'extern' variables in functions don't shadow externs in global scope. Fixes rdar...
[clang.git] / lib / Sema / SemaDecl.cpp
blobbcc67b2e9a98f236d4176d8ba687fc4b7fc72a2b
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Parse/ParseDiagnostic.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Lex/HeaderSearch.h"
39 #include "llvm/ADT/Triple.h"
40 #include <algorithm>
41 #include <cstring>
42 #include <functional>
43 using namespace clang;
44 using namespace sema;
46 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50 /// \brief If the identifier refers to a type name within this scope,
51 /// return the declaration of that type.
52 ///
53 /// This routine performs ordinary name lookup of the identifier II
54 /// within the given scope, with optional C++ scope specifier SS, to
55 /// determine whether the name refers to a type. If so, returns an
56 /// opaque pointer (actually a QualType) corresponding to that
57 /// type. Otherwise, returns NULL.
58 ///
59 /// If name lookup results in an ambiguity, this routine will complain
60 /// and then return NULL.
61 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62 Scope *S, CXXScopeSpec *SS,
63 bool isClassName,
64 ParsedType ObjectTypePtr) {
65 // Determine where we will perform name lookup.
66 DeclContext *LookupCtx = 0;
67 if (ObjectTypePtr) {
68 QualType ObjectType = ObjectTypePtr.get();
69 if (ObjectType->isRecordType())
70 LookupCtx = computeDeclContext(ObjectType);
71 } else if (SS && SS->isNotEmpty()) {
72 LookupCtx = computeDeclContext(*SS, false);
74 if (!LookupCtx) {
75 if (isDependentScopeSpecifier(*SS)) {
76 // C++ [temp.res]p3:
77 // A qualified-id that refers to a type and in which the
78 // nested-name-specifier depends on a template-parameter (14.6.2)
79 // shall be prefixed by the keyword typename to indicate that the
80 // qualified-id denotes a type, forming an
81 // elaborated-type-specifier (7.1.5.3).
83 // We therefore do not perform any name lookup if the result would
84 // refer to a member of an unknown specialization.
85 if (!isClassName)
86 return ParsedType();
88 // We know from the grammar that this name refers to a type,
89 // so build a dependent node to describe the type.
90 QualType T =
91 CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92 SourceLocation(), SS->getRange(), NameLoc);
93 return ParsedType::make(T);
96 return ParsedType();
99 if (!LookupCtx->isDependentContext() &&
100 RequireCompleteDeclContext(*SS, LookupCtx))
101 return ParsedType();
104 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105 // lookup for class-names.
106 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107 LookupOrdinaryName;
108 LookupResult Result(*this, &II, NameLoc, Kind);
109 if (LookupCtx) {
110 // Perform "qualified" name lookup into the declaration context we
111 // computed, which is either the type of the base of a member access
112 // expression or the declaration context associated with a prior
113 // nested-name-specifier.
114 LookupQualifiedName(Result, LookupCtx);
116 if (ObjectTypePtr && Result.empty()) {
117 // C++ [basic.lookup.classref]p3:
118 // If the unqualified-id is ~type-name, the type-name is looked up
119 // in the context of the entire postfix-expression. If the type T of
120 // the object expression is of a class type C, the type-name is also
121 // looked up in the scope of class C. At least one of the lookups shall
122 // find a name that refers to (possibly cv-qualified) T.
123 LookupName(Result, S);
125 } else {
126 // Perform unqualified name lookup.
127 LookupName(Result, S);
130 NamedDecl *IIDecl = 0;
131 switch (Result.getResultKind()) {
132 case LookupResult::NotFound:
133 case LookupResult::NotFoundInCurrentInstantiation:
134 case LookupResult::FoundOverloaded:
135 case LookupResult::FoundUnresolvedValue:
136 Result.suppressDiagnostics();
137 return ParsedType();
139 case LookupResult::Ambiguous:
140 // Recover from type-hiding ambiguities by hiding the type. We'll
141 // do the lookup again when looking for an object, and we can
142 // diagnose the error then. If we don't do this, then the error
143 // about hiding the type will be immediately followed by an error
144 // that only makes sense if the identifier was treated like a type.
145 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146 Result.suppressDiagnostics();
147 return ParsedType();
150 // Look to see if we have a type anywhere in the list of results.
151 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152 Res != ResEnd; ++Res) {
153 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154 if (!IIDecl ||
155 (*Res)->getLocation().getRawEncoding() <
156 IIDecl->getLocation().getRawEncoding())
157 IIDecl = *Res;
161 if (!IIDecl) {
162 // None of the entities we found is a type, so there is no way
163 // to even assume that the result is a type. In this case, don't
164 // complain about the ambiguity. The parser will either try to
165 // perform this lookup again (e.g., as an object name), which
166 // will produce the ambiguity, or will complain that it expected
167 // a type name.
168 Result.suppressDiagnostics();
169 return ParsedType();
172 // We found a type within the ambiguous lookup; diagnose the
173 // ambiguity and then return that type. This might be the right
174 // answer, or it might not be, but it suppresses any attempt to
175 // perform the name lookup again.
176 break;
178 case LookupResult::Found:
179 IIDecl = Result.getFoundDecl();
180 break;
183 assert(IIDecl && "Didn't find decl");
185 QualType T;
186 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187 DiagnoseUseOfDecl(IIDecl, NameLoc);
189 if (T.isNull())
190 T = Context.getTypeDeclType(TD);
192 if (SS)
193 T = getElaboratedType(ETK_None, *SS, T);
195 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196 T = Context.getObjCInterfaceType(IDecl);
197 } else {
198 // If it's not plausibly a type, suppress diagnostics.
199 Result.suppressDiagnostics();
200 return ParsedType();
203 return ParsedType::make(T);
206 /// isTagName() - This method is called *for error recovery purposes only*
207 /// to determine if the specified name is a valid tag name ("struct foo"). If
208 /// so, this returns the TST for the tag corresponding to it (TST_enum,
209 /// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
210 /// where the user forgot to specify the tag.
211 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212 // Do a tag name lookup in this scope.
213 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214 LookupName(R, S, false);
215 R.suppressDiagnostics();
216 if (R.getResultKind() == LookupResult::Found)
217 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218 switch (TD->getTagKind()) {
219 default: return DeclSpec::TST_unspecified;
220 case TTK_Struct: return DeclSpec::TST_struct;
221 case TTK_Union: return DeclSpec::TST_union;
222 case TTK_Class: return DeclSpec::TST_class;
223 case TTK_Enum: return DeclSpec::TST_enum;
227 return DeclSpec::TST_unspecified;
230 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231 SourceLocation IILoc,
232 Scope *S,
233 CXXScopeSpec *SS,
234 ParsedType &SuggestedType) {
235 // We don't have anything to suggest (yet).
236 SuggestedType = ParsedType();
238 // There may have been a typo in the name of the type. Look up typo
239 // results, in case we have something that we can suggest.
240 LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241 NotForRedeclaration);
243 if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244 if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245 if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246 !Result->isInvalidDecl()) {
247 // We found a similarly-named type or interface; suggest that.
248 if (!SS || !SS->isSet())
249 Diag(IILoc, diag::err_unknown_typename_suggest)
250 << &II << Lookup.getLookupName()
251 << FixItHint::CreateReplacement(SourceRange(IILoc),
252 Result->getNameAsString());
253 else if (DeclContext *DC = computeDeclContext(*SS, false))
254 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255 << &II << DC << Lookup.getLookupName() << SS->getRange()
256 << FixItHint::CreateReplacement(SourceRange(IILoc),
257 Result->getNameAsString());
258 else
259 llvm_unreachable("could not have corrected a typo here");
261 Diag(Result->getLocation(), diag::note_previous_decl)
262 << Result->getDeclName();
264 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265 return true;
267 } else if (Lookup.empty()) {
268 // We corrected to a keyword.
269 // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270 Diag(IILoc, diag::err_unknown_typename_suggest)
271 << &II << Corrected;
272 return true;
276 if (getLangOptions().CPlusPlus) {
277 // See if II is a class template that the user forgot to pass arguments to.
278 UnqualifiedId Name;
279 Name.setIdentifier(&II, IILoc);
280 CXXScopeSpec EmptySS;
281 TemplateTy TemplateResult;
282 bool MemberOfUnknownSpecialization;
283 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284 Name, ParsedType(), true, TemplateResult,
285 MemberOfUnknownSpecialization) == TNK_Type_template) {
286 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287 Diag(IILoc, diag::err_template_missing_args) << TplName;
288 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290 << TplDecl->getTemplateParameters()->getSourceRange();
292 return true;
296 // FIXME: Should we move the logic that tries to recover from a missing tag
297 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299 if (!SS || (!SS->isSet() && !SS->isInvalid()))
300 Diag(IILoc, diag::err_unknown_typename) << &II;
301 else if (DeclContext *DC = computeDeclContext(*SS, false))
302 Diag(IILoc, diag::err_typename_nested_not_found)
303 << &II << DC << SS->getRange();
304 else if (isDependentScopeSpecifier(*SS)) {
305 Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306 << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307 << SourceRange(SS->getRange().getBegin(), IILoc)
308 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309 SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310 } else {
311 assert(SS && SS->isInvalid() &&
312 "Invalid scope specifier has already been diagnosed");
315 return true;
318 // Determines the context to return to after temporarily entering a
319 // context. This depends in an unnecessarily complicated way on the
320 // exact ordering of callbacks from the parser.
321 DeclContext *Sema::getContainingDC(DeclContext *DC) {
323 // Functions defined inline within classes aren't parsed until we've
324 // finished parsing the top-level class, so the top-level class is
325 // the context we'll need to return to.
326 if (isa<FunctionDecl>(DC)) {
327 DC = DC->getLexicalParent();
329 // A function not defined within a class will always return to its
330 // lexical context.
331 if (!isa<CXXRecordDecl>(DC))
332 return DC;
334 // A C++ inline method/friend is parsed *after* the topmost class
335 // it was declared in is fully parsed ("complete"); the topmost
336 // class is the context we need to return to.
337 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338 DC = RD;
340 // Return the declaration context of the topmost class the inline method is
341 // declared in.
342 return DC;
345 // ObjCMethodDecls are parsed (for some reason) outside the context
346 // of the class.
347 if (isa<ObjCMethodDecl>(DC))
348 return DC->getLexicalParent()->getLexicalParent();
350 return DC->getLexicalParent();
353 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354 assert(getContainingDC(DC) == CurContext &&
355 "The next DeclContext should be lexically contained in the current one.");
356 CurContext = DC;
357 S->setEntity(DC);
360 void Sema::PopDeclContext() {
361 assert(CurContext && "DeclContext imbalance!");
363 CurContext = getContainingDC(CurContext);
364 assert(CurContext && "Popped translation unit!");
367 /// EnterDeclaratorContext - Used when we must lookup names in the context
368 /// of a declarator's nested name specifier.
370 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371 // C++0x [basic.lookup.unqual]p13:
372 // A name used in the definition of a static data member of class
373 // X (after the qualified-id of the static member) is looked up as
374 // if the name was used in a member function of X.
375 // C++0x [basic.lookup.unqual]p14:
376 // If a variable member of a namespace is defined outside of the
377 // scope of its namespace then any name used in the definition of
378 // the variable member (after the declarator-id) is looked up as
379 // if the definition of the variable member occurred in its
380 // namespace.
381 // Both of these imply that we should push a scope whose context
382 // is the semantic context of the declaration. We can't use
383 // PushDeclContext here because that context is not necessarily
384 // lexically contained in the current context. Fortunately,
385 // the containing scope should have the appropriate information.
387 assert(!S->getEntity() && "scope already has entity");
389 #ifndef NDEBUG
390 Scope *Ancestor = S->getParent();
391 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393 #endif
395 CurContext = DC;
396 S->setEntity(DC);
399 void Sema::ExitDeclaratorContext(Scope *S) {
400 assert(S->getEntity() == CurContext && "Context imbalance!");
402 // Switch back to the lexical context. The safety of this is
403 // enforced by an assert in EnterDeclaratorContext.
404 Scope *Ancestor = S->getParent();
405 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406 CurContext = (DeclContext*) Ancestor->getEntity();
408 // We don't need to do anything with the scope, which is going to
409 // disappear.
412 /// \brief Determine whether we allow overloading of the function
413 /// PrevDecl with another declaration.
415 /// This routine determines whether overloading is possible, not
416 /// whether some new function is actually an overload. It will return
417 /// true in C++ (where we can always provide overloads) or, as an
418 /// extension, in C when the previous function is already an
419 /// overloaded function declaration or has the "overloadable"
420 /// attribute.
421 static bool AllowOverloadingOfFunction(LookupResult &Previous,
422 ASTContext &Context) {
423 if (Context.getLangOptions().CPlusPlus)
424 return true;
426 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427 return true;
429 return (Previous.getResultKind() == LookupResult::Found
430 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433 /// Add this decl to the scope shadowed decl chains.
434 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435 // Move up the scope chain until we find the nearest enclosing
436 // non-transparent context. The declaration will be introduced into this
437 // scope.
438 while (S->getEntity() &&
439 ((DeclContext *)S->getEntity())->isTransparentContext())
440 S = S->getParent();
442 // Add scoped declarations into their context, so that they can be
443 // found later. Declarations without a context won't be inserted
444 // into any context.
445 if (AddToContext)
446 CurContext->addDecl(D);
448 // Out-of-line definitions shouldn't be pushed into scope in C++.
449 // Out-of-line variable and function definitions shouldn't even in C.
450 if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451 D->isOutOfLine())
452 return;
454 // Template instantiations should also not be pushed into scope.
455 if (isa<FunctionDecl>(D) &&
456 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457 return;
459 // If this replaces anything in the current scope,
460 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461 IEnd = IdResolver.end();
462 for (; I != IEnd; ++I) {
463 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464 S->RemoveDecl(*I);
465 IdResolver.RemoveDecl(*I);
467 // Should only need to replace one decl.
468 break;
472 S->AddDecl(D);
473 IdResolver.AddDecl(D);
476 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477 return IdResolver.isDeclInScope(D, Ctx, Context, S);
480 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481 DeclContext *TargetDC = DC->getPrimaryContext();
482 do {
483 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484 if (ScopeDC->getPrimaryContext() == TargetDC)
485 return S;
486 } while ((S = S->getParent()));
488 return 0;
491 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492 DeclContext*,
493 ASTContext&);
495 /// Filters out lookup results that don't fall within the given scope
496 /// as determined by isDeclInScope.
497 static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498 DeclContext *Ctx, Scope *S,
499 bool ConsiderLinkage) {
500 LookupResult::Filter F = R.makeFilter();
501 while (F.hasNext()) {
502 NamedDecl *D = F.next();
504 if (SemaRef.isDeclInScope(D, Ctx, S))
505 continue;
507 if (ConsiderLinkage &&
508 isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509 continue;
511 F.erase();
514 F.done();
517 static bool isUsingDecl(NamedDecl *D) {
518 return isa<UsingShadowDecl>(D) ||
519 isa<UnresolvedUsingTypenameDecl>(D) ||
520 isa<UnresolvedUsingValueDecl>(D);
523 /// Removes using shadow declarations from the lookup results.
524 static void RemoveUsingDecls(LookupResult &R) {
525 LookupResult::Filter F = R.makeFilter();
526 while (F.hasNext())
527 if (isUsingDecl(F.next()))
528 F.erase();
530 F.done();
533 /// \brief Check for this common pattern:
534 /// @code
535 /// class S {
536 /// S(const S&); // DO NOT IMPLEMENT
537 /// void operator=(const S&); // DO NOT IMPLEMENT
538 /// };
539 /// @endcode
540 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541 // FIXME: Should check for private access too but access is set after we get
542 // the decl here.
543 if (D->isThisDeclarationADefinition())
544 return false;
546 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547 return CD->isCopyConstructor();
548 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549 return Method->isCopyAssignmentOperator();
550 return false;
553 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554 assert(D);
556 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557 return false;
559 // Ignore class templates.
560 if (D->getDeclContext()->isDependentContext() ||
561 D->getLexicalDeclContext()->isDependentContext())
562 return false;
564 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566 return false;
568 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570 return false;
571 } else {
572 // 'static inline' functions are used in headers; don't warn.
573 if (FD->getStorageClass() == SC_Static &&
574 FD->isInlineSpecified())
575 return false;
578 if (FD->isThisDeclarationADefinition() &&
579 Context.DeclMustBeEmitted(FD))
580 return false;
582 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
583 if (!VD->isFileVarDecl() ||
584 VD->getType().isConstant(Context) ||
585 Context.DeclMustBeEmitted(VD))
586 return false;
588 if (VD->isStaticDataMember() &&
589 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
590 return false;
592 } else {
593 return false;
596 // Only warn for unused decls internal to the translation unit.
597 if (D->getLinkage() == ExternalLinkage)
598 return false;
600 return true;
603 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
604 if (!D)
605 return;
607 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
608 const FunctionDecl *First = FD->getFirstDeclaration();
609 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
610 return; // First should already be in the vector.
613 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
614 const VarDecl *First = VD->getFirstDeclaration();
615 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
616 return; // First should already be in the vector.
619 if (ShouldWarnIfUnusedFileScopedDecl(D))
620 UnusedFileScopedDecls.push_back(D);
623 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
624 if (D->isInvalidDecl())
625 return false;
627 if (D->isUsed() || D->hasAttr<UnusedAttr>())
628 return false;
630 // White-list anything that isn't a local variable.
631 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
632 !D->getDeclContext()->isFunctionOrMethod())
633 return false;
635 // Types of valid local variables should be complete, so this should succeed.
636 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
638 // White-list anything with an __attribute__((unused)) type.
639 QualType Ty = VD->getType();
641 // Only look at the outermost level of typedef.
642 if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
643 if (TT->getDecl()->hasAttr<UnusedAttr>())
644 return false;
647 // If we failed to complete the type for some reason, or if the type is
648 // dependent, don't diagnose the variable.
649 if (Ty->isIncompleteType() || Ty->isDependentType())
650 return false;
652 if (const TagType *TT = Ty->getAs<TagType>()) {
653 const TagDecl *Tag = TT->getDecl();
654 if (Tag->hasAttr<UnusedAttr>())
655 return false;
657 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
658 // FIXME: Checking for the presence of a user-declared constructor
659 // isn't completely accurate; we'd prefer to check that the initializer
660 // has no side effects.
661 if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
662 return false;
666 // TODO: __attribute__((unused)) templates?
669 return true;
672 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
673 if (!ShouldDiagnoseUnusedDecl(D))
674 return;
676 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
677 Diag(D->getLocation(), diag::warn_unused_exception_param)
678 << D->getDeclName();
679 else
680 Diag(D->getLocation(), diag::warn_unused_variable)
681 << D->getDeclName();
684 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
685 if (S->decl_empty()) return;
686 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
687 "Scope shouldn't contain decls!");
689 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
690 I != E; ++I) {
691 Decl *TmpD = (*I);
692 assert(TmpD && "This decl didn't get pushed??");
694 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
695 NamedDecl *D = cast<NamedDecl>(TmpD);
697 if (!D->getDeclName()) continue;
699 // Diagnose unused variables in this scope.
700 if (!S->hasErrorOccurred())
701 DiagnoseUnusedDecl(D);
703 // Remove this name from our lexical scope.
704 IdResolver.RemoveDecl(D);
708 /// \brief Look for an Objective-C class in the translation unit.
710 /// \param Id The name of the Objective-C class we're looking for. If
711 /// typo-correction fixes this name, the Id will be updated
712 /// to the fixed name.
714 /// \param IdLoc The location of the name in the translation unit.
716 /// \param TypoCorrection If true, this routine will attempt typo correction
717 /// if there is no class with the given name.
719 /// \returns The declaration of the named Objective-C class, or NULL if the
720 /// class could not be found.
721 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
722 SourceLocation IdLoc,
723 bool TypoCorrection) {
724 // The third "scope" argument is 0 since we aren't enabling lazy built-in
725 // creation from this context.
726 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
728 if (!IDecl && TypoCorrection) {
729 // Perform typo correction at the given location, but only if we
730 // find an Objective-C class name.
731 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
732 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
733 (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
734 Diag(IdLoc, diag::err_undef_interface_suggest)
735 << Id << IDecl->getDeclName()
736 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
737 Diag(IDecl->getLocation(), diag::note_previous_decl)
738 << IDecl->getDeclName();
740 Id = IDecl->getIdentifier();
744 return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
747 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
748 /// from S, where a non-field would be declared. This routine copes
749 /// with the difference between C and C++ scoping rules in structs and
750 /// unions. For example, the following code is well-formed in C but
751 /// ill-formed in C++:
752 /// @code
753 /// struct S6 {
754 /// enum { BAR } e;
755 /// };
757 /// void test_S6() {
758 /// struct S6 a;
759 /// a.e = BAR;
760 /// }
761 /// @endcode
762 /// For the declaration of BAR, this routine will return a different
763 /// scope. The scope S will be the scope of the unnamed enumeration
764 /// within S6. In C++, this routine will return the scope associated
765 /// with S6, because the enumeration's scope is a transparent
766 /// context but structures can contain non-field names. In C, this
767 /// routine will return the translation unit scope, since the
768 /// enumeration's scope is a transparent context and structures cannot
769 /// contain non-field names.
770 Scope *Sema::getNonFieldDeclScope(Scope *S) {
771 while (((S->getFlags() & Scope::DeclScope) == 0) ||
772 (S->getEntity() &&
773 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
774 (S->isClassScope() && !getLangOptions().CPlusPlus))
775 S = S->getParent();
776 return S;
779 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
780 /// file scope. lazily create a decl for it. ForRedeclaration is true
781 /// if we're creating this built-in in anticipation of redeclaring the
782 /// built-in.
783 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
784 Scope *S, bool ForRedeclaration,
785 SourceLocation Loc) {
786 Builtin::ID BID = (Builtin::ID)bid;
788 ASTContext::GetBuiltinTypeError Error;
789 QualType R = Context.GetBuiltinType(BID, Error);
790 switch (Error) {
791 case ASTContext::GE_None:
792 // Okay
793 break;
795 case ASTContext::GE_Missing_stdio:
796 if (ForRedeclaration)
797 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
798 << Context.BuiltinInfo.GetName(BID);
799 return 0;
801 case ASTContext::GE_Missing_setjmp:
802 if (ForRedeclaration)
803 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
804 << Context.BuiltinInfo.GetName(BID);
805 return 0;
808 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
809 Diag(Loc, diag::ext_implicit_lib_function_decl)
810 << Context.BuiltinInfo.GetName(BID)
811 << R;
812 if (Context.BuiltinInfo.getHeaderName(BID) &&
813 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
814 != Diagnostic::Ignored)
815 Diag(Loc, diag::note_please_include_header)
816 << Context.BuiltinInfo.getHeaderName(BID)
817 << Context.BuiltinInfo.GetName(BID);
820 FunctionDecl *New = FunctionDecl::Create(Context,
821 Context.getTranslationUnitDecl(),
822 Loc, II, R, /*TInfo=*/0,
823 SC_Extern,
824 SC_None, false,
825 /*hasPrototype=*/true);
826 New->setImplicit();
828 // Create Decl objects for each parameter, adding them to the
829 // FunctionDecl.
830 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
831 llvm::SmallVector<ParmVarDecl*, 16> Params;
832 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
833 Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
834 FT->getArgType(i), /*TInfo=*/0,
835 SC_None, SC_None, 0));
836 New->setParams(Params.data(), Params.size());
839 AddKnownFunctionAttributes(New);
841 // TUScope is the translation-unit scope to insert this function into.
842 // FIXME: This is hideous. We need to teach PushOnScopeChains to
843 // relate Scopes to DeclContexts, and probably eliminate CurContext
844 // entirely, but we're not there yet.
845 DeclContext *SavedContext = CurContext;
846 CurContext = Context.getTranslationUnitDecl();
847 PushOnScopeChains(New, TUScope);
848 CurContext = SavedContext;
849 return New;
852 /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
853 /// same name and scope as a previous declaration 'Old'. Figure out
854 /// how to resolve this situation, merging decls or emitting
855 /// diagnostics as appropriate. If there was an error, set New to be invalid.
857 void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
858 // If the new decl is known invalid already, don't bother doing any
859 // merging checks.
860 if (New->isInvalidDecl()) return;
862 // Allow multiple definitions for ObjC built-in typedefs.
863 // FIXME: Verify the underlying types are equivalent!
864 if (getLangOptions().ObjC1) {
865 const IdentifierInfo *TypeID = New->getIdentifier();
866 switch (TypeID->getLength()) {
867 default: break;
868 case 2:
869 if (!TypeID->isStr("id"))
870 break;
871 Context.ObjCIdRedefinitionType = New->getUnderlyingType();
872 // Install the built-in type for 'id', ignoring the current definition.
873 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
874 return;
875 case 5:
876 if (!TypeID->isStr("Class"))
877 break;
878 Context.ObjCClassRedefinitionType = New->getUnderlyingType();
879 // Install the built-in type for 'Class', ignoring the current definition.
880 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
881 return;
882 case 3:
883 if (!TypeID->isStr("SEL"))
884 break;
885 Context.ObjCSelRedefinitionType = New->getUnderlyingType();
886 // Install the built-in type for 'SEL', ignoring the current definition.
887 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
888 return;
889 case 8:
890 if (!TypeID->isStr("Protocol"))
891 break;
892 Context.setObjCProtoType(New->getUnderlyingType());
893 return;
895 // Fall through - the typedef name was not a builtin type.
898 // Verify the old decl was also a type.
899 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
900 if (!Old) {
901 Diag(New->getLocation(), diag::err_redefinition_different_kind)
902 << New->getDeclName();
904 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
905 if (OldD->getLocation().isValid())
906 Diag(OldD->getLocation(), diag::note_previous_definition);
908 return New->setInvalidDecl();
911 // If the old declaration is invalid, just give up here.
912 if (Old->isInvalidDecl())
913 return New->setInvalidDecl();
915 // Determine the "old" type we'll use for checking and diagnostics.
916 QualType OldType;
917 if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
918 OldType = OldTypedef->getUnderlyingType();
919 else
920 OldType = Context.getTypeDeclType(Old);
922 // If the typedef types are not identical, reject them in all languages and
923 // with any extensions enabled.
925 if (OldType != New->getUnderlyingType() &&
926 Context.getCanonicalType(OldType) !=
927 Context.getCanonicalType(New->getUnderlyingType())) {
928 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
929 << New->getUnderlyingType() << OldType;
930 if (Old->getLocation().isValid())
931 Diag(Old->getLocation(), diag::note_previous_definition);
932 return New->setInvalidDecl();
935 // The types match. Link up the redeclaration chain if the old
936 // declaration was a typedef.
937 // FIXME: this is a potential source of wierdness if the type
938 // spellings don't match exactly.
939 if (isa<TypedefDecl>(Old))
940 New->setPreviousDeclaration(cast<TypedefDecl>(Old));
942 if (getLangOptions().Microsoft)
943 return;
945 if (getLangOptions().CPlusPlus) {
946 // C++ [dcl.typedef]p2:
947 // In a given non-class scope, a typedef specifier can be used to
948 // redefine the name of any type declared in that scope to refer
949 // to the type to which it already refers.
950 if (!isa<CXXRecordDecl>(CurContext))
951 return;
953 // C++0x [dcl.typedef]p4:
954 // In a given class scope, a typedef specifier can be used to redefine
955 // any class-name declared in that scope that is not also a typedef-name
956 // to refer to the type to which it already refers.
958 // This wording came in via DR424, which was a correction to the
959 // wording in DR56, which accidentally banned code like:
961 // struct S {
962 // typedef struct A { } A;
963 // };
965 // in the C++03 standard. We implement the C++0x semantics, which
966 // allow the above but disallow
968 // struct S {
969 // typedef int I;
970 // typedef int I;
971 // };
973 // since that was the intent of DR56.
974 if (!isa<TypedefDecl >(Old))
975 return;
977 Diag(New->getLocation(), diag::err_redefinition)
978 << New->getDeclName();
979 Diag(Old->getLocation(), diag::note_previous_definition);
980 return New->setInvalidDecl();
983 // If we have a redefinition of a typedef in C, emit a warning. This warning
984 // is normally mapped to an error, but can be controlled with
985 // -Wtypedef-redefinition. If either the original or the redefinition is
986 // in a system header, don't emit this for compatibility with GCC.
987 if (getDiagnostics().getSuppressSystemWarnings() &&
988 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
989 Context.getSourceManager().isInSystemHeader(New->getLocation())))
990 return;
992 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
993 << New->getDeclName();
994 Diag(Old->getLocation(), diag::note_previous_definition);
995 return;
998 /// DeclhasAttr - returns true if decl Declaration already has the target
999 /// attribute.
1000 static bool
1001 DeclHasAttr(const Decl *D, const Attr *A) {
1002 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1003 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1004 if ((*i)->getKind() == A->getKind()) {
1005 // FIXME: Don't hardcode this check
1006 if (OA && isa<OwnershipAttr>(*i))
1007 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1008 return true;
1011 return false;
1014 /// MergeDeclAttributes - append attributes from the Old decl to the New one.
1015 static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1016 if (!Old->hasAttrs())
1017 return;
1018 // Ensure that any moving of objects within the allocated map is done before
1019 // we process them.
1020 if (!New->hasAttrs())
1021 New->setAttrs(AttrVec());
1022 for (specific_attr_iterator<InheritableAttr>
1023 i = Old->specific_attr_begin<InheritableAttr>(),
1024 e = Old->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1025 if (!DeclHasAttr(New, *i)) {
1026 InheritableAttr *NewAttr = cast<InheritableAttr>((*i)->clone(C));
1027 NewAttr->setInherited(true);
1028 New->addAttr(NewAttr);
1033 namespace {
1035 /// Used in MergeFunctionDecl to keep track of function parameters in
1036 /// C.
1037 struct GNUCompatibleParamWarning {
1038 ParmVarDecl *OldParm;
1039 ParmVarDecl *NewParm;
1040 QualType PromotedType;
1045 /// getSpecialMember - get the special member enum for a method.
1046 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1047 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1048 if (Ctor->isCopyConstructor())
1049 return Sema::CXXCopyConstructor;
1051 return Sema::CXXConstructor;
1054 if (isa<CXXDestructorDecl>(MD))
1055 return Sema::CXXDestructor;
1057 assert(MD->isCopyAssignmentOperator() &&
1058 "Must have copy assignment operator");
1059 return Sema::CXXCopyAssignment;
1062 /// canRedefineFunction - checks if a function can be redefined. Currently,
1063 /// only extern inline functions can be redefined, and even then only in
1064 /// GNU89 mode.
