Do not assert on shifts of Neon polynomial types.
[clang.git] / lib / Sema / SemaChecking.cpp
blobb699f5a318cf295609fcd13bd1ed9d403a5a8912
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Sema/Sema.h"
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Analysis/Analyses/FormatString.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "clang/Basic/TargetBuiltins.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include <limits>
36 using namespace clang;
37 using namespace sema;
39 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40 unsigned ByteNo) const {
41 return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
42 PP.getLangOptions(), PP.getTargetInfo());
46 /// CheckablePrintfAttr - does a function call have a "printf" attribute
47 /// and arguments that merit checking?
48 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
49 if (Format->getType() == "printf") return true;
50 if (Format->getType() == "printf0") {
51 // printf0 allows null "format" string; if so don't check format/args
52 unsigned format_idx = Format->getFormatIdx() - 1;
53 // Does the index refer to the implicit object argument?
54 if (isa<CXXMemberCallExpr>(TheCall)) {
55 if (format_idx == 0)
56 return false;
57 --format_idx;
59 if (format_idx < TheCall->getNumArgs()) {
60 Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
61 if (!Format->isNullPointerConstant(Context,
62 Expr::NPC_ValueDependentIsNull))
63 return true;
66 return false;
69 ExprResult
70 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
71 ExprResult TheCallResult(Owned(TheCall));
73 // Find out if any arguments are required to be integer constant expressions.
74 unsigned ICEArguments = 0;
75 ASTContext::GetBuiltinTypeError Error;
76 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
77 if (Error != ASTContext::GE_None)
78 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
80 // If any arguments are required to be ICE's, check and diagnose.
81 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
82 // Skip arguments not required to be ICE's.
83 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
85 llvm::APSInt Result;
86 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
87 return true;
88 ICEArguments &= ~(1 << ArgNo);
91 switch (BuiltinID) {
92 case Builtin::BI__builtin___CFStringMakeConstantString:
93 assert(TheCall->getNumArgs() == 1 &&
94 "Wrong # arguments to builtin CFStringMakeConstantString");
95 if (CheckObjCString(TheCall->getArg(0)))
96 return ExprError();
97 break;
98 case Builtin::BI__builtin_stdarg_start:
99 case Builtin::BI__builtin_va_start:
100 if (SemaBuiltinVAStart(TheCall))
101 return ExprError();
102 break;
103 case Builtin::BI__builtin_isgreater:
104 case Builtin::BI__builtin_isgreaterequal:
105 case Builtin::BI__builtin_isless:
106 case Builtin::BI__builtin_islessequal:
107 case Builtin::BI__builtin_islessgreater:
108 case Builtin::BI__builtin_isunordered:
109 if (SemaBuiltinUnorderedCompare(TheCall))
110 return ExprError();
111 break;
112 case Builtin::BI__builtin_fpclassify:
113 if (SemaBuiltinFPClassification(TheCall, 6))
114 return ExprError();
115 break;
116 case Builtin::BI__builtin_isfinite:
117 case Builtin::BI__builtin_isinf:
118 case Builtin::BI__builtin_isinf_sign:
119 case Builtin::BI__builtin_isnan:
120 case Builtin::BI__builtin_isnormal:
121 if (SemaBuiltinFPClassification(TheCall, 1))
122 return ExprError();
123 break;
124 case Builtin::BI__builtin_shufflevector:
125 return SemaBuiltinShuffleVector(TheCall);
126 // TheCall will be freed by the smart pointer here, but that's fine, since
127 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
128 case Builtin::BI__builtin_prefetch:
129 if (SemaBuiltinPrefetch(TheCall))
130 return ExprError();
131 break;
132 case Builtin::BI__builtin_object_size:
133 if (SemaBuiltinObjectSize(TheCall))
