Check for unexpanded parameter packs in using declarations. As a
[clang.git] / docs / LanguageExtensions.html
blobe080aef3c30b7a897a963421dc91fc8b5ea752fe
1 <html>
2 <head>
3 <title>Clang Language Extensions</title>
4 <link type="text/css" rel="stylesheet" href="../menu.css" />
5 <link type="text/css" rel="stylesheet" href="../content.css" />
6 <style type="text/css">
7 td {
8 vertical-align: top;
10 </style>
11 </head>
12 <body>
14 <!--#include virtual="../menu.html.incl"-->
16 <div id="content">
18 <h1>Clang Language Extensions</h1>
20 <ul>
21 <li><a href="#intro">Introduction</a></li>
22 <li><a href="#feature_check">Feature Checking Macros</a></li>
23 <li><a href="#has_include">Include File Checking Macros</a></li>
24 <li><a href="#builtinmacros">Builtin Macros</a></li>
25 <li><a href="#vectors">Vectors and Extended Vectors</a></li>
26 <li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
27 <li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
28 <li><a href="#checking_language_features">Checks for Standard Language Features</a></li>
29 <ul>
30 <li><a href="#cxx_exceptions">C++ exceptions</a></li>
31 <li><a href="#cxx_rtti">C++ RTTI</a></li>
32 </ul>
33 <li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li>
34 <ul>
35 <li><a href="#cxx_attributes">C++0x attributes</a></li>
36 <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li>
37 <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li>
38 <li><a href="#cxx_concepts">C++ TR concepts</a></li>
39 <li><a href="#cxx_lambdas">C++0x lambdas</a></li>
40 <li><a href="#cxx_nullptr">C++0x nullptr</a></li>
41 <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li>
42 <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li>
43 <li><a href="#cxx_auto_type">C++0x type inference</a></li>
44 <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li>
45 <li><a href="#cxx_inline_namespaces">C++0x inline namespaces</a></li>
46 <li><a href="#cxx_strong_enums">C++0x strongly-typed enumerations</a></li>
47 <li><a href="#cxx_trailing_return">C++0x trailing return type</a></li>
48 </ul>
49 <li><a href="#blocks">Blocks</a></li>
50 <li><a href="#overloading-in-c">Function Overloading in C</a></li>
51 <li><a href="#builtins">Builtin Functions</a>
52 <ul>
53 <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
54 <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
55 </ul>
56 </li>
57 <li><a href="#targetspecific">Target-Specific Extensions</a>
58 <ul>
59 <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
60 </ul>
61 </li>
62 <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a>
63 <ul>
64 <li><a href="#analyzerattributes">Analyzer Attributes</a></li>
65 </ul>
66 </li>
67 </ul>
69 <!-- ======================================================================= -->
70 <h2 id="intro">Introduction</h2>
71 <!-- ======================================================================= -->
73 <p>This document describes the language extensions provided by Clang. In
74 addition to the language extensions listed here, Clang aims to support a broad
75 range of GCC extensions. Please see the <a
76 href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
77 more information on these extensions.</p>
79 <!-- ======================================================================= -->
80 <h2 id="feature_check">Feature Checking Macros</h2>
81 <!-- ======================================================================= -->
83 <p>Language extensions can be very useful, but only if you know you can depend
84 on them. In order to allow fine-grain features checks, we support two builtin
85 function-like macros. This allows you to directly test for a feature in your
86 code without having to resort to something like autoconf or fragile "compiler
87 version checks".</p>
89 <!-- ======================================================================= -->
90 <h3 id="__has_builtin">__has_builtin</h3>
91 <!-- ======================================================================= -->
93 <p>This function-like macro takes a single identifier argument that is the name
94 of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
95 not. It can be used like this:</p>
97 <blockquote>
98 <pre>
99 #ifndef __has_builtin // Optional of course.