1065 static bool canRedefineFunction(const FunctionDecl *FD,
1066 const LangOptions& LangOpts) {
1067 return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1068 FD->isInlineSpecified() &&
1069 FD->getStorageClass() == SC_Extern);
1072 /// MergeFunctionDecl - We just parsed a function 'New' from
1073 /// declarator D which has the same name and scope as a previous
1074 /// declaration 'Old'. Figure out how to resolve this situation,
1075 /// merging decls or emitting diagnostics as appropriate.
1077 /// In C++, New and Old must be declarations that are not
1078 /// overloaded. Use IsOverload to determine whether New and Old are
1079 /// overloaded, and to select the Old declaration that New should be
1080 /// merged with.
1082 /// Returns true if there was an error, false otherwise.
1083 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1084 // Verify the old decl was also a function.
1085 FunctionDecl *Old = 0;
1086 if (FunctionTemplateDecl *OldFunctionTemplate
1087 = dyn_cast<FunctionTemplateDecl>(OldD))
1088 Old = OldFunctionTemplate->getTemplatedDecl();
1089 else
1090 Old = dyn_cast<FunctionDecl>(OldD);
1091 if (!Old) {
1092 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1093 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1094 Diag(Shadow->getTargetDecl()->getLocation(),
1095 diag::note_using_decl_target);
1096 Diag(Shadow->getUsingDecl()->getLocation(),
1097 diag::note_using_decl) << 0;
1098 return true;
1101 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1102 << New->getDeclName();
1103 Diag(OldD->getLocation(), diag::note_previous_definition);
1104 return true;
1107 // Determine whether the previous declaration was a definition,
1108 // implicit declaration, or a declaration.
1109 diag::kind PrevDiag;
1110 if (Old->isThisDeclarationADefinition())
1111 PrevDiag = diag::note_previous_definition;
1112 else if (Old->isImplicit())
1113 PrevDiag = diag::note_previous_implicit_declaration;
1114 else
1115 PrevDiag = diag::note_previous_declaration;
1117 QualType OldQType = Context.getCanonicalType(Old->getType());
1118 QualType NewQType = Context.getCanonicalType(New->getType());
1120 // Don't complain about this if we're in GNU89 mode and the old function
1121 // is an extern inline function.
1122 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1123 New->getStorageClass() == SC_Static &&
1124 Old->getStorageClass() != SC_Static &&
1125 !canRedefineFunction(Old, getLangOptions())) {
1126 Diag(New->getLocation(), diag::err_static_non_static)
1127 << New;
1128 Diag(Old->getLocation(), PrevDiag);
1129 return true;
1132 // If a function is first declared with a calling convention, but is
1133 // later declared or defined without one, the second decl assumes the
1134 // calling convention of the first.
1136 // For the new decl, we have to look at the NON-canonical type to tell the
1137 // difference between a function that really doesn't have a calling
1138 // convention and one that is declared cdecl. That's because in
1139 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1140 // because it is the default calling convention.
1142 // Note also that we DO NOT return at this point, because we still have
1143 // other tests to run.
1144 const FunctionType *OldType = cast<FunctionType>(OldQType);
1145 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1146 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1147 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1148 bool RequiresAdjustment = false;
1149 if (OldTypeInfo.getCC() != CC_Default &&
1150 NewTypeInfo.getCC() == CC_Default) {
1151 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1152 RequiresAdjustment = true;
1153 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1154 NewTypeInfo.getCC())) {
1155 // Calling conventions really aren't compatible, so complain.
1156 Diag(New->getLocation(), diag::err_cconv_change)
1157 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1158 << (OldTypeInfo.getCC() == CC_Default)
1159 << (OldTypeInfo.getCC() == CC_Default ? "" :
1160 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1161 Diag(Old->getLocation(), diag::note_previous_declaration);
1162 return true;
1165 // FIXME: diagnose the other way around?
1166 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1167 NewTypeInfo = NewTypeInfo.withNoReturn(true);
1168 RequiresAdjustment = true;
1171 // Merge regparm attribute.
1172 if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1173 if (NewTypeInfo.getRegParm()) {
1174 Diag(New->getLocation(), diag::err_regparm_mismatch)
1175 << NewType->getRegParmType()
1176 << OldType->getRegParmType();
1177 Diag(Old->getLocation(), diag::note_previous_declaration);
1178 return true;
1181 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1182 RequiresAdjustment = true;
1185 if (RequiresAdjustment) {
1186 NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1187 New->setType(QualType(NewType, 0));
1188 NewQType = Context.getCanonicalType(New->getType());
1191 if (getLangOptions().CPlusPlus) {
1192 // (C++98 13.1p2):
1193 // Certain function declarations cannot be overloaded:
1194 // -- Function declarations that differ only in the return type
1195 // cannot be overloaded.
1196 QualType OldReturnType = OldType->getResultType();
1197 QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1198 QualType ResQT;
1199 if (OldReturnType != NewReturnType) {
1200 if (NewReturnType->isObjCObjectPointerType()
1201 && OldReturnType->isObjCObjectPointerType())
1202 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1203 if (ResQT.isNull()) {
1204 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1205 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1206 return true;
1208 else
1209 NewQType = ResQT;
1212 const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1213 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1214 if (OldMethod && NewMethod) {
1215 // Preserve triviality.
1216 NewMethod->setTrivial(OldMethod->isTrivial());
1218 bool isFriend = NewMethod->getFriendObjectKind();
1220 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1221 // -- Member function declarations with the same name and the
1222 // same parameter types cannot be overloaded if any of them
1223 // is a static member function declaration.
1224 if (OldMethod->isStatic() || NewMethod->isStatic()) {
1225 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1226 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1227 return true;
1230 // C++ [class.mem]p1:
1231 // [...] A member shall not be declared twice in the
1232 // member-specification, except that a nested class or member
1233 // class template can be declared and then later defined.
1234 unsigned NewDiag;
1235 if (isa<CXXConstructorDecl>(OldMethod))
1236 NewDiag = diag::err_constructor_redeclared;
1237 else if (isa<CXXDestructorDecl>(NewMethod))
1238 NewDiag = diag::err_destructor_redeclared;
1239 else if (isa<CXXConversionDecl>(NewMethod))
1240 NewDiag = diag::err_conv_function_redeclared;
1241 else
1242 NewDiag = diag::err_member_redeclared;
1244 Diag(New->getLocation(), NewDiag);
1245 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1247 // Complain if this is an explicit declaration of a special
1248 // member that was initially declared implicitly.
1250 // As an exception, it's okay to befriend such methods in order
1251 // to permit the implicit constructor/destructor/operator calls.
1252 } else if (OldMethod->isImplicit()) {
1253 if (isFriend) {
1254 NewMethod->setImplicit();
1255 } else {
1256 Diag(NewMethod->getLocation(),
1257 diag::err_definition_of_implicitly_declared_member)
1258 << New << getSpecialMember(OldMethod);
1259 return true;
1264 // (C++98 8.3.5p3):
1265 // All declarations for a function shall agree exactly in both the
1266 // return type and the parameter-type-list.
1267 // We also want to respect all the extended bits except noreturn.
1269 // noreturn should now match unless the old type info didn't have it.
1270 QualType OldQTypeForComparison = OldQType;
1271 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1272 assert(OldQType == QualType(OldType, 0));
1273 const FunctionType *OldTypeForComparison
1274 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1275 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1276 assert(OldQTypeForComparison.isCanonical());
1279 if (OldQTypeForComparison == NewQType)
1280 return MergeCompatibleFunctionDecls(New, Old);
1282 // Fall through for conflicting redeclarations and redefinitions.
1285 // C: Function types need to be compatible, not identical. This handles
1286 // duplicate function decls like "void f(int); void f(enum X);" properly.
1287 if (!getLangOptions().CPlusPlus &&
1288 Context.typesAreCompatible(OldQType, NewQType)) {
1289 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1290 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1291 const FunctionProtoType *OldProto = 0;
1292 if (isa<FunctionNoProtoType>(NewFuncType) &&
1293 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1294 // The old declaration provided a function prototype, but the
1295 // new declaration does not. Merge in the prototype.
1296 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1297 llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1298 OldProto->arg_type_end());
1299 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1300 ParamTypes.data(), ParamTypes.size(),
1301 OldProto->getExtProtoInfo());
1302 New->setType(NewQType);
1303 New->setHasInheritedPrototype();
1305 // Synthesize a parameter for each argument type.
1306 llvm::SmallVector<ParmVarDecl*, 16> Params;
1307 for (FunctionProtoType::arg_type_iterator
1308 ParamType = OldProto->arg_type_begin(),
1309 ParamEnd = OldProto->arg_type_end();
1310 ParamType != ParamEnd; ++ParamType) {
1311 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312 SourceLocation(), 0,
1313 *ParamType, /*TInfo=*/0,
1314 SC_None, SC_None,
1316 Param->setImplicit();
1317 Params.push_back(Param);
1320 New->setParams(Params.data(), Params.size());
1323 return MergeCompatibleFunctionDecls(New, Old);
1326 // GNU C permits a K&R definition to follow a prototype declaration
1327 // if the declared types of the parameters in the K&R definition
1328 // match the types in the prototype declaration, even when the
1329 // promoted types of the parameters from the K&R definition differ
1330 // from the types in the prototype. GCC then keeps the types from
1331 // the prototype.
1333 // If a variadic prototype is followed by a non-variadic K&R definition,
1334 // the K&R definition becomes variadic. This is sort of an edge case, but
1335 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336 // C99 6.9.1p8.
1337 if (!getLangOptions().CPlusPlus &&
1338 Old->hasPrototype() && !New->hasPrototype() &&
1339 New->getType()->getAs<FunctionProtoType>() &&
1340 Old->getNumParams() == New->getNumParams()) {
1341 llvm::SmallVector<QualType, 16> ArgTypes;
1342 llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343 const FunctionProtoType *OldProto
1344 = Old->getType()->getAs<FunctionProtoType>();
1345 const FunctionProtoType *NewProto
1346 = New->getType()->getAs<FunctionProtoType>();
1348 // Determine whether this is the GNU C extension.
1349 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350 NewProto->getResultType());
1351 bool LooseCompatible = !MergedReturn.isNull();
1352 for (unsigned Idx = 0, End = Old->getNumParams();
1353 LooseCompatible && Idx != End; ++Idx) {
1354 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355 ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356 if (Context.typesAreCompatible(OldParm->getType(),
1357 NewProto->getArgType(Idx))) {
1358 ArgTypes.push_back(NewParm->getType());
1359 } else if (Context.typesAreCompatible(OldParm->getType(),
1360 NewParm->getType(),
1361 /*CompareUnqualified=*/true)) {
1362 GNUCompatibleParamWarning Warn
1363 = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364 Warnings.push_back(Warn);
1365 ArgTypes.push_back(NewParm->getType());
1366 } else
1367 LooseCompatible = false;
1370 if (LooseCompatible) {
1371 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372 Diag(Warnings[Warn].NewParm->getLocation(),
1373 diag::ext_param_promoted_not_compatible_with_prototype)
1374 << Warnings[Warn].PromotedType
1375 << Warnings[Warn].OldParm->getType();
1376 if (Warnings[Warn].OldParm->getLocation().isValid())
1377 Diag(Warnings[Warn].OldParm->getLocation(),
1378 diag::note_previous_declaration);
1381 New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382 ArgTypes.size(),
1383 OldProto->getExtProtoInfo()));
1384 return MergeCompatibleFunctionDecls(New, Old);
1387 // Fall through to diagnose conflicting types.
1390 // A function that has already been declared has been redeclared or defined
1391 // with a different type- show appropriate diagnostic
1392 if (unsigned BuiltinID = Old->getBuiltinID()) {
1393 // The user has declared a builtin function with an incompatible
1394 // signature.
1395 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1396 // The function the user is redeclaring is a library-defined
1397 // function like 'malloc' or 'printf'. Warn about the
1398 // redeclaration, then pretend that we don't know about this
1399 // library built-in.
1400 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1401 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1402 << Old << Old->getType();
1403 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1404 Old->setInvalidDecl();
1405 return false;
1408 PrevDiag = diag::note_previous_builtin_declaration;
1411 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1412 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1413 return true;
1416 /// \brief Completes the merge of two function declarations that are
1417 /// known to be compatible.
1419 /// This routine handles the merging of attributes and other
1420 /// properties of function declarations form the old declaration to
1421 /// the new declaration, once we know that New is in fact a
1422 /// redeclaration of Old.
1424 /// \returns false
1425 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1426 // Merge the attributes
1427 MergeDeclAttributes(New, Old, Context);
1429 // Merge the storage class.
1430 if (Old->getStorageClass() != SC_Extern &&
1431 Old->getStorageClass() != SC_None)
1432 New->setStorageClass(Old->getStorageClass());
1434 // Merge "pure" flag.
1435 if (Old->isPure())
1436 New->setPure();
1438 // Merge the "deleted" flag.
1439 if (Old->isDeleted())
1440 New->setDeleted();
1442 if (getLangOptions().CPlusPlus)
1443 return MergeCXXFunctionDecl(New, Old);
1445 return false;
1448 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
1449 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
1450 /// situation, merging decls or emitting diagnostics as appropriate.
1452 /// Tentative definition rules (C99 6.9.2p2) are checked by
1453 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1454 /// definitions here, since the initializer hasn't been attached.
1456 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1457 // If the new decl is already invalid, don't do any other checking.
1458 if (New->isInvalidDecl())
1459 return;
1461 // Verify the old decl was also a variable.
1462 VarDecl *Old = 0;
1463 if (!Previous.isSingleResult() ||
1464 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1465 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1466 << New->getDeclName();
1467 Diag(Previous.getRepresentativeDecl()->getLocation(),
1468 diag::note_previous_definition);
1469 return New->setInvalidDecl();
1472 // C++ [class.mem]p1:
1473 // A member shall not be declared twice in the member-specification [...]
1475 // Here, we need only consider static data members.
1476 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1477 Diag(New->getLocation(), diag::err_duplicate_member)
1478 << New->getIdentifier();
1479 Diag(Old->getLocation(), diag::note_previous_declaration);
1480 New->setInvalidDecl();
1483 MergeDeclAttributes(New, Old, Context);
1485 // Merge the types
1486 QualType MergedT;
1487 if (getLangOptions().CPlusPlus) {
1488 if (Context.hasSameType(New->getType(), Old->getType()))
1489 MergedT = New->getType();
1490 // C++ [basic.link]p10:
1491 // [...] the types specified by all declarations referring to a given
1492 // object or function shall be identical, except that declarations for an
1493 // array object can specify array types that differ by the presence or
1494 // absence of a major array bound (8.3.4).
1495 else if (Old->getType()->isIncompleteArrayType() &&
1496 New->getType()->isArrayType()) {
1497 CanQual<ArrayType> OldArray
1498 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499 CanQual<ArrayType> NewArray
1500 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501 if (OldArray->getElementType() == NewArray->getElementType())
1502 MergedT = New->getType();
1503 } else if (Old->getType()->isArrayType() &&
1504 New->getType()->isIncompleteArrayType()) {
1505 CanQual<ArrayType> OldArray
1506 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1507 CanQual<ArrayType> NewArray
1508 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1509 if (OldArray->getElementType() == NewArray->getElementType())
1510 MergedT = Old->getType();
1511 } else if (New->getType()->isObjCObjectPointerType()
1512 && Old->getType()->isObjCObjectPointerType()) {
1513 MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1515 } else {
1516 MergedT = Context.mergeTypes(New->getType(), Old->getType());
1518 if (MergedT.isNull()) {
1519 Diag(New->getLocation(), diag::err_redefinition_different_type)
1520 << New->getDeclName();
1521 Diag(Old->getLocation(), diag::note_previous_definition);
1522 return New->setInvalidDecl();
1524 New->setType(MergedT);
1526 // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1527 if (New->getStorageClass() == SC_Static &&
1528 (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1529 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1530 Diag(Old->getLocation(), diag::note_previous_definition);
1531 return New->setInvalidDecl();
1533 // C99 6.2.2p4:
1534 // For an identifier declared with the storage-class specifier
1535 // extern in a scope in which a prior declaration of that
1536 // identifier is visible,23) if the prior declaration specifies
1537 // internal or external linkage, the linkage of the identifier at
1538 // the later declaration is the same as the linkage specified at
1539 // the prior declaration. If no prior declaration is visible, or
1540 // if the prior declaration specifies no linkage, then the
1541 // identifier has external linkage.
1542 if (New->hasExternalStorage() && Old->hasLinkage())
1543 /* Okay */;
1544 else if (New->getStorageClass() != SC_Static &&
1545 Old->getStorageClass() == SC_Static) {
1546 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1547 Diag(Old->getLocation(), diag::note_previous_definition);
1548 return New->setInvalidDecl();
1551 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1553 // FIXME: The test for external storage here seems wrong? We still
1554 // need to check for mismatches.
1555 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1556 // Don't complain about out-of-line definitions of static members.
1557 !(Old->getLexicalDeclContext()->isRecord() &&
1558 !New->getLexicalDeclContext()->isRecord())) {
1559 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1560 Diag(Old->getLocation(), diag::note_previous_definition);
1561 return New->setInvalidDecl();
1564 if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1565 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1566 Diag(Old->getLocation(), diag::note_previous_definition);
1567 } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1568 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1569 Diag(Old->getLocation(), diag::note_previous_definition);
1572 // C++ doesn't have tentative definitions, so go right ahead and check here.
1573 const VarDecl *Def;
1574 if (getLangOptions().CPlusPlus &&
1575 New->isThisDeclarationADefinition() == VarDecl::Definition &&
1576 (Def = Old->getDefinition())) {
1577 Diag(New->getLocation(), diag::err_redefinition)
1578 << New->getDeclName();
1579 Diag(Def->getLocation(), diag::note_previous_definition);
1580 New->setInvalidDecl();
1581 return;
1583 // c99 6.2.2 P4.
1584 // For an identifier declared with the storage-class specifier extern in a
1585 // scope in which a prior declaration of that identifier is visible, if
1586 // the prior declaration specifies internal or external linkage, the linkage
1587 // of the identifier at the later declaration is the same as the linkage
1588 // specified at the prior declaration.
1589 // FIXME. revisit this code.
1590 if (New->hasExternalStorage() &&
1591 Old->getLinkage() == InternalLinkage &&
1592 New->getDeclContext() == Old->getDeclContext())
1593 New->setStorageClass(Old->getStorageClass());
1595 // Keep a chain of previous declarations.
1596 New->setPreviousDeclaration(Old);
1598 // Inherit access appropriately.
1599 New->setAccess(Old->getAccess());
1602 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1603 /// no declarator (e.g. "struct foo;") is parsed.
1604 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1605 DeclSpec &DS) {
1606 // FIXME: Error on inline/virtual/explicit
1607 // FIXME: Warn on useless __thread
1608 // FIXME: Warn on useless const/volatile
1609 // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1610 // FIXME: Warn on useless attributes
1611 Decl *TagD = 0;
1612 TagDecl *Tag = 0;
1613 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1614 DS.getTypeSpecType() == DeclSpec::TST_struct ||
1615 DS.getTypeSpecType() == DeclSpec::TST_union ||
1616 DS.getTypeSpecType() == DeclSpec::TST_enum) {
1617 TagD = DS.getRepAsDecl();
1619 if (!TagD) // We probably had an error
1620 return 0;
1622 // Note that the above type specs guarantee that the
1623 // type rep is a Decl, whereas in many of the others
1624 // it's a Type.
1625 Tag = dyn_cast<TagDecl>(TagD);
1628 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1629 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1630 // or incomplete types shall not be restrict-qualified."
1631 if (TypeQuals & DeclSpec::TQ_restrict)
1632 Diag(DS.getRestrictSpecLoc(),
1633 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1634 << DS.getSourceRange();
1637 if (DS.isFriendSpecified()) {
1638 // If we're dealing with a decl but not a TagDecl, assume that
1639 // whatever routines created it handled the friendship aspect.
1640 if (TagD && !Tag)
1641 return 0;
1642 return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1645 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1646 ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1648 if (!Record->getDeclName() && Record->isDefinition() &&
1649 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1650 if (getLangOptions().CPlusPlus ||
1651 Record->getDeclContext()->isRecord())
1652 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1654 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655 << DS.getSourceRange();
1659 // Check for Microsoft C extension: anonymous struct.
1660 if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1661 CurContext->isRecord() &&
1662 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1663 // Handle 2 kinds of anonymous struct:
1664 // struct STRUCT;
1665 // and
1666 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
1667 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1668 if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1669 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1670 DS.getRepAsType().get()->isStructureType())) {
1671 Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1672 << DS.getSourceRange();
1673 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1677 if (getLangOptions().CPlusPlus &&
1678 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1679 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1680 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1681 !Enum->getIdentifier() && !Enum->isInvalidDecl())
1682 Diag(Enum->getLocation(), diag::ext_no_declarators)
1683 << DS.getSourceRange();
1685 if (!DS.isMissingDeclaratorOk() &&
1686 DS.getTypeSpecType() != DeclSpec::TST_error) {
1687 // Warn about typedefs of enums without names, since this is an
1688 // extension in both Microsoft and GNU.
1689 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1690 Tag && isa<EnumDecl>(Tag)) {
1691 Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1692 << DS.getSourceRange();
1693 return Tag;
1696 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1697 << DS.getSourceRange();
1700 return TagD;
1703 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1704 /// builds a statement for it and returns it so it is evaluated.
1705 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1706 StmtResult R;
1707 if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1708 Expr *Exp = DS.getRepAsExpr();
1709 QualType Ty = Exp->getType();
1710 if (Ty->isPointerType()) {
1712 Ty = Ty->getAs<PointerType>()->getPointeeType();
1713 while (Ty->isPointerType());
1715 if (Ty->isVariableArrayType()) {
1716 R = ActOnExprStmt(MakeFullExpr(Exp));
1719 return R;
1722 /// We are trying to inject an anonymous member into the given scope;
1723 /// check if there's an existing declaration that can't be overloaded.
1725 /// \return true if this is a forbidden redeclaration
1726 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1727 Scope *S,
1728 DeclContext *Owner,
1729 DeclarationName Name,
1730 SourceLocation NameLoc,
1731 unsigned diagnostic) {
1732 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1733 Sema::ForRedeclaration);
1734 if (!SemaRef.LookupName(R, S)) return false;
1736 if (R.getAsSingle<TagDecl>())
1737 return false;
1739 // Pick a representative declaration.
1740 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1741 assert(PrevDecl && "Expected a non-null Decl");
1743 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1744 return false;
1746 SemaRef.Diag(NameLoc, diagnostic) << Name;
1747 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1749 return true;
1752 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
1753 /// anonymous struct or union AnonRecord into the owning context Owner
1754 /// and scope S. This routine will be invoked just after we realize
1755 /// that an unnamed union or struct is actually an anonymous union or
1756 /// struct, e.g.,
1758 /// @code
1759 /// union {
1760 /// int i;
1761 /// float f;
1762 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1763 /// // f into the surrounding scope.x
1764 /// @endcode
1766 /// This routine is recursive, injecting the names of nested anonymous
1767 /// structs/unions into the owning context and scope as well.
1768 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1769 DeclContext *Owner,
1770 RecordDecl *AnonRecord,
1771 AccessSpecifier AS,
1772 llvm::SmallVector<NamedDecl*, 2> &Chaining,
1773 bool MSAnonStruct) {
1774 unsigned diagKind
1775 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1776 : diag::err_anonymous_struct_member_redecl;
1778 bool Invalid = false;
1780 // Look every FieldDecl and IndirectFieldDecl with a name.
1781 for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1782 DEnd = AnonRecord->decls_end();
1783 D != DEnd; ++D) {
1784 if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1785 cast<NamedDecl>(*D)->getDeclName()) {
1786 ValueDecl *VD = cast<ValueDecl>(*D);
1787 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1788 VD->getLocation(), diagKind)) {
1789 // C++ [class.union]p2:
1790 // The names of the members of an anonymous union shall be
1791 // distinct from the names of any other entity in the
1792 // scope in which the anonymous union is declared.
1793 Invalid = true;
1794 } else {
1795 // C++ [class.union]p2:
1796 // For the purpose of name lookup, after the anonymous union
1797 // definition, the members of the anonymous union are
1798 // considered to have been defined in the scope in which the
1799 // anonymous union is declared.
1800 unsigned OldChainingSize = Chaining.size();
1801 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1802 for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1803 PE = IF->chain_end(); PI != PE; ++PI)
1804 Chaining.push_back(*PI);
1805 else
1806 Chaining.push_back(VD);
1808 assert(Chaining.size() >= 2);
1809 NamedDecl **NamedChain =
1810 new (SemaRef.Context)NamedDecl*[Chaining.size()];
1811 for (unsigned i = 0; i < Chaining.size(); i++)
1812 NamedChain[i] = Chaining[i];
1814 IndirectFieldDecl* IndirectField =
1815 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1816 VD->getIdentifier(), VD->getType(),
1817 NamedChain, Chaining.size());
1819 IndirectField->setAccess(AS);
1820 IndirectField->setImplicit();
1821 SemaRef.PushOnScopeChains(IndirectField, S);
1823 // That includes picking up the appropriate access specifier.
1824 if (AS != AS_none) IndirectField->setAccess(AS);
1826 Chaining.resize(OldChainingSize);
1831 return Invalid;
1834 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1835 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
1836 /// illegal input values are mapped to SC_None.
1837 static StorageClass
1838 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1839 switch (StorageClassSpec) {
1840 case DeclSpec::SCS_unspecified: return SC_None;
1841 case DeclSpec::SCS_extern: return SC_Extern;
1842 case DeclSpec::SCS_static: return SC_Static;
1843 case DeclSpec::SCS_auto: return SC_Auto;
1844 case DeclSpec::SCS_register: return SC_Register;
1845 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1846 // Illegal SCSs map to None: error reporting is up to the caller.
1847 case DeclSpec::SCS_mutable: // Fall through.
1848 case DeclSpec::SCS_typedef: return SC_None;
1850 llvm_unreachable("unknown storage class specifier");
1853 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1854 /// a StorageClass. Any error reporting is up to the caller:
1855 /// illegal input values are mapped to SC_None.
1856 static StorageClass
1857 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1858 switch (StorageClassSpec) {
1859 case DeclSpec::SCS_unspecified: return SC_None;
1860 case DeclSpec::SCS_extern: return SC_Extern;
1861 case DeclSpec::SCS_static: return SC_Static;
1862 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1863 // Illegal SCSs map to None: error reporting is up to the caller.
1864 case DeclSpec::SCS_auto: // Fall through.
1865 case DeclSpec::SCS_mutable: // Fall through.
1866 case DeclSpec::SCS_register: // Fall through.
1867 case DeclSpec::SCS_typedef: return SC_None;
1869 llvm_unreachable("unknown storage class specifier");
1872 /// BuildAnonymousStructOrUnion - Handle the declaration of an
1873 /// anonymous structure or union. Anonymous unions are a C++ feature
1874 /// (C++ [class.union]) and a GNU C extension; anonymous structures
1875 /// are a GNU C and GNU C++ extension.
1876 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1877 AccessSpecifier AS,
1878 RecordDecl *Record) {
1879 DeclContext *Owner = Record->getDeclContext();
1881 // Diagnose whether this anonymous struct/union is an extension.
1882 if (Record->isUnion() && !getLangOptions().CPlusPlus)
1883 Diag(Record->getLocation(), diag::ext_anonymous_union);
1884 else if (!Record->isUnion())
1885 Diag(Record->getLocation(), diag::ext_anonymous_struct);
1887 // C and C++ require different kinds of checks for anonymous
1888 // structs/unions.
1889 bool Invalid = false;
1890 if (getLangOptions().CPlusPlus) {
1891 const char* PrevSpec = 0;
1892 unsigned DiagID;
1893 // C++ [class.union]p3:
1894 // Anonymous unions declared in a named namespace or in the
1895 // global namespace shall be declared static.
1896 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1897 (isa<TranslationUnitDecl>(Owner) ||
1898 (isa<NamespaceDecl>(Owner) &&
1899 cast<NamespaceDecl>(Owner)->getDeclName()))) {
1900 Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1901 Invalid = true;
1903 // Recover by adding 'static'.
1904 DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1905 PrevSpec, DiagID);
1907 // C++ [class.union]p3:
1908 // A storage class is not allowed in a declaration of an
1909 // anonymous union in a class scope.
1910 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1911 isa<RecordDecl>(Owner)) {
1912 Diag(DS.getStorageClassSpecLoc(),
1913 diag::err_anonymous_union_with_storage_spec);
1914 Invalid = true;
1916 // Recover by removing the storage specifier.
1917 DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1918 PrevSpec, DiagID);
1921 // C++ [class.union]p2:
1922 // The member-specification of an anonymous union shall only
1923 // define non-static data members. [Note: nested types and
1924 // functions cannot be declared within an anonymous union. ]
1925 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1926 MemEnd = Record->decls_end();
1927 Mem != MemEnd; ++Mem) {
1928 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1929 // C++ [class.union]p3:
1930 // An anonymous union shall not have private or protected
1931 // members (clause 11).
1932 assert(FD->getAccess() != AS_none);
1933 if (FD->getAccess() != AS_public) {
1934 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1935 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1936 Invalid = true;
1939 if (CheckNontrivialField(FD))
1940 Invalid = true;
1941 } else if ((*Mem)->isImplicit()) {
1942 // Any implicit members are fine.
1943 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1944 // This is a type that showed up in an
1945 // elaborated-type-specifier inside the anonymous struct or
1946 // union, but which actually declares a type outside of the
1947 // anonymous struct or union. It's okay.
1948 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1949 if (!MemRecord->isAnonymousStructOrUnion() &&
1950 MemRecord->getDeclName()) {
1951 // Visual C++ allows type definition in anonymous struct or union.
1952 if (getLangOptions().Microsoft)
1953 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1954 << (int)Record->isUnion();
1955 else {
1956 // This is a nested type declaration.
1957 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1958 << (int)Record->isUnion();
1959 Invalid = true;
1962 } else if (isa<AccessSpecDecl>(*Mem)) {
1963 // Any access specifier is fine.
1964 } else {
1965 // We have something that isn't a non-static data
1966 // member. Complain about it.
1967 unsigned DK = diag::err_anonymous_record_bad_member;
1968 if (isa<TypeDecl>(*Mem))
1969 DK = diag::err_anonymous_record_with_type;
1970 else if (isa<FunctionDecl>(*Mem))
1971 DK = diag::err_anonymous_record_with_function;
1972 else if (isa<VarDecl>(*Mem))
1973 DK = diag::err_anonymous_record_with_static;
1975 // Visual C++ allows type definition in anonymous struct or union.
