ";\n";
4761 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4762 << FTI.ArgInfo[i].Ident
4763 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4765 // Implicitly declare the argument as type 'int' for lack of a better
4766 // type.
4767 DeclSpec DS;
4768 const char* PrevSpec; // unused
4769 unsigned DiagID; // unused
4770 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4771 PrevSpec, DiagID);
4772 Declarator ParamD(DS, Declarator::KNRTypeListContext);
4773 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4774 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4780 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4781 Declarator &D) {
4782 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4783 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4784 "Not a function declarator!");
4785 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4787 if (FTI.hasPrototype) {
4788 // FIXME: Diagnose arguments without names in C.
4791 Scope *ParentScope = FnBodyScope->getParent();
4793 Decl *DP = HandleDeclarator(ParentScope, D,
4794 MultiTemplateParamsArg(*this),
4795 /*IsFunctionDefinition=*/true);
4796 return ActOnStartOfFunctionDef(FnBodyScope, DP);
4799 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4800 // Don't warn about invalid declarations.
4801 if (FD->isInvalidDecl())
4802 return false;
4804 // Or declarations that aren't global.
4805 if (!FD->isGlobal())
4806 return false;
4808 // Don't warn about C++ member functions.
4809 if (isa<CXXMethodDecl>(FD))
4810 return false;
4812 // Don't warn about 'main'.
4813 if (FD->isMain())
4814 return false;
4816 // Don't warn about inline functions.
4817 if (FD->isInlineSpecified())
4818 return false;
4820 // Don't warn about function templates.
4821 if (FD->getDescribedFunctionTemplate())
4822 return false;
4824 // Don't warn about function template specializations.
4825 if (FD->isFunctionTemplateSpecialization())
4826 return false;
4828 bool MissingPrototype = true;
4829 for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4830 Prev; Prev = Prev->getPreviousDeclaration()) {
4831 // Ignore any declarations that occur in function or method
4832 // scope, because they aren't visible from the header.
4833 if (Prev->getDeclContext()->isFunctionOrMethod())
4834 continue;
4836 MissingPrototype = !Prev->getType()->isFunctionProtoType();
4837 break;
4840 return MissingPrototype;
4843 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4844 // Clear the last template instantiation error context.
4845 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4847 if (!D)
4848 return D;
4849 FunctionDecl *FD = 0;
4851 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4852 FD = FunTmpl->getTemplatedDecl();
4853 else
4854 FD = cast<FunctionDecl>(D);
4856 // Enter a new function scope
4857 PushFunctionScope();
4859 // See if this is a redefinition.
4860 // But don't complain if we're in GNU89 mode and the previous definition
4861 // was an extern inline function.
4862 const FunctionDecl *Definition;
4863 if (FD->hasBody(Definition) &&
4864 !canRedefineFunction(Definition, getLangOptions())) {
4865 if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4866 Definition->getStorageClass() == SC_Extern)
4867 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4868 << FD->getDeclName() << getLangOptions().CPlusPlus;
4869 else
4870 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4871 Diag(Definition->getLocation(), diag::note_previous_definition);
4874 // Builtin functions cannot be defined.
4875 if (unsigned BuiltinID = FD->getBuiltinID()) {
4876 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4877 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4878 FD->setInvalidDecl();
4882 // The return type of a function definition must be complete
4883 // (C99 6.9.1p3, C++ [dcl.fct]p6).
4884 QualType ResultType = FD->getResultType();
4885 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4886 !FD->isInvalidDecl() &&
4887 RequireCompleteType(FD->getLocation(), ResultType,
4888 diag::err_func_def_incomplete_result))
4889 FD->setInvalidDecl();
4891 // GNU warning -Wmissing-prototypes:
4892 // Warn if a global function is defined without a previous
4893 // prototype declaration. This warning is issued even if the
4894 // definition itself provides a prototype. The aim is to detect
4895 // global functions that fail to be declared in header files.
4896 if (ShouldWarnAboutMissingPrototype(FD))
4897 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4899 if (FnBodyScope)
4900 PushDeclContext(FnBodyScope, FD);
4902 // Check the validity of our function parameters
4903 CheckParmsForFunctionDef(FD);
4905 bool ShouldCheckShadow =
4906 Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4908 // Introduce our parameters into the function scope
4909 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4910 ParmVarDecl *Param = FD->getParamDecl(p);
4911 Param->setOwningFunction(FD);
4913 // If this has an identifier, add it to the scope stack.
4914 if (Param->getIdentifier() && FnBodyScope) {
4915 if (ShouldCheckShadow)
4916 CheckShadow(FnBodyScope, Param);
4918 PushOnScopeChains(Param, FnBodyScope);
4922 // Checking attributes of current function definition
4923 // dllimport attribute.
4924 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4925 if (DA && (!FD->getAttr<DLLExportAttr>())) {
4926 // dllimport attribute cannot be directly applied to definition.
4927 if (!DA->isInherited()) {
4928 Diag(FD->getLocation(),
4929 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4930 << "dllimport";
4931 FD->setInvalidDecl();
4932 return FD;
4935 // Visual C++ appears to not think this is an issue, so only issue
4936 // a warning when Microsoft extensions are disabled.
4937 if (!LangOpts.Microsoft) {
4938 // If a symbol previously declared dllimport is later defined, the
4939 // attribute is ignored in subsequent references, and a warning is
4940 // emitted.
4941 Diag(FD->getLocation(),
4942 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4943 << FD->getName() << "dllimport";
4946 return FD;
4949 /// \brief Given the set of return statements within a function body,
4950 /// compute the variables that are subject to the named return value
4951 /// optimization.
4953 /// Each of the variables that is subject to the named return value
4954 /// optimization will be marked as NRVO variables in the AST, and any
4955 /// return statement that has a marked NRVO variable as its NRVO candidate can
4956 /// use the named return value optimization.
4958 /// This function applies a very simplistic algorithm for NRVO: if every return
4959 /// statement in the function has the same NRVO candidate, that candidate is
4960 /// the NRVO variable.
4962 /// FIXME: Employ a smarter algorithm that accounts for multiple return
4963 /// statements and the lifetimes of the NRVO candidates. We should be able to
4964 /// find a maximal set of NRVO variables.
4965 static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4966 ReturnStmt **Returns = Scope->Returns.data();
4968 const VarDecl *NRVOCandidate = 0;
4969 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4970 if (!Returns[I]->getNRVOCandidate())
4971 return;
4973 if (!NRVOCandidate)
4974 NRVOCandidate = Returns[I]->getNRVOCandidate();
4975 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4976 return;
4979 if (NRVOCandidate)
4980 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4983 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4984 return ActOnFinishFunctionBody(D, move(BodyArg), false);
4987 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4988 bool IsInstantiation) {
4989 FunctionDecl *FD = 0;
4990 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4991 if (FunTmpl)
4992 FD = FunTmpl->getTemplatedDecl();
4993 else
4994 FD = dyn_cast_or_null<FunctionDecl>(dcl);
4996 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4998 if (FD) {
4999 FD->setBody(Body);
5000 if (FD->isMain()) {
5001 // C and C++ allow for main to automagically return 0.
5002 // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5003 FD->setHasImplicitReturnZero(true);
5004 WP.disableCheckFallThrough();
5007 if (!FD->isInvalidDecl()) {
5008 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5010 // If this is a constructor, we need a vtable.
5011 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5012 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5014 ComputeNRVO(Body, getCurFunction());
5017 assert(FD == getCurFunctionDecl() && "Function parsing confused");
5018 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5019 assert(MD == getCurMethodDecl() && "Method parsing confused");
5020 MD->setBody(Body);
5021 MD->setEndLoc(Body->getLocEnd());
5022 if (!MD->isInvalidDecl())
5023 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5024 } else {
5025 return 0;
5028 // Verify and clean out per-function state.
5030 // Check goto/label use.
5031 FunctionScopeInfo *CurFn = getCurFunction();
5032 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5033 I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5034 LabelStmt *L = I->second;
5036 // Verify that we have no forward references left. If so, there was a goto
5037 // or address of a label taken, but no definition of it. Label fwd
5038 // definitions are indicated with a null substmt.
5039 if (L->getSubStmt() != 0) {
5040 if (!L->isUsed())
5041 Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5042 continue;
5045 // Emit error.
5046 Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5048 // At this point, we have gotos that use the bogus label. Stitch it into
5049 // the function body so that they aren't leaked and that the AST is well
5050 // formed.
5051 if (Body == 0) {
5052 // The whole function wasn't parsed correctly.
5053 continue;
5056 // Otherwise, the body is valid: we want to stitch the label decl into the
5057 // function somewhere so that it is properly owned and so that the goto
5058 // has a valid target. Do this by creating a new compound stmt with the
5059 // label in it.
5061 // Give the label a sub-statement.
5062 L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5064 CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5065 cast<CXXTryStmt>(Body)->getTryBlock() :
5066 cast<CompoundStmt>(Body);
5067 llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5068 Compound->body_end());
5069 Elements.push_back(L);
5070 Compound->setStmts(Context, Elements.data(), Elements.size());
5073 if (Body) {
5074 // C++ constructors that have function-try-blocks can't have return
5075 // statements in the handlers of that block. (C++ [except.handle]p14)
5076 // Verify this.
5077 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5078 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5080 // Verify that that gotos and switch cases don't jump into scopes illegally.
5081 // Verify that that gotos and switch cases don't jump into scopes illegally.
5082 if (getCurFunction()->NeedsScopeChecking() &&
5083 !dcl->isInvalidDecl() &&
5084 !hasAnyErrorsInThisFunction())
5085 DiagnoseInvalidJumps(Body);
5087 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5088 if (!Destructor->getParent()->isDependentType())
5089 CheckDestructor(Destructor);
5091 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5092 Destructor->getParent());
5095 // If any errors have occurred, clear out any temporaries that may have
5096 // been leftover. This ensures that these temporaries won't be picked up for
5097 // deletion in some later function.
5098 if (PP.getDiagnostics().hasErrorOccurred())
5099 ExprTemporaries.clear();
5100 else if (!isa<FunctionTemplateDecl>(dcl)) {
5101 // Since the body is valid, issue any analysis-based warnings that are
5102 // enabled.
5103 QualType ResultType;
5104 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5105 AnalysisWarnings.IssueWarnings(WP, FD);
5106 } else {
5107 ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5108 AnalysisWarnings.IssueWarnings(WP, MD);
5112 assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5115 if (!IsInstantiation)
5116 PopDeclContext();
5118 PopFunctionOrBlockScope();
5120 // If any errors have occurred, clear out any temporaries that may have
5121 // been leftover. This ensures that these temporaries won't be picked up for
5122 // deletion in some later function.