134 return ExprError();
135 break;
136 case Builtin::BI__builtin_longjmp:
137 if (SemaBuiltinLongjmp(TheCall))
138 return ExprError();
139 break;
140 case Builtin::BI__builtin_constant_p:
141 if (TheCall->getNumArgs() == 0)
142 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
143 << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
144 if (TheCall->getNumArgs() > 1)
145 return Diag(TheCall->getArg(1)->getLocStart(),
146 diag::err_typecheck_call_too_many_args)
147 << 0 /*function call*/ << 1 << TheCall->getNumArgs()
148 << TheCall->getArg(1)->getSourceRange();
149 break;
150 case Builtin::BI__sync_fetch_and_add:
151 case Builtin::BI__sync_fetch_and_sub:
152 case Builtin::BI__sync_fetch_and_or:
153 case Builtin::BI__sync_fetch_and_and:
154 case Builtin::BI__sync_fetch_and_xor:
155 case Builtin::BI__sync_add_and_fetch:
156 case Builtin::BI__sync_sub_and_fetch:
157 case Builtin::BI__sync_and_and_fetch:
158 case Builtin::BI__sync_or_and_fetch:
159 case Builtin::BI__sync_xor_and_fetch:
160 case Builtin::BI__sync_val_compare_and_swap:
161 case Builtin::BI__sync_bool_compare_and_swap:
162 case Builtin::BI__sync_lock_test_and_set:
163 case Builtin::BI__sync_lock_release:
164 return SemaBuiltinAtomicOverloaded(move(TheCallResult));
167 // Since the target specific builtins for each arch overlap, only check those
168 // of the arch we are compiling for.
169 if (BuiltinID >= Builtin::FirstTSBuiltin) {
170 switch (Context.Target.getTriple().getArch()) {
171 case llvm::Triple::arm:
172 case llvm::Triple::thumb:
173 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
174 return ExprError();
175 break;
176 default:
177 break;
181 return move(TheCallResult);
184 // Get the valid immediate range for the specified NEON type code.
185 static unsigned RFT(unsigned t, bool shift = false) {
186 bool quad = t & 0x10;
188 switch (t & 0x7) {
189 case 0: // i8
190 return shift ? 7 : (8 << (int)quad) - 1;
191 case 1: // i16
192 return shift ? 15 : (4 << (int)quad) - 1;
193 case 2: // i32
194 return shift ? 31 : (2 << (int)quad) - 1;
195 case 3: // i64
196 return shift ? 63 : (1 << (int)quad) - 1;
197 case 4: // f32
198 assert(!shift && "cannot shift float types!");
199 return (2 << (int)quad) - 1;
200 case 5: // poly8
201 return shift ? 7 : (8 << (int)quad) - 1;
202 case 6: // poly16
203 return shift ? 15 : (4 << (int)quad) - 1;
204 case 7: // float16
205 assert(!shift && "cannot shift float types!");
206 return (4 << (int)quad) - 1;
208 return 0;
211 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
212 llvm::APSInt Result;
214 unsigned mask = 0;
215 unsigned TV = 0;
216 switch (BuiltinID) {
217 #define GET_NEON_OVERLOAD_CHECK
218 #include "clang/Basic/arm_neon.inc"
219 #undef GET_NEON_OVERLOAD_CHECK
222 // For NEON intrinsics which are overloaded on vector element type, validate
223 // the immediate which specifies which variant to emit.
224 if (mask) {
225 unsigned ArgNo = TheCall->getNumArgs()-1;
226 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
227 return true;
229 TV = Result.getLimitedValue(32);
230 if ((TV > 31) || (mask & (1 << TV)) == 0)
231 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
232 << TheCall->getArg(ArgNo)->getSourceRange();
235 // For NEON intrinsics which take an immediate value as part of the
236 // instruction, range check them here.
237 unsigned i = 0, l = 0, u = 0;
238 switch (BuiltinID) {
239 default: return false;
240 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
241 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
242 case ARM::BI__builtin_arm_vcvtr_f:
243 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
244 #define GET_NEON_IMMEDIATE_CHECK
245 #include "clang/Basic/arm_neon.inc"
246 #undef GET_NEON_IMMEDIATE_CHECK
249 // Check that the immediate argument is actually a constant.