1976 if (getLangOptions().Microsoft &&
1977 DK == diag::err_anonymous_record_with_type)
1978 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1979 << (int)Record->isUnion();
1980 else {
1981 Diag((*Mem)->getLocation(), DK)
1982 << (int)Record->isUnion();
1983 Invalid = true;
1989 if (!Record->isUnion() && !Owner->isRecord()) {
1990 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1991 << (int)getLangOptions().CPlusPlus;
1992 Invalid = true;
1995 // Mock up a declarator.
1996 Declarator Dc(DS, Declarator::TypeNameContext);
1997 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1998 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2000 // Create a declaration for this anonymous struct/union.
2001 NamedDecl *Anon = 0;
2002 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2003 Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2004 /*IdentifierInfo=*/0,
2005 Context.getTypeDeclType(Record),
2006 TInfo,
2007 /*BitWidth=*/0, /*Mutable=*/false);
2008 Anon->setAccess(AS);
2009 if (getLangOptions().CPlusPlus)
2010 FieldCollector->Add(cast<FieldDecl>(Anon));
2011 } else {
2012 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2013 assert(SCSpec != DeclSpec::SCS_typedef &&
2014 "Parser allowed 'typedef' as storage class VarDecl.");
2015 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2016 if (SCSpec == DeclSpec::SCS_mutable) {
2017 // mutable can only appear on non-static class members, so it's always
2018 // an error here
2019 Diag(Record->getLocation(), diag::err_mutable_nonmember);
2020 Invalid = true;
2021 SC = SC_None;
2023 SCSpec = DS.getStorageClassSpecAsWritten();
2024 VarDecl::StorageClass SCAsWritten
2025 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2027 Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2028 /*IdentifierInfo=*/0,
2029 Context.getTypeDeclType(Record),
2030 TInfo, SC, SCAsWritten);
2032 Anon->setImplicit();
2034 // Add the anonymous struct/union object to the current
2035 // context. We'll be referencing this object when we refer to one of
2036 // its members.
2037 Owner->addDecl(Anon);
2039 // Inject the members of the anonymous struct/union into the owning
2040 // context and into the identifier resolver chain for name lookup
2041 // purposes.
2042 llvm::SmallVector<NamedDecl*, 2> Chain;
2043 Chain.push_back(Anon);
2045 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2046 Chain, false))
2047 Invalid = true;
2049 // Mark this as an anonymous struct/union type. Note that we do not
2050 // do this until after we have already checked and injected the
2051 // members of this anonymous struct/union type, because otherwise
2052 // the members could be injected twice: once by DeclContext when it
2053 // builds its lookup table, and once by
2054 // InjectAnonymousStructOrUnionMembers.
2055 Record->setAnonymousStructOrUnion(true);
2057 if (Invalid)
2058 Anon->setInvalidDecl();
2060 return Anon;
2063 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2064 /// Microsoft C anonymous structure.
2065 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2066 /// Example:
2068 /// struct A { int a; };
2069 /// struct B { struct A; int b; };
2071 /// void foo() {
2072 /// B var;
2073 /// var.a = 3;
2074 /// }
2076 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2077 RecordDecl *Record) {
2079 // If there is no Record, get the record via the typedef.
2080 if (!Record)
2081 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2083 // Mock up a declarator.
2084 Declarator Dc(DS, Declarator::TypeNameContext);
2085 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2086 assert(TInfo && "couldn't build declarator info for anonymous struct");
2088 // Create a declaration for this anonymous struct.
2089 NamedDecl* Anon = FieldDecl::Create(Context,
2090 cast<RecordDecl>(CurContext),
2091 DS.getSourceRange().getBegin(),
2092 /*IdentifierInfo=*/0,
2093 Context.getTypeDeclType(Record),
2094 TInfo,
2095 /*BitWidth=*/0, /*Mutable=*/false);
2096 Anon->setImplicit();
2098 // Add the anonymous struct object to the current context.
2099 CurContext->addDecl(Anon);
2101 // Inject the members of the anonymous struct into the current
2102 // context and into the identifier resolver chain for name lookup
2103 // purposes.
2104 llvm::SmallVector<NamedDecl*, 2> Chain;
2105 Chain.push_back(Anon);
2107 if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2108 Record->getDefinition(),
2109 AS_none, Chain, true))
2110 Anon->setInvalidDecl();
2112 return Anon;
2115 /// GetNameForDeclarator - Determine the full declaration name for the
2116 /// given Declarator.
2117 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2118 return GetNameFromUnqualifiedId(D.getName());
2121 /// \brief Retrieves the declaration name from a parsed unqualified-id.
2122 DeclarationNameInfo
2123 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2124 DeclarationNameInfo NameInfo;
2125 NameInfo.setLoc(Name.StartLocation);
2127 switch (Name.getKind()) {
2129 case UnqualifiedId::IK_Identifier:
2130 NameInfo.setName(Name.Identifier);
2131 NameInfo.setLoc(Name.StartLocation);
2132 return NameInfo;
2134 case UnqualifiedId::IK_OperatorFunctionId:
2135 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2136 Name.OperatorFunctionId.Operator));
2137 NameInfo.setLoc(Name.StartLocation);
2138 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2139 = Name.OperatorFunctionId.SymbolLocations[0];
2140 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2141 = Name.EndLocation.getRawEncoding();
2142 return NameInfo;
2144 case UnqualifiedId::IK_LiteralOperatorId:
2145 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2146 Name.Identifier));
2147 NameInfo.setLoc(Name.StartLocation);
2148 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2149 return NameInfo;
2151 case UnqualifiedId::IK_ConversionFunctionId: {
2152 TypeSourceInfo *TInfo;
2153 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2154 if (Ty.isNull())
2155 return DeclarationNameInfo();
2156 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2157 Context.getCanonicalType(Ty)));
2158 NameInfo.setLoc(Name.StartLocation);
2159 NameInfo.setNamedTypeInfo(TInfo);
2160 return NameInfo;
2163 case UnqualifiedId::IK_ConstructorName: {
2164 TypeSourceInfo *TInfo;
2165 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2166 if (Ty.isNull())
2167 return DeclarationNameInfo();
2168 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2169 Context.getCanonicalType(Ty)));
2170 NameInfo.setLoc(Name.StartLocation);
2171 NameInfo.setNamedTypeInfo(TInfo);
2172 return NameInfo;
2175 case UnqualifiedId::IK_ConstructorTemplateId: {
2176 // In well-formed code, we can only have a constructor
2177 // template-id that refers to the current context, so go there
2178 // to find the actual type being constructed.
2179 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2180 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2181 return DeclarationNameInfo();
2183 // Determine the type of the class being constructed.
2184 QualType CurClassType = Context.getTypeDeclType(CurClass);
2186 // FIXME: Check two things: that the template-id names the same type as
2187 // CurClassType, and that the template-id does not occur when the name
2188 // was qualified.
2190 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2191 Context.getCanonicalType(CurClassType)));
2192 NameInfo.setLoc(Name.StartLocation);
2193 // FIXME: should we retrieve TypeSourceInfo?
2194 NameInfo.setNamedTypeInfo(0);
2195 return NameInfo;
2198 case UnqualifiedId::IK_DestructorName: {
2199 TypeSourceInfo *TInfo;
2200 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2201 if (Ty.isNull())
2202 return DeclarationNameInfo();
2203 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2204 Context.getCanonicalType(Ty)));
2205 NameInfo.setLoc(Name.StartLocation);
2206 NameInfo.setNamedTypeInfo(TInfo);
2207 return NameInfo;
2210 case UnqualifiedId::IK_TemplateId: {
2211 TemplateName TName = Name.TemplateId->Template.get();
2212 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2213 return Context.getNameForTemplate(TName, TNameLoc);
2216 } // switch (Name.getKind())
2218 assert(false && "Unknown name kind");
2219 return DeclarationNameInfo();
2222 /// isNearlyMatchingFunction - Determine whether the C++ functions
2223 /// Declaration and Definition are "nearly" matching. This heuristic
2224 /// is used to improve diagnostics in the case where an out-of-line
2225 /// function definition doesn't match any declaration within
2226 /// the class or namespace.
2227 static bool isNearlyMatchingFunction(ASTContext &Context,
2228 FunctionDecl *Declaration,
2229 FunctionDecl *Definition) {
2230 if (Declaration->param_size() != Definition->param_size())
2231 return false;
2232 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2233 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2234 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2236 if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2237 DefParamTy.getNonReferenceType()))
2238 return false;
2241 return true;
2244 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2245 /// declarator needs to be rebuilt in the current instantiation.
2246 /// Any bits of declarator which appear before the name are valid for
2247 /// consideration here. That's specifically the type in the decl spec
2248 /// and the base type in any member-pointer chunks.
2249 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2250 DeclarationName Name) {
2251 // The types we specifically need to rebuild are:
2252 // - typenames, typeofs, and decltypes
2253 // - types which will become injected class names
2254 // Of course, we also need to rebuild any type referencing such a
2255 // type. It's safest to just say "dependent", but we call out a
2256 // few cases here.
2258 DeclSpec &DS = D.getMutableDeclSpec();
2259 switch (DS.getTypeSpecType()) {
2260 case DeclSpec::TST_typename:
2261 case DeclSpec::TST_typeofType:
2262 case DeclSpec::TST_decltype: {
2263 // Grab the type from the parser.
2264 TypeSourceInfo *TSI = 0;
2265 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2266 if (T.isNull() || !T->isDependentType()) break;
2268 // Make sure there's a type source info. This isn't really much
2269 // of a waste; most dependent types should have type source info
2270 // attached already.
2271 if (!TSI)
2272 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2274 // Rebuild the type in the current instantiation.
2275 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2276 if (!TSI) return true;
2278 // Store the new type back in the decl spec.
2279 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2280 DS.UpdateTypeRep(LocType);
2281 break;
2284 case DeclSpec::TST_typeofExpr: {
2285 Expr *E = DS.getRepAsExpr();
2286 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2287 if (Result.isInvalid()) return true;
2288 DS.UpdateExprRep(Result.get());
2289 break;
2292 default:
2293 // Nothing to do for these decl specs.
2294 break;
2297 // It doesn't matter what order we do this in.
2298 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2299 DeclaratorChunk &Chunk = D.getTypeObject(I);
2301 // The only type information in the declarator which can come
2302 // before the declaration name is the base type of a member
2303 // pointer.
2304 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2305 continue;
2307 // Rebuild the scope specifier in-place.
2308 CXXScopeSpec &SS = Chunk.Mem.Scope();
2309 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2310 return true;
2313 return false;
2316 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2317 return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2320 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2321 MultiTemplateParamsArg TemplateParamLists,
2322 bool IsFunctionDefinition) {
2323 // TODO: consider using NameInfo for diagnostic.
2324 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2325 DeclarationName Name = NameInfo.getName();
2327 // All of these full declarators require an identifier. If it doesn't have
2328 // one, the ParsedFreeStandingDeclSpec action should be used.
2329 if (!Name) {
2330 if (!D.isInvalidType()) // Reject this if we think it is valid.
2331 Diag(D.getDeclSpec().getSourceRange().getBegin(),
2332 diag::err_declarator_need_ident)
2333 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2334 return 0;
2335 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2336 return 0;
2338 // The scope passed in may not be a decl scope. Zip up the scope tree until
2339 // we find one that is.
2340 while ((S->getFlags() & Scope::DeclScope) == 0 ||
2341 (S->getFlags() & Scope::TemplateParamScope) != 0)
2342 S = S->getParent();
2344 DeclContext *DC = CurContext;
2345 if (D.getCXXScopeSpec().isInvalid())
2346 D.setInvalidType();
2347 else if (D.getCXXScopeSpec().isSet()) {
2348 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2349 UPPC_DeclarationQualifier))
2350 return 0;
2352 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2353 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2354 if (!DC) {
2355 // If we could not compute the declaration context, it's because the
2356 // declaration context is dependent but does not refer to a class,
2357 // class template, or class template partial specialization. Complain
2358 // and return early, to avoid the coming semantic disaster.
2359 Diag(D.getIdentifierLoc(),
2360 diag::err_template_qualified_declarator_no_match)
2361 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2362 << D.getCXXScopeSpec().getRange();
2363 return 0;
2366 bool IsDependentContext = DC->isDependentContext();
2368 if (!IsDependentContext &&
2369 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2370 return 0;
2372 if (isa<CXXRecordDecl>(DC)) {
2373 if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2374 Diag(D.getIdentifierLoc(),
2375 diag::err_member_def_undefined_record)
2376 << Name << DC << D.getCXXScopeSpec().getRange();
2377 D.setInvalidType();
2378 } else if (isa<CXXRecordDecl>(CurContext) &&
2379 !D.getDeclSpec().isFriendSpecified()) {
2380 // The user provided a superfluous scope specifier inside a class
2381 // definition:
2383 // class X {
2384 // void X::f();
2385 // };
2386 if (CurContext->Equals(DC))
2387 Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2388 << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2389 else
2390 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2391 << Name << D.getCXXScopeSpec().getRange();
2393 // Pretend that this qualifier was not here.
2394 D.getCXXScopeSpec().clear();
2398 // Check whether we need to rebuild the type of the given
2399 // declaration in the current instantiation.
2400 if (EnteringContext && IsDependentContext &&
2401 TemplateParamLists.size() != 0) {
2402 ContextRAII SavedContext(*this, DC);
2403 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2404 D.setInvalidType();
2408 // C++ [class.mem]p13:
2409 // If T is the name of a class, then each of the following shall have a
2410 // name different from T:
2411 // - every static data member of class T;
2412 // - every member function of class T
2413 // - every member of class T that is itself a type;
2414 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2415 if (Record->getIdentifier() && Record->getDeclName() == Name) {
2416 Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2417 << Name;
2419 // If this is a typedef, we'll end up spewing multiple diagnostics.
2420 // Just return early; it's safer.
2421 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2422 return 0;
2425 NamedDecl *New;
2427 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2428 QualType R = TInfo->getType();
2430 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2431 UPPC_DeclarationType))
2432 D.setInvalidType();
2434 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2435 ForRedeclaration);
2437 // See if this is a redefinition of a variable in the same scope.
2438 if (!D.getCXXScopeSpec().isSet()) {
2439 bool IsLinkageLookup = false;
2441 // If the declaration we're planning to build will be a function
2442 // or object with linkage, then look for another declaration with
2443 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2444 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2445 /* Do nothing*/;
2446 else if (R->isFunctionType()) {
2447 if (CurContext->isFunctionOrMethod() ||
2448 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2449 IsLinkageLookup = true;
2450 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2451 IsLinkageLookup = true;
2452 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2453 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2454 IsLinkageLookup = true;
2456 if (IsLinkageLookup)
2457 Previous.clear(LookupRedeclarationWithLinkage);
2459 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2460 } else { // Something like "int foo::x;"
2461 LookupQualifiedName(Previous, DC);
2463 // Don't consider using declarations as previous declarations for
2464 // out-of-line members.
2465 RemoveUsingDecls(Previous);
2467 // C++ 7.3.1.2p2:
2468 // Members (including explicit specializations of templates) of a named
2469 // namespace can also be defined outside that namespace by explicit
2470 // qualification of the name being defined, provided that the entity being
2471 // defined was already declared in the namespace and the definition appears
2472 // after the point of declaration in a namespace that encloses the
2473 // declarations namespace.
2475 // Note that we only check the context at this point. We don't yet
2476 // have enough information to make sure that PrevDecl is actually
2477 // the declaration we want to match. For example, given:
2479 // class X {
2480 // void f();
2481 // void f(float);
2482 // };
2484 // void X::f(int) { } // ill-formed
2486 // In this case, PrevDecl will point to the overload set
2487 // containing the two f's declared in X, but neither of them
2488 // matches.
2490 // First check whether we named the global scope.
2491 if (isa<TranslationUnitDecl>(DC)) {
2492 Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2493 << Name << D.getCXXScopeSpec().getRange();
2494 } else {
2495 DeclContext *Cur = CurContext;
2496 while (isa<LinkageSpecDecl>(Cur))
2497 Cur = Cur->getParent();
2498 if (!Cur->Encloses(DC)) {
2499 // The qualifying scope doesn't enclose the original declaration.
2500 // Emit diagnostic based on current scope.
2501 SourceLocation L = D.getIdentifierLoc();
2502 SourceRange R = D.getCXXScopeSpec().getRange();
2503 if (isa<FunctionDecl>(Cur))
2504 Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2505 else
2506 Diag(L, diag::err_invalid_declarator_scope)
2507 << Name << cast<NamedDecl>(DC) << R;
2508 D.setInvalidType();
2513 if (Previous.isSingleResult() &&
2514 Previous.getFoundDecl()->isTemplateParameter()) {
2515 // Maybe we will complain about the shadowed template parameter.
2516 if (!D.isInvalidType())
2517 if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2518 Previous.getFoundDecl()))
2519 D.setInvalidType();
2521 // Just pretend that we didn't see the previous declaration.
2522 Previous.clear();
2525 // In C++, the previous declaration we find might be a tag type
2526 // (class or enum). In this case, the new declaration will hide the
2527 // tag type. Note that this does does not apply if we're declaring a
2528 // typedef (C++ [dcl.typedef]p4).
2529 if (Previous.isSingleTagDecl() &&
2530 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2531 Previous.clear();
2533 bool Redeclaration = false;
2534 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2535 if (TemplateParamLists.size()) {
2536 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2537 return 0;
2540 New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2541 } else if (R->isFunctionType()) {
2542 New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2543 move(TemplateParamLists),
2544 IsFunctionDefinition, Redeclaration);
2545 } else {
2546 New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2547 move(TemplateParamLists),
2548 Redeclaration);
2551 if (New == 0)
2552 return 0;
2554 // If this has an identifier and is not an invalid redeclaration or
2555 // function template specialization, add it to the scope stack.
2556 if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2557 PushOnScopeChains(New, S);
2559 return New;
2562 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2563 /// types into constant array types in certain situations which would otherwise
2564 /// be errors (for GCC compatibility).
2565 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2566 ASTContext &Context,
2567 bool &SizeIsNegative,
2568 llvm::APSInt &Oversized) {
2569 // This method tries to turn a variable array into a constant
2570 // array even when the size isn't an ICE. This is necessary
2571 // for compatibility with code that depends on gcc's buggy
2572 // constant expression folding, like struct {char x[(int)(char*)2];}
2573 SizeIsNegative = false;
2574 Oversized = 0;
2576 if (T->isDependentType())
2577 return QualType();
2579 QualifierCollector Qs;
2580 const Type *Ty = Qs.strip(T);
2582 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2583 QualType Pointee = PTy->getPointeeType();
2584 QualType FixedType =
2585 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2586 Oversized);
2587 if (FixedType.isNull()) return FixedType;
2588 FixedType = Context.getPointerType(FixedType);
2589 return Qs.apply(Context, FixedType);
2591 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2592 QualType Inner = PTy->getInnerType();
2593 QualType FixedType =
2594 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2595 Oversized);
2596 if (FixedType.isNull()) return FixedType;
2597 FixedType = Context.getParenType(FixedType);
2598 return Qs.apply(Context, FixedType);
2601 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2602 if (!VLATy)
2603 return QualType();
2604 // FIXME: We should probably handle this case
2605 if (VLATy->getElementType()->isVariablyModifiedType())
2606 return QualType();
2608 Expr::EvalResult EvalResult;
2609 if (!VLATy->getSizeExpr() ||
2610 !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2611 !EvalResult.Val.isInt())
2612 return QualType();
2614 // Check whether the array size is negative.
2615 llvm::APSInt &Res = EvalResult.Val.getInt();
2616 if (Res.isSigned() && Res.isNegative()) {
2617 SizeIsNegative = true;
2618 return QualType();
2621 // Check whether the array is too large to be addressed.
2622 unsigned ActiveSizeBits
2623 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2624 Res);
2625 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2626 Oversized = Res;
2627 return QualType();
2630 return Context.getConstantArrayType(VLATy->getElementType(),
2631 Res, ArrayType::Normal, 0);
2634 /// \brief Register the given locally-scoped external C declaration so
2635 /// that it can be found later for redeclarations
2636 void
2637 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2638 const LookupResult &Previous,
2639 Scope *S) {
2640 assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2641 "Decl is not a locally-scoped decl!");
2642 // Note that we have a locally-scoped external with this name.
2643 LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2645 if (!Previous.isSingleResult())
2646 return;
2648 NamedDecl *PrevDecl = Previous.getFoundDecl();
2650 // If there was a previous declaration of this variable, it may be
2651 // in our identifier chain. Update the identifier chain with the new
2652 // declaration.
2653 if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2654 // The previous declaration was found on the identifer resolver
2655 // chain, so remove it from its scope.
2656 while (S && !S->isDeclScope(PrevDecl))
2657 S = S->getParent();
2659 if (S)
2660 S->RemoveDecl(PrevDecl);
2664 /// \brief Diagnose function specifiers on a declaration of an identifier that
2665 /// does not identify a function.
2666 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2667 // FIXME: We should probably indicate the identifier in question to avoid
2668 // confusion for constructs like "inline int a(), b;"
2669 if (D.getDeclSpec().isInlineSpecified())
2670 Diag(D.getDeclSpec().getInlineSpecLoc(),
2671 diag::err_inline_non_function);
2673 if (D.getDeclSpec().isVirtualSpecified())
2674 Diag(D.getDeclSpec().getVirtualSpecLoc(),
2675 diag::err_virtual_non_function);
2677 if (D.getDeclSpec().isExplicitSpecified())
2678 Diag(D.getDeclSpec().getExplicitSpecLoc(),
2679 diag::err_explicit_non_function);
2682 NamedDecl*
2683 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2684 QualType R, TypeSourceInfo *TInfo,
2685 LookupResult &Previous, bool &Redeclaration) {
2686 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2687 if (D.getCXXScopeSpec().isSet()) {
2688 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2689 << D.getCXXScopeSpec().getRange();
2690 D.setInvalidType();
2691 // Pretend we didn't see the scope specifier.
2692 DC = CurContext;
2693 Previous.clear();
2696 if (getLangOptions().CPlusPlus) {
2697 // Check that there are no default arguments (C++ only).
2698 CheckExtraCXXDefaultArguments(D);
2701 DiagnoseFunctionSpecifiers(D);
2703 if (D.getDeclSpec().isThreadSpecified())
2704 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2706 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2707 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2708 << D.getName().getSourceRange();
2709 return 0;
2712 TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2713 if (!NewTD) return 0;
2715 // Handle attributes prior to checking for duplicates in MergeVarDecl
2716 ProcessDeclAttributes(S, NewTD, D);
2718 // C99 6.7.7p2: If a typedef name specifies a variably modified type
2719 // then it shall have block scope.
2720 // Note that variably modified types must be fixed before merging the decl so
2721 // that redeclarations will match.
2722 QualType T = NewTD->getUnderlyingType();
2723 if (T->isVariablyModifiedType()) {
2724 getCurFunction()->setHasBranchProtectedScope();
2726 if (S->getFnParent() == 0) {
2727 bool SizeIsNegative;
2728 llvm::APSInt Oversized;
2729 QualType FixedTy =
2730 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2731 Oversized);
2732 if (!FixedTy.isNull()) {
2733 Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2734 NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2735 } else {
2736 if (SizeIsNegative)
2737 Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2738 else if (T->isVariableArrayType())
2739 Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2740 else if (Oversized.getBoolValue())
2741 Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2742 << Oversized.toString(10);
2743 else
2744 Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2745 NewTD->setInvalidDecl();
2750 // Merge the decl with the existing one if appropriate. If the decl is
2751 // in an outer scope, it isn't the same thing.
2752 FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2753 if (!Previous.empty()) {
2754 Redeclaration = true;
2755 MergeTypeDefDecl(NewTD, Previous);
2758 // If this is the C FILE type, notify the AST context.
2759 if (IdentifierInfo *II = NewTD->getIdentifier())
2760 if (!NewTD->isInvalidDecl() &&
2761 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2762 if (II->isStr("FILE"))
2763 Context.setFILEDecl(NewTD);
2764 else if (II->isStr("jmp_buf"))
2765 Context.setjmp_bufDecl(NewTD);
2766 else if (II->isStr("sigjmp_buf"))
2767 Context.setsigjmp_bufDecl(NewTD);
2768 else if (II->isStr("__builtin_va_list"))
2769 Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2772 return NewTD;
2775 /// \brief Determines whether the given declaration is an out-of-scope
2776 /// previous declaration.
2778 /// This routine should be invoked when name lookup has found a
2779 /// previous declaration (PrevDecl) that is not in the scope where a
2780 /// new declaration by the same name is being introduced. If the new
2781 /// declaration occurs in a local scope, previous declarations with
2782 /// linkage may still be considered previous declarations (C99
2783 /// 6.2.2p4-5, C++ [basic.link]p6).
2785 /// \param PrevDecl the previous declaration found by name
2786 /// lookup
2788 /// \param DC the context in which the new declaration is being
2789 /// declared.
2791 /// \returns true if PrevDecl is an out-of-scope previous declaration
2792 /// for a new delcaration with the same name.
2793 static bool
2794 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2795 ASTContext &Context) {
2796 if (!PrevDecl)
2797 return false;
2799 if (!PrevDecl->hasLinkage())
2800 return false;
2802 if (Context.getLangOptions().CPlusPlus) {
2803 // C++ [basic.link]p6:
2804 // If there is a visible declaration of an entity with linkage
2805 // having the same name and type, ignoring entities declared
2806 // outside the innermost enclosing namespace scope, the block
2807 // scope declaration declares that same entity and receives the
2808 // linkage of the previous declaration.
2809 DeclContext *OuterContext = DC->getRedeclContext();
2810 if (!OuterContext->isFunctionOrMethod())
2811 // This rule only applies to block-scope declarations.
2812 return false;
2814 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2815 if (PrevOuterContext->isRecord())
2816 // We found a member function: ignore it.
2817 return false;
2819 // Find the innermost enclosing namespace for the new and
2820 // previous declarations.
2821 OuterContext = OuterContext->getEnclosingNamespaceContext();
2822 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2824 // The previous declaration is in a different namespace, so it
2825 // isn't the same function.
2826 if (!OuterContext->Equals(PrevOuterContext))
2827 return false;
2830 return true;
2833 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2834 CXXScopeSpec &SS = D.getCXXScopeSpec();
2835 if (!SS.isSet()) return;
2836 DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2837 SS.getRange());
2840 NamedDecl*
2841 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2842 QualType R, TypeSourceInfo *TInfo,
2843 LookupResult &Previous,
2844 MultiTemplateParamsArg TemplateParamLists,
2845 bool &Redeclaration) {
2846 DeclarationName Name = GetNameForDeclarator(D).getName();
2848 // Check that there are no default arguments (C++ only).
2849 if (getLangOptions().CPlusPlus)
2850 CheckExtraCXXDefaultArguments(D);
2852 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2853 assert(SCSpec != DeclSpec::SCS_typedef &&
2854 "Parser allowed 'typedef' as storage class VarDecl.");
2855 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2856 if (SCSpec == DeclSpec::SCS_mutable) {
2857 // mutable can only appear on non-static class members, so it's always
2858 // an error here
2859 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2860 D.setInvalidType();
2861 SC = SC_None;
2863 SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2864 VarDecl::StorageClass SCAsWritten
2865 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2867 IdentifierInfo *II = Name.getAsIdentifierInfo();
2868 if (!II) {
2869 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2870 << Name.getAsString();
2871 return 0;
2874 DiagnoseFunctionSpecifiers(D);
2876 if (!DC->isRecord() && S->getFnParent() == 0) {
2877 // C99 6.9p2: The storage-class specifiers auto and register shall not
2878 // appear in the declaration specifiers in an external declaration.
2879 if (SC == SC_Auto || SC == SC_Register) {
2881 // If this is a register variable with an asm label specified, then this
2882 // is a GNU extension.
2883 if (SC == SC_Register && D.getAsmLabel())
2884 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2885 else
2886 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2887 D.setInvalidType();
2891 bool isExplicitSpecialization = false;
2892 VarDecl *NewVD;
2893 if (!getLangOptions().CPlusPlus) {
2894 NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2895 II, R, TInfo, SC, SCAsWritten);
2897 if (D.isInvalidType())
2898 NewVD->setInvalidDecl();
2899 } else {
2900 if (DC->isRecord() && !CurContext->isRecord()) {
2901 // This is an out-of-line definition of a static data member.
2902 if (SC == SC_Static) {
2903 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2904 diag::err_static_out_of_line)
2905 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2906 } else if (SC == SC_None)
2907 SC = SC_Static;
2909 if (SC == SC_Static) {
2910 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2911 if (RD->isLocalClass())
2912 Diag(D.getIdentifierLoc(),
2913 diag::err_static_data_member_not_allowed_in_local_class)
2914 << Name << RD->getDeclName();
2916 // C++ [class.union]p1: If a union contains a static data member,
2917 // the program is ill-formed.
2919 // We also disallow static data members in anonymous structs.
2920 if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2921 Diag(D.getIdentifierLoc(),
2922 diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2923 << Name << RD->isUnion();
2927 // Match up the template parameter lists with the scope specifier, then
2928 // determine whether we have a template or a template specialization.
2929 isExplicitSpecialization = false;
2930 unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2931 bool Invalid = false;
2932 if (TemplateParameterList *TemplateParams
2933 = MatchTemplateParametersToScopeSpecifier(
2934 D.getDeclSpec().getSourceRange().getBegin(),
2935 D.getCXXScopeSpec(),
2936 TemplateParamLists.get(),
2937 TemplateParamLists.size(),
2938 /*never a friend*/ false,
2939 isExplicitSpecialization,
2940 Invalid)) {
2941 // All but one template parameter lists have been matching.
2942 --NumMatchedTemplateParamLists;
2944 if (TemplateParams->size() > 0) {
2945 // There is no such thing as a variable template.
2946 Diag(D.getIdentifierLoc(), diag::err_template_variable)
2947 << II
2948 << SourceRange(TemplateParams->getTemplateLoc(),
2949 TemplateParams->getRAngleLoc());
2950 return 0;
2951 } else {
2952 // There is an extraneous 'template<>' for this variable. Complain
2953 // about it, but allow the declaration of the variable.
2954 Diag(TemplateParams->getTemplateLoc(),
2955 diag::err_template_variable_noparams)
2956 << II
2957 << SourceRange(TemplateParams->getTemplateLoc(),
2958 TemplateParams->getRAngleLoc());
2960 isExplicitSpecialization = true;
2964 NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2965 II, R, TInfo, SC, SCAsWritten);
2967 if (D.isInvalidType() || Invalid)
2968 NewVD->setInvalidDecl();
2970 SetNestedNameSpecifier(NewVD, D);
2972 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2973 NewVD->setTemplateParameterListsInfo(Context,
2974 NumMatchedTemplateParamLists,
2975 TemplateParamLists.release());
2979 if (D.getDeclSpec().isThreadSpecified()) {
2980 if (NewVD->hasLocalStorage())
2981 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2982 else if (!Context.Target.isTLSSupported())
2983 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2984 else
2985 NewVD->setThreadSpecified(true);
2988 // Set the lexical context. If the declarator has a C++ scope specifier, the
2989 // lexical context will be different from the semantic context.