100 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
101 #endif
104 #if __has_builtin(__builtin_trap)
105 __builtin_trap();
106 #else
107 abort();
108 #endif
110 </pre>
111 </blockquote>
114 <!-- ======================================================================= -->
115 <h3 id="__has_feature">__has_feature</h3>
116 <!-- ======================================================================= -->
118 <p>This function-like macro takes a single identifier argument that is the name
119 of a feature. It evaluates to 1 if the feature is supported or 0 if not. It
120 can be used like this:</p>
122 <blockquote>
123 <pre>
124 #ifndef __has_feature // Optional of course.
125 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
126 #endif
129 #if __has_feature(attribute_overloadable) || \
130 __has_feature(blocks)
132 #endif
134 </pre>
135 </blockquote>
137 <p>The feature tag is described along with the language feature below.</p>
139 <!-- ======================================================================= -->
140 <h3 id="__has_attribute">__has_attribute</h3>
141 <!-- ======================================================================= -->
143 <p>This function-like macro takes a single identifier argument that is the name
144 of an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
145 can be used like this:</p>
147 <blockquote>
148 <pre>
149 #ifndef __has_attribute // Optional of course.
150 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
151 #endif
154 #if __has_attribute(override) || \
155 #define OVERRIDE __attribute__((override))
156 #else
157 #define OVERRIDE
158 #endif
160 </pre>
161 </blockquote>
163 <!-- ======================================================================= -->
164 <h2 id="has_include">Include File Checking Macros</h2>
165 <!-- ======================================================================= -->
167 <p>Not all developments systems have the same include files.
168 The <a href="#__has_include">__has_include</a> and
169 <a href="#__has_include_next">__has_include_next</a> macros allow you to
170 check for the existence of an include file before doing
171 a possibly failing #include directive.</p>
173 <!-- ======================================================================= -->
174 <h3 id="__has_include">__has_include</h3>
175 <!-- ======================================================================= -->
177 <p>This function-like macro takes a single file name string argument that
178 is the name of an include file. It evaluates to 1 if the file can
179 be found using the include paths, or 0 otherwise:</p>
181 <blockquote>
182 <pre>
183 // Note the two possible file name string formats.
184 #if __has_include("myinclude.h") && __has_include(&lt;stdint.h&gt;)
185 # include "myinclude.h"
186 #endif
188 // To avoid problem with non-clang compilers not having this macro.
189 #if defined(__has_include) && __has_include("myinclude.h")
190 # include "myinclude.h"
191 #endif
192 </pre>
193 </blockquote>
195 <p>To test for this feature, use #if defined(__has_include).</p>
197 <!-- ======================================================================= -->
198 <h3 id="__has_include_next">__has_include_next</h3>
199 <!-- ======================================================================= -->
201 <p>This function-like macro takes a single file name string argument that
202 is the name of an include file. It is like __has_include except that it
203 looks for the second instance of the given file found in the include
204 paths. It evaluates to 1 if the second instance of the file can
205 be found using the include paths, or 0 otherwise:</p>
207 <blockquote>
208 <pre>
209 // Note the two possible file name string formats.
210 #if __has_include_next("myinclude.h") && __has_include_next(&lt;stdint.h&gt;)
211 # include_next "myinclude.h"
212 #endif
214 // To avoid problem with non-clang compilers not having this macro.