5123 if (getDiagnostics().hasErrorOccurred())
5124 ExprTemporaries.clear();
5126 return dcl;
5129 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5130 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5131 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5132 IdentifierInfo &II, Scope *S) {
5133 // Before we produce a declaration for an implicitly defined
5134 // function, see whether there was a locally-scoped declaration of
5135 // this name as a function or variable. If so, use that
5136 // (non-visible) declaration, and complain about it.
5137 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5138 = LocallyScopedExternalDecls.find(&II);
5139 if (Pos != LocallyScopedExternalDecls.end()) {
5140 Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5141 Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5142 return Pos->second;
5145 // Extension in C99. Legal in C90, but warn about it.
5146 if (II.getName().startswith("__builtin_"))
5147 Diag(Loc, diag::warn_builtin_unknown) << &II;
5148 else if (getLangOptions().C99)
5149 Diag(Loc, diag::ext_implicit_function_decl) << &II;
5150 else
5151 Diag(Loc, diag::warn_implicit_function_decl) << &II;
5153 // Set a Declarator for the implicit definition: int foo();
5154 const char *Dummy;
5155 DeclSpec DS;
5156 unsigned DiagID;
5157 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5158 Error = Error; // Silence warning.
5159 assert(!Error && "Error setting up implicit decl!");
5160 Declarator D(DS, Declarator::BlockContext);
5161 D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5162 0, 0, false, SourceLocation(),
5163 false, 0,0,0, Loc, Loc, D),
5164 SourceLocation());
5165 D.SetIdentifier(&II, Loc);
5167 // Insert this function into translation-unit scope.
5169 DeclContext *PrevDC = CurContext;
5170 CurContext = Context.getTranslationUnitDecl();
5172 FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5173 FD->setImplicit();
5175 CurContext = PrevDC;
5177 AddKnownFunctionAttributes(FD);
5179 return FD;
5182 /// \brief Adds any function attributes that we know a priori based on
5183 /// the declaration of this function.
5185 /// These attributes can apply both to implicitly-declared builtins
5186 /// (like __builtin___printf_chk) or to library-declared functions
5187 /// like NSLog or printf.
5188 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5189 if (FD->isInvalidDecl())
5190 return;
5192 // If this is a built-in function, map its builtin attributes to
5193 // actual attributes.
5194 if (unsigned BuiltinID = FD->getBuiltinID()) {
5195 // Handle printf-formatting attributes.
5196 unsigned FormatIdx;
5197 bool HasVAListArg;
5198 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5199 if (!FD->getAttr<FormatAttr>())
5200 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5201 "printf", FormatIdx+1,
5202 HasVAListArg ? 0 : FormatIdx+2));
5204 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5205 HasVAListArg)) {
5206 if (!FD->getAttr<FormatAttr>())
5207 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5208 "scanf", FormatIdx+1,
5209 HasVAListArg ? 0 : FormatIdx+2));
5212 // Mark const if we don't care about errno and that is the only
5213 // thing preventing the function from being const. This allows
5214 // IRgen to use LLVM intrinsics for such functions.
5215 if (!getLangOptions().MathErrno &&
5216 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5217 if (!FD->getAttr<ConstAttr>())
5218 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5221 if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5222 FD->setType(Context.getNoReturnType(FD->getType()));
5223 if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5224 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5225 if (Context.BuiltinInfo.isConst(BuiltinID))
5226 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5229 IdentifierInfo *Name = FD->getIdentifier();
5230 if (!Name)
5231 return;
5232 if ((!getLangOptions().CPlusPlus &&
5233 FD->getDeclContext()->isTranslationUnit()) ||
5234 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5235 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5236 LinkageSpecDecl::lang_c)) {
5237 // Okay: this could be a libc/libm/Objective-C function we know
5238 // about.
5239 } else
5240 return;
5242 if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5243 // FIXME: NSLog and NSLogv should be target specific
5244 if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5245 // FIXME: We known better than our headers.
5246 const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5247 } else
5248 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5249 "printf", 1,
5250 Name->isStr("NSLogv") ? 0 : 2));
5251 } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5252 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5253 // target-specific builtins, perhaps?
5254 if (!FD->getAttr<FormatAttr>())
5255 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5256 "printf", 2,
5257 Name->isStr("vasprintf") ? 0 : 3));
5261 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5262 TypeSourceInfo *TInfo) {
5263 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5264 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5266 if (!TInfo) {
5267 assert(D.isInvalidType() && "no declarator info for valid type");
5268 TInfo = Context.getTrivialTypeSourceInfo(T);
5271 // Scope manipulation handled by caller.
5272 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5273 D.getIdentifierLoc(),
5274 D.getIdentifier(),
5275 TInfo);
5277 if (const TagType *TT = T->getAs<TagType>()) {
5278 TagDecl *TD = TT->getDecl();
5280 // If the TagDecl that the TypedefDecl points to is an anonymous decl
5281 // keep track of the TypedefDecl.
5282 if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5283 TD->setTypedefForAnonDecl(NewTD);
5286 if (D.isInvalidType())
5287 NewTD->setInvalidDecl();
5288 return NewTD;
5292 /// \brief Determine whether a tag with a given kind is acceptable
5293 /// as a redeclaration of the given tag declaration.
5295 /// \returns true if the new tag kind is acceptable, false otherwise.
5296 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5297 TagTypeKind NewTag,
5298 SourceLocation NewTagLoc,
5299 const IdentifierInfo &Name) {
5300 // C++ [dcl.type.elab]p3:
5301 // The class-key or enum keyword present in the
5302 // elaborated-type-specifier shall agree in kind with the
5303 // declaration to which the name in the elaborated-type-specifier
5304 // refers. This rule also applies to the form of
5305 // elaborated-type-specifier that declares a class-name or
5306 // friend class since it can be construed as referring to the
5307 // definition of the class. Thus, in any
5308 // elaborated-type-specifier, the enum keyword shall be used to
5309 // refer to an enumeration (7.2), the union class-key shall be
5310 // used to refer to a union (clause 9), and either the class or
5311 // struct class-key shall be used to refer to a class (clause 9)
5312 // declared using the class or struct class-key.
5313 TagTypeKind OldTag = Previous->getTagKind();
5314 if (OldTag == NewTag)
5315 return true;
5317 if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5318 (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5319 // Warn about the struct/class tag mismatch.
5320 bool isTemplate = false;
5321 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5322 isTemplate = Record->getDescribedClassTemplate();
5324 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5325 << (NewTag == TTK_Class)
5326 << isTemplate << &Name
5327 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5328 OldTag == TTK_Class? "class" : "struct");
5329 Diag(Previous->getLocation(), diag::note_previous_use);
5330 return true;
5332 return false;
5335 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
5336 /// former case, Name will be non-null. In the later case, Name will be null.
5337 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5338 /// reference/declaration/definition of a tag.
5339 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5340 SourceLocation KWLoc, CXXScopeSpec &SS,
5341 IdentifierInfo *Name, SourceLocation NameLoc,
5342 AttributeList *Attr, AccessSpecifier AS,
5343 MultiTemplateParamsArg TemplateParameterLists,
5344 bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5345 TypeResult UnderlyingType) {
5346 // If this is not a definition, it must have a name.
5347 assert((Name != 0 || TUK == TUK_Definition) &&
5348 "Nameless record must be a definition!");
5350 OwnedDecl = false;
5351 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5353 // FIXME: Check explicit specializations more carefully.
5354 bool isExplicitSpecialization = false;
5355 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5356 bool Invalid = false;
5357 if (TUK != TUK_Reference) {
5358 if (TemplateParameterList *TemplateParams
5359 = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5360 (TemplateParameterList**)TemplateParameterLists.get(),
5361 TemplateParameterLists.size(),
5362 TUK == TUK_Friend,
5363 isExplicitSpecialization,
5364 Invalid)) {
5365 // All but one template parameter lists have been matching.
5366 --NumMatchedTemplateParamLists;
5368 if (TemplateParams->size() > 0) {
5369 // This is a declaration or definition of a class template (which may
5370 // be a member of another template).
5371 if (Invalid)
5372 return 0;
5374 OwnedDecl = false;
5375 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5376 SS, Name, NameLoc, Attr,
5377 TemplateParams,
5378 AS);
5379 TemplateParameterLists.release();
5380 return Result.get();
5381 } else {
5382 // The "template<>" header is extraneous.
5383 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5384 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5385 isExplicitSpecialization = true;
5390 // Figure out the underlying type if this a enum declaration. We need to do
5391 // this early, because it's needed to detect if this is an incompatible
5392 // redeclaration.
5393 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5395 if (Kind == TTK_Enum) {
5396 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5397 // No underlying type explicitly specified, or we failed to parse the
5398 // type, default to int.
5399 EnumUnderlying = Context.IntTy.getTypePtr();
5400 else if (UnderlyingType.get()) {
5401 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5402 // integral type; any cv-qualification is ignored.
5403 TypeSourceInfo *TI = 0;
5404 QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5405 EnumUnderlying = TI;
5407 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5409 if (!T->isDependentType() && !T->isIntegralType(Context)) {
5410 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5411 << T;
5412 // Recover by falling back to int.
5413 EnumUnderlying = Context.IntTy.getTypePtr();
5418 DeclContext *SearchDC = CurContext;
5419 DeclContext *DC = CurContext;
5420 bool isStdBadAlloc = false;
5422 RedeclarationKind Redecl = ForRedeclaration;
5423 if (TUK == TUK_Friend || TUK == TUK_Reference)
5424 Redecl = NotForRedeclaration;
5426 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5428 if (Name && SS.isNotEmpty()) {
5429 // We have a nested-name tag ('struct foo::bar').
5431 // Check for invalid 'foo::'.
5432 if (SS.isInvalid()) {
5433 Name = 0;
5434 goto CreateNewDecl;
5437 // If this is a friend or a reference to a class in a dependent
5438 // context, don't try to make a decl for it.
5439 if (TUK == TUK_Friend || TUK == TUK_Reference) {
5440 DC = computeDeclContext(SS, false);
5441 if (!DC) {
5442 IsDependent = true;
5443 return 0;
5445 } else {
5446 DC = computeDeclContext(SS, true);
5447 if (!DC) {
5448 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5449 << SS.getRange();
5450 return 0;
5454 if (RequireCompleteDeclContext(SS, DC))
5455 return 0;
5457 SearchDC = DC;
5458 // Look-up name inside 'foo::'.