2990 NewVD->setLexicalDeclContext(CurContext);
2992 // Handle attributes prior to checking for duplicates in MergeVarDecl
2993 ProcessDeclAttributes(S, NewVD, D);
2995 // Handle GNU asm-label extension (encoded as an attribute).
2996 if (Expr *E = (Expr*)D.getAsmLabel()) {
2997 // The parser guarantees this is a string.
2998 StringLiteral *SE = cast<StringLiteral>(E);
2999 llvm::StringRef Label = SE->getString();
3000 if (S->getFnParent() != 0) {
3001 switch (SC) {
3002 case SC_None:
3003 case SC_Auto:
3004 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3005 break;
3006 case SC_Register:
3007 if (!Context.Target.isValidGCCRegisterName(Label))
3008 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3009 break;
3010 case SC_Static:
3011 case SC_Extern:
3012 case SC_PrivateExtern:
3013 break;
3017 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3018 Context, Label));
3021 // Diagnose shadowed variables before filtering for scope.
3022 if (!D.getCXXScopeSpec().isSet())
3023 CheckShadow(S, NewVD, Previous);
3025 // Don't consider existing declarations that are in a different
3026 // scope and are out-of-semantic-context declarations (if the new
3027 // declaration has linkage).
3028 FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3030 if (!getLangOptions().CPlusPlus)
3031 CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3032 else {
3033 // Merge the decl with the existing one if appropriate.
3034 if (!Previous.empty()) {
3035 if (Previous.isSingleResult() &&
3036 isa<FieldDecl>(Previous.getFoundDecl()) &&
3037 D.getCXXScopeSpec().isSet()) {
3038 // The user tried to define a non-static data member
3039 // out-of-line (C++ [dcl.meaning]p1).
3040 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3041 << D.getCXXScopeSpec().getRange();
3042 Previous.clear();
3043 NewVD->setInvalidDecl();
3045 } else if (D.getCXXScopeSpec().isSet()) {
3046 // No previous declaration in the qualifying scope.
3047 Diag(D.getIdentifierLoc(), diag::err_no_member)
3048 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3049 << D.getCXXScopeSpec().getRange();
3050 NewVD->setInvalidDecl();
3053 CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3055 // This is an explicit specialization of a static data member. Check it.
3056 if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3057 CheckMemberSpecialization(NewVD, Previous))
3058 NewVD->setInvalidDecl();
3061 // attributes declared post-definition are currently ignored
3062 // FIXME: This should be handled in attribute merging, not
3063 // here.
3064 if (Previous.isSingleResult()) {
3065 VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3066 if (Def && (Def = Def->getDefinition()) &&
3067 Def != NewVD && D.hasAttributes()) {
3068 Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3069 Diag(Def->getLocation(), diag::note_previous_definition);
3073 // If this is a locally-scoped extern C variable, update the map of
3074 // such variables.
3075 if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3076 !NewVD->isInvalidDecl())
3077 RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3079 // If there's a #pragma GCC visibility in scope, and this isn't a class
3080 // member, set the visibility of this variable.
3081 if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3082 AddPushedVisibilityAttribute(NewVD);
3084 MarkUnusedFileScopedDecl(NewVD);
3086 return NewVD;
3089 /// \brief Diagnose variable or built-in function shadowing. Implements
3090 /// -Wshadow.
3092 /// This method is called whenever a VarDecl is added to a "useful"
3093 /// scope.
3095 /// \param S the scope in which the shadowing name is being declared
3096 /// \param R the lookup of the name
3098 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3099 // Return if warning is ignored.
3100 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3101 Diagnostic::Ignored)
3102 return;
3104 // Don't diagnose declarations at file scope. The scope might not
3105 // have a DeclContext if (e.g.) we're parsing a function prototype.
3106 DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3107 if (NewDC && NewDC->isFileContext())
3108 return;
3110 // Only diagnose if we're shadowing an unambiguous field or variable.
3111 if (R.getResultKind() != LookupResult::Found)
3112 return;
3114 NamedDecl* ShadowedDecl = R.getFoundDecl();
3115 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3116 return;
3118 DeclContext *OldDC = ShadowedDecl->getDeclContext();
3120 // Don't warn for this case:
3122 // @code
3123 // extern int bob;
3124 // void f() {
3125 // extern int bob;
3126 // }
3127 // @endcode
3128 if (D->isExternC() && NewDC->isFunctionOrMethod())
3129 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3130 if (shadowedVar->isExternC())
3131 return;
3133 // Only warn about certain kinds of shadowing for class members.
3134 if (NewDC && NewDC->isRecord()) {
3135 // In particular, don't warn about shadowing non-class members.
3136 if (!OldDC->isRecord())
3137 return;
3139 // TODO: should we warn about static data members shadowing
3140 // static data members from base classes?
3142 // TODO: don't diagnose for inaccessible shadowed members.
3143 // This is hard to do perfectly because we might friend the
3144 // shadowing context, but that's just a false negative.
3147 // Determine what kind of declaration we're shadowing.
3148 unsigned Kind;
3149 if (isa<RecordDecl>(OldDC)) {
3150 if (isa<FieldDecl>(ShadowedDecl))
3151 Kind = 3; // field
3152 else
3153 Kind = 2; // static data member
3154 } else if (OldDC->isFileContext())
3155 Kind = 1; // global
3156 else
3157 Kind = 0; // local
3159 DeclarationName Name = R.getLookupName();
3161 // Emit warning and note.
3162 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3163 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3166 /// \brief Check -Wshadow without the advantage of a previous lookup.
3167 void Sema::CheckShadow(Scope *S, VarDecl *D) {
3168 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3169 Diagnostic::Ignored)
3170 return;
3172 LookupResult R(*this, D->getDeclName(), D->getLocation(),
3173 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3174 LookupName(R, S);
3175 CheckShadow(S, D, R);
3178 /// \brief Perform semantic checking on a newly-created variable
3179 /// declaration.
3181 /// This routine performs all of the type-checking required for a
3182 /// variable declaration once it has been built. It is used both to
3183 /// check variables after they have been parsed and their declarators
3184 /// have been translated into a declaration, and to check variables
3185 /// that have been instantiated from a template.
3187 /// Sets NewVD->isInvalidDecl() if an error was encountered.
3188 void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3189 LookupResult &Previous,
3190 bool &Redeclaration) {
3191 // If the decl is already known invalid, don't check it.
3192 if (NewVD->isInvalidDecl())
3193 return;
3195 QualType T = NewVD->getType();
3197 if (T->isObjCObjectType()) {
3198 Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3199 return NewVD->setInvalidDecl();
3202 // Emit an error if an address space was applied to decl with local storage.
3203 // This includes arrays of objects with address space qualifiers, but not
3204 // automatic variables that point to other address spaces.
3205 // ISO/IEC TR 18037 S5.1.2
3206 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3207 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3208 return NewVD->setInvalidDecl();
3211 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3212 && !NewVD->hasAttr<BlocksAttr>())
3213 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3215 bool isVM = T->isVariablyModifiedType();
3216 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3217 NewVD->hasAttr<BlocksAttr>())
3218 getCurFunction()->setHasBranchProtectedScope();
3220 if ((isVM && NewVD->hasLinkage()) ||
3221 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3222 bool SizeIsNegative;
3223 llvm::APSInt Oversized;
3224 QualType FixedTy =
3225 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3226 Oversized);
3228 if (FixedTy.isNull() && T->isVariableArrayType()) {
3229 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3230 // FIXME: This won't give the correct result for
3231 // int a[10][n];
3232 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3234 if (NewVD->isFileVarDecl())
3235 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3236 << SizeRange;
3237 else if (NewVD->getStorageClass() == SC_Static)
3238 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3239 << SizeRange;
3240 else
3241 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3242 << SizeRange;
3243 return NewVD->setInvalidDecl();
3246 if (FixedTy.isNull()) {
3247 if (NewVD->isFileVarDecl())
3248 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3249 else
3250 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3251 return NewVD->setInvalidDecl();
3254 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3255 NewVD->setType(FixedTy);
3258 if (Previous.empty() && NewVD->isExternC()) {
3259 // Since we did not find anything by this name and we're declaring
3260 // an extern "C" variable, look for a non-visible extern "C"
3261 // declaration with the same name.
3262 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3263 = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3264 if (Pos != LocallyScopedExternalDecls.end())
3265 Previous.addDecl(Pos->second);
3268 if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3269 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3270 << T;
3271 return NewVD->setInvalidDecl();
3274 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3275 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3276 return NewVD->setInvalidDecl();
3279 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3280 Diag(NewVD->getLocation(), diag::err_block_on_vm);
3281 return NewVD->setInvalidDecl();
3284 // Function pointers and references cannot have qualified function type, only
3285 // function pointer-to-members can do that.
3286 QualType Pointee;
3287 unsigned PtrOrRef = 0;
3288 if (const PointerType *Ptr = T->getAs<PointerType>())
3289 Pointee = Ptr->getPointeeType();
3290 else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3291 Pointee = Ref->getPointeeType();
3292 PtrOrRef = 1;
3294 if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3295 Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3296 Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3297 << PtrOrRef;
3298 return NewVD->setInvalidDecl();
3301 if (!Previous.empty()) {
3302 Redeclaration = true;
3303 MergeVarDecl(NewVD, Previous);
3307 /// \brief Data used with FindOverriddenMethod
3308 struct FindOverriddenMethodData {
3309 Sema *S;
3310 CXXMethodDecl *Method;
3313 /// \brief Member lookup function that determines whether a given C++
3314 /// method overrides a method in a base class, to be used with
3315 /// CXXRecordDecl::lookupInBases().
3316 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3317 CXXBasePath &Path,
3318 void *UserData) {
3319 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3321 FindOverriddenMethodData *Data
3322 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3324 DeclarationName Name = Data->Method->getDeclName();
3326 // FIXME: Do we care about other names here too?
3327 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3328 // We really want to find the base class destructor here.
3329 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3330 CanQualType CT = Data->S->Context.getCanonicalType(T);
3332 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3335 for (Path.Decls = BaseRecord->lookup(Name);
3336 Path.Decls.first != Path.Decls.second;
3337 ++Path.Decls.first) {
3338 NamedDecl *D = *Path.Decls.first;
3339 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3340 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3341 return true;
3345 return false;
3348 /// AddOverriddenMethods - See if a method overrides any in the base classes,
3349 /// and if so, check that it's a valid override and remember it.
3350 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3351 // Look for virtual methods in base classes that this method might override.
3352 CXXBasePaths Paths;
3353 FindOverriddenMethodData Data;
3354 Data.Method = MD;
3355 Data.S = this;
3356 bool AddedAny = false;
3357 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3358 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3359 E = Paths.found_decls_end(); I != E; ++I) {
3360 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3361 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3362 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3363 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3364 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3365 AddedAny = true;
3371 return AddedAny;
3374 static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3375 LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3376 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3377 S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3378 assert(!Prev.isAmbiguous() &&
3379 "Cannot have an ambiguity in previous-declaration lookup");
3380 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3381 Func != FuncEnd; ++Func) {
3382 if (isa<FunctionDecl>(*Func) &&
3383 isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3384 S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3388 NamedDecl*
3389 Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3390 QualType R, TypeSourceInfo *TInfo,
3391 LookupResult &Previous,
3392 MultiTemplateParamsArg TemplateParamLists,
3393 bool IsFunctionDefinition, bool &Redeclaration) {
3394 assert(R.getTypePtr()->isFunctionType());
3396 // TODO: consider using NameInfo for diagnostic.
3397 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3398 DeclarationName Name = NameInfo.getName();
3399 FunctionDecl::StorageClass SC = SC_None;
3400 switch (D.getDeclSpec().getStorageClassSpec()) {
3401 default: assert(0 && "Unknown storage class!");
3402 case DeclSpec::SCS_auto:
3403 case DeclSpec::SCS_register:
3404 case DeclSpec::SCS_mutable:
3405 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3406 diag::err_typecheck_sclass_func);
3407 D.setInvalidType();
3408 break;
3409 case DeclSpec::SCS_unspecified: SC = SC_None; break;
3410 case DeclSpec::SCS_extern: SC = SC_Extern; break;
3411 case DeclSpec::SCS_static: {
3412 if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3413 // C99 6.7.1p5:
3414 // The declaration of an identifier for a function that has
3415 // block scope shall have no explicit storage-class specifier
3416 // other than extern
3417 // See also (C++ [dcl.stc]p4).
3418 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3419 diag::err_static_block_func);
3420 SC = SC_None;
3421 } else
3422 SC = SC_Static;
3423 break;
3425 case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3428 if (D.getDeclSpec().isThreadSpecified())
3429 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3431 // Do not allow returning a objc interface by-value.
3432 if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3433 Diag(D.getIdentifierLoc(),
3434 diag::err_object_cannot_be_passed_returned_by_value) << 0
3435 << R->getAs<FunctionType>()->getResultType();
3436 D.setInvalidType();
3439 FunctionDecl *NewFD;
3440 bool isInline = D.getDeclSpec().isInlineSpecified();
3441 bool isFriend = false;
3442 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3443 FunctionDecl::StorageClass SCAsWritten
3444 = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3445 FunctionTemplateDecl *FunctionTemplate = 0;
3446 bool isExplicitSpecialization = false;
3447 bool isFunctionTemplateSpecialization = false;
3448 unsigned NumMatchedTemplateParamLists = 0;
3450 if (!getLangOptions().CPlusPlus) {
3451 // Determine whether the function was written with a
3452 // prototype. This true when:
3453 // - there is a prototype in the declarator, or
3454 // - the type R of the function is some kind of typedef or other reference
3455 // to a type name (which eventually refers to a function type).
3456 bool HasPrototype =
3457 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3458 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3460 NewFD = FunctionDecl::Create(Context, DC,
3461 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3462 HasPrototype);
3463 if (D.isInvalidType())
3464 NewFD->setInvalidDecl();
3466 // Set the lexical context.
3467 NewFD->setLexicalDeclContext(CurContext);
3468 // Filter out previous declarations that don't match the scope.
3469 FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3470 } else {
3471 isFriend = D.getDeclSpec().isFriendSpecified();
3472 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3473 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3474 bool isVirtualOkay = false;
3476 // Check that the return type is not an abstract class type.
3477 // For record types, this is done by the AbstractClassUsageDiagnoser once
3478 // the class has been completely parsed.
3479 if (!DC->isRecord() &&
3480 RequireNonAbstractType(D.getIdentifierLoc(),
3481 R->getAs<FunctionType>()->getResultType(),
3482 diag::err_abstract_type_in_decl,
3483 AbstractReturnType))
3484 D.setInvalidType();
3487 if (isFriend) {
3488 // C++ [class.friend]p5
3489 // A function can be defined in a friend declaration of a
3490 // class . . . . Such a function is implicitly inline.
3491 isInline |= IsFunctionDefinition;
3494 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3495 // This is a C++ constructor declaration.
3496 assert(DC->isRecord() &&
3497 "Constructors can only be declared in a member context");
3499 R = CheckConstructorDeclarator(D, R, SC);
3501 // Create the new declaration
3502 NewFD = CXXConstructorDecl::Create(Context,
3503 cast<CXXRecordDecl>(DC),
3504 NameInfo, R, TInfo,
3505 isExplicit, isInline,
3506 /*isImplicitlyDeclared=*/false);
3507 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3508 // This is a C++ destructor declaration.
3509 if (DC->isRecord()) {
3510 R = CheckDestructorDeclarator(D, R, SC);
3512 NewFD = CXXDestructorDecl::Create(Context,
3513 cast<CXXRecordDecl>(DC),
3514 NameInfo, R, TInfo,
3515 isInline,
3516 /*isImplicitlyDeclared=*/false);
3517 isVirtualOkay = true;
3518 } else {
3519 Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3521 // Create a FunctionDecl to satisfy the function definition parsing
3522 // code path.
3523 NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3524 Name, R, TInfo, SC, SCAsWritten, isInline,
3525 /*hasPrototype=*/true);
3526 D.setInvalidType();
3528 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3529 if (!DC->isRecord()) {
3530 Diag(D.getIdentifierLoc(),
3531 diag::err_conv_function_not_member);
3532 return 0;
3535 CheckConversionDeclarator(D, R, SC);
3536 NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3537 NameInfo, R, TInfo,
3538 isInline, isExplicit);
3540 isVirtualOkay = true;
3541 } else if (DC->isRecord()) {
3542 // If the of the function is the same as the name of the record, then this
3543 // must be an invalid constructor that has a return type.
3544 // (The parser checks for a return type and makes the declarator a
3545 // constructor if it has no return type).
3546 // must have an invalid constructor that has a return type
3547 if (Name.getAsIdentifierInfo() &&
3548 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3549 Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3550 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3551 << SourceRange(D.getIdentifierLoc());
3552 return 0;
3555 bool isStatic = SC == SC_Static;
3557 // [class.free]p1:
3558 // Any allocation function for a class T is a static member
3559 // (even if not explicitly declared static).
3560 if (Name.getCXXOverloadedOperator() == OO_New ||
3561 Name.getCXXOverloadedOperator() == OO_Array_New)
3562 isStatic = true;
3564 // [class.free]p6 Any deallocation function for a class X is a static member
3565 // (even if not explicitly declared static).
3566 if (Name.getCXXOverloadedOperator() == OO_Delete ||
3567 Name.getCXXOverloadedOperator() == OO_Array_Delete)
3568 isStatic = true;
3570 // This is a C++ method declaration.
3571 NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3572 NameInfo, R, TInfo,
3573 isStatic, SCAsWritten, isInline);
3575 isVirtualOkay = !isStatic;
3576 } else {
3577 // Determine whether the function was written with a
3578 // prototype. This true when:
3579 // - we're in C++ (where every function has a prototype),
3580 NewFD = FunctionDecl::Create(Context, DC,
3581 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3582 true/*HasPrototype*/);
3584 SetNestedNameSpecifier(NewFD, D);
3585 isExplicitSpecialization = false;
3586 isFunctionTemplateSpecialization = false;
3587 NumMatchedTemplateParamLists = TemplateParamLists.size();
3588 if (D.isInvalidType())
3589 NewFD->setInvalidDecl();
3591 // Set the lexical context. If the declarator has a C++
3592 // scope specifier, or is the object of a friend declaration, the
3593 // lexical context will be different from the semantic context.
3594 NewFD->setLexicalDeclContext(CurContext);
3596 // Match up the template parameter lists with the scope specifier, then
3597 // determine whether we have a template or a template specialization.
3598 bool Invalid = false;
3599 if (TemplateParameterList *TemplateParams
3600 = MatchTemplateParametersToScopeSpecifier(
3601 D.getDeclSpec().getSourceRange().getBegin(),
3602 D.getCXXScopeSpec(),
3603 TemplateParamLists.get(),
3604 TemplateParamLists.size(),
3605 isFriend,
3606 isExplicitSpecialization,
3607 Invalid)) {
3608 // All but one template parameter lists have been matching.
3609 --NumMatchedTemplateParamLists;
3611 if (TemplateParams->size() > 0) {
3612 // This is a function template
3614 // Check that we can declare a template here.
3615 if (CheckTemplateDeclScope(S, TemplateParams))
3616 return 0;
3618 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3619 NewFD->getLocation(),
3620 Name, TemplateParams,
3621 NewFD);
3622 FunctionTemplate->setLexicalDeclContext(CurContext);
3623 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3624 } else {
3625 // This is a function template specialization.
3626 isFunctionTemplateSpecialization = true;
3628 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3629 if (isFriend && isFunctionTemplateSpecialization) {
3630 // We want to remove the "template<>", found here.
3631 SourceRange RemoveRange = TemplateParams->getSourceRange();
3633 // If we remove the template<> and the name is not a
3634 // template-id, we're actually silently creating a problem:
3635 // the friend declaration will refer to an untemplated decl,
3636 // and clearly the user wants a template specialization. So
3637 // we need to insert '<>' after the name.
3638 SourceLocation InsertLoc;
3639 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3640 InsertLoc = D.getName().getSourceRange().getEnd();
3641 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3644 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3645 << Name << RemoveRange
3646 << FixItHint::CreateRemoval(RemoveRange)
3647 << FixItHint::CreateInsertion(InsertLoc, "<>");
3652 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3653 NewFD->setTemplateParameterListsInfo(Context,
3654 NumMatchedTemplateParamLists,
3655 TemplateParamLists.release());
3658 if (Invalid) {
3659 NewFD->setInvalidDecl();
3660 if (FunctionTemplate)
3661 FunctionTemplate->setInvalidDecl();
3664 // C++ [dcl.fct.spec]p5:
3665 // The virtual specifier shall only be used in declarations of
3666 // nonstatic class member functions that appear within a
3667 // member-specification of a class declaration; see 10.3.
3669 if (isVirtual && !NewFD->isInvalidDecl()) {
3670 if (!isVirtualOkay) {
3671 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3672 diag::err_virtual_non_function);
3673 } else if (!CurContext->isRecord()) {
3674 // 'virtual' was specified outside of the class.
3675 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3676 diag::err_virtual_out_of_class)
3677 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3678 } else if (NewFD->getDescribedFunctionTemplate()) {
3679 // C++ [temp.mem]p3:
3680 // A member function template shall not be virtual.
3681 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3682 diag::err_virtual_member_function_template)
3683 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3684 } else {
3685 // Okay: Add virtual to the method.
3686 NewFD->setVirtualAsWritten(true);
3690 // C++ [dcl.fct.spec]p3:
3691 // The inline specifier shall not appear on a block scope function declaration.
3692 if (isInline && !NewFD->isInvalidDecl()) {
3693 if (CurContext->isFunctionOrMethod()) {
3694 // 'inline' is not allowed on block scope function declaration.
3695 Diag(D.getDeclSpec().getInlineSpecLoc(),
3696 diag::err_inline_declaration_block_scope) << Name
3697 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3701 // C++ [dcl.fct.spec]p6:
3702 // The explicit specifier shall be used only in the declaration of a
3703 // constructor or conversion function within its class definition; see 12.3.1
3704 // and 12.3.2.
3705 if (isExplicit && !NewFD->isInvalidDecl()) {
3706 if (!CurContext->isRecord()) {
3707 // 'explicit' was specified outside of the class.
3708 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3709 diag::err_explicit_out_of_class)
3710 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3711 } else if (!isa<CXXConstructorDecl>(NewFD) &&
3712 !isa<CXXConversionDecl>(NewFD)) {
3713 // 'explicit' was specified on a function that wasn't a constructor
3714 // or conversion function.
3715 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3716 diag::err_explicit_non_ctor_or_conv_function)
3717 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3721 // Filter out previous declarations that don't match the scope.
3722 FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3724 if (isFriend) {
3725 // For now, claim that the objects have no previous declaration.
3726 if (FunctionTemplate) {
3727 FunctionTemplate->setObjectOfFriendDecl(false);
3728 FunctionTemplate->setAccess(AS_public);
3730 NewFD->setObjectOfFriendDecl(false);
3731 NewFD->setAccess(AS_public);
3734 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3735 // A method is implicitly inline if it's defined in its class
3736 // definition.
3737 NewFD->setImplicitlyInline();
3740 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3741 !CurContext->isRecord()) {
3742 // C++ [class.static]p1:
3743 // A data or function member of a class may be declared static
3744 // in a class definition, in which case it is a static member of
3745 // the class.
3747 // Complain about the 'static' specifier if it's on an out-of-line
3748 // member function definition.
3749 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3750 diag::err_static_out_of_line)
3751 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3755 // Handle GNU asm-label extension (encoded as an attribute).
3756 if (Expr *E = (Expr*) D.getAsmLabel()) {
3757 // The parser guarantees this is a string.
3758 StringLiteral *SE = cast<StringLiteral>(E);
3759 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3760 SE->getString()));
3763 // Copy the parameter declarations from the declarator D to the function
3764 // declaration NewFD, if they are available. First scavenge them into Params.
3765 llvm::SmallVector<ParmVarDecl*, 16> Params;
3766 if (D.isFunctionDeclarator()) {
3767 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3769 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3770 // function that takes no arguments, not a function that takes a
3771 // single void argument.
3772 // We let through "const void" here because Sema::GetTypeForDeclarator
3773 // already checks for that case.
3774 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3775 FTI.ArgInfo[0].Param &&
3776 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3777 // Empty arg list, don't push any params.
3778 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3780 // In C++, the empty parameter-type-list must be spelled "void"; a
3781 // typedef of void is not permitted.
3782 if (getLangOptions().CPlusPlus &&
3783 Param->getType().getUnqualifiedType() != Context.VoidTy)
3784 Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3785 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3786 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3787 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3788 assert(Param->getDeclContext() != NewFD && "Was set before ?");
3789 Param->setDeclContext(NewFD);
3790 Params.push_back(Param);
3792 if (Param->isInvalidDecl())
3793 NewFD->setInvalidDecl();
3797 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3798 // When we're declaring a function with a typedef, typeof, etc as in the
3799 // following example, we'll need to synthesize (unnamed)
3800 // parameters for use in the declaration.
3802 // @code
3803 // typedef void fn(int);
3804 // fn f;
3805 // @endcode
3807 // Synthesize a parameter for each argument type.
3808 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3809 AE = FT->arg_type_end(); AI != AE; ++AI) {
3810 ParmVarDecl *Param =
3811 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3812 Params.push_back(Param);
3814 } else {
3815 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3816 "Should not need args for typedef of non-prototype fn");
3818 // Finally, we know we have the right number of parameters, install them.
3819 NewFD->setParams(Params.data(), Params.size());
3821 // Process the non-inheritable attributes on this declaration.
3822 ProcessDeclAttributes(S, NewFD, D,
3823 /*NonInheritable=*/true, /*Inheritable=*/false);
3825 if (!getLangOptions().CPlusPlus) {
3826 // Perform semantic checking on the function declaration.
3827 bool isExplctSpecialization=false;
3828 CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3829 Redeclaration);
3830 assert((NewFD->isInvalidDecl() || !Redeclaration ||
3831 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3832 "previous declaration set still overloaded");
3833 } else {
3834 // If the declarator is a template-id, translate the parser's template
3835 // argument list into our AST format.
3836 bool HasExplicitTemplateArgs = false;
3837 TemplateArgumentListInfo TemplateArgs;
3838 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3839 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3840 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3841 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3842 ASTTemplateArgsPtr TemplateArgsPtr(*this,
3843 TemplateId->getTemplateArgs(),
3844 TemplateId->NumArgs);
3845 translateTemplateArguments(TemplateArgsPtr,
3846 TemplateArgs);
3847 TemplateArgsPtr.release();
3849 HasExplicitTemplateArgs = true;
3851 if (FunctionTemplate) {
3852 // Function template with explicit template arguments.
3853 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
3854 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
3856 HasExplicitTemplateArgs = false;
3857 } else if (!isFunctionTemplateSpecialization &&
3858 !D.getDeclSpec().isFriendSpecified()) {
3859 // We have encountered something that the user meant to be a
3860 // specialization (because it has explicitly-specified template
3861 // arguments) but that was not introduced with a "template<>" (or had
3862 // too few of them).
3863 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3864 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3865 << FixItHint::CreateInsertion(
3866 D.getDeclSpec().getSourceRange().getBegin(),
3867 "template<> ");
3868 isFunctionTemplateSpecialization = true;
3869 } else {
3870 // "friend void foo<>(int);" is an implicit specialization decl.
3871 isFunctionTemplateSpecialization = true;
3873 } else if (isFriend && isFunctionTemplateSpecialization) {
3874 // This combination is only possible in a recovery case; the user
3875 // wrote something like:
3876 // template <> friend void foo(int);
3877 // which we're recovering from as if the user had written:
3878 // friend void foo<>(int);
3879 // Go ahead and fake up a template id.
3880 HasExplicitTemplateArgs = true;
3881 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3882 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3885 // If it's a friend (and only if it's a friend), it's possible
3886 // that either the specialized function type or the specialized
3887 // template is dependent, and therefore matching will fail. In
3888 // this case, don't check the specialization yet.
3889 if (isFunctionTemplateSpecialization && isFriend &&
3890 (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3891 assert(HasExplicitTemplateArgs &&
3892 "friend function specialization without template args");
3893 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3894 Previous))
3895 NewFD->setInvalidDecl();
3896 } else if (isFunctionTemplateSpecialization) {
3897 if (CheckFunctionTemplateSpecialization(NewFD,
3898 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3899 Previous))
3900 NewFD->setInvalidDecl();
3901 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3902 if (CheckMemberSpecialization(NewFD, Previous))
3903 NewFD->setInvalidDecl();
3906 // Perform semantic checking on the function declaration.
3907 CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3908 Redeclaration);
3910 assert((NewFD->isInvalidDecl() || !Redeclaration ||
3911 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3912 "previous declaration set still overloaded");
3914 NamedDecl *PrincipalDecl = (FunctionTemplate
3915 ? cast<NamedDecl>(FunctionTemplate)
3916 : NewFD);
3918 if (isFriend && Redeclaration) {
3919 AccessSpecifier Access = AS_public;
3920 if (!NewFD->isInvalidDecl())
3921 Access = NewFD->getPreviousDeclaration()->getAccess();
3923 NewFD->setAccess(Access);
3924 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3926 PrincipalDecl->setObjectOfFriendDecl(true);
3929 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3930 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3931 PrincipalDecl->setNonMemberOperator();
3933 // If we have a function template, check the template parameter
3934 // list. This will check and merge default template arguments.
3935 if (FunctionTemplate) {
3936 FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3937 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3938 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3939 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3940 : TPC_FunctionTemplate);
3943 if (NewFD->isInvalidDecl()) {
3944 // Ignore all the rest of this.
3945 } else if (!Redeclaration) {
3946 // Fake up an access specifier if it's supposed to be a class member.
3947 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3948 NewFD->setAccess(AS_public);
3950 // Qualified decls generally require a previous declaration.
3951 if (D.getCXXScopeSpec().isSet()) {
3952 // ...with the major exception of templated-scope or
3953 // dependent-scope friend declarations.
3955 // TODO: we currently also suppress this check in dependent
3956 // contexts because (1) the parameter depth will be off when
3957 // matching friend templates and (2) we might actually be
3958 // selecting a friend based on a dependent factor. But there
3959 // are situations where these conditions don't apply and we
3960 // can actually do this check immediately.