215 #if defined(__has_include_next) && __has_include_next("myinclude.h")
216 # include_next "myinclude.h"
217 #endif
218 </pre>
219 </blockquote>
221 <p>Note that __has_include_next, like the GNU extension
222 #include_next directive, is intended for use in headers only,
223 and will issue a warning if used in the top-level compilation
224 file. A warning will also be issued if an absolute path
225 is used in the file argument.</p>
227 <!-- ======================================================================= -->
228 <h2 id="builtinmacros">Builtin Macros</h2>
229 <!-- ======================================================================= -->
231 <dl>
232 <dt><code>__BASE_FILE__</code></dt>
233 <dd>Defined to a string that contains the name of the main input
234 file passed to Clang.</dd>
236 <dt><code>__COUNTER__</code></dt>
237 <dd>Defined to an integer value that starts at zero and is
238 incremented each time the <code>__COUNTER__</code> macro is
239 expanded.</dd>
241 <dt><code>__INCLUDE_LEVEL__</code></dt>
242 <dd>Defined to an integral value that is the include depth of the
243 file currently being translated. For the main file, this value is
244 zero.</dd>
246 <dt><code>__TIMESTAMP__</code></dt>
247 <dd>Defined to the date and time of the last modification of the
248 current source file.</dd>
250 <dt><code>__clang__</code></dt>
251 <dd>Defined when compiling with Clang</dd>
253 <dt><code>__clang_major__</code></dt>
254 <dd>Defined to the major version number of Clang (e.g., the 2 in
255 2.0.1).</dd>
257 <dt><code>__clang_minor__</code></dt>
258 <dd>Defined to the minor version number of Clang (e.g., the 0 in
259 2.0.1).</dd>
261 <dt><code>__clang_patchlevel__</code></dt>
262 <dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd>
264 <dt><code>__clang_version__</code></dt>
265 <dd>Defined to a string that captures the Clang version, including
266 the Subversion tag or revision number, e.g., "1.5 (trunk
267 102332)".</dd>
268 </dl>
270 <!-- ======================================================================= -->
271 <h2 id="vectors">Vectors and Extended Vectors</h2>
272 <!-- ======================================================================= -->
274 <p>Supports the GCC vector extensions, plus some stuff like V[1].</p>
276 <p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw
277 syntax and other tidbits as seen in OpenCL. An example is:</p>
279 <blockquote>
280 <pre>
281 typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
282 typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
284 float4 foo(float2 a, float2 b) {
285 float4 c;
286 c.xz = a;
287 c.yw = b;
288 return c;
290 </pre>
291 </blockquote>
293 <p>Query for this feature with __has_feature(attribute_ext_vector_type).</p>
295 <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
297 <!-- ======================================================================= -->
298 <h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
299 <!-- ======================================================================= -->
301 <p>An optional string message can be added to the <tt>deprecated</tt>
302 and <tt>unavailable</tt> attributes. For example:</p>
304 <blockquote>
305 <pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
306 </blockquote>
308 <p>If the deprecated or unavailable declaration is used, the message
309 will be incorporated into the appropriate diagnostic:</p>
311 <blockquote>
312 <pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!! [-Wdeprecated-declarations]
313 explode();
314 ^</pre>
315 </blockquote>
317 <p>Query for this feature
318 with <tt>__has_feature(attribute_deprecated_with_message)</tt>
319 and <tt>__has_feature(attribute_unavailable_with_message)</tt>.</p>
321 <!-- ======================================================================= -->
322 <h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
323 <!-- ======================================================================= -->
325 <p>Clang allows attributes to be written on individual enumerators.
326 This allows enumerators to be deprecated, made unavailable, etc. The
327 attribute must appear after the enumerator name and before any
328 initializer, like so:</p>
330 <blockquote>
331 <pre>enum OperationMode {
332 OM_Invalid,
333 OM_Normal,
334 OM_Terrified __attribute__((deprecated)),
335 OM_AbortOnError __attribute__((deprecated)) = 4
336 };</pre>
337 </blockquote>
339 <p>Attributes on the <tt>enum</tt> declaration do not apply to
340 individual enumerators.</p>
342 <p>Query for this feature with <tt>__has_feature(enumerator_attributes)</tt>.</p>
344 <!-- ======================================================================= -->
345 <h2 id="checking_language_features">Checks for Standard Language Features</h2>
346 <!-- ======================================================================= -->
348 <p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are
349 enabled. Those features are listed here.</p>
351 <h3 id="cxx_exceptions">C++ exceptions</h3>
353 <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
354 example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p>
356 <h3 id="cxx_rtti">C++ RTTI</h3>
358 <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
359 compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
361 <!-- ======================================================================= -->
362 <h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2>