5459 LookupQualifiedName(Previous, DC);
5461 if (Previous.isAmbiguous())
5462 return 0;
5464 if (Previous.empty()) {
5465 // Name lookup did not find anything. However, if the
5466 // nested-name-specifier refers to the current instantiation,
5467 // and that current instantiation has any dependent base
5468 // classes, we might find something at instantiation time: treat
5469 // this as a dependent elaborated-type-specifier.
5470 if (Previous.wasNotFoundInCurrentInstantiation()) {
5471 IsDependent = true;
5472 return 0;
5475 // A tag 'foo::bar' must already exist.
5476 Diag(NameLoc, diag::err_not_tag_in_scope)
5477 << Kind << Name << DC << SS.getRange();
5478 Name = 0;
5479 Invalid = true;
5480 goto CreateNewDecl;
5482 } else if (Name) {
5483 // If this is a named struct, check to see if there was a previous forward
5484 // declaration or definition.
5485 // FIXME: We're looking into outer scopes here, even when we
5486 // shouldn't be. Doing so can result in ambiguities that we
5487 // shouldn't be diagnosing.
5488 LookupName(Previous, S);
5490 // Note: there used to be some attempt at recovery here.
5491 if (Previous.isAmbiguous())
5492 return 0;
5494 if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5495 // FIXME: This makes sure that we ignore the contexts associated
5496 // with C structs, unions, and enums when looking for a matching
5497 // tag declaration or definition. See the similar lookup tweak
5498 // in Sema::LookupName; is there a better way to deal with this?
5499 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5500 SearchDC = SearchDC->getParent();
5502 } else if (S->isFunctionPrototypeScope()) {
5503 // If this is an enum declaration in function prototype scope, set its
5504 // initial context to the translation unit.
5505 SearchDC = Context.getTranslationUnitDecl();
5508 if (Previous.isSingleResult() &&
5509 Previous.getFoundDecl()->isTemplateParameter()) {
5510 // Maybe we will complain about the shadowed template parameter.
5511 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5512 // Just pretend that we didn't see the previous declaration.
5513 Previous.clear();
5516 if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5517 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5518 // This is a declaration of or a reference to "std::bad_alloc".
5519 isStdBadAlloc = true;
5521 if (Previous.empty() && StdBadAlloc) {
5522 // std::bad_alloc has been implicitly declared (but made invisible to
5523 // name lookup). Fill in this implicit declaration as the previous
5524 // declaration, so that the declarations get chained appropriately.
5525 Previous.addDecl(getStdBadAlloc());
5529 // If we didn't find a previous declaration, and this is a reference
5530 // (or friend reference), move to the correct scope. In C++, we
5531 // also need to do a redeclaration lookup there, just in case
5532 // there's a shadow friend decl.
5533 if (Name && Previous.empty() &&
5534 (TUK == TUK_Reference || TUK == TUK_Friend)) {
5535 if (Invalid) goto CreateNewDecl;
5536 assert(SS.isEmpty());
5538 if (TUK == TUK_Reference) {
5539 // C++ [basic.scope.pdecl]p5:
5540 // -- for an elaborated-type-specifier of the form
5542 // class-key identifier
5544 // if the elaborated-type-specifier is used in the
5545 // decl-specifier-seq or parameter-declaration-clause of a
5546 // function defined in namespace scope, the identifier is
5547 // declared as a class-name in the namespace that contains
5548 // the declaration; otherwise, except as a friend
5549 // declaration, the identifier is declared in the smallest
5550 // non-class, non-function-prototype scope that contains the
5551 // declaration.
5553 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5554 // C structs and unions.
5556 // It is an error in C++ to declare (rather than define) an enum
5557 // type, including via an elaborated type specifier. We'll
5558 // diagnose that later; for now, declare the enum in the same
5559 // scope as we would have picked for any other tag type.
5561 // GNU C also supports this behavior as part of its incomplete
5562 // enum types extension, while GNU C++ does not.
5564 // Find the context where we'll be declaring the tag.
5565 // FIXME: We would like to maintain the current DeclContext as the
5566 // lexical context,
5567 while (SearchDC->isRecord())
5568 SearchDC = SearchDC->getParent();
5570 // Find the scope where we'll be declaring the tag.
5571 while (S->isClassScope() ||
5572 (getLangOptions().CPlusPlus &&
5573 S->isFunctionPrototypeScope()) ||
5574 ((S->getFlags() & Scope::DeclScope) == 0) ||
5575 (S->getEntity() &&
5576 ((DeclContext *)S->getEntity())->isTransparentContext()))
5577 S = S->getParent();
5578 } else {
5579 assert(TUK == TUK_Friend);
5580 // C++ [namespace.memdef]p3:
5581 // If a friend declaration in a non-local class first declares a
5582 // class or function, the friend class or function is a member of
5583 // the innermost enclosing namespace.
5584 SearchDC = SearchDC->getEnclosingNamespaceContext();
5587 // In C++, we need to do a redeclaration lookup to properly
5588 // diagnose some problems.
5589 if (getLangOptions().CPlusPlus) {
5590 Previous.setRedeclarationKind(ForRedeclaration);
5591 LookupQualifiedName(Previous, SearchDC);
5595 if (!Previous.empty()) {
5596 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5598 // It's okay to have a tag decl in the same scope as a typedef
5599 // which hides a tag decl in the same scope. Finding this
5600 // insanity with a redeclaration lookup can only actually happen
5601 // in C++.
5603 // This is also okay for elaborated-type-specifiers, which is
5604 // technically forbidden by the current standard but which is
5605 // okay according to the likely resolution of an open issue;
5606 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5607 if (getLangOptions().CPlusPlus) {
5608 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5609 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5610 TagDecl *Tag = TT->getDecl();
5611 if (Tag->getDeclName() == Name &&
5612 Tag->getDeclContext()->getRedeclContext()
5613 ->Equals(TD->getDeclContext()->getRedeclContext())) {
5614 PrevDecl = Tag;
5615 Previous.clear();
5616 Previous.addDecl(Tag);
5617 Previous.resolveKind();
5623 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5624 // If this is a use of a previous tag, or if the tag is already declared
5625 // in the same scope (so that the definition/declaration completes or
5626 // rementions the tag), reuse the decl.
5627 if (TUK == TUK_Reference || TUK == TUK_Friend ||
5628 isDeclInScope(PrevDecl, SearchDC, S)) {
5629 // Make sure that this wasn't declared as an enum and now used as a
5630 // struct or something similar.
5631 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5632 bool SafeToContinue
5633 = (PrevTagDecl->getTagKind() != TTK_Enum &&
5634 Kind != TTK_Enum);
5635 if (SafeToContinue)
5636 Diag(KWLoc, diag::err_use_with_wrong_tag)
5637 << Name
5638 << FixItHint::CreateReplacement(SourceRange(KWLoc),
5639 PrevTagDecl->getKindName());
5640 else
5641 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5642 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5644 if (SafeToContinue)
5645 Kind = PrevTagDecl->getTagKind();
5646 else {
5647 // Recover by making this an anonymous redefinition.
5648 Name = 0;
5649 Previous.clear();
5650 Invalid = true;
5654 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5655 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5657 // All conflicts with previous declarations are recovered by
5658 // returning the previous declaration.
5659 if (ScopedEnum != PrevEnum->isScoped()) {
5660 Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5661 << PrevEnum->isScoped();
5662 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5663 return PrevTagDecl;
5665 else if (EnumUnderlying && PrevEnum->isFixed()) {
5666 QualType T;
5667 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5668 T = TI->getType();
5669 else
5670 T = QualType(EnumUnderlying.get<const Type*>(), 0);
5672 if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5673 Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5674 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5675 return PrevTagDecl;
5678 else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5679 Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5680 << PrevEnum->isFixed();
5681 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5682 return PrevTagDecl;
5686 if (!Invalid) {
5687 // If this is a use, just return the declaration we found.
5689 // FIXME: In the future, return a variant or some other clue
5690 // for the consumer of this Decl to know it doesn't own it.
5691 // For our current ASTs this shouldn't be a problem, but will
5692 // need to be changed with DeclGroups.
5693 if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5694 TUK == TUK_Friend)
5695 return PrevTagDecl;
5697 // Diagnose attempts to redefine a tag.
5698 if (TUK == TUK_Definition) {
5699 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5700 // If we're defining a specialization and the previous definition
5701 // is from an implicit instantiation, don't emit an error
5702 // here; we'll catch this in the general case below.
5703 if (!isExplicitSpecialization ||
5704 !isa<CXXRecordDecl>(Def) ||
5705 cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5706 == TSK_ExplicitSpecialization) {
5707 Diag(NameLoc, diag::err_redefinition) << Name;
5708 Diag(Def->getLocation(), diag::note_previous_definition);
5709 // If this is a redefinition, recover by making this
5710 // struct be anonymous, which will make any later
5711 // references get the previous definition.
5712 Name = 0;
5713 Previous.clear();
5714 Invalid = true;
5716 } else {
5717 // If the type is currently being defined, complain
5718 // about a nested redefinition.
5719 TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5720 if (Tag->isBeingDefined()) {
5721 Diag(NameLoc, diag::err_nested_redefinition) << Name;
5722 Diag(PrevTagDecl->getLocation(),
5723 diag::note_previous_definition);
5724 Name = 0;
5725 Previous.clear();
5726 Invalid = true;
5730 // Okay, this is definition of a previously declared or referenced
5731 // tag PrevDecl. We're going to create a new Decl for it.
5734 // If we get here we have (another) forward declaration or we
5735 // have a definition. Just create a new decl.
5737 } else {
5738 // If we get here, this is a definition of a new tag type in a nested
5739 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5740 // new decl/type. We set PrevDecl to NULL so that the entities
5741 // have distinct types.
5742 Previous.clear();
5744 // If we get here, we're going to create a new Decl. If PrevDecl
5745 // is non-NULL, it's a definition of the tag declared by
5746 // PrevDecl. If it's NULL, we have a new definition.
5749 // Otherwise, PrevDecl is not a tag, but was found with tag
5750 // lookup. This is only actually possible in C++, where a few
5751 // things like templates still live in the tag namespace.
5752 } else {
5753 assert(getLangOptions().CPlusPlus);
5755 // Use a better diagnostic if an elaborated-type-specifier
5756 // found the wrong kind of type on the first
5757 // (non-redeclaration) lookup.