3961 if (isFriend &&
3962 (NumMatchedTemplateParamLists ||
3963 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3964 CurContext->isDependentContext())) {
3965 // ignore these
3966 } else {
3967 // The user tried to provide an out-of-line definition for a
3968 // function that is a member of a class or namespace, but there
3969 // was no such member function declared (C++ [class.mfct]p2,
3970 // C++ [namespace.memdef]p2). For example:
3972 // class X {
3973 // void f() const;
3974 // };
3976 // void X::f() { } // ill-formed
3978 // Complain about this problem, and attempt to suggest close
3979 // matches (e.g., those that differ only in cv-qualifiers and
3980 // whether the parameter types are references).
3981 Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3982 << Name << DC << D.getCXXScopeSpec().getRange();
3983 NewFD->setInvalidDecl();
3985 DiagnoseInvalidRedeclaration(*this, NewFD);
3988 // Unqualified local friend declarations are required to resolve
3989 // to something.
3990 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3991 Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3992 NewFD->setInvalidDecl();
3993 DiagnoseInvalidRedeclaration(*this, NewFD);
3996 } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3997 !isFriend && !isFunctionTemplateSpecialization &&
3998 !isExplicitSpecialization) {
3999 // An out-of-line member function declaration must also be a
4000 // definition (C++ [dcl.meaning]p1).
4001 // Note that this is not the case for explicit specializations of
4002 // function templates or member functions of class templates, per
4003 // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4004 // for compatibility with old SWIG code which likes to generate them.
4005 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4006 << D.getCXXScopeSpec().getRange();
4011 // Handle attributes. We need to have merged decls when handling attributes
4012 // (for example to check for conflicts, etc).
4013 // FIXME: This needs to happen before we merge declarations. Then,
4014 // let attribute merging cope with attribute conflicts.
4015 ProcessDeclAttributes(S, NewFD, D,
4016 /*NonInheritable=*/false, /*Inheritable=*/true);
4018 // attributes declared post-definition are currently ignored
4019 // FIXME: This should happen during attribute merging
4020 if (Redeclaration && Previous.isSingleResult()) {
4021 const FunctionDecl *Def;
4022 FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4023 if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4024 Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4025 Diag(Def->getLocation(), diag::note_previous_definition);
4029 AddKnownFunctionAttributes(NewFD);
4031 if (NewFD->hasAttr<OverloadableAttr>() &&
4032 !NewFD->getType()->getAs<FunctionProtoType>()) {
4033 Diag(NewFD->getLocation(),
4034 diag::err_attribute_overloadable_no_prototype)
4035 << NewFD;
4037 // Turn this into a variadic function with no parameters.
4038 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4039 FunctionProtoType::ExtProtoInfo EPI;
4040 EPI.Variadic = true;
4041 EPI.ExtInfo = FT->getExtInfo();
4043 QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4044 NewFD->setType(R);
4047 // If there's a #pragma GCC visibility in scope, and this isn't a class
4048 // member, set the visibility of this function.
4049 if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4050 AddPushedVisibilityAttribute(NewFD);
4052 // If this is a locally-scoped extern C function, update the
4053 // map of such names.
4054 if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4055 && !NewFD->isInvalidDecl())
4056 RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4058 // Set this FunctionDecl's range up to the right paren.
4059 NewFD->setLocEnd(D.getSourceRange().getEnd());
4061 if (getLangOptions().CPlusPlus) {
4062 if (FunctionTemplate) {
4063 if (NewFD->isInvalidDecl())
4064 FunctionTemplate->setInvalidDecl();
4065 return FunctionTemplate;
4069 MarkUnusedFileScopedDecl(NewFD);
4070 return NewFD;
4073 /// \brief Perform semantic checking of a new function declaration.
4075 /// Performs semantic analysis of the new function declaration
4076 /// NewFD. This routine performs all semantic checking that does not
4077 /// require the actual declarator involved in the declaration, and is
4078 /// used both for the declaration of functions as they are parsed
4079 /// (called via ActOnDeclarator) and for the declaration of functions
4080 /// that have been instantiated via C++ template instantiation (called
4081 /// via InstantiateDecl).
4083 /// \param IsExplicitSpecialiation whether this new function declaration is
4084 /// an explicit specialization of the previous declaration.
4086 /// This sets NewFD->isInvalidDecl() to true if there was an error.
4087 void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4088 LookupResult &Previous,
4089 bool IsExplicitSpecialization,
4090 bool &Redeclaration) {
4091 // If NewFD is already known erroneous, don't do any of this checking.
4092 if (NewFD->isInvalidDecl()) {
4093 // If this is a class member, mark the class invalid immediately.
4094 // This avoids some consistency errors later.
4095 if (isa<CXXMethodDecl>(NewFD))
4096 cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4098 return;
4101 if (NewFD->getResultType()->isVariablyModifiedType()) {
4102 // Functions returning a variably modified type violate C99 6.7.5.2p2
4103 // because all functions have linkage.
4104 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4105 return NewFD->setInvalidDecl();
4108 if (NewFD->isMain())
4109 CheckMain(NewFD);
4111 // Check for a previous declaration of this name.
4112 if (Previous.empty() && NewFD->isExternC()) {
4113 // Since we did not find anything by this name and we're declaring
4114 // an extern "C" function, look for a non-visible extern "C"
4115 // declaration with the same name.
4116 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4117 = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4118 if (Pos != LocallyScopedExternalDecls.end())
4119 Previous.addDecl(Pos->second);
4122 // Merge or overload the declaration with an existing declaration of
4123 // the same name, if appropriate.
4124 if (!Previous.empty()) {
4125 // Determine whether NewFD is an overload of PrevDecl or
4126 // a declaration that requires merging. If it's an overload,
4127 // there's no more work to do here; we'll just add the new
4128 // function to the scope.
4130 NamedDecl *OldDecl = 0;
4131 if (!AllowOverloadingOfFunction(Previous, Context)) {
4132 Redeclaration = true;
4133 OldDecl = Previous.getFoundDecl();
4134 } else {
4135 switch (CheckOverload(S, NewFD, Previous, OldDecl,
4136 /*NewIsUsingDecl*/ false)) {
4137 case Ovl_Match:
4138 Redeclaration = true;
4139 break;
4141 case Ovl_NonFunction:
4142 Redeclaration = true;
4143 break;
4145 case Ovl_Overload:
4146 Redeclaration = false;
4147 break;
4150 if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4151 // If a function name is overloadable in C, then every function
4152 // with that name must be marked "overloadable".
4153 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4154 << Redeclaration << NewFD;
4155 NamedDecl *OverloadedDecl = 0;
4156 if (Redeclaration)
4157 OverloadedDecl = OldDecl;
4158 else if (!Previous.empty())
4159 OverloadedDecl = Previous.getRepresentativeDecl();
4160 if (OverloadedDecl)
4161 Diag(OverloadedDecl->getLocation(),
4162 diag::note_attribute_overloadable_prev_overload);
4163 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4164 Context));
4168 if (Redeclaration) {
4169 // NewFD and OldDecl represent declarations that need to be
4170 // merged.
4171 if (MergeFunctionDecl(NewFD, OldDecl))
4172 return NewFD->setInvalidDecl();
4174 Previous.clear();
4175 Previous.addDecl(OldDecl);
4177 if (FunctionTemplateDecl *OldTemplateDecl
4178 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4179 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4180 FunctionTemplateDecl *NewTemplateDecl
4181 = NewFD->getDescribedFunctionTemplate();
4182 assert(NewTemplateDecl && "Template/non-template mismatch");
4183 if (CXXMethodDecl *Method
4184 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4185 Method->setAccess(OldTemplateDecl->getAccess());
4186 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4189 // If this is an explicit specialization of a member that is a function
4190 // template, mark it as a member specialization.
4191 if (IsExplicitSpecialization &&
4192 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4193 NewTemplateDecl->setMemberSpecialization();
4194 assert(OldTemplateDecl->isMemberSpecialization());
4196 } else {
4197 if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4198 NewFD->setAccess(OldDecl->getAccess());
4199 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4204 // Semantic checking for this function declaration (in isolation).
4205 if (getLangOptions().CPlusPlus) {
4206 // C++-specific checks.
4207 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4208 CheckConstructor(Constructor);
4209 } else if (CXXDestructorDecl *Destructor =
4210 dyn_cast<CXXDestructorDecl>(NewFD)) {
4211 CXXRecordDecl *Record = Destructor->getParent();
4212 QualType ClassType = Context.getTypeDeclType(Record);
4214 // FIXME: Shouldn't we be able to perform this check even when the class
4215 // type is dependent? Both gcc and edg can handle that.
4216 if (!ClassType->isDependentType()) {
4217 DeclarationName Name
4218 = Context.DeclarationNames.getCXXDestructorName(
4219 Context.getCanonicalType(ClassType));
4220 if (NewFD->getDeclName() != Name) {
4221 Diag(NewFD->getLocation(), diag::err_destructor_name);
4222 return NewFD->setInvalidDecl();
4225 } else if (CXXConversionDecl *Conversion
4226 = dyn_cast<CXXConversionDecl>(NewFD)) {
4227 ActOnConversionDeclarator(Conversion);
4230 // Find any virtual functions that this function overrides.
4231 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4232 if (!Method->isFunctionTemplateSpecialization() &&
4233 !Method->getDescribedFunctionTemplate()) {
4234 if (AddOverriddenMethods(Method->getParent(), Method)) {
4235 // If the function was marked as "static", we have a problem.
4236 if (NewFD->getStorageClass() == SC_Static) {
4237 Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4238 << NewFD->getDeclName();
4239 for (CXXMethodDecl::method_iterator
4240 Overridden = Method->begin_overridden_methods(),
4241 OverriddenEnd = Method->end_overridden_methods();
4242 Overridden != OverriddenEnd;
4243 ++Overridden) {
4244 Diag((*Overridden)->getLocation(),
4245 diag::note_overridden_virtual_function);
4252 // Extra checking for C++ overloaded operators (C++ [over.oper]).
4253 if (NewFD->isOverloadedOperator() &&
4254 CheckOverloadedOperatorDeclaration(NewFD))
4255 return NewFD->setInvalidDecl();
4257 // Extra checking for C++0x literal operators (C++0x [over.literal]).
4258 if (NewFD->getLiteralIdentifier() &&
4259 CheckLiteralOperatorDeclaration(NewFD))
4260 return NewFD->setInvalidDecl();
4262 // In C++, check default arguments now that we have merged decls. Unless
4263 // the lexical context is the class, because in this case this is done
4264 // during delayed parsing anyway.
4265 if (!CurContext->isRecord())
4266 CheckCXXDefaultArguments(NewFD);
4268 // If this function declares a builtin function, check the type of this
4269 // declaration against the expected type for the builtin.
4270 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4271 ASTContext::GetBuiltinTypeError Error;
4272 QualType T = Context.GetBuiltinType(BuiltinID, Error);
4273 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4274 // The type of this function differs from the type of the builtin,
4275 // so forget about the builtin entirely.
4276 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4282 void Sema::CheckMain(FunctionDecl* FD) {
4283 // C++ [basic.start.main]p3: A program that declares main to be inline
4284 // or static is ill-formed.
4285 // C99 6.7.4p4: In a hosted environment, the inline function specifier
4286 // shall not appear in a declaration of main.
4287 // static main is not an error under C99, but we should warn about it.
4288 bool isInline = FD->isInlineSpecified();
4289 bool isStatic = FD->getStorageClass() == SC_Static;
4290 if (isInline || isStatic) {
4291 unsigned diagID = diag::warn_unusual_main_decl;
4292 if (isInline || getLangOptions().CPlusPlus)
4293 diagID = diag::err_unusual_main_decl;
4295 int which = isStatic + (isInline << 1) - 1;
4296 Diag(FD->getLocation(), diagID) << which;
4299 QualType T = FD->getType();
4300 assert(T->isFunctionType() && "function decl is not of function type");
4301 const FunctionType* FT = T->getAs<FunctionType>();
4303 if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4304 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4305 TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4306 const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4307 diag::err_main_returns_nonint);
4308 if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4309 D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4310 "int");
4312 FD->setInvalidDecl(true);
4315 // Treat protoless main() as nullary.
4316 if (isa<FunctionNoProtoType>(FT)) return;
4318 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4319 unsigned nparams = FTP->getNumArgs();
4320 assert(FD->getNumParams() == nparams);
4322 bool HasExtraParameters = (nparams > 3);
4324 // Darwin passes an undocumented fourth argument of type char**. If
4325 // other platforms start sprouting these, the logic below will start
4326 // getting shifty.
4327 if (nparams == 4 &&
4328 Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4329 HasExtraParameters = false;
4331 if (HasExtraParameters) {
4332 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4333 FD->setInvalidDecl(true);
4334 nparams = 3;
4337 // FIXME: a lot of the following diagnostics would be improved
4338 // if we had some location information about types.
4340 QualType CharPP =
4341 Context.getPointerType(Context.getPointerType(Context.CharTy));
4342 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4344 for (unsigned i = 0; i < nparams; ++i) {
4345 QualType AT = FTP->getArgType(i);
4347 bool mismatch = true;
4349 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4350 mismatch = false;
4351 else if (Expected[i] == CharPP) {
4352 // As an extension, the following forms are okay:
4353 // char const **
4354 // char const * const *
4355 // char * const *
4357 QualifierCollector qs;
4358 const PointerType* PT;
4359 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4360 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4361 (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4362 qs.removeConst();
4363 mismatch = !qs.empty();
4367 if (mismatch) {
4368 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4369 // TODO: suggest replacing given type with expected type
4370 FD->setInvalidDecl(true);
4374 if (nparams == 1 && !FD->isInvalidDecl()) {
4375 Diag(FD->getLocation(), diag::warn_main_one_arg);
4378 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4379 Diag(FD->getLocation(), diag::err_main_template_decl);
4380 FD->setInvalidDecl();
4384 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4385 // FIXME: Need strict checking. In C89, we need to check for
4386 // any assignment, increment, decrement, function-calls, or
4387 // commas outside of a sizeof. In C99, it's the same list,
4388 // except that the aforementioned are allowed in unevaluated
4389 // expressions. Everything else falls under the
4390 // "may accept other forms of constant expressions" exception.
4391 // (We never end up here for C++, so the constant expression
4392 // rules there don't matter.)
4393 if (Init->isConstantInitializer(Context, false))
4394 return false;
4395 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4396 << Init->getSourceRange();
4397 return true;
4400 void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4401 AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4404 /// AddInitializerToDecl - Adds the initializer Init to the
4405 /// declaration dcl. If DirectInit is true, this is C++ direct
4406 /// initialization rather than copy initialization.
4407 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4408 // If there is no declaration, there was an error parsing it. Just ignore
4409 // the initializer.
4410 if (RealDecl == 0)
4411 return;
4413 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4414 // With declarators parsed the way they are, the parser cannot
4415 // distinguish between a normal initializer and a pure-specifier.
4416 // Thus this grotesque test.
4417 IntegerLiteral *IL;
4418 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4419 Context.getCanonicalType(IL->getType()) == Context.IntTy)
4420 CheckPureMethod(Method, Init->getSourceRange());
4421 else {
4422 Diag(Method->getLocation(), diag::err_member_function_initialization)
4423 << Method->getDeclName() << Init->getSourceRange();
4424 Method->setInvalidDecl();
4426 return;
4429 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4430 if (!VDecl) {
4431 if (getLangOptions().CPlusPlus &&
4432 RealDecl->getLexicalDeclContext()->isRecord() &&
4433 isa<NamedDecl>(RealDecl))
4434 Diag(RealDecl->getLocation(), diag::err_member_initialization);
4435 else
4436 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4437 RealDecl->setInvalidDecl();
4438 return;
4443 // A definition must end up with a complete type, which means it must be
4444 // complete with the restriction that an array type might be completed by the
4445 // initializer; note that later code assumes this restriction.
4446 QualType BaseDeclType = VDecl->getType();
4447 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4448 BaseDeclType = Array->getElementType();
4449 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4450 diag::err_typecheck_decl_incomplete_type)) {
4451 RealDecl->setInvalidDecl();
4452 return;
4455 // The variable can not have an abstract class type.
4456 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4457 diag::err_abstract_type_in_decl,
4458 AbstractVariableType))
4459 VDecl->setInvalidDecl();
4461 const VarDecl *Def;
4462 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4463 Diag(VDecl->getLocation(), diag::err_redefinition)
4464 << VDecl->getDeclName();
4465 Diag(Def->getLocation(), diag::note_previous_definition);
4466 VDecl->setInvalidDecl();
4467 return;
4470 const VarDecl* PrevInit = 0;
4471 if (getLangOptions().CPlusPlus) {
4472 // C++ [class.static.data]p4
4473 // If a static data member is of const integral or const
4474 // enumeration type, its declaration in the class definition can
4475 // specify a constant-initializer which shall be an integral
4476 // constant expression (5.19). In that case, the member can appear
4477 // in integral constant expressions. The member shall still be
4478 // defined in a namespace scope if it is used in the program and the
4479 // namespace scope definition shall not contain an initializer.
4481 // We already performed a redefinition check above, but for static
4482 // data members we also need to check whether there was an in-class
4483 // declaration with an initializer.
4484 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4485 Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4486 Diag(PrevInit->getLocation(), diag::note_previous_definition);
4487 return;
4490 if (VDecl->hasLocalStorage())
4491 getCurFunction()->setHasBranchProtectedScope();
4493 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4494 VDecl->setInvalidDecl();
4495 return;
4499 // Capture the variable that is being initialized and the style of
4500 // initialization.
4501 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4503 // FIXME: Poor source location information.
4504 InitializationKind Kind
4505 = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4506 Init->getLocStart(),
4507 Init->getLocEnd())
4508 : InitializationKind::CreateCopy(VDecl->getLocation(),
4509 Init->getLocStart());
4511 // Get the decls type and save a reference for later, since
4512 // CheckInitializerTypes may change it.
4513 QualType DclT = VDecl->getType(), SavT = DclT;
4514 if (VDecl->isLocalVarDecl()) {
4515 if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4516 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4517 VDecl->setInvalidDecl();
4518 } else if (!VDecl->isInvalidDecl()) {
4519 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4520 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4521 MultiExprArg(*this, &Init, 1),
4522 &DclT);
4523 if (Result.isInvalid()) {
4524 VDecl->setInvalidDecl();
4525 return;
4528 Init = Result.takeAs<Expr>();
4530 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4531 // Don't check invalid declarations to avoid emitting useless diagnostics.
4532 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4533 if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4534 CheckForConstantInitializer(Init, DclT);
4537 } else if (VDecl->isStaticDataMember() &&
4538 VDecl->getLexicalDeclContext()->isRecord()) {
4539 // This is an in-class initialization for a static data member, e.g.,
4541 // struct S {
4542 // static const int value = 17;
4543 // };
4545 // Try to perform the initialization regardless.
4546 if (!VDecl->isInvalidDecl()) {
4547 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4548 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4549 MultiExprArg(*this, &Init, 1),
4550 &DclT);
4551 if (Result.isInvalid()) {
4552 VDecl->setInvalidDecl();
4553 return;
4556 Init = Result.takeAs<Expr>();
4559 // C++ [class.mem]p4:
4560 // A member-declarator can contain a constant-initializer only
4561 // if it declares a static member (9.4) of const integral or
4562 // const enumeration type, see 9.4.2.
4563 QualType T = VDecl->getType();
4565 // Do nothing on dependent types.
4566 if (T->isDependentType()) {
4568 // Require constness.
4569 } else if (!T.isConstQualified()) {
4570 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4571 << Init->getSourceRange();
4572 VDecl->setInvalidDecl();
4574 // We allow integer constant expressions in all cases.
4575 } else if (T->isIntegralOrEnumerationType()) {
4576 if (!Init->isValueDependent()) {
4577 // Check whether the expression is a constant expression.
4578 llvm::APSInt Value;
4579 SourceLocation Loc;
4580 if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4581 Diag(Loc, diag::err_in_class_initializer_non_constant)
4582 << Init->getSourceRange();
4583 VDecl->setInvalidDecl();
4587 // We allow floating-point constants as an extension in C++03, and
4588 // C++0x has far more complicated rules that we don't really
4589 // implement fully.
4590 } else {
4591 bool Allowed = false;
4592 if (getLangOptions().CPlusPlus0x) {
4593 Allowed = T->isLiteralType();
4594 } else if (T->isFloatingType()) { // also permits complex, which is ok
4595 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4596 << T << Init->getSourceRange();
4597 Allowed = true;
4600 if (!Allowed) {
4601 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4602 << T << Init->getSourceRange();
4603 VDecl->setInvalidDecl();
4605 // TODO: there are probably expressions that pass here that shouldn't.
4606 } else if (!Init->isValueDependent() &&
4607 !Init->isConstantInitializer(Context, false)) {
4608 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4609 << Init->getSourceRange();
4610 VDecl->setInvalidDecl();
4613 } else if (VDecl->isFileVarDecl()) {
4614 if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4615 (!getLangOptions().CPlusPlus ||
4616 !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4617 Diag(VDecl->getLocation(), diag::warn_extern_init);
4618 if (!VDecl->isInvalidDecl()) {
4619 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4620 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4621 MultiExprArg(*this, &Init, 1),
4622 &DclT);
4623 if (Result.isInvalid()) {
4624 VDecl->setInvalidDecl();
4625 return;
4628 Init = Result.takeAs<Expr>();
4631 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4632 // Don't check invalid declarations to avoid emitting useless diagnostics.
4633 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4634 // C99 6.7.8p4. All file scoped initializers need to be constant.
4635 CheckForConstantInitializer(Init, DclT);
4638 // If the type changed, it means we had an incomplete type that was
4639 // completed by the initializer. For example:
4640 // int ary[] = { 1, 3, 5 };
4641 // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4642 if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4643 VDecl->setType(DclT);
4644 Init->setType(DclT);
4648 // If this variable is a local declaration with record type, make sure it
4649 // doesn't have a flexible member initialization. We only support this as a
4650 // global/static definition.
4651 if (VDecl->hasLocalStorage())
4652 if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4653 if (RT->getDecl()->hasFlexibleArrayMember()) {
4654 // Check whether the initializer tries to initialize the flexible
4655 // array member itself to anything other than an empty initializer list.
4656 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4657 unsigned Index = std::distance(RT->getDecl()->field_begin(),
4658 RT->getDecl()->field_end()) - 1;
4659 if (Index < ILE->getNumInits() &&
4660 !(isa<InitListExpr>(ILE->getInit(Index)) &&
4661 cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4662 Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4663 VDecl->setInvalidDecl();
4668 // Check any implicit conversions within the expression.
4669 CheckImplicitConversions(Init, VDecl->getLocation());
4671 Init = MaybeCreateExprWithCleanups(Init);
4672 // Attach the initializer to the decl.
4673 VDecl->setInit(Init);
4675 CheckCompleteVariableDeclaration(VDecl);
4678 /// ActOnInitializerError - Given that there was an error parsing an
4679 /// initializer for the given declaration, try to return to some form
4680 /// of sanity.
4681 void Sema::ActOnInitializerError(Decl *D) {
4682 // Our main concern here is re-establishing invariants like "a
4683 // variable's type is either dependent or complete".
4684 if (!D || D->isInvalidDecl()) return;
4686 VarDecl *VD = dyn_cast<VarDecl>(D);
4687 if (!VD) return;
4689 QualType Ty = VD->getType();
4690 if (Ty->isDependentType()) return;
4692 // Require a complete type.
4693 if (RequireCompleteType(VD->getLocation(),
4694 Context.getBaseElementType(Ty),
4695 diag::err_typecheck_decl_incomplete_type)) {
4696 VD->setInvalidDecl();
4697 return;
4700 // Require an abstract type.
4701 if (RequireNonAbstractType(VD->getLocation(), Ty,
4702 diag::err_abstract_type_in_decl,
4703 AbstractVariableType)) {
4704 VD->setInvalidDecl();
4705 return;
4708 // Don't bother complaining about constructors or destructors,
4709 // though.
4712 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4713 bool TypeContainsUndeducedAuto) {
4714 // If there is no declaration, there was an error parsing it. Just ignore it.
4715 if (RealDecl == 0)
4716 return;
4718 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4719 QualType Type = Var->getType();
4721 // C++0x [dcl.spec.auto]p3
4722 if (TypeContainsUndeducedAuto) {
4723 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4724 << Var->getDeclName() << Type;
4725 Var->setInvalidDecl();
4726 return;
4729 switch (Var->isThisDeclarationADefinition()) {
4730 case VarDecl::Definition:
4731 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4732 break;
4734 // We have an out-of-line definition of a static data member
4735 // that has an in-class initializer, so we type-check this like
4736 // a declaration.
4738 // Fall through
4740 case VarDecl::DeclarationOnly:
4741 // It's only a declaration.
4743 // Block scope. C99 6.7p7: If an identifier for an object is
4744 // declared with no linkage (C99 6.2.2p6), the type for the
4745 // object shall be complete.
4746 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4747 !Var->getLinkage() && !Var->isInvalidDecl() &&
4748 RequireCompleteType(Var->getLocation(), Type,
4749 diag::err_typecheck_decl_incomplete_type))
4750 Var->setInvalidDecl();
4752 // Make sure that the type is not abstract.
4753 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4754 RequireNonAbstractType(Var->getLocation(), Type,
4755 diag::err_abstract_type_in_decl,
4756 AbstractVariableType))
4757 Var->setInvalidDecl();
4758 return;
4760 case VarDecl::TentativeDefinition:
4761 // File scope. C99 6.9.2p2: A declaration of an identifier for an
4762 // object that has file scope without an initializer, and without a
4763 // storage-class specifier or with the storage-class specifier "static",
4764 // constitutes a tentative definition. Note: A tentative definition with
4765 // external linkage is valid (C99 6.2.2p5).
4766 if (!Var->isInvalidDecl()) {
4767 if (const IncompleteArrayType *ArrayT
4768 = Context.getAsIncompleteArrayType(Type)) {
4769 if (RequireCompleteType(Var->getLocation(),
4770 ArrayT->getElementType(),
4771 diag::err_illegal_decl_array_incomplete_type))
4772 Var->setInvalidDecl();
4773 } else if (Var->getStorageClass() == SC_Static) {
4774 // C99 6.9.2p3: If the declaration of an identifier for an object is
4775 // a tentative definition and has internal linkage (C99 6.2.2p3), the
4776 // declared type shall not be an incomplete type.
4777 // NOTE: code such as the following
4778 // static struct s;
4779 // struct s { int a; };
4780 // is accepted by gcc. Hence here we issue a warning instead of
4781 // an error and we do not invalidate the static declaration.
4782 // NOTE: to avoid multiple warnings, only check the first declaration.
4783 if (Var->getPreviousDeclaration() == 0)
4784 RequireCompleteType(Var->getLocation(), Type,
4785 diag::ext_typecheck_decl_incomplete_type);
4789 // Record the tentative definition; we're done.
4790 if (!Var->isInvalidDecl())
4791 TentativeDefinitions.push_back(Var);
4792 return;
4795 // Provide a specific diagnostic for uninitialized variable
4796 // definitions with incomplete array type.
4797 if (Type->isIncompleteArrayType()) {
4798 Diag(Var->getLocation(),
4799 diag::err_typecheck_incomplete_array_needs_initializer);
4800 Var->setInvalidDecl();
4801 return;
4804 // Provide a specific diagnostic for uninitialized variable
4805 // definitions with reference type.
4806 if (Type->isReferenceType()) {
4807 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4808 << Var->getDeclName()
4809 << SourceRange(Var->getLocation(), Var->getLocation());
4810 Var->setInvalidDecl();
4811 return;
4814 // Do not attempt to type-check the default initializer for a
4815 // variable with dependent type.
4816 if (Type->isDependentType())
4817 return;
4819 if (Var->isInvalidDecl())
4820 return;
4822 if (RequireCompleteType(Var->getLocation(),
4823 Context.getBaseElementType(Type),
4824 diag::err_typecheck_decl_incomplete_type)) {
4825 Var->setInvalidDecl();
4826 return;
4829 // The variable can not have an abstract class type.
4830 if (RequireNonAbstractType(Var->getLocation(), Type,
4831 diag::err_abstract_type_in_decl,
4832 AbstractVariableType)) {
4833 Var->setInvalidDecl();
4834 return;
4837 const RecordType *Record
4838 = Context.getBaseElementType(Type)->getAs<RecordType>();
4839 if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4840 cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4841 // C++03 [dcl.init]p9:
4842 // If no initializer is specified for an object, and the
4843 // object is of (possibly cv-qualified) non-POD class type (or
4844 // array thereof), the object shall be default-initialized; if
4845 // the object is of const-qualified type, the underlying class
4846 // type shall have a user-declared default
4847 // constructor. Otherwise, if no initializer is specified for
4848 // a non- static object, the object and its subobjects, if
4849 // any, have an indeterminate initial value); if the object
4850 // or any of its subobjects are of const-qualified type, the
4851 // program is ill-formed.
4852 // FIXME: DPG thinks it is very fishy that C++0x disables this.
4853 } else {
4854 // Check for jumps past the implicit initializer. C++0x
4855 // clarifies that this applies to a "variable with automatic
4856 // storage duration", not a "local variable".
4857 if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4858 getCurFunction()->setHasBranchProtectedScope();
4860 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4861 InitializationKind Kind
4862 = InitializationKind::CreateDefault(Var->getLocation());
4864 InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4865 ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4866 MultiExprArg(*this, 0, 0));
4867 if (Init.isInvalid())
4868 Var->setInvalidDecl();
4869 else if (Init.get())
4870 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4873 CheckCompleteVariableDeclaration(Var);
4877 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4878 if (var->isInvalidDecl()) return;
4880 // All the following checks are C++ only.
4881 if (!getLangOptions().CPlusPlus) return;
4883 QualType baseType = Context.getBaseElementType(var->getType());
4884 if (baseType->isDependentType()) return;
4886 // __block variables might require us to capture a copy-initializer.
4887 if (var->hasAttr<BlocksAttr>()) {
4888 // It's currently invalid to ever have a __block variable with an
4889 // array type; should we diagnose that here?
4891 // Regardless, we don't want to ignore array nesting when
4892 // constructing this copy.
4893 QualType type = var->getType();
4895 if (type->isStructureOrClassType()) {
4896 SourceLocation poi = var->getLocation();
4897 Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
4898 ExprResult result =
4899 PerformCopyInitialization(
4900 InitializedEntity::InitializeBlock(poi, type, false),
4901 poi, Owned(varRef));
4902 if (!result.isInvalid()) {
4903 result = MaybeCreateExprWithCleanups(result);
4904 Expr *init = result.takeAs<Expr>();
4905 Context.setBlockVarCopyInits(var, init);
4910 // Check for global constructors.
4911 if (!var->getDeclContext()->isDependentContext() &&
4912 var->hasGlobalStorage() &&
4913 !var->isStaticLocal() &&
4914 var->getInit() &&
4915 !var->getInit()->isConstantInitializer(Context,
4916 baseType->isReferenceType()))
4917 Diag(var->getLocation(), diag::warn_global_constructor)
4918 << var->getInit()->getSourceRange();
4920 // Require the destructor.