363 <!-- ======================================================================= -->
365 <p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming
366 standard language features are enabled. Those features are listed here.</p>
368 <p>Currently, all features listed here are slated for inclusion in the upcoming
369 C++0x standard. As a result, all the features that clang supports are enabled
370 with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are
371 not yet implemented will be noted.</p>
373 <h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3>
375 <p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the
376 <tt>decltype()</tt> specifier is enabled.</p>
378 <h3 id="cxx_attributes">C++0x attributes</h3>
380 <p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for
381 attribute parsing with C++0x's square bracket notation is enabled.</p>
383 <h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3>
385 <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for
386 deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
388 <h3 id="cxx_concepts">C++ TR concepts</h3>
390 <p>Use <tt>__has_feature(cxx_concepts)</tt> to determine if support for
391 concepts is enabled. clang does not currently implement this feature.</p>
393 <h3 id="cxx_lambdas">C++0x lambdas</h3>
395 <p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for
396 lambdas is enabled. clang does not currently implement this feature.</p>
398 <h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3>
400 <p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for
401 <tt>nullptr</tt> is enabled. clang does not yet fully implement this
402 feature.</p>
404 <h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3>
406 <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for
407 rvalue references is enabled. clang does not yet fully implement this
408 feature.</p>
410 <h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3>
412 <p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for
413 compile-time assertions using <tt>static_assert</tt> is enabled.</p>
415 <h3 id="cxx_auto_type">C++0x type inference</h3>
417 <p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference
418 is supported using the <tt>auto</tt> specifier. If this is disabled,
419 <tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p>
421 <h3 id="cxx_variadic_templates">C++0x variadic templates</h3>
423 <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support
424 for templates taking any number of arguments with the ellipsis notation is
425 enabled. clang does not yet fully implement this feature.</p>
427 <h3 id="cxx_inline_namespaces">C++0x inline namespaces</h3>
429 <p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> to determine if support for
430 inline namespaces is enabled.</p>
432 <h3 id="cxx_trailing_return">C++0x trailing return type</h3>
434 <p>Use <tt>__has_feature(cxx_trailing_return)</tt> to determine if support for
435 the alternate function declaration syntax with trailing return type is enabled.</p>
437 <h3 id="cxx_strong_enums">C++0x strongly typed enumerations</h3>
439 <p>Use <tt>__has_feature(cxx_strong_enums)</tt> to determine if support for
440 strongly typed, scoped enumerations is enabled.</p>
442 <!-- ======================================================================= -->
443 <h2 id="blocks">Blocks</h2>
444 <!-- ======================================================================= -->
446 <p>The syntax and high level language feature description is in <a
447 href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
448 details for the clang implementation are in <a
449 href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
452 <p>Query for this feature with __has_feature(blocks).</p>
454 <!-- ======================================================================= -->
455 <h2 id="overloading-in-c">Function Overloading in C</h2>
456 <!-- ======================================================================= -->
458 <p>Clang provides support for C++ function overloading in C. Function
459 overloading in C is introduced using the <tt>overloadable</tt> attribute. For
460 example, one might provide several overloaded versions of a <tt>tgsin</tt>
461 function that invokes the appropriate standard function computing the sine of a
462 value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
463 precision:</p>
465 <blockquote>
466 <pre>
467 #include &lt;math.h&gt;
468 float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
469 double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
470 long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
471 </pre>
472 </blockquote>
474 <p>Given these declarations, one can call <tt>tgsin</tt> with a
475 <tt>float</tt> value to receive a <tt>float</tt> result, with a
476 <tt>double</tt> to receive a <tt>double</tt> result, etc. Function
477 overloading in C follows the rules of C++ function overloading to pick
478 the best overload given the call arguments, with a few C-specific
479 semantics:</p>
480 <ul>
481 <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
482 double</tt> is ranked as a floating-point promotion (per C99) rather
483 than as a floating-point conversion (as in C++).</li>
485 <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
486 <tt>U*</tt> is considered a pointer conversion (with conversion
487 rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
489 <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