5758 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5759 !Previous.isForRedeclaration()) {
5760 unsigned Kind = 0;
5761 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5762 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5763 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5764 Diag(PrevDecl->getLocation(), diag::note_declared_at);
5765 Invalid = true;
5767 // Otherwise, only diagnose if the declaration is in scope.
5768 } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5769 // do nothing
5771 // Diagnose implicit declarations introduced by elaborated types.
5772 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5773 unsigned Kind = 0;
5774 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5775 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5776 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5777 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5778 Invalid = true;
5780 // Otherwise it's a declaration. Call out a particularly common
5781 // case here.
5782 } else if (isa<TypedefDecl>(PrevDecl)) {
5783 Diag(NameLoc, diag::err_tag_definition_of_typedef)
5784 << Name
5785 << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5786 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5787 Invalid = true;
5789 // Otherwise, diagnose.
5790 } else {
5791 // The tag name clashes with something else in the target scope,
5792 // issue an error and recover by making this tag be anonymous.
5793 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5794 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5795 Name = 0;
5796 Invalid = true;
5799 // The existing declaration isn't relevant to us; we're in a
5800 // new scope, so clear out the previous declaration.
5801 Previous.clear();
5805 CreateNewDecl:
5807 TagDecl *PrevDecl = 0;
5808 if (Previous.isSingleResult())
5809 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5811 // If there is an identifier, use the location of the identifier as the
5812 // location of the decl, otherwise use the location of the struct/union
5813 // keyword.
5814 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5816 // Otherwise, create a new declaration. If there is a previous
5817 // declaration of the same entity, the two will be linked via
5818 // PrevDecl.
5819 TagDecl *New;
5821 bool IsForwardReference = false;
5822 if (Kind == TTK_Enum) {
5823 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5824 // enum X { A, B, C } D; D should chain to X.
5825 New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5826 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
5827 !EnumUnderlying.isNull());
5828 // If this is an undefined enum, warn.
5829 if (TUK != TUK_Definition && !Invalid) {
5830 TagDecl *Def;
5831 if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
5832 // C++0x: 7.2p2: opaque-enum-declaration.
5833 // Conflicts are diagnosed above. Do nothing.
5835 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5836 Diag(Loc, diag::ext_forward_ref_enum_def)
5837 << New;
5838 Diag(Def->getLocation(), diag::note_previous_definition);
5839 } else {
5840 unsigned DiagID = diag::ext_forward_ref_enum;
5841 if (getLangOptions().Microsoft)
5842 DiagID = diag::ext_ms_forward_ref_enum;
5843 else if (getLangOptions().CPlusPlus)
5844 DiagID = diag::err_forward_ref_enum;
5845 Diag(Loc, DiagID);
5847 // If this is a forward-declared reference to an enumeration, make a
5848 // note of it; we won't actually be introducing the declaration into
5849 // the declaration context.
5850 if (TUK == TUK_Reference)
5851 IsForwardReference = true;
5855 if (EnumUnderlying) {
5856 EnumDecl *ED = cast<EnumDecl>(New);
5857 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5858 ED->setIntegerTypeSourceInfo(TI);
5859 else
5860 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
5861 ED->setPromotionType(ED->getIntegerType());
5864 } else {
5865 // struct/union/class
5867 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5868 // struct X { int A; } D; D should chain to X.
5869 if (getLangOptions().CPlusPlus) {
5870 // FIXME: Look for a way to use RecordDecl for simple structs.
5871 New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5872 cast_or_null<CXXRecordDecl>(PrevDecl));
5874 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5875 StdBadAlloc = cast<CXXRecordDecl>(New);
5876 } else
5877 New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5878 cast_or_null<RecordDecl>(PrevDecl));
5881 // Maybe add qualifier info.
5882 if (SS.isNotEmpty()) {
5883 if (SS.isSet()) {
5884 NestedNameSpecifier *NNS
5885 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5886 New->setQualifierInfo(NNS, SS.getRange());
5887 if (NumMatchedTemplateParamLists > 0) {
5888 New->setTemplateParameterListsInfo(Context,
5889 NumMatchedTemplateParamLists,
5890 (TemplateParameterList**) TemplateParameterLists.release());
5893 else
5894 Invalid = true;
5897 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5898 // Add alignment attributes if necessary; these attributes are checked when
5899 // the ASTContext lays out the structure.
5901 // It is important for implementing the correct semantics that this
5902 // happen here (in act on tag decl). The #pragma pack stack is
5903 // maintained as a result of parser callbacks which can occur at
5904 // many points during the parsing of a struct declaration (because
5905 // the #pragma tokens are effectively skipped over during the
5906 // parsing of the struct).
5907 AddAlignmentAttributesForRecord(RD);
5910 // If this is a specialization of a member class (of a class template),
5911 // check the specialization.
5912 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5913 Invalid = true;
5915 if (Invalid)
5916 New->setInvalidDecl();
5918 if (Attr)
5919 ProcessDeclAttributeList(S, New, Attr);
5921 // If we're declaring or defining a tag in function prototype scope
5922 // in C, note that this type can only be used within the function.
5923 if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5924 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5926 // Set the lexical context. If the tag has a C++ scope specifier, the
5927 // lexical context will be different from the semantic context.
5928 New->setLexicalDeclContext(CurContext);
5930 // Mark this as a friend decl if applicable.
5931 if (TUK == TUK_Friend)
5932 New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5934 // Set the access specifier.
5935 if (!Invalid && SearchDC->isRecord())
5936 SetMemberAccessSpecifier(New, PrevDecl, AS);
5938 if (TUK == TUK_Definition)
5939 New->startDefinition();
5941 // If this has an identifier, add it to the scope stack.
5942 if (TUK == TUK_Friend) {
5943 // We might be replacing an existing declaration in the lookup tables;
5944 // if so, borrow its access specifier.
5945 if (PrevDecl)
5946 New->setAccess(PrevDecl->getAccess());
5948 DeclContext *DC = New->getDeclContext()->getRedeclContext();
5949 DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5950 if (Name) // can be null along some error paths
5951 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5952 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5953 } else if (Name) {
5954 S = getNonFieldDeclScope(S);
5955 PushOnScopeChains(New, S, !IsForwardReference);
5956 if (IsForwardReference)
5957 SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5959 } else {
5960 CurContext->addDecl(New);
5963 // If this is the C FILE type, notify the AST context.
5964 if (IdentifierInfo *II = New->getIdentifier())
5965 if (!New->isInvalidDecl() &&
5966 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5967 II->isStr("FILE"))
5968 Context.setFILEDecl(New);
5970 OwnedDecl = true;
5971 return New;
5974 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5975 AdjustDeclIfTemplate(TagD);
5976 TagDecl *Tag = cast<TagDecl>(TagD);
5978 // Enter the tag context.
5979 PushDeclContext(S, Tag);
5982 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5983 SourceLocation LBraceLoc) {
5984 AdjustDeclIfTemplate(TagD);
5985 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5987 FieldCollector->StartClass();
5989 if (!Record->getIdentifier())
5990 return;
5992 // C++ [class]p2:
5993 // [...] The class-name is also inserted into the scope of the
5994 // class itself; this is known as the injected-class-name. For
5995 // purposes of access checking, the injected-class-name is treated
5996 // as if it were a public member name.
5997 CXXRecordDecl *InjectedClassName
5998 = CXXRecordDecl::Create(Context, Record->getTagKind(),
5999 CurContext, Record->getLocation(),
6000 Record->getIdentifier(),
6001 Record->getTagKeywordLoc(),
6002 Record);
6003 InjectedClassName->setImplicit();
6004 InjectedClassName->setAccess(AS_public);
6005 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6006 InjectedClassName->setDescribedClassTemplate(Template);
6007 PushOnScopeChains(InjectedClassName, S);
6008 assert(InjectedClassName->isInjectedClassName() &&
6009 "Broken injected-class-name");
6012 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6013 SourceLocation RBraceLoc) {
6014 AdjustDeclIfTemplate(TagD);
6015 TagDecl *Tag = cast<TagDecl>(TagD);
6016 Tag->setRBraceLoc(RBraceLoc);
6018 if (isa<CXXRecordDecl>(Tag))
6019 FieldCollector->FinishClass();
6021 // Exit this scope of this tag's definition.
6022 PopDeclContext();
6024 // Notify the consumer that we've defined a tag.
6025 Consumer.HandleTagDeclDefinition(Tag);
6028 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6029 AdjustDeclIfTemplate(TagD);
6030 TagDecl *Tag = cast<TagDecl>(TagD);
6031 Tag->setInvalidDecl();
6033 // We're undoing ActOnTagStartDefinition here, not
6034 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6035 // the FieldCollector.
6037 PopDeclContext();
6040 // Note that FieldName may be null for anonymous bitfields.
6041 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6042 QualType FieldTy, const Expr *BitWidth,
6043 bool *ZeroWidth) {
6044 // Default to true; that shouldn't confuse checks for emptiness
6045 if (ZeroWidth)
6046 *ZeroWidth = true;
6048 // C99 6.7.2.1p4 - verify the field type.
6049 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6050 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6051 // Handle incomplete types with specific error.
6052 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6053 return true;
6054 if (FieldName)
6055 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6056 << FieldName << FieldTy << BitWidth->getSourceRange();
6057 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6058 << FieldTy << BitWidth->getSourceRange();
6061 // If the bit-width is type- or value-dependent, don't try to check
6062 // it now.
6063 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6064 return false;
6066 llvm::APSInt Value;
6067 if (VerifyIntegerConstantExpression(BitWidth, &Value))
6068 return true;
6070 if (Value != 0 && ZeroWidth)
6071 *ZeroWidth = false;
6073 // Zero-width bitfield is ok for anonymous field.
6074 if (Value == 0 && FieldName)
6075 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6077 if (Value.isSigned() && Value.isNegative()) {
6078 if (FieldName)
6079 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6080 << FieldName << Value.toString(10);
6081 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6082 << Value.toString(10);
6085 if (!FieldTy->isDependentType()) {
6086 uint64_t TypeSize = Context.getTypeSize(FieldTy);
6087 if (Value.getZExtValue() > TypeSize) {
6088 if (!getLangOptions().CPlusPlus) {
6089 if (FieldName)
6090 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6091 << FieldName << (unsigned)Value.getZExtValue()
6092 << (unsigned)TypeSize;
6094 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6095 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6098 if (FieldName)
6099 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6100 << FieldName << (unsigned)Value.getZExtValue()
6101 << (unsigned)TypeSize;
6102 else
6103 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6104 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6108 return false;
6111 /// ActOnField - Each field of a struct/union/class is passed into this in order
6112 /// to create a FieldDecl object for it.