4921 if (const RecordType *recordType = baseType->getAs<RecordType>())
4922 FinalizeVarWithDestructor(var, recordType);
4925 Sema::DeclGroupPtrTy
4926 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4927 Decl **Group, unsigned NumDecls) {
4928 llvm::SmallVector<Decl*, 8> Decls;
4930 if (DS.isTypeSpecOwned())
4931 Decls.push_back(DS.getRepAsDecl());
4933 for (unsigned i = 0; i != NumDecls; ++i)
4934 if (Decl *D = Group[i])
4935 Decls.push_back(D);
4937 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4938 Decls.data(), Decls.size()));
4942 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4943 /// to introduce parameters into function prototype scope.
4944 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4945 const DeclSpec &DS = D.getDeclSpec();
4947 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4948 VarDecl::StorageClass StorageClass = SC_None;
4949 VarDecl::StorageClass StorageClassAsWritten = SC_None;
4950 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4951 StorageClass = SC_Register;
4952 StorageClassAsWritten = SC_Register;
4953 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4954 Diag(DS.getStorageClassSpecLoc(),
4955 diag::err_invalid_storage_class_in_func_decl);
4956 D.getMutableDeclSpec().ClearStorageClassSpecs();
4959 if (D.getDeclSpec().isThreadSpecified())
4960 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4962 DiagnoseFunctionSpecifiers(D);
4964 TagDecl *OwnedDecl = 0;
4965 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4966 QualType parmDeclType = TInfo->getType();
4968 if (getLangOptions().CPlusPlus) {
4969 // Check that there are no default arguments inside the type of this
4970 // parameter.
4971 CheckExtraCXXDefaultArguments(D);
4973 if (OwnedDecl && OwnedDecl->isDefinition()) {
4974 // C++ [dcl.fct]p6:
4975 // Types shall not be defined in return or parameter types.
4976 Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4977 << Context.getTypeDeclType(OwnedDecl);
4980 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4981 if (D.getCXXScopeSpec().isSet()) {
4982 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4983 << D.getCXXScopeSpec().getRange();
4984 D.getCXXScopeSpec().clear();
4988 // Ensure we have a valid name
4989 IdentifierInfo *II = 0;
4990 if (D.hasName()) {
4991 II = D.getIdentifier();
4992 if (!II) {
4993 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4994 << GetNameForDeclarator(D).getName().getAsString();
4995 D.setInvalidType(true);
4999 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5000 if (II) {
5001 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5002 ForRedeclaration);
5003 LookupName(R, S);
5004 if (R.isSingleResult()) {
5005 NamedDecl *PrevDecl = R.getFoundDecl();
5006 if (PrevDecl->isTemplateParameter()) {
5007 // Maybe we will complain about the shadowed template parameter.
5008 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5009 // Just pretend that we didn't see the previous declaration.
5010 PrevDecl = 0;
5011 } else if (S->isDeclScope(PrevDecl)) {
5012 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5013 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5015 // Recover by removing the name
5016 II = 0;
5017 D.SetIdentifier(0, D.getIdentifierLoc());
5018 D.setInvalidType(true);
5023 // Temporarily put parameter variables in the translation unit, not
5024 // the enclosing context. This prevents them from accidentally
5025 // looking like class members in C++.
5026 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5027 TInfo, parmDeclType, II,
5028 D.getIdentifierLoc(),
5029 StorageClass, StorageClassAsWritten);
5031 if (D.isInvalidType())
5032 New->setInvalidDecl();
5034 // Add the parameter declaration into this scope.
5035 S->AddDecl(New);
5036 if (II)
5037 IdResolver.AddDecl(New);
5039 ProcessDeclAttributes(S, New, D);
5041 if (New->hasAttr<BlocksAttr>()) {
5042 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5044 return New;
5047 /// \brief Synthesizes a variable for a parameter arising from a
5048 /// typedef.
5049 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5050 SourceLocation Loc,
5051 QualType T) {
5052 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5053 T, Context.getTrivialTypeSourceInfo(T, Loc),
5054 SC_None, SC_None, 0);
5055 Param->setImplicit();
5056 return Param;
5059 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5060 ParmVarDecl * const *ParamEnd) {
5061 // Don't diagnose unused-parameter errors in template instantiations; we
5062 // will already have done so in the template itself.
5063 if (!ActiveTemplateInstantiations.empty())
5064 return;
5066 for (; Param != ParamEnd; ++Param) {
5067 if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5068 !(*Param)->hasAttr<UnusedAttr>()) {
5069 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5070 << (*Param)->getDeclName();
5075 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5076 ParmVarDecl * const *ParamEnd,
5077 QualType ReturnTy,
5078 NamedDecl *D) {
5079 if (LangOpts.NumLargeByValueCopy == 0) // No check.
5080 return;
5082 // Warn if the return value is pass-by-value and larger than the specified
5083 // threshold.
5084 if (ReturnTy->isPODType()) {
5085 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5086 if (Size > LangOpts.NumLargeByValueCopy)
5087 Diag(D->getLocation(), diag::warn_return_value_size)
5088 << D->getDeclName() << Size;
5091 // Warn if any parameter is pass-by-value and larger than the specified
5092 // threshold.
5093 for (; Param != ParamEnd; ++Param) {
5094 QualType T = (*Param)->getType();
5095 if (!T->isPODType())
5096 continue;
5097 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5098 if (Size > LangOpts.NumLargeByValueCopy)
5099 Diag((*Param)->getLocation(), diag::warn_parameter_size)
5100 << (*Param)->getDeclName() << Size;
5104 ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5105 TypeSourceInfo *TSInfo, QualType T,
5106 IdentifierInfo *Name,
5107 SourceLocation NameLoc,
5108 VarDecl::StorageClass StorageClass,
5109 VarDecl::StorageClass StorageClassAsWritten) {
5110 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5111 adjustParameterType(T), TSInfo,
5112 StorageClass, StorageClassAsWritten,
5115 // Parameters can not be abstract class types.
5116 // For record types, this is done by the AbstractClassUsageDiagnoser once
5117 // the class has been completely parsed.
5118 if (!CurContext->isRecord() &&
5119 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5120 AbstractParamType))
5121 New->setInvalidDecl();
5123 // Parameter declarators cannot be interface types. All ObjC objects are
5124 // passed by reference.
5125 if (T->isObjCObjectType()) {
5126 Diag(NameLoc,
5127 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5128 New->setInvalidDecl();
5131 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5132 // duration shall not be qualified by an address-space qualifier."
5133 // Since all parameters have automatic store duration, they can not have
5134 // an address space.
5135 if (T.getAddressSpace() != 0) {
5136 Diag(NameLoc, diag::err_arg_with_address_space);
5137 New->setInvalidDecl();
5140 return New;
5143 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5144 SourceLocation LocAfterDecls) {
5145 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5147 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5148 // for a K&R function.
5149 if (!FTI.hasPrototype) {
5150 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5151 --i;
5152 if (FTI.ArgInfo[i].Param == 0) {
5153 llvm::SmallString<256> Code;
5154 llvm::raw_svector_ostream(Code) << " int "
5155 << FTI.ArgInfo[i].Ident->getName()
5156 << ";\n";
5157 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5158 << FTI.ArgInfo[i].Ident
5159 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5161 // Implicitly declare the argument as type 'int' for lack of a better
5162 // type.
5163 DeclSpec DS;
5164 const char* PrevSpec; // unused
5165 unsigned DiagID; // unused
5166 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5167 PrevSpec, DiagID);
5168 Declarator ParamD(DS, Declarator::KNRTypeListContext);
5169 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5170 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5176 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5177 Declarator &D) {
5178 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5179 assert(D.isFunctionDeclarator() && "Not a function declarator!");
5180 Scope *ParentScope = FnBodyScope->getParent();
5182 Decl *DP = HandleDeclarator(ParentScope, D,
5183 MultiTemplateParamsArg(*this),
5184 /*IsFunctionDefinition=*/true);
5185 return ActOnStartOfFunctionDef(FnBodyScope, DP);
5188 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5189 // Don't warn about invalid declarations.
5190 if (FD->isInvalidDecl())
5191 return false;
5193 // Or declarations that aren't global.
5194 if (!FD->isGlobal())
5195 return false;
5197 // Don't warn about C++ member functions.
5198 if (isa<CXXMethodDecl>(FD))
5199 return false;
5201 // Don't warn about 'main'.
5202 if (FD->isMain())
5203 return false;
5205 // Don't warn about inline functions.
5206 if (FD->isInlineSpecified())
5207 return false;
5209 // Don't warn about function templates.
5210 if (FD->getDescribedFunctionTemplate())
5211 return false;
5213 // Don't warn about function template specializations.
5214 if (FD->isFunctionTemplateSpecialization())
5215 return false;
5217 bool MissingPrototype = true;
5218 for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5219 Prev; Prev = Prev->getPreviousDeclaration()) {
5220 // Ignore any declarations that occur in function or method
5221 // scope, because they aren't visible from the header.
5222 if (Prev->getDeclContext()->isFunctionOrMethod())
5223 continue;
5225 MissingPrototype = !Prev->getType()->isFunctionProtoType();
5226 break;
5229 return MissingPrototype;
5232 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5233 // Clear the last template instantiation error context.
5234 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5236 if (!D)
5237 return D;
5238 FunctionDecl *FD = 0;
5240 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5241 FD = FunTmpl->getTemplatedDecl();
5242 else
5243 FD = cast<FunctionDecl>(D);
5245 // Enter a new function scope
5246 PushFunctionScope();
5248 // See if this is a redefinition.
5249 // But don't complain if we're in GNU89 mode and the previous definition
5250 // was an extern inline function.
5251 const FunctionDecl *Definition;
5252 if (FD->hasBody(Definition) &&
5253 !canRedefineFunction(Definition, getLangOptions())) {
5254 if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5255 Definition->getStorageClass() == SC_Extern)
5256 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5257 << FD->getDeclName() << getLangOptions().CPlusPlus;
5258 else
5259 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5260 Diag(Definition->getLocation(), diag::note_previous_definition);
5263 // Builtin functions cannot be defined.
5264 if (unsigned BuiltinID = FD->getBuiltinID()) {
5265 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5266 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5267 FD->setInvalidDecl();
5271 // The return type of a function definition must be complete
5272 // (C99 6.9.1p3, C++ [dcl.fct]p6).
5273 QualType ResultType = FD->getResultType();
5274 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5275 !FD->isInvalidDecl() &&
5276 RequireCompleteType(FD->getLocation(), ResultType,
5277 diag::err_func_def_incomplete_result))
5278 FD->setInvalidDecl();
5280 // GNU warning -Wmissing-prototypes:
5281 // Warn if a global function is defined without a previous
5282 // prototype declaration. This warning is issued even if the
5283 // definition itself provides a prototype. The aim is to detect
5284 // global functions that fail to be declared in header files.
5285 if (ShouldWarnAboutMissingPrototype(FD))
5286 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5288 if (FnBodyScope)
5289 PushDeclContext(FnBodyScope, FD);
5291 // Check the validity of our function parameters
5292 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5293 /*CheckParameterNames=*/true);
5295 // Introduce our parameters into the function scope
5296 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5297 ParmVarDecl *Param = FD->getParamDecl(p);
5298 Param->setOwningFunction(FD);
5300 // If this has an identifier, add it to the scope stack.
5301 if (Param->getIdentifier() && FnBodyScope) {
5302 CheckShadow(FnBodyScope, Param);
5304 PushOnScopeChains(Param, FnBodyScope);
5308 // Checking attributes of current function definition
5309 // dllimport attribute.
5310 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5311 if (DA && (!FD->getAttr<DLLExportAttr>())) {
5312 // dllimport attribute cannot be directly applied to definition.
5313 if (!DA->isInherited()) {
5314 Diag(FD->getLocation(),
5315 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5316 << "dllimport";
5317 FD->setInvalidDecl();
5318 return FD;
5321 // Visual C++ appears to not think this is an issue, so only issue
5322 // a warning when Microsoft extensions are disabled.
5323 if (!LangOpts.Microsoft) {
5324 // If a symbol previously declared dllimport is later defined, the
5325 // attribute is ignored in subsequent references, and a warning is
5326 // emitted.
5327 Diag(FD->getLocation(),
5328 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5329 << FD->getName() << "dllimport";
5332 return FD;
5335 /// \brief Given the set of return statements within a function body,
5336 /// compute the variables that are subject to the named return value
5337 /// optimization.
5339 /// Each of the variables that is subject to the named return value
5340 /// optimization will be marked as NRVO variables in the AST, and any
5341 /// return statement that has a marked NRVO variable as its NRVO candidate can
5342 /// use the named return value optimization.
5344 /// This function applies a very simplistic algorithm for NRVO: if every return
5345 /// statement in the function has the same NRVO candidate, that candidate is
5346 /// the NRVO variable.
5348 /// FIXME: Employ a smarter algorithm that accounts for multiple return
5349 /// statements and the lifetimes of the NRVO candidates. We should be able to
5350 /// find a maximal set of NRVO variables.
5351 static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5352 ReturnStmt **Returns = Scope->Returns.data();
5354 const VarDecl *NRVOCandidate = 0;
5355 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5356 if (!Returns[I]->getNRVOCandidate())
5357 return;
5359 if (!NRVOCandidate)
5360 NRVOCandidate = Returns[I]->getNRVOCandidate();
5361 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5362 return;
5365 if (NRVOCandidate)
5366 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5369 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5370 return ActOnFinishFunctionBody(D, move(BodyArg), false);
5373 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5374 bool IsInstantiation) {
5375 FunctionDecl *FD = 0;
5376 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5377 if (FunTmpl)
5378 FD = FunTmpl->getTemplatedDecl();
5379 else
5380 FD = dyn_cast_or_null<FunctionDecl>(dcl);
5382 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5384 if (FD) {
5385 FD->setBody(Body);
5386 if (FD->isMain()) {
5387 // C and C++ allow for main to automagically return 0.
5388 // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5389 FD->setHasImplicitReturnZero(true);
5390 WP.disableCheckFallThrough();
5393 if (!FD->isInvalidDecl()) {
5394 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5395 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5396 FD->getResultType(), FD);
5398 // If this is a constructor, we need a vtable.
5399 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5400 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5402 ComputeNRVO(Body, getCurFunction());
5405 assert(FD == getCurFunctionDecl() && "Function parsing confused");
5406 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5407 assert(MD == getCurMethodDecl() && "Method parsing confused");
5408 MD->setBody(Body);
5409 if (Body)
5410 MD->setEndLoc(Body->getLocEnd());
5411 if (!MD->isInvalidDecl()) {
5412 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5413 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5414 MD->getResultType(), MD);
5416 } else {
5417 return 0;
5420 // Verify and clean out per-function state.
5422 // Check goto/label use.
5423 FunctionScopeInfo *CurFn = getCurFunction();
5424 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5425 I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5426 LabelStmt *L = I->second;
5428 // Verify that we have no forward references left. If so, there was a goto
5429 // or address of a label taken, but no definition of it. Label fwd
5430 // definitions are indicated with a null substmt.
5431 if (L->getSubStmt() != 0) {
5432 if (!L->isUsed())
5433 Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5434 continue;
5437 // Emit error.
5438 Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5440 // At this point, we have gotos that use the bogus label. Stitch it into
5441 // the function body so that they aren't leaked and that the AST is well
5442 // formed.
5443 if (Body == 0) {
5444 // The whole function wasn't parsed correctly.
5445 continue;
5448 // Otherwise, the body is valid: we want to stitch the label decl into the
5449 // function somewhere so that it is properly owned and so that the goto
5450 // has a valid target. Do this by creating a new compound stmt with the
5451 // label in it.
5453 // Give the label a sub-statement.
5454 L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5456 CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5457 cast<CXXTryStmt>(Body)->getTryBlock() :
5458 cast<CompoundStmt>(Body);
5459 llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5460 Compound->body_end());
5461 Elements.push_back(L);
5462 Compound->setStmts(Context, Elements.data(), Elements.size());
5465 if (Body) {
5466 // C++ constructors that have function-try-blocks can't have return
5467 // statements in the handlers of that block. (C++ [except.handle]p14)
5468 // Verify this.
5469 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5470 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5472 // Verify that that gotos and switch cases don't jump into scopes illegally.
5473 // Verify that that gotos and switch cases don't jump into scopes illegally.
5474 if (getCurFunction()->NeedsScopeChecking() &&
5475 !dcl->isInvalidDecl() &&
5476 !hasAnyErrorsInThisFunction())
5477 DiagnoseInvalidJumps(Body);
5479 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5480 if (!Destructor->getParent()->isDependentType())
5481 CheckDestructor(Destructor);
5483 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5484 Destructor->getParent());
5487 // If any errors have occurred, clear out any temporaries that may have
5488 // been leftover. This ensures that these temporaries won't be picked up for
5489 // deletion in some later function.
5490 if (PP.getDiagnostics().hasErrorOccurred())
5491 ExprTemporaries.clear();
5492 else if (!isa<FunctionTemplateDecl>(dcl)) {
5493 // Since the body is valid, issue any analysis-based warnings that are
5494 // enabled.
5495 QualType ResultType;
5496 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5497 AnalysisWarnings.IssueWarnings(WP, FD);
5498 } else {
5499 ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5500 AnalysisWarnings.IssueWarnings(WP, MD);
5504 assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5507 if (!IsInstantiation)
5508 PopDeclContext();
5510 PopFunctionOrBlockScope();
5512 // If any errors have occurred, clear out any temporaries that may have
5513 // been leftover. This ensures that these temporaries won't be picked up for
5514 // deletion in some later function.
5515 if (getDiagnostics().hasErrorOccurred())
5516 ExprTemporaries.clear();
5518 return dcl;
5521 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5522 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5523 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5524 IdentifierInfo &II, Scope *S) {
5525 // Before we produce a declaration for an implicitly defined
5526 // function, see whether there was a locally-scoped declaration of
5527 // this name as a function or variable. If so, use that
5528 // (non-visible) declaration, and complain about it.
5529 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5530 = LocallyScopedExternalDecls.find(&II);
5531 if (Pos != LocallyScopedExternalDecls.end()) {
5532 Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5533 Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5534 return Pos->second;
5537 // Extension in C99. Legal in C90, but warn about it.
5538 if (II.getName().startswith("__builtin_"))
5539 Diag(Loc, diag::warn_builtin_unknown) << &II;
5540 else if (getLangOptions().C99)
5541 Diag(Loc, diag::ext_implicit_function_decl) << &II;
5542 else
5543 Diag(Loc, diag::warn_implicit_function_decl) << &II;
5545 // Set a Declarator for the implicit definition: int foo();
5546 const char *Dummy;
5547 DeclSpec DS;
5548 unsigned DiagID;
5549 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5550 (void)Error; // Silence warning.
5551 assert(!Error && "Error setting up implicit decl!");
5552 Declarator D(DS, Declarator::BlockContext);
5553 D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5554 false, false, SourceLocation(), 0,
5555 0, 0, true, SourceLocation(),
5556 false, SourceLocation(),
5557 false, 0,0,0, Loc, Loc, D),
5558 SourceLocation());
5559 D.SetIdentifier(&II, Loc);
5561 // Insert this function into translation-unit scope.
5563 DeclContext *PrevDC = CurContext;
5564 CurContext = Context.getTranslationUnitDecl();
5566 FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5567 FD->setImplicit();
5569 CurContext = PrevDC;
5571 AddKnownFunctionAttributes(FD);
5573 return FD;
5576 /// \brief Adds any function attributes that we know a priori based on
5577 /// the declaration of this function.
5579 /// These attributes can apply both to implicitly-declared builtins
5580 /// (like __builtin___printf_chk) or to library-declared functions
5581 /// like NSLog or printf.
5582 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5583 if (FD->isInvalidDecl())
5584 return;
5586 // If this is a built-in function, map its builtin attributes to
5587 // actual attributes.
5588 if (unsigned BuiltinID = FD->getBuiltinID()) {
5589 // Handle printf-formatting attributes.
5590 unsigned FormatIdx;
5591 bool HasVAListArg;
5592 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5593 if (!FD->getAttr<FormatAttr>())
5594 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5595 "printf", FormatIdx+1,
5596 HasVAListArg ? 0 : FormatIdx+2));
5598 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5599 HasVAListArg)) {
5600 if (!FD->getAttr<FormatAttr>())
5601 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5602 "scanf", FormatIdx+1,
5603 HasVAListArg ? 0 : FormatIdx+2));
5606 // Mark const if we don't care about errno and that is the only
5607 // thing preventing the function from being const. This allows
5608 // IRgen to use LLVM intrinsics for such functions.
5609 if (!getLangOptions().MathErrno &&
5610 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5611 if (!FD->getAttr<ConstAttr>())
5612 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5615 if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5616 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5617 if (Context.BuiltinInfo.isConst(BuiltinID))
5618 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5621 IdentifierInfo *Name = FD->getIdentifier();
5622 if (!Name)
5623 return;
5624 if ((!getLangOptions().CPlusPlus &&
5625 FD->getDeclContext()->isTranslationUnit()) ||
5626 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5627 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5628 LinkageSpecDecl::lang_c)) {
5629 // Okay: this could be a libc/libm/Objective-C function we know
5630 // about.
5631 } else
5632 return;
5634 if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5635 // FIXME: NSLog and NSLogv should be target specific
5636 if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5637 // FIXME: We known better than our headers.
5638 const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5639 } else
5640 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5641 "printf", 1,
5642 Name->isStr("NSLogv") ? 0 : 2));
5643 } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5644 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5645 // target-specific builtins, perhaps?
5646 if (!FD->getAttr<FormatAttr>())
5647 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5648 "printf", 2,
5649 Name->isStr("vasprintf") ? 0 : 3));
5653 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5654 TypeSourceInfo *TInfo) {
5655 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5656 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5658 if (!TInfo) {
5659 assert(D.isInvalidType() && "no declarator info for valid type");
5660 TInfo = Context.getTrivialTypeSourceInfo(T);
5663 // Scope manipulation handled by caller.
5664 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5665 D.getIdentifierLoc(),
5666 D.getIdentifier(),
5667 TInfo);
5669 if (const TagType *TT = T->getAs<TagType>()) {
5670 TagDecl *TD = TT->getDecl();
5672 // If the TagDecl that the TypedefDecl points to is an anonymous decl
5673 // keep track of the TypedefDecl.
5674 if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5675 TD->setTypedefForAnonDecl(NewTD);
5678 if (D.isInvalidType())
5679 NewTD->setInvalidDecl();
5680 return NewTD;
5684 /// \brief Determine whether a tag with a given kind is acceptable
5685 /// as a redeclaration of the given tag declaration.
5687 /// \returns true if the new tag kind is acceptable, false otherwise.
5688 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5689 TagTypeKind NewTag,
5690 SourceLocation NewTagLoc,
5691 const IdentifierInfo &Name) {
5692 // C++ [dcl.type.elab]p3:
5693 // The class-key or enum keyword present in the
5694 // elaborated-type-specifier shall agree in kind with the
5695 // declaration to which the name in the elaborated-type-specifier
5696 // refers. This rule also applies to the form of
5697 // elaborated-type-specifier that declares a class-name or
5698 // friend class since it can be construed as referring to the
5699 // definition of the class. Thus, in any
5700 // elaborated-type-specifier, the enum keyword shall be used to
5701 // refer to an enumeration (7.2), the union class-key shall be
5702 // used to refer to a union (clause 9), and either the class or
5703 // struct class-key shall be used to refer to a class (clause 9)
5704 // declared using the class or struct class-key.
5705 TagTypeKind OldTag = Previous->getTagKind();
5706 if (OldTag == NewTag)
5707 return true;
5709 if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5710 (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5711 // Warn about the struct/class tag mismatch.
5712 bool isTemplate = false;
5713 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5714 isTemplate = Record->getDescribedClassTemplate();
5716 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5717 << (NewTag == TTK_Class)
5718 << isTemplate << &Name
5719 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5720 OldTag == TTK_Class? "class" : "struct");
5721 Diag(Previous->getLocation(), diag::note_previous_use);
5722 return true;
5724 return false;
5727 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
5728 /// former case, Name will be non-null. In the later case, Name will be null.
5729 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5730 /// reference/declaration/definition of a tag.
5731 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5732 SourceLocation KWLoc, CXXScopeSpec &SS,
5733 IdentifierInfo *Name, SourceLocation NameLoc,
5734 AttributeList *Attr, AccessSpecifier AS,
5735 MultiTemplateParamsArg TemplateParameterLists,
5736 bool &OwnedDecl, bool &IsDependent,
5737 bool ScopedEnum, bool ScopedEnumUsesClassTag,
5738 TypeResult UnderlyingType) {
5739 // If this is not a definition, it must have a name.
5740 assert((Name != 0 || TUK == TUK_Definition) &&
5741 "Nameless record must be a definition!");
5742 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5744 OwnedDecl = false;
5745 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5747 // FIXME: Check explicit specializations more carefully.
5748 bool isExplicitSpecialization = false;
5749 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5750 bool Invalid = false;
5752 // We only need to do this matching if we have template parameters
5753 // or a scope specifier, which also conveniently avoids this work
5754 // for non-C++ cases.
5755 if (NumMatchedTemplateParamLists ||
5756 (SS.isNotEmpty() && TUK != TUK_Reference)) {
5757 if (TemplateParameterList *TemplateParams
5758 = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5759 TemplateParameterLists.get(),
5760 TemplateParameterLists.size(),
5761 TUK == TUK_Friend,
5762 isExplicitSpecialization,
5763 Invalid)) {
5764 // All but one template parameter lists have been matching.
5765 --NumMatchedTemplateParamLists;
5767 if (TemplateParams->size() > 0) {
5768 // This is a declaration or definition of a class template (which may
5769 // be a member of another template).
5770 if (Invalid)
5771 return 0;
5773 OwnedDecl = false;
5774 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5775 SS, Name, NameLoc, Attr,
5776 TemplateParams,
5777 AS);
5778 TemplateParameterLists.release();
5779 return Result.get();
5780 } else {
5781 // The "template<>" header is extraneous.
5782 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5783 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5784 isExplicitSpecialization = true;
5789 // Figure out the underlying type if this a enum declaration. We need to do
5790 // this early, because it's needed to detect if this is an incompatible
5791 // redeclaration.
5792 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5794 if (Kind == TTK_Enum) {
5795 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5796 // No underlying type explicitly specified, or we failed to parse the
5797 // type, default to int.
5798 EnumUnderlying = Context.IntTy.getTypePtr();
5799 else if (UnderlyingType.get()) {
5800 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5801 // integral type; any cv-qualification is ignored.
5802 TypeSourceInfo *TI = 0;
5803 QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5804 EnumUnderlying = TI;
5806 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5808 if (!T->isDependentType() && !T->isIntegralType(Context)) {
5809 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5810 << T;
5811 // Recover by falling back to int.
5812 EnumUnderlying = Context.IntTy.getTypePtr();
5815 if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5816 UPPC_FixedUnderlyingType))
5817 EnumUnderlying = Context.IntTy.getTypePtr();
5819 } else if (getLangOptions().Microsoft)
5820 // Microsoft enums are always of int type.
5821 EnumUnderlying = Context.IntTy.getTypePtr();
5824 DeclContext *SearchDC = CurContext;
5825 DeclContext *DC = CurContext;
5826 bool isStdBadAlloc = false;
5828 RedeclarationKind Redecl = ForRedeclaration;
5829 if (TUK == TUK_Friend || TUK == TUK_Reference)
5830 Redecl = NotForRedeclaration;
5832 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5834 if (Name && SS.isNotEmpty()) {
5835 // We have a nested-name tag ('struct foo::bar').
5837 // Check for invalid 'foo::'.
5838 if (SS.isInvalid()) {
5839 Name = 0;
5840 goto CreateNewDecl;
5843 // If this is a friend or a reference to a class in a dependent
5844 // context, don't try to make a decl for it.
5845 if (TUK == TUK_Friend || TUK == TUK_Reference) {
5846 DC = computeDeclContext(SS, false);
5847 if (!DC) {
5848 IsDependent = true;
5849 return 0;
5851 } else {
5852 DC = computeDeclContext(SS, true);
5853 if (!DC) {
5854 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5855 << SS.getRange();
5856 return 0;
5860 if (RequireCompleteDeclContext(SS, DC))
5861 return 0;
5863 SearchDC = DC;
5864 // Look-up name inside 'foo::'.
5865 LookupQualifiedName(Previous, DC);
5867 if (Previous.isAmbiguous())
5868 return 0;
5870 if (Previous.empty()) {
5871 // Name lookup did not find anything. However, if the
5872 // nested-name-specifier refers to the current instantiation,
5873 // and that current instantiation has any dependent base
5874 // classes, we might find something at instantiation time: treat
5875 // this as a dependent elaborated-type-specifier.
5876 // But this only makes any sense for reference-like lookups.
5877 if (Previous.wasNotFoundInCurrentInstantiation() &&
5878 (TUK == TUK_Reference || TUK == TUK_Friend)) {
5879 IsDependent = true;
5880 return 0;
5883 // A tag 'foo::bar' must already exist.
5884 Diag(NameLoc, diag::err_not_tag_in_scope)
5885 << Kind << Name << DC << SS.getRange();
5886 Name = 0;
5887 Invalid = true;
5888 goto CreateNewDecl;
5890 } else if (Name) {
5891 // If this is a named struct, check to see if there was a previous forward
5892 // declaration or definition.
5893 // FIXME: We're looking into outer scopes here, even when we
5894 // shouldn't be. Doing so can result in ambiguities that we
5895 // shouldn't be diagnosing.
5896 LookupName(Previous, S);
5898 // Note: there used to be some attempt at recovery here.
5899 if (Previous.isAmbiguous())
5900 return 0;
5902 if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5903 // FIXME: This makes sure that we ignore the contexts associated
5904 // with C structs, unions, and enums when looking for a matching
5905 // tag declaration or definition. See the similar lookup tweak
5906 // in Sema::LookupName; is there a better way to deal with this?
5907 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5908 SearchDC = SearchDC->getParent();
5910 } else if (S->isFunctionPrototypeScope()) {
5911 // If this is an enum declaration in function prototype scope, set its
5912 // initial context to the translation unit.
5913 SearchDC = Context.getTranslationUnitDecl();
5916 if (Previous.isSingleResult() &&
5917 Previous.getFoundDecl()->isTemplateParameter()) {
5918 // Maybe we will complain about the shadowed template parameter.
5919 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5920 // Just pretend that we didn't see the previous declaration.
5921 Previous.clear();
5924 if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5925 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5926 // This is a declaration of or a reference to "std::bad_alloc".