490 is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
491 conversion is given "conversion" rank.</li>
492 </ul>
494 <p>The declaration of <tt>overloadable</tt> functions is restricted to
495 function declarations and definitions. Most importantly, if any
496 function with a given name is given the <tt>overloadable</tt>
497 attribute, then all function declarations and definitions with that
498 name (and in that scope) must have the <tt>overloadable</tt>
499 attribute. This rule even applies to redeclarations of functions whose original
500 declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
502 <blockquote>
503 <pre>
504 int f(int) __attribute__((overloadable));
505 float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
507 int g(int) __attribute__((overloadable));
508 int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
509 </pre>
510 </blockquote>
512 <p>Functions marked <tt>overloadable</tt> must have
513 prototypes. Therefore, the following code is ill-formed:</p>
515 <blockquote>
516 <pre>
517 int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
518 </pre>
519 </blockquote>
521 <p>However, <tt>overloadable</tt> functions are allowed to use a
522 ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
524 <blockquote>
525 <pre>
526 void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
527 </pre>
528 </blockquote>
530 <p>Functions declared with the <tt>overloadable</tt> attribute have
531 their names mangled according to the same rules as C++ function
532 names. For example, the three <tt>tgsin</tt> functions in our
533 motivating example get the mangled names <tt>_Z5tgsinf</tt>,
534 <tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
535 caveats to this use of name mangling:</p>
537 <ul>
539 <li>Future versions of Clang may change the name mangling of
540 functions overloaded in C, so you should not depend on an specific
541 mangling. To be completely safe, we strongly urge the use of
542 <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
544 <li>The <tt>overloadable</tt> attribute has almost no meaning when
545 used in C++, because names will already be mangled and functions are
546 already overloadable. However, when an <tt>overloadable</tt>
547 function occurs within an <tt>extern "C"</tt> linkage specification,
548 it's name <i>will</i> be mangled in the same way as it would in
549 C.</li>
550 </ul>
552 <p>Query for this feature with __has_feature(attribute_overloadable).</p>
555 <!-- ======================================================================= -->
556 <h2 id="builtins">Builtin Functions</h2>
557 <!-- ======================================================================= -->
559 <p>Clang supports a number of builtin library functions with the same syntax as
560 GCC, including things like <tt>__builtin_nan</tt>,
561 <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
562 <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
563 addition to the GCC builtins, Clang supports a number of builtins that GCC does
564 not, which are listed here.</p>
566 <p>Please note that Clang does not and will not support all of the GCC builtins
567 for vector operations. Instead of using builtins, you should use the functions
568 defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
569 define portable wrappers for these. Many of the Clang versions of these
570 functions are implemented directly in terms of <a href="#vectors">extended
571 vector support</a> instead of builtins, in order to reduce the number of
572 builtins that we need to implement.</p>
574 <!-- ======================================================================= -->
575 <h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
576 <!-- ======================================================================= -->
578 <p><tt>__builtin_shufflevector</tt> is used to express generic vector
579 permutation/shuffle/swizzle operations. This builtin is also very important for
580 the implementation of various target-specific header files like
581 <tt>&lt;xmmintrin.h&gt;</tt>.
582 </p>
584 <p><b>Syntax:</b></p>
586 <pre>
587 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
588 </pre>
590 <p><b>Examples:</b></p>
592 <pre>
593 // Identity operation - return 4-element vector V1.
594 __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
596 // "Splat" element 0 of V1 into a 4-element result.
597 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
599 // Reverse 4-element vector V1.
600 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
602 // Concatenate every other element of 4-element vectors V1 and V2.
603 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
605 // Concatenate every other element of 8-element vectors V1 and V2.
606 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
607 </pre>
609 <p><b>Description:</b></p>
611 <p>The first two arguments to __builtin_shufflevector are vectors that have the
612 same element type. The remaining arguments are a list of integers that specify
613 the elements indices of the first two vectors that should be extracted and
614 returned in a new vector. These element indices are numbered sequentially
615 starting with the first vector, continuing into the second vector. Thus, if
616 vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
617 </p>
619 <p>The result of __builtin_shufflevector is a vector
620 with the same element type as vec1/vec2 but that has an element count equal to
621 the number of indices specified.