6113 Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6114 SourceLocation DeclStart,
6115 Declarator &D, ExprTy *BitfieldWidth) {
6116 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6117 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6118 AS_public);
6119 return Res;
6122 /// HandleField - Analyze a field of a C struct or a C++ data member.
6124 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6125 SourceLocation DeclStart,
6126 Declarator &D, Expr *BitWidth,
6127 AccessSpecifier AS) {
6128 IdentifierInfo *II = D.getIdentifier();
6129 SourceLocation Loc = DeclStart;
6130 if (II) Loc = D.getIdentifierLoc();
6132 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6133 QualType T = TInfo->getType();
6134 if (getLangOptions().CPlusPlus)
6135 CheckExtraCXXDefaultArguments(D);
6137 DiagnoseFunctionSpecifiers(D);
6139 if (D.getDeclSpec().isThreadSpecified())
6140 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6142 // Check to see if this name was declared as a member previously
6143 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6144 LookupName(Previous, S);
6145 assert((Previous.empty() || Previous.isOverloadedResult() ||
6146 Previous.isSingleResult())
6147 && "Lookup of member name should be either overloaded, single or null");
6149 // If the name is overloaded then get any declaration else get the single result
6150 NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6151 Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6153 if (PrevDecl && PrevDecl->isTemplateParameter()) {
6154 // Maybe we will complain about the shadowed template parameter.
6155 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6156 // Just pretend that we didn't see the previous declaration.
6157 PrevDecl = 0;
6160 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6161 PrevDecl = 0;
6163 bool Mutable
6164 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6165 SourceLocation TSSL = D.getSourceRange().getBegin();
6166 FieldDecl *NewFD
6167 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6168 AS, PrevDecl, &D);
6170 if (NewFD->isInvalidDecl())
6171 Record->setInvalidDecl();
6173 if (NewFD->isInvalidDecl() && PrevDecl) {
6174 // Don't introduce NewFD into scope; there's already something
6175 // with the same name in the same scope.
6176 } else if (II) {
6177 PushOnScopeChains(NewFD, S);
6178 } else
6179 Record->addDecl(NewFD);
6181 return NewFD;
6184 /// \brief Build a new FieldDecl and check its well-formedness.
6186 /// This routine builds a new FieldDecl given the fields name, type,
6187 /// record, etc. \p PrevDecl should refer to any previous declaration
6188 /// with the same name and in the same scope as the field to be
6189 /// created.
6191 /// \returns a new FieldDecl.
6193 /// \todo The Declarator argument is a hack. It will be removed once
6194 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6195 TypeSourceInfo *TInfo,
6196 RecordDecl *Record, SourceLocation Loc,
6197 bool Mutable, Expr *BitWidth,
6198 SourceLocation TSSL,
6199 AccessSpecifier AS, NamedDecl *PrevDecl,
6200 Declarator *D) {
6201 IdentifierInfo *II = Name.getAsIdentifierInfo();
6202 bool InvalidDecl = false;
6203 if (D) InvalidDecl = D->isInvalidType();
6205 // If we receive a broken type, recover by assuming 'int' and
6206 // marking this declaration as invalid.
6207 if (T.isNull()) {
6208 InvalidDecl = true;
6209 T = Context.IntTy;
6212 QualType EltTy = Context.getBaseElementType(T);
6213 if (!EltTy->isDependentType() &&
6214 RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6215 // Fields of incomplete type force their record to be invalid.
6216 Record->setInvalidDecl();
6217 InvalidDecl = true;
6220 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6221 // than a variably modified type.
6222 if (!InvalidDecl && T->isVariablyModifiedType()) {
6223 bool SizeIsNegative;
6224 llvm::APSInt Oversized;
6225 QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6226 SizeIsNegative,
6227 Oversized);
6228 if (!FixedTy.isNull()) {
6229 Diag(Loc, diag::warn_illegal_constant_array_size);
6230 T = FixedTy;
6231 } else {
6232 if (SizeIsNegative)
6233 Diag(Loc, diag::err_typecheck_negative_array_size);
6234 else if (Oversized.getBoolValue())
6235 Diag(Loc, diag::err_array_too_large)
6236 << Oversized.toString(10);
6237 else
6238 Diag(Loc, diag::err_typecheck_field_variable_size);
6239 InvalidDecl = true;
6243 // Fields can not have abstract class types
6244 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6245 diag::err_abstract_type_in_decl,
6246 AbstractFieldType))
6247 InvalidDecl = true;
6249 bool ZeroWidth = false;
6250 // If this is declared as a bit-field, check the bit-field.
6251 if (!InvalidDecl && BitWidth &&
6252 VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6253 InvalidDecl = true;
6254 BitWidth = 0;
6255 ZeroWidth = false;
6258 // Check that 'mutable' is consistent with the type of the declaration.
6259 if (!InvalidDecl && Mutable) {
6260 unsigned DiagID = 0;
6261 if (T->isReferenceType())
6262 DiagID = diag::err_mutable_reference;
6263 else if (T.isConstQualified())
6264 DiagID = diag::err_mutable_const;
6266 if (DiagID) {
6267 SourceLocation ErrLoc = Loc;
6268 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6269 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6270 Diag(ErrLoc, DiagID);
6271 Mutable = false;
6272 InvalidDecl = true;
6276 FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6277 BitWidth, Mutable);
6278 if (InvalidDecl)
6279 NewFD->setInvalidDecl();
6281 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6282 Diag(Loc, diag::err_duplicate_member) << II;
6283 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6284 NewFD->setInvalidDecl();
6287 if (!InvalidDecl && getLangOptions().CPlusPlus) {
6288 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6289 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6290 if (RDecl->getDefinition()) {
6291 // C++ 9.5p1: An object of a class with a non-trivial
6292 // constructor, a non-trivial copy constructor, a non-trivial
6293 // destructor, or a non-trivial copy assignment operator
6294 // cannot be a member of a union, nor can an array of such
6295 // objects.
6296 // TODO: C++0x alters this restriction significantly.
6297 if (Record->isUnion() && CheckNontrivialField(NewFD))
6298 NewFD->setInvalidDecl();
6303 // FIXME: We need to pass in the attributes given an AST
6304 // representation, not a parser representation.
6305 if (D)
6306 // FIXME: What to pass instead of TUScope?
6307 ProcessDeclAttributes(TUScope, NewFD, *D);
6309 if (T.isObjCGCWeak())
6310 Diag(Loc, diag::warn_attribute_weak_on_field);
6312 NewFD->setAccess(AS);
6313 return NewFD;
6316 bool Sema::CheckNontrivialField(FieldDecl *FD) {
6317 assert(FD);
6318 assert(getLangOptions().CPlusPlus && "valid check only for C++");
6320 if (FD->isInvalidDecl())
6321 return true;
6323 QualType EltTy = Context.getBaseElementType(FD->getType());
6324 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6325 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6326 if (RDecl->getDefinition()) {
6327 // We check for copy constructors before constructors
6328 // because otherwise we'll never get complaints about
6329 // copy constructors.
6331 CXXSpecialMember member = CXXInvalid;
6332 if (!RDecl->hasTrivialCopyConstructor())
6333 member = CXXCopyConstructor;
6334 else if (!RDecl->hasTrivialConstructor())
6335 member = CXXConstructor;
6336 else if (!RDecl->hasTrivialCopyAssignment())
6337 member = CXXCopyAssignment;
6338 else if (!RDecl->hasTrivialDestructor())
6339 member = CXXDestructor;
6341 if (member != CXXInvalid) {
6342 Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6343 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6344 DiagnoseNontrivial(RT, member);
6345 return true;
6350 return false;
6353 /// DiagnoseNontrivial - Given that a class has a non-trivial
6354 /// special member, figure out why.
6355 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6356 QualType QT(T, 0U);
6357 CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6359 // Check whether the member was user-declared.
6360 switch (member) {
6361 case CXXInvalid:
6362 break;
6364 case CXXConstructor:
6365 if (RD->hasUserDeclaredConstructor()) {
6366 typedef CXXRecordDecl::ctor_iterator ctor_iter;
6367 for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6368 const FunctionDecl *body = 0;
6369 ci->hasBody(body);
6370 if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6371 SourceLocation CtorLoc = ci->getLocation();
6372 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6373 return;
6377 assert(0 && "found no user-declared constructors");
6378 return;
6380 break;
6382 case CXXCopyConstructor:
6383 if (RD->hasUserDeclaredCopyConstructor()) {
6384 SourceLocation CtorLoc =
6385 RD->getCopyConstructor(Context, 0)->getLocation();
6386 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6387 return;
6389 break;
6391 case CXXCopyAssignment:
6392 if (RD->hasUserDeclaredCopyAssignment()) {
6393 // FIXME: this should use the location of the copy
6394 // assignment, not the type.
6395 SourceLocation TyLoc = RD->getSourceRange().getBegin();
6396 Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6397 return;
6399 break;
6401 case CXXDestructor:
6402 if (RD->hasUserDeclaredDestructor()) {
6403 SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6404 Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6405 return;
6407 break;
6410 typedef CXXRecordDecl::base_class_iterator base_iter;
6412 // Virtual bases and members inhibit trivial copying/construction,
6413 // but not trivial destruction.
6414 if (member != CXXDestructor) {
6415 // Check for virtual bases. vbases includes indirect virtual bases,
6416 // so we just iterate through the direct bases.
6417 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6418 if (bi->isVirtual()) {
6419 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6420 Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6421 return;
6424 // Check for virtual methods.
6425 typedef CXXRecordDecl::method_iterator meth_iter;
6426 for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6427 ++mi) {
6428 if (mi->isVirtual()) {
6429 SourceLocation MLoc = mi->getSourceRange().getBegin();
6430 Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6431 return;
6436 bool (CXXRecordDecl::*hasTrivial)() const;
6437 switch (member) {
6438 case CXXConstructor:
6439 hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6440 case CXXCopyConstructor:
6441 hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6442 case CXXCopyAssignment:
6443 hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6444 case CXXDestructor:
6445 hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6446 default:
6447 assert(0 && "unexpected special member"); return;
6450 // Check for nontrivial bases (and recurse).
6451 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6452 const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6453 assert(BaseRT && "Don't know how to handle dependent bases");
6454 CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6455 if (!(BaseRecTy->*hasTrivial)()) {
6456 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6457 Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6458 DiagnoseNontrivial(BaseRT, member);
6459 return;
6463 // Check for nontrivial members (and recurse).