5927 isStdBadAlloc = true;
5929 if (Previous.empty() && StdBadAlloc) {
5930 // std::bad_alloc has been implicitly declared (but made invisible to
5931 // name lookup). Fill in this implicit declaration as the previous
5932 // declaration, so that the declarations get chained appropriately.
5933 Previous.addDecl(getStdBadAlloc());
5937 // If we didn't find a previous declaration, and this is a reference
5938 // (or friend reference), move to the correct scope. In C++, we
5939 // also need to do a redeclaration lookup there, just in case
5940 // there's a shadow friend decl.
5941 if (Name && Previous.empty() &&
5942 (TUK == TUK_Reference || TUK == TUK_Friend)) {
5943 if (Invalid) goto CreateNewDecl;
5944 assert(SS.isEmpty());
5946 if (TUK == TUK_Reference) {
5947 // C++ [basic.scope.pdecl]p5:
5948 // -- for an elaborated-type-specifier of the form
5950 // class-key identifier
5952 // if the elaborated-type-specifier is used in the
5953 // decl-specifier-seq or parameter-declaration-clause of a
5954 // function defined in namespace scope, the identifier is
5955 // declared as a class-name in the namespace that contains
5956 // the declaration; otherwise, except as a friend
5957 // declaration, the identifier is declared in the smallest
5958 // non-class, non-function-prototype scope that contains the
5959 // declaration.
5961 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5962 // C structs and unions.
5964 // It is an error in C++ to declare (rather than define) an enum
5965 // type, including via an elaborated type specifier. We'll
5966 // diagnose that later; for now, declare the enum in the same
5967 // scope as we would have picked for any other tag type.
5969 // GNU C also supports this behavior as part of its incomplete
5970 // enum types extension, while GNU C++ does not.
5972 // Find the context where we'll be declaring the tag.
5973 // FIXME: We would like to maintain the current DeclContext as the
5974 // lexical context,
5975 while (SearchDC->isRecord() || SearchDC->isTransparentContext())
5976 SearchDC = SearchDC->getParent();
5978 // Find the scope where we'll be declaring the tag.
5979 while (S->isClassScope() ||
5980 (getLangOptions().CPlusPlus &&
5981 S->isFunctionPrototypeScope()) ||
5982 ((S->getFlags() & Scope::DeclScope) == 0) ||
5983 (S->getEntity() &&
5984 ((DeclContext *)S->getEntity())->isTransparentContext()))
5985 S = S->getParent();
5986 } else {
5987 assert(TUK == TUK_Friend);
5988 // C++ [namespace.memdef]p3:
5989 // If a friend declaration in a non-local class first declares a
5990 // class or function, the friend class or function is a member of
5991 // the innermost enclosing namespace.
5992 SearchDC = SearchDC->getEnclosingNamespaceContext();
5995 // In C++, we need to do a redeclaration lookup to properly
5996 // diagnose some problems.
5997 if (getLangOptions().CPlusPlus) {
5998 Previous.setRedeclarationKind(ForRedeclaration);
5999 LookupQualifiedName(Previous, SearchDC);
6003 if (!Previous.empty()) {
6004 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6006 // It's okay to have a tag decl in the same scope as a typedef
6007 // which hides a tag decl in the same scope. Finding this
6008 // insanity with a redeclaration lookup can only actually happen
6009 // in C++.
6011 // This is also okay for elaborated-type-specifiers, which is
6012 // technically forbidden by the current standard but which is
6013 // okay according to the likely resolution of an open issue;
6014 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6015 if (getLangOptions().CPlusPlus) {
6016 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6017 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6018 TagDecl *Tag = TT->getDecl();
6019 if (Tag->getDeclName() == Name &&
6020 Tag->getDeclContext()->getRedeclContext()
6021 ->Equals(TD->getDeclContext()->getRedeclContext())) {
6022 PrevDecl = Tag;
6023 Previous.clear();
6024 Previous.addDecl(Tag);
6025 Previous.resolveKind();
6031 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6032 // If this is a use of a previous tag, or if the tag is already declared
6033 // in the same scope (so that the definition/declaration completes or
6034 // rementions the tag), reuse the decl.
6035 if (TUK == TUK_Reference || TUK == TUK_Friend ||
6036 isDeclInScope(PrevDecl, SearchDC, S)) {
6037 // Make sure that this wasn't declared as an enum and now used as a
6038 // struct or something similar.
6039 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6040 bool SafeToContinue
6041 = (PrevTagDecl->getTagKind() != TTK_Enum &&
6042 Kind != TTK_Enum);
6043 if (SafeToContinue)
6044 Diag(KWLoc, diag::err_use_with_wrong_tag)
6045 << Name
6046 << FixItHint::CreateReplacement(SourceRange(KWLoc),
6047 PrevTagDecl->getKindName());
6048 else
6049 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6050 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6052 if (SafeToContinue)
6053 Kind = PrevTagDecl->getTagKind();
6054 else {
6055 // Recover by making this an anonymous redefinition.
6056 Name = 0;
6057 Previous.clear();
6058 Invalid = true;
6062 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6063 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6065 // All conflicts with previous declarations are recovered by
6066 // returning the previous declaration.
6067 if (ScopedEnum != PrevEnum->isScoped()) {
6068 Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6069 << PrevEnum->isScoped();
6070 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6071 return PrevTagDecl;
6073 else if (EnumUnderlying && PrevEnum->isFixed()) {
6074 QualType T;
6075 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6076 T = TI->getType();
6077 else
6078 T = QualType(EnumUnderlying.get<const Type*>(), 0);
6080 if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6081 Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6082 diag::err_enum_redeclare_type_mismatch)
6083 << T
6084 << PrevEnum->getIntegerType();
6085 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6086 return PrevTagDecl;
6089 else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6090 Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6091 << PrevEnum->isFixed();
6092 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6093 return PrevTagDecl;
6097 if (!Invalid) {
6098 // If this is a use, just return the declaration we found.
6100 // FIXME: In the future, return a variant or some other clue
6101 // for the consumer of this Decl to know it doesn't own it.
6102 // For our current ASTs this shouldn't be a problem, but will
6103 // need to be changed with DeclGroups.
6104 if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6105 TUK == TUK_Friend)
6106 return PrevTagDecl;
6108 // Diagnose attempts to redefine a tag.
6109 if (TUK == TUK_Definition) {
6110 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6111 // If we're defining a specialization and the previous definition
6112 // is from an implicit instantiation, don't emit an error
6113 // here; we'll catch this in the general case below.
6114 if (!isExplicitSpecialization ||
6115 !isa<CXXRecordDecl>(Def) ||
6116 cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6117 == TSK_ExplicitSpecialization) {
6118 Diag(NameLoc, diag::err_redefinition) << Name;
6119 Diag(Def->getLocation(), diag::note_previous_definition);
6120 // If this is a redefinition, recover by making this
6121 // struct be anonymous, which will make any later
6122 // references get the previous definition.
6123 Name = 0;
6124 Previous.clear();
6125 Invalid = true;
6127 } else {
6128 // If the type is currently being defined, complain
6129 // about a nested redefinition.
6130 const TagType *Tag
6131 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6132 if (Tag->isBeingDefined()) {
6133 Diag(NameLoc, diag::err_nested_redefinition) << Name;
6134 Diag(PrevTagDecl->getLocation(),
6135 diag::note_previous_definition);
6136 Name = 0;
6137 Previous.clear();
6138 Invalid = true;
6142 // Okay, this is definition of a previously declared or referenced
6143 // tag PrevDecl. We're going to create a new Decl for it.
6146 // If we get here we have (another) forward declaration or we
6147 // have a definition. Just create a new decl.
6149 } else {
6150 // If we get here, this is a definition of a new tag type in a nested
6151 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6152 // new decl/type. We set PrevDecl to NULL so that the entities
6153 // have distinct types.
6154 Previous.clear();
6156 // If we get here, we're going to create a new Decl. If PrevDecl
6157 // is non-NULL, it's a definition of the tag declared by
6158 // PrevDecl. If it's NULL, we have a new definition.
6161 // Otherwise, PrevDecl is not a tag, but was found with tag
6162 // lookup. This is only actually possible in C++, where a few
6163 // things like templates still live in the tag namespace.
6164 } else {
6165 assert(getLangOptions().CPlusPlus);
6167 // Use a better diagnostic if an elaborated-type-specifier
6168 // found the wrong kind of type on the first
6169 // (non-redeclaration) lookup.
6170 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6171 !Previous.isForRedeclaration()) {
6172 unsigned Kind = 0;
6173 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6174 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6175 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6176 Diag(PrevDecl->getLocation(), diag::note_declared_at);
6177 Invalid = true;
6179 // Otherwise, only diagnose if the declaration is in scope.
6180 } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6181 // do nothing
6183 // Diagnose implicit declarations introduced by elaborated types.
6184 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6185 unsigned Kind = 0;
6186 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6187 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6188 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6189 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6190 Invalid = true;
6192 // Otherwise it's a declaration. Call out a particularly common
6193 // case here.
6194 } else if (isa<TypedefDecl>(PrevDecl)) {
6195 Diag(NameLoc, diag::err_tag_definition_of_typedef)
6196 << Name
6197 << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6198 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6199 Invalid = true;
6201 // Otherwise, diagnose.
6202 } else {
6203 // The tag name clashes with something else in the target scope,
6204 // issue an error and recover by making this tag be anonymous.
6205 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6206 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6207 Name = 0;
6208 Invalid = true;
6211 // The existing declaration isn't relevant to us; we're in a
6212 // new scope, so clear out the previous declaration.
6213 Previous.clear();
6217 CreateNewDecl:
6219 TagDecl *PrevDecl = 0;
6220 if (Previous.isSingleResult())
6221 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6223 // If there is an identifier, use the location of the identifier as the
6224 // location of the decl, otherwise use the location of the struct/union
6225 // keyword.
6226 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6228 // Otherwise, create a new declaration. If there is a previous
6229 // declaration of the same entity, the two will be linked via
6230 // PrevDecl.
6231 TagDecl *New;
6233 bool IsForwardReference = false;
6234 if (Kind == TTK_Enum) {
6235 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6236 // enum X { A, B, C } D; D should chain to X.
6237 New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6238 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6239 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6240 // If this is an undefined enum, warn.
6241 if (TUK != TUK_Definition && !Invalid) {
6242 TagDecl *Def;
6243 if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6244 // C++0x: 7.2p2: opaque-enum-declaration.
6245 // Conflicts are diagnosed above. Do nothing.
6247 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6248 Diag(Loc, diag::ext_forward_ref_enum_def)
6249 << New;
6250 Diag(Def->getLocation(), diag::note_previous_definition);
6251 } else {
6252 unsigned DiagID = diag::ext_forward_ref_enum;
6253 if (getLangOptions().Microsoft)
6254 DiagID = diag::ext_ms_forward_ref_enum;
6255 else if (getLangOptions().CPlusPlus)
6256 DiagID = diag::err_forward_ref_enum;
6257 Diag(Loc, DiagID);
6259 // If this is a forward-declared reference to an enumeration, make a
6260 // note of it; we won't actually be introducing the declaration into
6261 // the declaration context.
6262 if (TUK == TUK_Reference)
6263 IsForwardReference = true;
6267 if (EnumUnderlying) {
6268 EnumDecl *ED = cast<EnumDecl>(New);
6269 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6270 ED->setIntegerTypeSourceInfo(TI);
6271 else
6272 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6273 ED->setPromotionType(ED->getIntegerType());
6276 } else {
6277 // struct/union/class
6279 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6280 // struct X { int A; } D; D should chain to X.
6281 if (getLangOptions().CPlusPlus) {
6282 // FIXME: Look for a way to use RecordDecl for simple structs.
6283 New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6284 cast_or_null<CXXRecordDecl>(PrevDecl));
6286 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6287 StdBadAlloc = cast<CXXRecordDecl>(New);
6288 } else
6289 New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6290 cast_or_null<RecordDecl>(PrevDecl));
6293 // Maybe add qualifier info.
6294 if (SS.isNotEmpty()) {
6295 if (SS.isSet()) {
6296 NestedNameSpecifier *NNS
6297 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6298 New->setQualifierInfo(NNS, SS.getRange());
6299 if (NumMatchedTemplateParamLists > 0) {
6300 New->setTemplateParameterListsInfo(Context,
6301 NumMatchedTemplateParamLists,
6302 (TemplateParameterList**) TemplateParameterLists.release());
6305 else
6306 Invalid = true;
6309 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6310 // Add alignment attributes if necessary; these attributes are checked when
6311 // the ASTContext lays out the structure.
6313 // It is important for implementing the correct semantics that this
6314 // happen here (in act on tag decl). The #pragma pack stack is
6315 // maintained as a result of parser callbacks which can occur at
6316 // many points during the parsing of a struct declaration (because
6317 // the #pragma tokens are effectively skipped over during the
6318 // parsing of the struct).
6319 AddAlignmentAttributesForRecord(RD);
6322 // If this is a specialization of a member class (of a class template),
6323 // check the specialization.
6324 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6325 Invalid = true;
6327 if (Invalid)
6328 New->setInvalidDecl();
6330 if (Attr)
6331 ProcessDeclAttributeList(S, New, Attr);
6333 // If we're declaring or defining a tag in function prototype scope
6334 // in C, note that this type can only be used within the function.
6335 if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6336 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6338 // Set the lexical context. If the tag has a C++ scope specifier, the
6339 // lexical context will be different from the semantic context.
6340 New->setLexicalDeclContext(CurContext);
6342 // Mark this as a friend decl if applicable.
6343 if (TUK == TUK_Friend)
6344 New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6346 // Set the access specifier.
6347 if (!Invalid && SearchDC->isRecord())
6348 SetMemberAccessSpecifier(New, PrevDecl, AS);
6350 if (TUK == TUK_Definition)
6351 New->startDefinition();
6353 // If this has an identifier, add it to the scope stack.
6354 if (TUK == TUK_Friend) {
6355 // We might be replacing an existing declaration in the lookup tables;
6356 // if so, borrow its access specifier.
6357 if (PrevDecl)
6358 New->setAccess(PrevDecl->getAccess());
6360 DeclContext *DC = New->getDeclContext()->getRedeclContext();
6361 DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6362 if (Name) // can be null along some error paths
6363 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6364 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6365 } else if (Name) {
6366 S = getNonFieldDeclScope(S);
6367 PushOnScopeChains(New, S, !IsForwardReference);
6368 if (IsForwardReference)
6369 SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6371 } else {
6372 CurContext->addDecl(New);
6375 // If this is the C FILE type, notify the AST context.
6376 if (IdentifierInfo *II = New->getIdentifier())
6377 if (!New->isInvalidDecl() &&
6378 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6379 II->isStr("FILE"))
6380 Context.setFILEDecl(New);
6382 OwnedDecl = true;
6383 return New;
6386 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6387 AdjustDeclIfTemplate(TagD);
6388 TagDecl *Tag = cast<TagDecl>(TagD);
6390 // Enter the tag context.
6391 PushDeclContext(S, Tag);
6394 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6395 ClassVirtSpecifiers &CVS,
6396 SourceLocation LBraceLoc) {
6397 AdjustDeclIfTemplate(TagD);
6398 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6400 FieldCollector->StartClass();
6402 if (!Record->getIdentifier())
6403 return;
6405 if (CVS.isFinalSpecified())
6406 Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6407 if (CVS.isExplicitSpecified())
6408 Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6410 // C++ [class]p2:
6411 // [...] The class-name is also inserted into the scope of the
6412 // class itself; this is known as the injected-class-name. For
6413 // purposes of access checking, the injected-class-name is treated
6414 // as if it were a public member name.
6415 CXXRecordDecl *InjectedClassName
6416 = CXXRecordDecl::Create(Context, Record->getTagKind(),
6417 CurContext, Record->getLocation(),
6418 Record->getIdentifier(),
6419 Record->getTagKeywordLoc(),
6420 /*PrevDecl=*/0,
6421 /*DelayTypeCreation=*/true);
6422 Context.getTypeDeclType(InjectedClassName, Record);
6423 InjectedClassName->setImplicit();
6424 InjectedClassName->setAccess(AS_public);
6425 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6426 InjectedClassName->setDescribedClassTemplate(Template);
6427 PushOnScopeChains(InjectedClassName, S);
6428 assert(InjectedClassName->isInjectedClassName() &&
6429 "Broken injected-class-name");
6432 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6433 SourceLocation RBraceLoc) {
6434 AdjustDeclIfTemplate(TagD);
6435 TagDecl *Tag = cast<TagDecl>(TagD);
6436 Tag->setRBraceLoc(RBraceLoc);
6438 if (isa<CXXRecordDecl>(Tag))
6439 FieldCollector->FinishClass();
6441 // Exit this scope of this tag's definition.
6442 PopDeclContext();
6444 // Notify the consumer that we've defined a tag.
6445 Consumer.HandleTagDeclDefinition(Tag);
6448 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6449 AdjustDeclIfTemplate(TagD);
6450 TagDecl *Tag = cast<TagDecl>(TagD);
6451 Tag->setInvalidDecl();
6453 // We're undoing ActOnTagStartDefinition here, not
6454 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6455 // the FieldCollector.
6457 PopDeclContext();
6460 // Note that FieldName may be null for anonymous bitfields.
6461 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6462 QualType FieldTy, const Expr *BitWidth,
6463 bool *ZeroWidth) {
6464 // Default to true; that shouldn't confuse checks for emptiness
6465 if (ZeroWidth)
6466 *ZeroWidth = true;
6468 // C99 6.7.2.1p4 - verify the field type.
6469 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6470 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6471 // Handle incomplete types with specific error.
6472 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6473 return true;
6474 if (FieldName)
6475 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6476 << FieldName << FieldTy << BitWidth->getSourceRange();
6477 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6478 << FieldTy << BitWidth->getSourceRange();
6479 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6480 UPPC_BitFieldWidth))
6481 return true;
6483 // If the bit-width is type- or value-dependent, don't try to check
6484 // it now.
6485 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6486 return false;
6488 llvm::APSInt Value;
6489 if (VerifyIntegerConstantExpression(BitWidth, &Value))
6490 return true;
6492 if (Value != 0 && ZeroWidth)
6493 *ZeroWidth = false;
6495 // Zero-width bitfield is ok for anonymous field.
6496 if (Value == 0 && FieldName)
6497 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6499 if (Value.isSigned() && Value.isNegative()) {
6500 if (FieldName)
6501 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6502 << FieldName << Value.toString(10);
6503 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6504 << Value.toString(10);
6507 if (!FieldTy->isDependentType()) {
6508 uint64_t TypeSize = Context.getTypeSize(FieldTy);
6509 if (Value.getZExtValue() > TypeSize) {
6510 if (!getLangOptions().CPlusPlus) {
6511 if (FieldName)
6512 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6513 << FieldName << (unsigned)Value.getZExtValue()
6514 << (unsigned)TypeSize;
6516 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6517 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6520 if (FieldName)
6521 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6522 << FieldName << (unsigned)Value.getZExtValue()
6523 << (unsigned)TypeSize;
6524 else
6525 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6526 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6530 return false;
6533 /// ActOnField - Each field of a struct/union/class is passed into this in order
6534 /// to create a FieldDecl object for it.
6535 Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6536 SourceLocation DeclStart,
6537 Declarator &D, ExprTy *BitfieldWidth) {
6538 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6539 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6540 AS_public);
6541 return Res;
6544 /// HandleField - Analyze a field of a C struct or a C++ data member.
6546 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6547 SourceLocation DeclStart,
6548 Declarator &D, Expr *BitWidth,
6549 AccessSpecifier AS) {
6550 IdentifierInfo *II = D.getIdentifier();
6551 SourceLocation Loc = DeclStart;
6552 if (II) Loc = D.getIdentifierLoc();
6554 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6555 QualType T = TInfo->getType();
6556 if (getLangOptions().CPlusPlus) {
6557 CheckExtraCXXDefaultArguments(D);
6559 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6560 UPPC_DataMemberType)) {
6561 D.setInvalidType();
6562 T = Context.IntTy;
6563 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6567 DiagnoseFunctionSpecifiers(D);
6569 if (D.getDeclSpec().isThreadSpecified())
6570 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6572 // Check to see if this name was declared as a member previously
6573 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6574 LookupName(Previous, S);
6575 assert((Previous.empty() || Previous.isOverloadedResult() ||
6576 Previous.isSingleResult())
6577 && "Lookup of member name should be either overloaded, single or null");
6579 // If the name is overloaded then get any declaration else get the single result
6580 NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6581 Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6583 if (PrevDecl && PrevDecl->isTemplateParameter()) {
6584 // Maybe we will complain about the shadowed template parameter.
6585 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6586 // Just pretend that we didn't see the previous declaration.
6587 PrevDecl = 0;
6590 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6591 PrevDecl = 0;
6593 bool Mutable
6594 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6595 SourceLocation TSSL = D.getSourceRange().getBegin();
6596 FieldDecl *NewFD
6597 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6598 AS, PrevDecl, &D);
6600 if (NewFD->isInvalidDecl())
6601 Record->setInvalidDecl();
6603 if (NewFD->isInvalidDecl() && PrevDecl) {
6604 // Don't introduce NewFD into scope; there's already something
6605 // with the same name in the same scope.
6606 } else if (II) {
6607 PushOnScopeChains(NewFD, S);
6608 } else
6609 Record->addDecl(NewFD);
6611 return NewFD;
6614 /// \brief Build a new FieldDecl and check its well-formedness.
6616 /// This routine builds a new FieldDecl given the fields name, type,
6617 /// record, etc. \p PrevDecl should refer to any previous declaration
6618 /// with the same name and in the same scope as the field to be
6619 /// created.
6621 /// \returns a new FieldDecl.
6623 /// \todo The Declarator argument is a hack. It will be removed once
6624 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6625 TypeSourceInfo *TInfo,
6626 RecordDecl *Record, SourceLocation Loc,
6627 bool Mutable, Expr *BitWidth,
6628 SourceLocation TSSL,
6629 AccessSpecifier AS, NamedDecl *PrevDecl,
6630 Declarator *D) {
6631 IdentifierInfo *II = Name.getAsIdentifierInfo();
6632 bool InvalidDecl = false;
6633 if (D) InvalidDecl = D->isInvalidType();
6635 // If we receive a broken type, recover by assuming 'int' and
6636 // marking this declaration as invalid.
6637 if (T.isNull()) {
6638 InvalidDecl = true;
6639 T = Context.IntTy;
6642 QualType EltTy = Context.getBaseElementType(T);
6643 if (!EltTy->isDependentType() &&
6644 RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6645 // Fields of incomplete type force their record to be invalid.
6646 Record->setInvalidDecl();
6647 InvalidDecl = true;
6650 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6651 // than a variably modified type.
6652 if (!InvalidDecl && T->isVariablyModifiedType()) {
6653 bool SizeIsNegative;
6654 llvm::APSInt Oversized;
6655 QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6656 SizeIsNegative,
6657 Oversized);
6658 if (!FixedTy.isNull()) {
6659 Diag(Loc, diag::warn_illegal_constant_array_size);
6660 T = FixedTy;
6661 } else {
6662 if (SizeIsNegative)
6663 Diag(Loc, diag::err_typecheck_negative_array_size);
6664 else if (Oversized.getBoolValue())
6665 Diag(Loc, diag::err_array_too_large)
6666 << Oversized.toString(10);
6667 else
6668 Diag(Loc, diag::err_typecheck_field_variable_size);
6669 InvalidDecl = true;
6673 // Fields can not have abstract class types
6674 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6675 diag::err_abstract_type_in_decl,
6676 AbstractFieldType))
6677 InvalidDecl = true;
6679 bool ZeroWidth = false;
6680 // If this is declared as a bit-field, check the bit-field.
6681 if (!InvalidDecl && BitWidth &&
6682 VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6683 InvalidDecl = true;
6684 BitWidth = 0;
6685 ZeroWidth = false;
6688 // Check that 'mutable' is consistent with the type of the declaration.
6689 if (!InvalidDecl && Mutable) {
6690 unsigned DiagID = 0;
6691 if (T->isReferenceType())
6692 DiagID = diag::err_mutable_reference;
6693 else if (T.isConstQualified())
6694 DiagID = diag::err_mutable_const;
6696 if (DiagID) {
6697 SourceLocation ErrLoc = Loc;
6698 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6699 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6700 Diag(ErrLoc, DiagID);
6701 Mutable = false;
6702 InvalidDecl = true;
6706 FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6707 BitWidth, Mutable);
6708 if (InvalidDecl)
6709 NewFD->setInvalidDecl();
6711 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6712 Diag(Loc, diag::err_duplicate_member) << II;
6713 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6714 NewFD->setInvalidDecl();
6717 if (!InvalidDecl && getLangOptions().CPlusPlus) {
6718 if (Record->isUnion()) {
6719 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6720 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6721 if (RDecl->getDefinition()) {
6722 // C++ [class.union]p1: An object of a class with a non-trivial
6723 // constructor, a non-trivial copy constructor, a non-trivial
6724 // destructor, or a non-trivial copy assignment operator
6725 // cannot be a member of a union, nor can an array of such
6726 // objects.
6727 // TODO: C++0x alters this restriction significantly.
6728 if (CheckNontrivialField(NewFD))
6729 NewFD->setInvalidDecl();
6733 // C++ [class.union]p1: If a union contains a member of reference type,
6734 // the program is ill-formed.
6735 if (EltTy->isReferenceType()) {
6736 Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6737 << NewFD->getDeclName() << EltTy;
6738 NewFD->setInvalidDecl();
6743 // FIXME: We need to pass in the attributes given an AST
6744 // representation, not a parser representation.
6745 if (D)
6746 // FIXME: What to pass instead of TUScope?
6747 ProcessDeclAttributes(TUScope, NewFD, *D);
6749 if (T.isObjCGCWeak())
6750 Diag(Loc, diag::warn_attribute_weak_on_field);
6752 NewFD->setAccess(AS);
6753 return NewFD;
6756 bool Sema::CheckNontrivialField(FieldDecl *FD) {
6757 assert(FD);
6758 assert(getLangOptions().CPlusPlus && "valid check only for C++");
6760 if (FD->isInvalidDecl())
6761 return true;
6763 QualType EltTy = Context.getBaseElementType(FD->getType());
6764 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6765 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6766 if (RDecl->getDefinition()) {
6767 // We check for copy constructors before constructors
6768 // because otherwise we'll never get complaints about
6769 // copy constructors.
6771 CXXSpecialMember member = CXXInvalid;
6772 if (!RDecl->hasTrivialCopyConstructor())
6773 member = CXXCopyConstructor;
6774 else if (!RDecl->hasTrivialConstructor())
6775 member = CXXConstructor;
6776 else if (!RDecl->hasTrivialCopyAssignment())
6777 member = CXXCopyAssignment;
6778 else if (!RDecl->hasTrivialDestructor())
6779 member = CXXDestructor;
6781 if (member != CXXInvalid) {
6782 Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6783 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6784 DiagnoseNontrivial(RT, member);
6785 return true;
6790 return false;
6793 /// DiagnoseNontrivial - Given that a class has a non-trivial
6794 /// special member, figure out why.
6795 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6796 QualType QT(T, 0U);
6797 CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6799 // Check whether the member was user-declared.
6800 switch (member) {
6801 case CXXInvalid:
6802 break;
6804 case CXXConstructor:
6805 if (RD->hasUserDeclaredConstructor()) {
6806 typedef CXXRecordDecl::ctor_iterator ctor_iter;
6807 for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6808 const FunctionDecl *body = 0;
6809 ci->hasBody(body);
6810 if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6811 SourceLocation CtorLoc = ci->getLocation();
6812 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6813 return;
6817 assert(0 && "found no user-declared constructors");
6818 return;
6820 break;
6822 case CXXCopyConstructor:
6823 if (RD->hasUserDeclaredCopyConstructor()) {
6824 SourceLocation CtorLoc =
6825 RD->getCopyConstructor(Context, 0)->getLocation();
6826 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6827 return;
6829 break;
6831 case CXXCopyAssignment:
6832 if (RD->hasUserDeclaredCopyAssignment()) {
6833 // FIXME: this should use the location of the copy
6834 // assignment, not the type.
6835 SourceLocation TyLoc = RD->getSourceRange().getBegin();
6836 Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6837 return;
6839 break;
6841 case CXXDestructor:
6842 if (RD->hasUserDeclaredDestructor()) {
6843 SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6844 Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6845 return;
6847 break;
6850 typedef CXXRecordDecl::base_class_iterator base_iter;
6852 // Virtual bases and members inhibit trivial copying/construction,
6853 // but not trivial destruction.
6854 if (member != CXXDestructor) {
6855 // Check for virtual bases. vbases includes indirect virtual bases,
6856 // so we just iterate through the direct bases.
6857 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6858 if (bi->isVirtual()) {
6859 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6860 Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6861 return;
6864 // Check for virtual methods.
6865 typedef CXXRecordDecl::method_iterator meth_iter;
6866 for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6867 ++mi) {
6868 if (mi->isVirtual()) {
6869 SourceLocation MLoc = mi->getSourceRange().getBegin();
6870 Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6871 return;
6876 bool (CXXRecordDecl::*hasTrivial)() const;
6877 switch (member) {
6878 case CXXConstructor:
6879 hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6880 case CXXCopyConstructor:
6881 hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6882 case CXXCopyAssignment:
6883 hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6884 case CXXDestructor:
6885 hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6886 default:
6887 assert(0 && "unexpected special member"); return;
6890 // Check for nontrivial bases (and recurse).
6891 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6892 const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6893 assert(BaseRT && "Don't know how to handle dependent bases");
6894 CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6895 if (!(BaseRecTy->*hasTrivial)()) {
6896 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6897 Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6898 DiagnoseNontrivial(BaseRT, member);
6899 return;
6903 // Check for nontrivial members (and recurse).
6904 typedef RecordDecl::field_iterator field_iter;
6905 for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6906 ++fi) {
6907 QualType EltTy = Context.getBaseElementType((*fi)->getType());
6908 if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6909 CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6911 if (!(EltRD->*hasTrivial)()) {
6912 SourceLocation FLoc = (*fi)->getLocation();
6913 Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6914 DiagnoseNontrivial(EltRT, member);
6915 return;
6920 assert(0 && "found no explanation for non-trivial member");
6923 /// TranslateIvarVisibility - Translate visibility from a token ID to an
6924 /// AST enum value.
6925 static ObjCIvarDecl::AccessControl
6926 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6927 switch (ivarVisibility) {
6928 default: assert(0 && "Unknown visitibility kind");
6929 case tok::objc_private: return ObjCIvarDecl::Private;
6930 case tok::objc_public: return ObjCIvarDecl::Public;
6931 case tok::objc_protected: return ObjCIvarDecl::Protected;
6932 case tok::objc_package: return ObjCIvarDecl::Package;
6936 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
6937 /// in order to create an IvarDecl object for it.