622 </p>
624 <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
626 <!-- ======================================================================= -->
627 <h3 id="__builtin_unreachable">__builtin_unreachable</h3>
628 <!-- ======================================================================= -->
630 <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
631 the program cannot be reached, even if the compiler might otherwise think it
632 can. This is useful to improve optimization and eliminates certain warnings.
633 For example, without the <tt>__builtin_unreachable</tt> in the example below,
634 the compiler assumes that the inline asm can fall through and prints a "function
635 declared 'noreturn' should not return" warning.
636 </p>
638 <p><b>Syntax:</b></p>
640 <pre>
641 __builtin_unreachable()
642 </pre>
644 <p><b>Example of Use:</b></p>
646 <pre>
647 void myabort(void) __attribute__((noreturn));
648 void myabort(void) {
649 asm("int3");
650 __builtin_unreachable();
652 </pre>
654 <p><b>Description:</b></p>
656 <p>The __builtin_unreachable() builtin has completely undefined behavior. Since
657 it has undefined behavior, it is a statement that it is never reached and the
658 optimizer can take advantage of this to produce better code. This builtin takes
659 no arguments and produces a void result.
660 </p>
662 <p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
665 <!-- ======================================================================= -->
666 <h2 id="targetspecific">Target-Specific Extensions</h2>
667 <!-- ======================================================================= -->
669 <p>Clang supports some language features conditionally on some targets.</p>
671 <!-- ======================================================================= -->
672 <h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
673 <!-- ======================================================================= -->
675 <p>The X86 backend has these language extensions:</p>
677 <!-- ======================================================================= -->
678 <h4 id="x86-gs-segment">Memory references off the GS segment</h4>
679 <!-- ======================================================================= -->
681 <p>Annotating a pointer with address space #256 causes it to be code generated
682 relative to the X86 GS segment register, and address space #257 causes it to be
683 relative to the X86 FS segment. Note that this is a very very low-level
684 feature that should only be used if you know what you're doing (for example in
685 an OS kernel).</p>
687 <p>Here is an example:</p>
689 <pre>
690 #define GS_RELATIVE __attribute__((address_space(256)))
691 int foo(int GS_RELATIVE *P) {
692 return *P;
694 </pre>
696 <p>Which compiles to (on X86-32):</p>
698 <pre>
699 _foo:
700 movl 4(%esp), %eax
701 movl %gs:(%eax), %eax
703 </pre>
705 <!-- ======================================================================= -->
706 <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
707 <!-- ======================================================================= -->
709 <p>Clang supports additional attributes that are useful for documenting program
710 invariants and rules for static analysis tools. The extensions documented here
711 are used by the <a
712 href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
713 engine</a> that is part of Clang's Analysis library.</p>
715 <!-- ======================================================================= -->
716 <h3 id="analyzerattributes">Analyzer Attributes</h3>
717 <!-- ======================================================================= -->
719 <h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4>
721 <p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
722 attribute. This attribute, which is typically affixed to a function prototype,
723 indicates that a call to a given function never returns. Function prototypes for
724 common functions like <tt>exit</tt> are typically annotated with this attribute,
725 as well as a variety of common assertion handlers. Users can educate the static
726 analyzer about their own custom assertion handles (thus cutting down on false
727 positives due to false paths) by marking their own &quot;panic&quot; functions
728 with this attribute.</p>
730 <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
731 there are special functions that for all intents and purposes should be
732 considered panic functions (i.e., they are only called when an internal program
733 error occurs) but may actually return so that the program can fail gracefully.
734 The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
735 as being interpreted as &quot;no return&quot; functions by the analyzer (thus
736 pruning bogus paths) but will not affect compilation (as in the case of
737 <tt>noreturn</tt>).</p>
739 <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
740 same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
741 placed at the end of function prototypes:</p>
743 <pre>
744 void foo() <b>__attribute__((analyzer_noreturn))</b>;
745 </pre>
747 <p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p>
750 </div>
751 </body>
752 </html>