6464 typedef RecordDecl::field_iterator field_iter;
6465 for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6466 ++fi) {
6467 QualType EltTy = Context.getBaseElementType((*fi)->getType());
6468 if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6469 CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6471 if (!(EltRD->*hasTrivial)()) {
6472 SourceLocation FLoc = (*fi)->getLocation();
6473 Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6474 DiagnoseNontrivial(EltRT, member);
6475 return;
6480 assert(0 && "found no explanation for non-trivial member");
6483 /// TranslateIvarVisibility - Translate visibility from a token ID to an
6484 /// AST enum value.
6485 static ObjCIvarDecl::AccessControl
6486 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6487 switch (ivarVisibility) {
6488 default: assert(0 && "Unknown visitibility kind");
6489 case tok::objc_private: return ObjCIvarDecl::Private;
6490 case tok::objc_public: return ObjCIvarDecl::Public;
6491 case tok::objc_protected: return ObjCIvarDecl::Protected;
6492 case tok::objc_package: return ObjCIvarDecl::Package;
6496 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
6497 /// in order to create an IvarDecl object for it.
6498 Decl *Sema::ActOnIvar(Scope *S,
6499 SourceLocation DeclStart,
6500 Decl *IntfDecl,
6501 Declarator &D, ExprTy *BitfieldWidth,
6502 tok::ObjCKeywordKind Visibility) {
6504 IdentifierInfo *II = D.getIdentifier();
6505 Expr *BitWidth = (Expr*)BitfieldWidth;
6506 SourceLocation Loc = DeclStart;
6507 if (II) Loc = D.getIdentifierLoc();
6509 // FIXME: Unnamed fields can be handled in various different ways, for
6510 // example, unnamed unions inject all members into the struct namespace!
6512 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6513 QualType T = TInfo->getType();
6515 if (BitWidth) {
6516 // 6.7.2.1p3, 6.7.2.1p4
6517 if (VerifyBitField(Loc, II, T, BitWidth)) {
6518 D.setInvalidType();
6519 BitWidth = 0;
6521 } else {
6522 // Not a bitfield.
6524 // validate II.
6527 if (T->isReferenceType()) {
6528 Diag(Loc, diag::err_ivar_reference_type);
6529 D.setInvalidType();
6531 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6532 // than a variably modified type.
6533 else if (T->isVariablyModifiedType()) {
6534 Diag(Loc, diag::err_typecheck_ivar_variable_size);
6535 D.setInvalidType();
6538 // Get the visibility (access control) for this ivar.
6539 ObjCIvarDecl::AccessControl ac =
6540 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6541 : ObjCIvarDecl::None;
6542 // Must set ivar's DeclContext to its enclosing interface.
6543 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6544 ObjCContainerDecl *EnclosingContext;
6545 if (ObjCImplementationDecl *IMPDecl =
6546 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6547 if (!LangOpts.ObjCNonFragileABI2) {
6548 // Case of ivar declared in an implementation. Context is that of its class.
6549 EnclosingContext = IMPDecl->getClassInterface();
6550 assert(EnclosingContext && "Implementation has no class interface!");
6552 else
6553 EnclosingContext = EnclosingDecl;
6554 } else {
6555 if (ObjCCategoryDecl *CDecl =
6556 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6557 if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6558 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6559 return 0;
6562 EnclosingContext = EnclosingDecl;
6565 // Construct the decl.
6566 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6567 EnclosingContext, Loc, II, T,
6568 TInfo, ac, (Expr *)BitfieldWidth);
6570 if (II) {
6571 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6572 ForRedeclaration);
6573 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6574 && !isa<TagDecl>(PrevDecl)) {
6575 Diag(Loc, diag::err_duplicate_member) << II;
6576 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6577 NewID->setInvalidDecl();
6581 // Process attributes attached to the ivar.
6582 ProcessDeclAttributes(S, NewID, D);
6584 if (D.isInvalidType())
6585 NewID->setInvalidDecl();
6587 if (II) {
6588 // FIXME: When interfaces are DeclContexts, we'll need to add
6589 // these to the interface.
6590 S->AddDecl(NewID);
6591 IdResolver.AddDecl(NewID);
6594 return NewID;
6597 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6598 /// class and class extensions. For every class @interface and class
6599 /// extension @interface, if the last ivar is a bitfield of any type,
6600 /// then add an implicit `char :0` ivar to the end of that interface.
6601 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6602 llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6603 if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6604 return;
6606 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6607 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6609 if (!Ivar->isBitField())
6610 return;
6611 uint64_t BitFieldSize =
6612 Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6613 if (BitFieldSize == 0)
6614 return;
6615 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6616 if (!ID) {
6617 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6618 if (!CD->IsClassExtension())
6619 return;
6621 // No need to add this to end of @implementation.
6622 else
6623 return;
6625 // All conditions are met. Add a new bitfield to the tail end of ivars.
6626 llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6627 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6629 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6630 DeclLoc, 0,
6631 Context.CharTy,
6632 Context.CreateTypeSourceInfo(Context.CharTy),
6633 ObjCIvarDecl::Private, BW,
6634 true);
6635 AllIvarDecls.push_back(Ivar);
6638 void Sema::ActOnFields(Scope* S,
6639 SourceLocation RecLoc, Decl *EnclosingDecl,
6640 Decl **Fields, unsigned NumFields,
6641 SourceLocation LBrac, SourceLocation RBrac,
6642 AttributeList *Attr) {
6643 assert(EnclosingDecl && "missing record or interface decl");
6645 // If the decl this is being inserted into is invalid, then it may be a
6646 // redeclaration or some other bogus case. Don't try to add fields to it.
6647 if (EnclosingDecl->isInvalidDecl()) {
6648 // FIXME: Deallocate fields?
6649 return;
6653 // Verify that all the fields are okay.
6654 unsigned NumNamedMembers = 0;
6655 llvm::SmallVector<FieldDecl*, 32> RecFields;
6657 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6658 for (unsigned i = 0; i != NumFields; ++i) {
6659 FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6661 // Get the type for the field.
6662 Type *FDTy = FD->getType().getTypePtr();
6664 if (!FD->isAnonymousStructOrUnion()) {
6665 // Remember all fields written by the user.
6666 RecFields.push_back(FD);
6669 // If the field is already invalid for some reason, don't emit more
6670 // diagnostics about it.
6671 if (FD->isInvalidDecl()) {
6672 EnclosingDecl->setInvalidDecl();
6673 continue;
6676 // C99 6.7.2.1p2:
6677 // A structure or union shall not contain a member with
6678 // incomplete or function type (hence, a structure shall not
6679 // contain an instance of itself, but may contain a pointer to
6680 // an instance of itself), except that the last member of a
6681 // structure with more than one named member may have incomplete
6682 // array type; such a structure (and any union containing,
6683 // possibly recursively, a member that is such a structure)
6684 // shall not be a member of a structure or an element of an
6685 // array.
6686 if (FDTy->isFunctionType()) {
6687 // Field declared as a function.
6688 Diag(FD->getLocation(), diag::err_field_declared_as_function)
6689 << FD->getDeclName();
6690 FD->setInvalidDecl();
6691 EnclosingDecl->setInvalidDecl();
6692 continue;
6693 } else if (FDTy->isIncompleteArrayType() && Record &&
6694 ((i == NumFields - 1 && !Record->isUnion()) ||
6695 (getLangOptions().Microsoft &&
6696 (i == NumFields - 1 || Record->isUnion())))) {
6697 // Flexible array member.
6698 // Microsoft is more permissive regarding flexible array.
6699 // It will accept flexible array in union and also
6700 // as the sole element of a struct/class.
6701 if (getLangOptions().Microsoft) {
6702 if (Record->isUnion())
6703 Diag(FD->getLocation(), diag::ext_flexible_array_union)
6704 << FD->getDeclName();
6705 else if (NumFields == 1)
6706 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6707 << FD->getDeclName() << Record->getTagKind();
6708 } else if (NumNamedMembers < 1) {
6709 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6710 << FD->getDeclName();
6711 FD->setInvalidDecl();
6712 EnclosingDecl->setInvalidDecl();
6713 continue;
6715 if (!FD->getType()->isDependentType() &&
6716 !Context.getBaseElementType(FD->getType())->isPODType()) {
6717 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6718 << FD->getDeclName() << FD->getType();
6719 FD->setInvalidDecl();
6720 EnclosingDecl->setInvalidDecl();
6721 continue;
6723 // Okay, we have a legal flexible array member at the end of the struct.
6724 if (Record)
6725 Record->setHasFlexibleArrayMember(true);
6726 } else if (!FDTy->isDependentType() &&
6727 RequireCompleteType(FD->getLocation(), FD->getType(),
6728 diag::err_field_incomplete)) {
6729 // Incomplete type
6730 FD->setInvalidDecl();
6731 EnclosingDecl->setInvalidDecl();
6732 continue;
6733 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6734 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6735 // If this is a member of a union, then entire union becomes "flexible".
6736 if (Record && Record->isUnion()) {
6737 Record->setHasFlexibleArrayMember(true);
6738 } else {
6739 // If this is a struct/class and this is not the last element, reject
6740 // it. Note that GCC supports variable sized arrays in the middle of
6741 // structures.
6742 if (i != NumFields-1)
6743 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6744 << FD->getDeclName() << FD->getType();
6745 else {
6746 // We support flexible arrays at the end of structs in
6747 // other structs as an extension.
6748 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6749 << FD->getDeclName();
6750 if (Record)
6751 Record->setHasFlexibleArrayMember(true);
6755 if (Record && FDTTy->getDecl()->hasObjectMember())
6756 Record->setHasObjectMember(true);
6757 } else if (FDTy->isObjCObjectType()) {
6758 /// A field cannot be an Objective-c object
6759 Diag(FD->getLocation(), diag::err_statically_allocated_object);
6760 FD->setInvalidDecl();
6761 EnclosingDecl->setInvalidDecl();
6762 continue;
6763 } else if (getLangOptions().ObjC1 &&
6764 getLangOptions().getGCMode() != LangOptions::NonGC &&
6765 Record &&
6766 (FD->getType()->isObjCObjectPointerType() ||
6767 FD->getType().isObjCGCStrong()))
6768 Record->setHasObjectMember(true);
6769 else if (Context.getAsArrayType(FD->getType())) {
6770 QualType BaseType = Context.getBaseElementType(FD->getType());
6771 if (Record && BaseType->isRecordType() &&
6772 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6773 Record->setHasObjectMember(true);
6775 // Keep track of the number of named members.