6938 Decl *Sema::ActOnIvar(Scope *S,
6939 SourceLocation DeclStart,
6940 Decl *IntfDecl,
6941 Declarator &D, ExprTy *BitfieldWidth,
6942 tok::ObjCKeywordKind Visibility) {
6944 IdentifierInfo *II = D.getIdentifier();
6945 Expr *BitWidth = (Expr*)BitfieldWidth;
6946 SourceLocation Loc = DeclStart;
6947 if (II) Loc = D.getIdentifierLoc();
6949 // FIXME: Unnamed fields can be handled in various different ways, for
6950 // example, unnamed unions inject all members into the struct namespace!
6952 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6953 QualType T = TInfo->getType();
6955 if (BitWidth) {
6956 // 6.7.2.1p3, 6.7.2.1p4
6957 if (VerifyBitField(Loc, II, T, BitWidth)) {
6958 D.setInvalidType();
6959 BitWidth = 0;
6961 } else {
6962 // Not a bitfield.
6964 // validate II.
6967 if (T->isReferenceType()) {
6968 Diag(Loc, diag::err_ivar_reference_type);
6969 D.setInvalidType();
6971 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6972 // than a variably modified type.
6973 else if (T->isVariablyModifiedType()) {
6974 Diag(Loc, diag::err_typecheck_ivar_variable_size);
6975 D.setInvalidType();
6978 // Get the visibility (access control) for this ivar.
6979 ObjCIvarDecl::AccessControl ac =
6980 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6981 : ObjCIvarDecl::None;
6982 // Must set ivar's DeclContext to its enclosing interface.
6983 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6984 ObjCContainerDecl *EnclosingContext;
6985 if (ObjCImplementationDecl *IMPDecl =
6986 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6987 if (!LangOpts.ObjCNonFragileABI2) {
6988 // Case of ivar declared in an implementation. Context is that of its class.
6989 EnclosingContext = IMPDecl->getClassInterface();
6990 assert(EnclosingContext && "Implementation has no class interface!");
6992 else
6993 EnclosingContext = EnclosingDecl;
6994 } else {
6995 if (ObjCCategoryDecl *CDecl =
6996 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6997 if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6998 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6999 return 0;
7002 EnclosingContext = EnclosingDecl;
7005 // Construct the decl.
7006 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7007 EnclosingContext, Loc, II, T,
7008 TInfo, ac, (Expr *)BitfieldWidth);
7010 if (II) {
7011 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7012 ForRedeclaration);
7013 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7014 && !isa<TagDecl>(PrevDecl)) {
7015 Diag(Loc, diag::err_duplicate_member) << II;
7016 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7017 NewID->setInvalidDecl();
7021 // Process attributes attached to the ivar.
7022 ProcessDeclAttributes(S, NewID, D);
7024 if (D.isInvalidType())
7025 NewID->setInvalidDecl();
7027 if (II) {
7028 // FIXME: When interfaces are DeclContexts, we'll need to add
7029 // these to the interface.
7030 S->AddDecl(NewID);
7031 IdResolver.AddDecl(NewID);
7034 return NewID;
7037 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7038 /// class and class extensions. For every class @interface and class
7039 /// extension @interface, if the last ivar is a bitfield of any type,
7040 /// then add an implicit `char :0` ivar to the end of that interface.
7041 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7042 llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7043 if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7044 return;
7046 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7047 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7049 if (!Ivar->isBitField())
7050 return;
7051 uint64_t BitFieldSize =
7052 Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7053 if (BitFieldSize == 0)
7054 return;
7055 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7056 if (!ID) {
7057 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7058 if (!CD->IsClassExtension())
7059 return;
7061 // No need to add this to end of @implementation.
7062 else
7063 return;
7065 // All conditions are met. Add a new bitfield to the tail end of ivars.
7066 llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7067 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7069 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7070 DeclLoc, 0,
7071 Context.CharTy,
7072 Context.CreateTypeSourceInfo(Context.CharTy),
7073 ObjCIvarDecl::Private, BW,
7074 true);
7075 AllIvarDecls.push_back(Ivar);
7078 void Sema::ActOnFields(Scope* S,
7079 SourceLocation RecLoc, Decl *EnclosingDecl,
7080 Decl **Fields, unsigned NumFields,
7081 SourceLocation LBrac, SourceLocation RBrac,
7082 AttributeList *Attr) {
7083 assert(EnclosingDecl && "missing record or interface decl");
7085 // If the decl this is being inserted into is invalid, then it may be a
7086 // redeclaration or some other bogus case. Don't try to add fields to it.
7087 if (EnclosingDecl->isInvalidDecl()) {
7088 // FIXME: Deallocate fields?
7089 return;
7093 // Verify that all the fields are okay.
7094 unsigned NumNamedMembers = 0;
7095 llvm::SmallVector<FieldDecl*, 32> RecFields;
7097 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7098 for (unsigned i = 0; i != NumFields; ++i) {
7099 FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7101 // Get the type for the field.
7102 const Type *FDTy = FD->getType().getTypePtr();
7104 if (!FD->isAnonymousStructOrUnion()) {
7105 // Remember all fields written by the user.
7106 RecFields.push_back(FD);
7109 // If the field is already invalid for some reason, don't emit more
7110 // diagnostics about it.
7111 if (FD->isInvalidDecl()) {
7112 EnclosingDecl->setInvalidDecl();
7113 continue;
7116 // C99 6.7.2.1p2:
7117 // A structure or union shall not contain a member with
7118 // incomplete or function type (hence, a structure shall not
7119 // contain an instance of itself, but may contain a pointer to
7120 // an instance of itself), except that the last member of a
7121 // structure with more than one named member may have incomplete
7122 // array type; such a structure (and any union containing,
7123 // possibly recursively, a member that is such a structure)
7124 // shall not be a member of a structure or an element of an
7125 // array.
7126 if (FDTy->isFunctionType()) {
7127 // Field declared as a function.
7128 Diag(FD->getLocation(), diag::err_field_declared_as_function)
7129 << FD->getDeclName();
7130 FD->setInvalidDecl();
7131 EnclosingDecl->setInvalidDecl();
7132 continue;
7133 } else if (FDTy->isIncompleteArrayType() && Record &&
7134 ((i == NumFields - 1 && !Record->isUnion()) ||
7135 (getLangOptions().Microsoft &&
7136 (i == NumFields - 1 || Record->isUnion())))) {
7137 // Flexible array member.
7138 // Microsoft is more permissive regarding flexible array.
7139 // It will accept flexible array in union and also
7140 // as the sole element of a struct/class.
7141 if (getLangOptions().Microsoft) {
7142 if (Record->isUnion())
7143 Diag(FD->getLocation(), diag::ext_flexible_array_union)
7144 << FD->getDeclName();
7145 else if (NumFields == 1)
7146 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7147 << FD->getDeclName() << Record->getTagKind();
7148 } else if (NumNamedMembers < 1) {
7149 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7150 << FD->getDeclName();
7151 FD->setInvalidDecl();
7152 EnclosingDecl->setInvalidDecl();
7153 continue;
7155 if (!FD->getType()->isDependentType() &&
7156 !Context.getBaseElementType(FD->getType())->isPODType()) {
7157 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7158 << FD->getDeclName() << FD->getType();
7159 FD->setInvalidDecl();
7160 EnclosingDecl->setInvalidDecl();
7161 continue;
7163 // Okay, we have a legal flexible array member at the end of the struct.
7164 if (Record)
7165 Record->setHasFlexibleArrayMember(true);
7166 } else if (!FDTy->isDependentType() &&
7167 RequireCompleteType(FD->getLocation(), FD->getType(),
7168 diag::err_field_incomplete)) {
7169 // Incomplete type
7170 FD->setInvalidDecl();
7171 EnclosingDecl->setInvalidDecl();
7172 continue;
7173 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7174 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7175 // If this is a member of a union, then entire union becomes "flexible".
7176 if (Record && Record->isUnion()) {
7177 Record->setHasFlexibleArrayMember(true);
7178 } else {
7179 // If this is a struct/class and this is not the last element, reject
7180 // it. Note that GCC supports variable sized arrays in the middle of
7181 // structures.
7182 if (i != NumFields-1)
7183 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7184 << FD->getDeclName() << FD->getType();
7185 else {
7186 // We support flexible arrays at the end of structs in
7187 // other structs as an extension.
7188 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7189 << FD->getDeclName();
7190 if (Record)
7191 Record->setHasFlexibleArrayMember(true);
7195 if (Record && FDTTy->getDecl()->hasObjectMember())
7196 Record->setHasObjectMember(true);
7197 } else if (FDTy->isObjCObjectType()) {
7198 /// A field cannot be an Objective-c object
7199 Diag(FD->getLocation(), diag::err_statically_allocated_object);
7200 FD->setInvalidDecl();
7201 EnclosingDecl->setInvalidDecl();
7202 continue;
7203 } else if (getLangOptions().ObjC1 &&
7204 getLangOptions().getGCMode() != LangOptions::NonGC &&
7205 Record &&
7206 (FD->getType()->isObjCObjectPointerType() ||
7207 FD->getType().isObjCGCStrong()))
7208 Record->setHasObjectMember(true);
7209 else if (Context.getAsArrayType(FD->getType())) {
7210 QualType BaseType = Context.getBaseElementType(FD->getType());
7211 if (Record && BaseType->isRecordType() &&
7212 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7213 Record->setHasObjectMember(true);
7215 // Keep track of the number of named members.
7216 if (FD->getIdentifier())
7217 ++NumNamedMembers;
7220 // Okay, we successfully defined 'Record'.
7221 if (Record) {
7222 bool Completed = false;
7223 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7224 if (!CXXRecord->isInvalidDecl()) {
7225 // Set access bits correctly on the directly-declared conversions.
7226 UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7227 for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7228 I != E; ++I)
7229 Convs->setAccess(I, (*I)->getAccess());
7231 if (!CXXRecord->isDependentType()) {
7232 // Add any implicitly-declared members to this class.
7233 AddImplicitlyDeclaredMembersToClass(CXXRecord);
7235 // If we have virtual base classes, we may end up finding multiple
7236 // final overriders for a given virtual function. Check for this
7237 // problem now.
7238 if (CXXRecord->getNumVBases()) {
7239 CXXFinalOverriderMap FinalOverriders;
7240 CXXRecord->getFinalOverriders(FinalOverriders);
7242 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7243 MEnd = FinalOverriders.end();
7244 M != MEnd; ++M) {
7245 for (OverridingMethods::iterator SO = M->second.begin(),
7246 SOEnd = M->second.end();
7247 SO != SOEnd; ++SO) {
7248 assert(SO->second.size() > 0 &&
7249 "Virtual function without overridding functions?");
7250 if (SO->second.size() == 1)
7251 continue;
7253 // C++ [class.virtual]p2:
7254 // In a derived class, if a virtual member function of a base
7255 // class subobject has more than one final overrider the
7256 // program is ill-formed.
7257 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7258 << (NamedDecl *)M->first << Record;
7259 Diag(M->first->getLocation(),
7260 diag::note_overridden_virtual_function);
7261 for (OverridingMethods::overriding_iterator
7262 OM = SO->second.begin(),
7263 OMEnd = SO->second.end();
7264 OM != OMEnd; ++OM)
7265 Diag(OM->Method->getLocation(), diag::note_final_overrider)
7266 << (NamedDecl *)M->first << OM->Method->getParent();
7268 Record->setInvalidDecl();
7271 CXXRecord->completeDefinition(&FinalOverriders);
7272 Completed = true;
7278 if (!Completed)
7279 Record->completeDefinition();
7280 } else {
7281 ObjCIvarDecl **ClsFields =
7282 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7283 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7284 ID->setLocEnd(RBrac);
7285 // Add ivar's to class's DeclContext.
7286 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7287 ClsFields[i]->setLexicalDeclContext(ID);
7288 ID->addDecl(ClsFields[i]);
7290 // Must enforce the rule that ivars in the base classes may not be
7291 // duplicates.
7292 if (ID->getSuperClass())
7293 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7294 } else if (ObjCImplementationDecl *IMPDecl =
7295 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7296 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7297 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7298 // Ivar declared in @implementation never belongs to the implementation.
7299 // Only it is in implementation's lexical context.
7300 ClsFields[I]->setLexicalDeclContext(IMPDecl);
7301 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7302 } else if (ObjCCategoryDecl *CDecl =
7303 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7304 // case of ivars in class extension; all other cases have been
7305 // reported as errors elsewhere.
7306 // FIXME. Class extension does not have a LocEnd field.
7307 // CDecl->setLocEnd(RBrac);
7308 // Add ivar's to class extension's DeclContext.
7309 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7310 ClsFields[i]->setLexicalDeclContext(CDecl);
7311 CDecl->addDecl(ClsFields[i]);
7316 if (Attr)
7317 ProcessDeclAttributeList(S, Record, Attr);
7319 // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7320 // set the visibility of this record.
7321 if (Record && !Record->getDeclContext()->isRecord())
7322 AddPushedVisibilityAttribute(Record);
7325 /// \brief Determine whether the given integral value is representable within
7326 /// the given type T.
7327 static bool isRepresentableIntegerValue(ASTContext &Context,
7328 llvm::APSInt &Value,
7329 QualType T) {
7330 assert(T->isIntegralType(Context) && "Integral type required!");
7331 unsigned BitWidth = Context.getIntWidth(T);
7333 if (Value.isUnsigned() || Value.isNonNegative()) {
7334 if (T->isSignedIntegerType())
7335 --BitWidth;
7336 return Value.getActiveBits() <= BitWidth;
7338 return Value.getMinSignedBits() <= BitWidth;
7341 // \brief Given an integral type, return the next larger integral type
7342 // (or a NULL type of no such type exists).
7343 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7344 // FIXME: Int128/UInt128 support, which also needs to be introduced into
7345 // enum checking below.
7346 assert(T->isIntegralType(Context) && "Integral type required!");
7347 const unsigned NumTypes = 4;
7348 QualType SignedIntegralTypes[NumTypes] = {
7349 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7351 QualType UnsignedIntegralTypes[NumTypes] = {
7352 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7353 Context.UnsignedLongLongTy
7356 unsigned BitWidth = Context.getTypeSize(T);
7357 QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7358 : UnsignedIntegralTypes;
7359 for (unsigned I = 0; I != NumTypes; ++I)
7360 if (Context.getTypeSize(Types[I]) > BitWidth)
7361 return Types[I];
7363 return QualType();
7366 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7367 EnumConstantDecl *LastEnumConst,
7368 SourceLocation IdLoc,
7369 IdentifierInfo *Id,
7370 Expr *Val) {
7371 unsigned IntWidth = Context.Target.getIntWidth();
7372 llvm::APSInt EnumVal(IntWidth);
7373 QualType EltTy;
7375 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7376 Val = 0;
7378 if (Val) {
7379 if (Enum->isDependentType() || Val->isTypeDependent())
7380 EltTy = Context.DependentTy;
7381 else {
7382 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7383 SourceLocation ExpLoc;
7384 if (!Val->isValueDependent() &&
7385 VerifyIntegerConstantExpression(Val, &EnumVal)) {
7386 Val = 0;
7387 } else {
7388 if (!getLangOptions().CPlusPlus) {
7389 // C99 6.7.2.2p2:
7390 // The expression that defines the value of an enumeration constant
7391 // shall be an integer constant expression that has a value
7392 // representable as an int.
7394 // Complain if the value is not representable in an int.
7395 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7396 Diag(IdLoc, diag::ext_enum_value_not_int)
7397 << EnumVal.toString(10) << Val->getSourceRange()
7398 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7399 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7400 // Force the type of the expression to 'int'.
7401 ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7405 if (Enum->isFixed()) {
7406 EltTy = Enum->getIntegerType();
7408 // C++0x [dcl.enum]p5:
7409 // ... if the initializing value of an enumerator cannot be
7410 // represented by the underlying type, the program is ill-formed.
7411 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7412 if (getLangOptions().Microsoft) {
7413 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7414 ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7415 } else
7416 Diag(IdLoc, diag::err_enumerator_too_large)
7417 << EltTy;
7418 } else
7419 ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7421 else {
7422 // C++0x [dcl.enum]p5:
7423 // If the underlying type is not fixed, the type of each enumerator
7424 // is the type of its initializing value:
7425 // - If an initializer is specified for an enumerator, the
7426 // initializing value has the same type as the expression.
7427 EltTy = Val->getType();
7433 if (!Val) {
7434 if (Enum->isDependentType())
7435 EltTy = Context.DependentTy;
7436 else if (!LastEnumConst) {
7437 // C++0x [dcl.enum]p5:
7438 // If the underlying type is not fixed, the type of each enumerator
7439 // is the type of its initializing value:
7440 // - If no initializer is specified for the first enumerator, the
7441 // initializing value has an unspecified integral type.
7443 // GCC uses 'int' for its unspecified integral type, as does
7444 // C99 6.7.2.2p3.
7445 if (Enum->isFixed()) {
7446 EltTy = Enum->getIntegerType();
7448 else {
7449 EltTy = Context.IntTy;
7451 } else {
7452 // Assign the last value + 1.
7453 EnumVal = LastEnumConst->getInitVal();
7454 ++EnumVal;
7455 EltTy = LastEnumConst->getType();
7457 // Check for overflow on increment.
7458 if (EnumVal < LastEnumConst->getInitVal()) {
7459 // C++0x [dcl.enum]p5:
7460 // If the underlying type is not fixed, the type of each enumerator
7461 // is the type of its initializing value:
7463 // - Otherwise the type of the initializing value is the same as
7464 // the type of the initializing value of the preceding enumerator
7465 // unless the incremented value is not representable in that type,
7466 // in which case the type is an unspecified integral type
7467 // sufficient to contain the incremented value. If no such type
7468 // exists, the program is ill-formed.
7469 QualType T = getNextLargerIntegralType(Context, EltTy);
7470 if (T.isNull() || Enum->isFixed()) {
7471 // There is no integral type larger enough to represent this
7472 // value. Complain, then allow the value to wrap around.
7473 EnumVal = LastEnumConst->getInitVal();
7474 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7475 ++EnumVal;
7476 if (Enum->isFixed())
7477 // When the underlying type is fixed, this is ill-formed.
7478 Diag(IdLoc, diag::err_enumerator_wrapped)
7479 << EnumVal.toString(10)
7480 << EltTy;
7481 else
7482 Diag(IdLoc, diag::warn_enumerator_too_large)
7483 << EnumVal.toString(10);
7484 } else {
7485 EltTy = T;
7488 // Retrieve the last enumerator's value, extent that type to the
7489 // type that is supposed to be large enough to represent the incremented
7490 // value, then increment.
7491 EnumVal = LastEnumConst->getInitVal();
7492 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7493 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7494 ++EnumVal;
7496 // If we're not in C++, diagnose the overflow of enumerator values,
7497 // which in C99 means that the enumerator value is not representable in
7498 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7499 // permits enumerator values that are representable in some larger
7500 // integral type.
7501 if (!getLangOptions().CPlusPlus && !T.isNull())
7502 Diag(IdLoc, diag::warn_enum_value_overflow);
7503 } else if (!getLangOptions().CPlusPlus &&
7504 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7505 // Enforce C99 6.7.2.2p2 even when we compute the next value.
7506 Diag(IdLoc, diag::ext_enum_value_not_int)
7507 << EnumVal.toString(10) << 1;
7512 if (!EltTy->isDependentType()) {
7513 // Make the enumerator value match the signedness and size of the
7514 // enumerator's type.
7515 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7516 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7519 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7520 Val, EnumVal);
7524 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7525 SourceLocation IdLoc, IdentifierInfo *Id,
7526 AttributeList *Attr,
7527 SourceLocation EqualLoc, ExprTy *val) {
7528 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7529 EnumConstantDecl *LastEnumConst =
7530 cast_or_null<EnumConstantDecl>(lastEnumConst);
7531 Expr *Val = static_cast<Expr*>(val);
7533 // The scope passed in may not be a decl scope. Zip up the scope tree until
7534 // we find one that is.
7535 S = getNonFieldDeclScope(S);
7537 // Verify that there isn't already something declared with this name in this
7538 // scope.
7539 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7540 ForRedeclaration);
7541 if (PrevDecl && PrevDecl->isTemplateParameter()) {
7542 // Maybe we will complain about the shadowed template parameter.
7543 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7544 // Just pretend that we didn't see the previous declaration.
7545 PrevDecl = 0;
7548 if (PrevDecl) {
7549 // When in C++, we may get a TagDecl with the same name; in this case the
7550 // enum constant will 'hide' the tag.
7551 assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7552 "Received TagDecl when not in C++!");
7553 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7554 if (isa<EnumConstantDecl>(PrevDecl))
7555 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7556 else
7557 Diag(IdLoc, diag::err_redefinition) << Id;
7558 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7559 return 0;
7563 // C++ [class.mem]p13:
7564 // If T is the name of a class, then each of the following shall have a
7565 // name different from T:
7566 // - every enumerator of every member of class T that is an enumerated
7567 // type
7568 if (CXXRecordDecl *Record
7569 = dyn_cast<CXXRecordDecl>(
7570 TheEnumDecl->getDeclContext()->getRedeclContext()))
7571 if (Record->getIdentifier() && Record->getIdentifier() == Id)
7572 Diag(IdLoc, diag::err_member_name_of_class) << Id;
7574 EnumConstantDecl *New =
7575 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7577 if (New) {
7578 // Process attributes.
7579 if (Attr) ProcessDeclAttributeList(S, New, Attr);
7581 // Register this decl in the current scope stack.
7582 New->setAccess(TheEnumDecl->getAccess());
7583 PushOnScopeChains(New, S);
7586 return New;
7589 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7590 SourceLocation RBraceLoc, Decl *EnumDeclX,
7591 Decl **Elements, unsigned NumElements,
7592 Scope *S, AttributeList *Attr) {
7593 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7594 QualType EnumType = Context.getTypeDeclType(Enum);
7596 if (Attr)
7597 ProcessDeclAttributeList(S, Enum, Attr);
7599 if (Enum->isDependentType()) {
7600 for (unsigned i = 0; i != NumElements; ++i) {
7601 EnumConstantDecl *ECD =
7602 cast_or_null<EnumConstantDecl>(Elements[i]);
7603 if (!ECD) continue;
7605 ECD->setType(EnumType);
7608 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7609 return;
7612 // TODO: If the result value doesn't fit in an int, it must be a long or long
7613 // long value. ISO C does not support this, but GCC does as an extension,
7614 // emit a warning.
7615 unsigned IntWidth = Context.Target.getIntWidth();
7616 unsigned CharWidth = Context.Target.getCharWidth();
7617 unsigned ShortWidth = Context.Target.getShortWidth();
7619 // Verify that all the values are okay, compute the size of the values, and
7620 // reverse the list.
7621 unsigned NumNegativeBits = 0;
7622 unsigned NumPositiveBits = 0;
7624 // Keep track of whether all elements have type int.
7625 bool AllElementsInt = true;
7627 for (unsigned i = 0; i != NumElements; ++i) {
7628 EnumConstantDecl *ECD =
7629 cast_or_null<EnumConstantDecl>(Elements[i]);
7630 if (!ECD) continue; // Already issued a diagnostic.
7632 const llvm::APSInt &InitVal = ECD->getInitVal();
7634 // Keep track of the size of positive and negative values.
7635 if (InitVal.isUnsigned() || InitVal.isNonNegative())
7636 NumPositiveBits = std::max(NumPositiveBits,
7637 (unsigned)InitVal.getActiveBits());
7638 else
7639 NumNegativeBits = std::max(NumNegativeBits,
7640 (unsigned)InitVal.getMinSignedBits());
7642 // Keep track of whether every enum element has type int (very commmon).
7643 if (AllElementsInt)
7644 AllElementsInt = ECD->getType() == Context.IntTy;
7647 // Figure out the type that should be used for this enum.
7648 QualType BestType;
7649 unsigned BestWidth;
7651 // C++0x N3000 [conv.prom]p3:
7652 // An rvalue of an unscoped enumeration type whose underlying
7653 // type is not fixed can be converted to an rvalue of the first
7654 // of the following types that can represent all the values of
7655 // the enumeration: int, unsigned int, long int, unsigned long
7656 // int, long long int, or unsigned long long int.
7657 // C99 6.4.4.3p2:
7658 // An identifier declared as an enumeration constant has type int.
7659 // The C99 rule is modified by a gcc extension
7660 QualType BestPromotionType;
7662 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7663 // -fshort-enums is the equivalent to specifying the packed attribute on all
7664 // enum definitions.
7665 if (LangOpts.ShortEnums)
7666 Packed = true;
7668 if (Enum->isFixed()) {
7669 BestType = BestPromotionType = Enum->getIntegerType();
7670 // We don't need to set BestWidth, because BestType is going to be the type
7671 // of the enumerators, but we do anyway because otherwise some compilers
7672 // warn that it might be used uninitialized.
7673 BestWidth = CharWidth;
7675 else if (NumNegativeBits) {
7676 // If there is a negative value, figure out the smallest integer type (of
7677 // int/long/longlong) that fits.
7678 // If it's packed, check also if it fits a char or a short.
7679 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7680 BestType = Context.SignedCharTy;
7681 BestWidth = CharWidth;
7682 } else if (Packed && NumNegativeBits <= ShortWidth &&
7683 NumPositiveBits < ShortWidth) {
7684 BestType = Context.ShortTy;
7685 BestWidth = ShortWidth;
7686 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7687 BestType = Context.IntTy;
7688 BestWidth = IntWidth;
7689 } else {
7690 BestWidth = Context.Target.getLongWidth();
7692 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7693 BestType = Context.LongTy;
7694 } else {
7695 BestWidth = Context.Target.getLongLongWidth();
7697 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7698 Diag(Enum->getLocation(), diag::warn_enum_too_large);
7699 BestType = Context.LongLongTy;
7702 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7703 } else {
7704 // If there is no negative value, figure out the smallest type that fits
7705 // all of the enumerator values.
7706 // If it's packed, check also if it fits a char or a short.
7707 if (Packed && NumPositiveBits <= CharWidth) {
7708 BestType = Context.UnsignedCharTy;
7709 BestPromotionType = Context.IntTy;
7710 BestWidth = CharWidth;
7711 } else if (Packed && NumPositiveBits <= ShortWidth) {
7712 BestType = Context.UnsignedShortTy;
7713 BestPromotionType = Context.IntTy;
7714 BestWidth = ShortWidth;
7715 } else if (NumPositiveBits <= IntWidth) {
7716 BestType = Context.UnsignedIntTy;
7717 BestWidth = IntWidth;
7718 BestPromotionType
7719 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7720 ? Context.UnsignedIntTy : Context.IntTy;
7721 } else if (NumPositiveBits <=
7722 (BestWidth = Context.Target.getLongWidth())) {
7723 BestType = Context.UnsignedLongTy;
7724 BestPromotionType
7725 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7726 ? Context.UnsignedLongTy : Context.LongTy;
7727 } else {
7728 BestWidth = Context.Target.getLongLongWidth();
7729 assert(NumPositiveBits <= BestWidth &&
7730 "How could an initializer get larger than ULL?");
7731 BestType = Context.UnsignedLongLongTy;
7732 BestPromotionType
7733 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7734 ? Context.UnsignedLongLongTy : Context.LongLongTy;
7738 // Loop over all of the enumerator constants, changing their types to match
7739 // the type of the enum if needed.
7740 for (unsigned i = 0; i != NumElements; ++i) {
7741 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7742 if (!ECD) continue; // Already issued a diagnostic.
7744 // Standard C says the enumerators have int type, but we allow, as an
7745 // extension, the enumerators to be larger than int size. If each
7746 // enumerator value fits in an int, type it as an int, otherwise type it the
7747 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
7748 // that X has type 'int', not 'unsigned'.
7750 // Determine whether the value fits into an int.
7751 llvm::APSInt InitVal = ECD->getInitVal();
7753 // If it fits into an integer type, force it. Otherwise force it to match
7754 // the enum decl type.
7755 QualType NewTy;
7756 unsigned NewWidth;
7757 bool NewSign;
7758 if (!getLangOptions().CPlusPlus &&
7759 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7760 NewTy = Context.IntTy;
7761 NewWidth = IntWidth;
7762 NewSign = true;
7763 } else if (ECD->getType() == BestType) {
7764 // Already the right type!
7765 if (getLangOptions().CPlusPlus)
7766 // C++ [dcl.enum]p4: Following the closing brace of an
7767 // enum-specifier, each enumerator has the type of its
7768 // enumeration.
7769 ECD->setType(EnumType);
7770 continue;
7771 } else {
7772 NewTy = BestType;
7773 NewWidth = BestWidth;
7774 NewSign = BestType->isSignedIntegerType();
7777 // Adjust the APSInt value.
7778 InitVal = InitVal.extOrTrunc(NewWidth);
7779 InitVal.setIsSigned(NewSign);
7780 ECD->setInitVal(InitVal);
7782 // Adjust the Expr initializer and type.
7783 if (ECD->getInitExpr() &&
7784 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7785 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7786 CK_IntegralCast,
7787 ECD->getInitExpr(),
7788 /*base paths*/ 0,
7789 VK_RValue));
7790 if (getLangOptions().CPlusPlus)
7791 // C++ [dcl.enum]p4: Following the closing brace of an
7792 // enum-specifier, each enumerator has the type of its
7793 // enumeration.
7794 ECD->setType(EnumType);
7795 else
7796 ECD->setType(NewTy);
7799 Enum->completeDefinition(BestType, BestPromotionType,
7800 NumPositiveBits, NumNegativeBits);
7803 Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7804 StringLiteral *AsmString = cast<StringLiteral>(expr);
7806 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7807 Loc, AsmString);
7808 CurContext->addDecl(New);
7809 return New;
7812 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7813 SourceLocation PragmaLoc,
7814 SourceLocation NameLoc) {
7815 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7817 if (PrevDecl) {
7818 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7819 } else {
7820 (void)WeakUndeclaredIdentifiers.insert(
7821 std::pair<IdentifierInfo*,WeakInfo>
7822 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7826 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7827 IdentifierInfo* AliasName,
7828 SourceLocation PragmaLoc,
7829 SourceLocation NameLoc,
7830 SourceLocation AliasNameLoc) {
7831 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7832 LookupOrdinaryName);
7833 WeakInfo W = WeakInfo(Name, NameLoc);
7835 if (PrevDecl) {
7836 if (!PrevDecl->hasAttr<AliasAttr>())
7837 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7838 DeclApplyPragmaWeak(TUScope, ND, W);
7839 } else {
7840 (void)WeakUndeclaredIdentifiers.insert(
7841 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));