6776 if (FD->getIdentifier())
6777 ++NumNamedMembers;
6780 // Okay, we successfully defined 'Record'.
6781 if (Record) {
6782 bool Completed = false;
6783 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6784 if (!CXXRecord->isInvalidDecl()) {
6785 // Set access bits correctly on the directly-declared conversions.
6786 UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6787 for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6788 I != E; ++I)
6789 Convs->setAccess(I, (*I)->getAccess());
6791 if (!CXXRecord->isDependentType()) {
6792 // Add any implicitly-declared members to this class.
6793 AddImplicitlyDeclaredMembersToClass(CXXRecord);
6795 // If we have virtual base classes, we may end up finding multiple
6796 // final overriders for a given virtual function. Check for this
6797 // problem now.
6798 if (CXXRecord->getNumVBases()) {
6799 CXXFinalOverriderMap FinalOverriders;
6800 CXXRecord->getFinalOverriders(FinalOverriders);
6802 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6803 MEnd = FinalOverriders.end();
6804 M != MEnd; ++M) {
6805 for (OverridingMethods::iterator SO = M->second.begin(),
6806 SOEnd = M->second.end();
6807 SO != SOEnd; ++SO) {
6808 assert(SO->second.size() > 0 &&
6809 "Virtual function without overridding functions?");
6810 if (SO->second.size() == 1)
6811 continue;
6813 // C++ [class.virtual]p2:
6814 // In a derived class, if a virtual member function of a base
6815 // class subobject has more than one final overrider the
6816 // program is ill-formed.
6817 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6818 << (NamedDecl *)M->first << Record;
6819 Diag(M->first->getLocation(),
6820 diag::note_overridden_virtual_function);
6821 for (OverridingMethods::overriding_iterator
6822 OM = SO->second.begin(),
6823 OMEnd = SO->second.end();
6824 OM != OMEnd; ++OM)
6825 Diag(OM->Method->getLocation(), diag::note_final_overrider)
6826 << (NamedDecl *)M->first << OM->Method->getParent();
6828 Record->setInvalidDecl();
6831 CXXRecord->completeDefinition(&FinalOverriders);
6832 Completed = true;
6838 if (!Completed)
6839 Record->completeDefinition();
6840 } else {
6841 ObjCIvarDecl **ClsFields =
6842 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6843 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6844 ID->setLocEnd(RBrac);
6845 // Add ivar's to class's DeclContext.
6846 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6847 ClsFields[i]->setLexicalDeclContext(ID);
6848 ID->addDecl(ClsFields[i]);
6850 // Must enforce the rule that ivars in the base classes may not be
6851 // duplicates.
6852 if (ID->getSuperClass())
6853 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6854 } else if (ObjCImplementationDecl *IMPDecl =
6855 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6856 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6857 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6858 // Ivar declared in @implementation never belongs to the implementation.
6859 // Only it is in implementation's lexical context.
6860 ClsFields[I]->setLexicalDeclContext(IMPDecl);
6861 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6862 } else if (ObjCCategoryDecl *CDecl =
6863 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6864 // case of ivars in class extension; all other cases have been
6865 // reported as errors elsewhere.
6866 // FIXME. Class extension does not have a LocEnd field.
6867 // CDecl->setLocEnd(RBrac);
6868 // Add ivar's to class extension's DeclContext.
6869 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6870 ClsFields[i]->setLexicalDeclContext(CDecl);
6871 CDecl->addDecl(ClsFields[i]);
6876 if (Attr)
6877 ProcessDeclAttributeList(S, Record, Attr);
6879 // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6880 // set the visibility of this record.
6881 if (Record && !Record->getDeclContext()->isRecord())
6882 AddPushedVisibilityAttribute(Record);
6885 /// \brief Determine whether the given integral value is representable within
6886 /// the given type T.
6887 static bool isRepresentableIntegerValue(ASTContext &Context,
6888 llvm::APSInt &Value,
6889 QualType T) {
6890 assert(T->isIntegralType(Context) && "Integral type required!");
6891 unsigned BitWidth = Context.getIntWidth(T);
6893 if (Value.isUnsigned() || Value.isNonNegative()) {
6894 if (T->isSignedIntegerType())
6895 --BitWidth;
6896 return Value.getActiveBits() <= BitWidth;
6898 return Value.getMinSignedBits() <= BitWidth;
6901 // \brief Given an integral type, return the next larger integral type
6902 // (or a NULL type of no such type exists).
6903 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6904 // FIXME: Int128/UInt128 support, which also needs to be introduced into
6905 // enum checking below.
6906 assert(T->isIntegralType(Context) && "Integral type required!");
6907 const unsigned NumTypes = 4;
6908 QualType SignedIntegralTypes[NumTypes] = {
6909 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6911 QualType UnsignedIntegralTypes[NumTypes] = {
6912 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6913 Context.UnsignedLongLongTy
6916 unsigned BitWidth = Context.getTypeSize(T);
6917 QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6918 : UnsignedIntegralTypes;
6919 for (unsigned I = 0; I != NumTypes; ++I)
6920 if (Context.getTypeSize(Types[I]) > BitWidth)
6921 return Types[I];
6923 return QualType();
6926 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6927 EnumConstantDecl *LastEnumConst,
6928 SourceLocation IdLoc,
6929 IdentifierInfo *Id,
6930 Expr *Val) {
6931 unsigned IntWidth = Context.Target.getIntWidth();
6932 llvm::APSInt EnumVal(IntWidth);
6933 QualType EltTy;
6934 if (Val) {
6935 if (Enum->isDependentType() || Val->isTypeDependent())
6936 EltTy = Context.DependentTy;
6937 else {
6938 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6939 SourceLocation ExpLoc;
6940 if (!Val->isValueDependent() &&
6941 VerifyIntegerConstantExpression(Val, &EnumVal)) {
6942 Val = 0;
6943 } else {
6944 if (!getLangOptions().CPlusPlus) {
6945 // C99 6.7.2.2p2:
6946 // The expression that defines the value of an enumeration constant
6947 // shall be an integer constant expression that has a value
6948 // representable as an int.
6950 // Complain if the value is not representable in an int.
6951 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6952 Diag(IdLoc, diag::ext_enum_value_not_int)
6953 << EnumVal.toString(10) << Val->getSourceRange()
6954 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6955 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6956 // Force the type of the expression to 'int'.
6957 ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6961 if (Enum->isFixed()) {
6962 EltTy = Enum->getIntegerType();
6964 // C++0x [dcl.enum]p5:
6965 // ... if the initializing value of an enumerator cannot be
6966 // represented by the underlying type, the program is ill-formed.
6967 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy))
6968 Diag(IdLoc, diag::err_enumerator_too_large)
6969 << EltTy;
6970 else
6971 ImpCastExprToType(Val, EltTy, CK_IntegralCast);
6973 else {
6974 // C++0x [dcl.enum]p5:
6975 // If the underlying type is not fixed, the type of each enumerator
6976 // is the type of its initializing value:
6977 // - If an initializer is specified for an enumerator, the
6978 // initializing value has the same type as the expression.
6979 EltTy = Val->getType();
6985 if (!Val) {
6986 if (Enum->isDependentType())
6987 EltTy = Context.DependentTy;
6988 else if (!LastEnumConst) {
6989 // C++0x [dcl.enum]p5:
6990 // If the underlying type is not fixed, the type of each enumerator
6991 // is the type of its initializing value:
6992 // - If no initializer is specified for the first enumerator, the
6993 // initializing value has an unspecified integral type.
6995 // GCC uses 'int' for its unspecified integral type, as does
6996 // C99 6.7.2.2p3.
6997 if (Enum->isFixed()) {
6998 EltTy = Enum->getIntegerType();
7000 else {
7001 EltTy = Context.IntTy;
7003 } else {
7004 // Assign the last value + 1.
7005 EnumVal = LastEnumConst->getInitVal();
7006 ++EnumVal;
7007 EltTy = LastEnumConst->getType();
7009 // Check for overflow on increment.
7010 if (EnumVal < LastEnumConst->getInitVal()) {
7011 // C++0x [dcl.enum]p5:
7012 // If the underlying type is not fixed, the type of each enumerator
7013 // is the type of its initializing value:
7015 // - Otherwise the type of the initializing value is the same as
7016 // the type of the initializing value of the preceding enumerator
7017 // unless the incremented value is not representable in that type,
7018 // in which case the type is an unspecified integral type
7019 // sufficient to contain the incremented value. If no such type
7020 // exists, the program is ill-formed.
7021 QualType T = getNextLargerIntegralType(Context, EltTy);
7022 if (T.isNull() || Enum->isFixed()) {
7023 // There is no integral type larger enough to represent this
7024 // value. Complain, then allow the value to wrap around.
7025 EnumVal = LastEnumConst->getInitVal();
7026 EnumVal.zext(EnumVal.getBitWidth() * 2);
7027 ++EnumVal;
7028 if (Enum->isFixed())
7029 // When the underlying type is fixed, this is ill-formed.
7030 Diag(IdLoc, diag::err_enumerator_wrapped)
7031 << EnumVal.toString(10)
7032 << EltTy;
7033 else
7034 Diag(IdLoc, diag::warn_enumerator_too_large)
7035 << EnumVal.toString(10);
7036 } else {
7037 EltTy = T;
7040 // Retrieve the last enumerator's value, extent that type to the
7041 // type that is supposed to be large enough to represent the incremented
7042 // value, then increment.
7043 EnumVal = LastEnumConst->getInitVal();
7044 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7045 EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7046 ++EnumVal;
7048 // If we're not in C++, diagnose the overflow of enumerator values,
7049 // which in C99 means that the enumerator value is not representable in
7050 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7051 // permits enumerator values that are representable in some larger
7052 // integral type.
7053 if (!getLangOptions().CPlusPlus && !T.isNull())
7054 Diag(IdLoc, diag::warn_enum_value_overflow);
7055 } else if (!getLangOptions().CPlusPlus &&
7056 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7057 // Enforce C99 6.7.2.2p2 even when we compute the next value.
7058 Diag(IdLoc, diag::ext_enum_value_not_int)
7059 << EnumVal.toString(10) << 1;
7064 if (!EltTy->isDependentType()) {
7065 // Make the enumerator value match the signedness and size of the
7066 // enumerator's type.
7067 EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7068 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7071 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7072 Val, EnumVal);
7076 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
7077 Decl *lastEnumConst,
7078 SourceLocation IdLoc,
7079 IdentifierInfo *Id,
7080 SourceLocation EqualLoc, ExprTy *val) {
7081 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7082 EnumConstantDecl *LastEnumConst =
7083 cast_or_null<EnumConstantDecl>(lastEnumConst);
7084 Expr *Val = static_cast<Expr*>(val);
7086 // The scope passed in may not be a decl scope. Zip up the scope tree until
7087 // we find one that is.
7088 S = getNonFieldDeclScope(S);
7090 // Verify that there isn't already something declared with this name in this
7091 // scope.
7092 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7093 ForRedeclaration);
7094 if (PrevDecl && PrevDecl->isTemplateParameter()) {
7095 // Maybe we will complain about the shadowed template parameter.
7096 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7097 // Just pretend that we didn't see the previous declaration.
7098 PrevDecl = 0;
7101 if (PrevDecl) {
7102 // When in C++, we may get a TagDecl with the same name; in this case the
7103 // enum constant will 'hide' the tag.
7104 assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7105 "Received TagDecl when not in C++!");
7106 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7107 if (isa<EnumConstantDecl>(PrevDecl))
7108 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7109 else
7110 Diag(IdLoc, diag::err_redefinition) << Id;
7111 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7112 return 0;
7116 EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
7117 IdLoc, Id, Val);
7119 // Register this decl in the current scope stack.
7120 if (New) {
7121 New->setAccess(TheEnumDecl->getAccess());
7122 PushOnScopeChains(New, S);
7125 return New;
7128 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7129 SourceLocation RBraceLoc, Decl *EnumDeclX,
7130 Decl **Elements, unsigned NumElements,
7131 Scope *S, AttributeList *Attr) {
7132 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7133 QualType EnumType = Context.getTypeDeclType(Enum);
7135 if (Attr)
7136 ProcessDeclAttributeList(S, Enum, Attr);
7138 if (Enum->isDependentType()) {
7139 for (unsigned i = 0; i != NumElements; ++i) {
7140 EnumConstantDecl *ECD =
7141 cast_or_null<EnumConstantDecl>(Elements[i]);
7142 if (!ECD) continue;
7144 ECD->setType(EnumType);
7147 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7148 return;
7151 // TODO: If the result value doesn't fit in an int, it must be a long or long
7152 // long value. ISO C does not support this, but GCC does as an extension,
7153 // emit a warning.
7154 unsigned IntWidth = Context.Target.getIntWidth();
7155 unsigned CharWidth = Context.Target.getCharWidth();
7156 unsigned ShortWidth = Context.Target.getShortWidth();
7158 // Verify that all the values are okay, compute the size of the values, and
7159 // reverse the list.
7160 unsigned NumNegativeBits = 0;
7161 unsigned NumPositiveBits = 0;
7163 // Keep track of whether all elements have type int.
7164 bool AllElementsInt = true;
7166 for (unsigned i = 0; i != NumElements; ++i) {
7167 EnumConstantDecl *ECD =
7168 cast_or_null<EnumConstantDecl>(Elements[i]);
7169 if (!ECD) continue; // Already issued a diagnostic.
7171 const llvm::APSInt &InitVal = ECD->getInitVal();
7173 // Keep track of the size of positive and negative values.
7174 if (InitVal.isUnsigned() || InitVal.isNonNegative())
7175 NumPositiveBits = std::max(NumPositiveBits,
7176 (unsigned)InitVal.getActiveBits());
7177 else
7178 NumNegativeBits = std::max(NumNegativeBits,
7179 (unsigned)InitVal.getMinSignedBits());
7181 // Keep track of whether every enum element has type int (very commmon).
7182 if (AllElementsInt)
7183 AllElementsInt = ECD->getType() == Context.IntTy;
7186 // Figure out the type that should be used for this enum.
7187 // FIXME: Support -fshort-enums.
7188 QualType BestType;
7189 unsigned BestWidth;
7191 // C++0x N3000 [conv.prom]p3:
7192 // An rvalue of an unscoped enumeration type whose underlying
7193 // type is not fixed can be converted to an rvalue of the first
7194 // of the following types that can represent all the values of
7195 // the enumeration: int, unsigned int, long int, unsigned long
7196 // int, long long int, or unsigned long long int.
7197 // C99 6.4.4.3p2:
7198 // An identifier declared as an enumeration constant has type int.
7199 // The C99 rule is modified by a gcc extension
7200 QualType BestPromotionType;
7202 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7203 // -fshort-enums is the equivalent to specifying the packed attribute on all
7204 // enum definitions.
7205 if (LangOpts.ShortEnums)
7206 Packed = true;
7208 if (Enum->isFixed()) {
7209 BestType = BestPromotionType = Enum->getIntegerType();
7210 // We don't set BestWidth, because BestType is going to be the
7211 // type of the enumerators.
7213 else if (NumNegativeBits) {
7214 // If there is a negative value, figure out the smallest integer type (of
7215 // int/long/longlong) that fits.
7216 // If it's packed, check also if it fits a char or a short.
7217 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7218 BestType = Context.SignedCharTy;
7219 BestWidth = CharWidth;
7220 } else if (Packed && NumNegativeBits <= ShortWidth &&
7221 NumPositiveBits < ShortWidth) {
7222 BestType = Context.ShortTy;
7223 BestWidth = ShortWidth;
7224 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7225 BestType = Context.IntTy;
7226 BestWidth = IntWidth;
7227 } else {
7228 BestWidth = Context.Target.getLongWidth();
7230 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7231 BestType = Context.LongTy;
7232 } else {
7233 BestWidth = Context.Target.getLongLongWidth();
7235 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7236 Diag(Enum->getLocation(), diag::warn_enum_too_large);
7237 BestType = Context.LongLongTy;
7240 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7241 } else {
7242 // If there is no negative value, figure out the smallest type that fits
7243 // all of the enumerator values.
7244 // If it's packed, check also if it fits a char or a short.
7245 if (Packed && NumPositiveBits <= CharWidth) {
7246 BestType = Context.UnsignedCharTy;
7247 BestPromotionType = Context.IntTy;
7248 BestWidth = CharWidth;
7249 } else if (Packed && NumPositiveBits <= ShortWidth) {
7250 BestType = Context.UnsignedShortTy;
7251 BestPromotionType = Context.IntTy;
7252 BestWidth = ShortWidth;
7253 } else if (NumPositiveBits <= IntWidth) {
7254 BestType = Context.UnsignedIntTy;
7255 BestWidth = IntWidth;
7256 BestPromotionType
7257 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7258 ? Context.UnsignedIntTy : Context.IntTy;
7259 } else if (NumPositiveBits <=
7260 (BestWidth = Context.Target.getLongWidth())) {
7261 BestType = Context.UnsignedLongTy;
7262 BestPromotionType
7263 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7264 ? Context.UnsignedLongTy : Context.LongTy;
7265 } else {
7266 BestWidth = Context.Target.getLongLongWidth();
7267 assert(NumPositiveBits <= BestWidth &&
7268 "How could an initializer get larger than ULL?");
7269 BestType = Context.UnsignedLongLongTy;
7270 BestPromotionType
7271 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7272 ? Context.UnsignedLongLongTy : Context.LongLongTy;
7276 // Loop over all of the enumerator constants, changing their types to match
7277 // the type of the enum if needed.
7278 for (unsigned i = 0; i != NumElements; ++i) {
7279 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7280 if (!ECD) continue; // Already issued a diagnostic.
7282 // Standard C says the enumerators have int type, but we allow, as an
7283 // extension, the enumerators to be larger than int size. If each
7284 // enumerator value fits in an int, type it as an int, otherwise type it the
7285 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
7286 // that X has type 'int', not 'unsigned'.
7288 // Determine whether the value fits into an int.
7289 llvm::APSInt InitVal = ECD->getInitVal();
7291 // If it fits into an integer type, force it. Otherwise force it to match
7292 // the enum decl type.
7293 QualType NewTy;
7294 unsigned NewWidth;
7295 bool NewSign;
7296 if (!getLangOptions().CPlusPlus &&
7297 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7298 NewTy = Context.IntTy;
7299 NewWidth = IntWidth;
7300 NewSign = true;
7301 } else if (ECD->getType() == BestType) {
7302 // Already the right type!
7303 if (getLangOptions().CPlusPlus)
7304 // C++ [dcl.enum]p4: Following the closing brace of an
7305 // enum-specifier, each enumerator has the type of its
7306 // enumeration.
7307 ECD->setType(EnumType);
7308 continue;
7309 } else {
7310 NewTy = BestType;
7311 NewWidth = BestWidth;
7312 NewSign = BestType->isSignedIntegerType();
7315 // Adjust the APSInt value.
7316 InitVal.extOrTrunc(NewWidth);
7317 InitVal.setIsSigned(NewSign);
7318 ECD->setInitVal(InitVal);
7320 // Adjust the Expr initializer and type.
7321 if (ECD->getInitExpr())
7322 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7323 CK_IntegralCast,
7324 ECD->getInitExpr(),
7325 /*base paths*/ 0,
7326 VK_RValue));
7327 if (getLangOptions().CPlusPlus)
7328 // C++ [dcl.enum]p4: Following the closing brace of an
7329 // enum-specifier, each enumerator has the type of its
7330 // enumeration.
7331 ECD->setType(EnumType);
7332 else
7333 ECD->setType(NewTy);
7336 Enum->completeDefinition(BestType, BestPromotionType,
7337 NumPositiveBits, NumNegativeBits);
7340 Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7341 StringLiteral *AsmString = cast<StringLiteral>(expr);
7343 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7344 Loc, AsmString);
7345 CurContext->addDecl(New);
7346 return New;
7349 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7350 SourceLocation PragmaLoc,
7351 SourceLocation NameLoc) {
7352 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7354 if (PrevDecl) {
7355 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7356 } else {
7357 (void)WeakUndeclaredIdentifiers.insert(
7358 std::pair<IdentifierInfo*,WeakInfo>
7359 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7363 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7364 IdentifierInfo* AliasName,
7365 SourceLocation PragmaLoc,
7366 SourceLocation NameLoc,
7367 SourceLocation AliasNameLoc) {
7368 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7369 LookupOrdinaryName);
7370 WeakInfo W = WeakInfo(Name, NameLoc);
7372 if (PrevDecl) {
7373 if (!PrevDecl->hasAttr<AliasAttr>())
7374 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7375 DeclApplyPragmaWeak(TUScope, ND, W);
7376 } else {
7377 (void)WeakUndeclaredIdentifiers.insert(
7378 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));