250 if (SemaBuiltinConstantArg(TheCall, i, Result))
251 return true;
253 // Range check against the upper/lower values for this isntruction.
254 unsigned Val = Result.getZExtValue();
255 if (Val < l || Val > (u + l))
256 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
257 << l << u+l << TheCall->getArg(i)->getSourceRange();
259 // FIXME: VFP Intrinsics should error if VFP not present.
260 return false;
263 /// CheckFunctionCall - Check a direct function call for various correctness
264 /// and safety properties not strictly enforced by the C type system.
265 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
266 // Get the IdentifierInfo* for the called function.
267 IdentifierInfo *FnInfo = FDecl->getIdentifier();
269 // None of the checks below are needed for functions that don't have
270 // simple names (e.g., C++ conversion functions).
271 if (!FnInfo)
272 return false;
274 // FIXME: This mechanism should be abstracted to be less fragile and
275 // more efficient. For example, just map function ids to custom
276 // handlers.
278 // Printf and scanf checking.
279 for (specific_attr_iterator<FormatAttr>
280 i = FDecl->specific_attr_begin<FormatAttr>(),
281 e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
283 const FormatAttr *Format = *i;
284 const bool b = Format->getType() == "scanf";
285 if (b || CheckablePrintfAttr(Format, TheCall)) {
286 bool HasVAListArg = Format->getFirstArg() == 0;
287 CheckPrintfScanfArguments(TheCall, HasVAListArg,
288 Format->getFormatIdx() - 1,
289 HasVAListArg ? 0 : Format->getFirstArg() - 1,
290 !b);
294 for (specific_attr_iterator<NonNullAttr>
295 i = FDecl->specific_attr_begin<NonNullAttr>(),
296 e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
297 CheckNonNullArguments(*i, TheCall);
300 return false;
303 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
304 // Printf checking.
305 const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
306 if (!Format)
307 return false;
309 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
310 if (!V)
311 return false;
313 QualType Ty = V->getType();
314 if (!Ty->isBlockPointerType())
315 return false;
317 const bool b = Format->getType() == "scanf";
318 if (!b && !CheckablePrintfAttr(Format, TheCall))
319 return false;
321 bool HasVAListArg = Format->getFirstArg() == 0;
322 CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
323 HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
325 return false;
328 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
329 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
330 /// type of its first argument. The main ActOnCallExpr routines have already
331 /// promoted the types of arguments because all of these calls are prototyped as
332 /// void(...).
334 /// This function goes through and does final semantic checking for these
335 /// builtins,
336 ExprResult
337 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
338 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
339 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
340 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
342 // Ensure that we have at least one argument to do type inference from.
343 if (TheCall->getNumArgs() < 1) {
344 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
345 << 0 << 1 << TheCall->getNumArgs()
346 << TheCall->getCallee()->getSourceRange();
347 return ExprError();
350 // Inspect the first argument of the atomic builtin. This should always be
351 // a pointer type, whose element is an integral scalar or pointer type.
352 // Because it is a pointer type, we don't have to worry about any implicit
353 // casts here.
354 // FIXME: We don't allow floating point scalars as input.
355 Expr *FirstArg = TheCall->getArg(0);
356 if (!FirstArg->getType()->isPointerType()) {
357 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
358 << FirstArg->getType() << FirstArg->getSourceRange();
359 return ExprError();
362 QualType ValType =
363 FirstArg->getType()->getAs<PointerType>()->getPointeeType();
364 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
365 !ValType->isBlockPointerType()) {
366 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
367 << FirstArg->getType() << FirstArg->getSourceRange();
368 return ExprError();
371 // The majority of builtins return a value, but a few have special return
372 // types, so allow them to override appropriately below.
373 QualType ResultType = ValType;
375 // We need to figure out which concrete builtin this maps onto. For example,
376 // __sync_fetch_and_add with a 2 byte object turns into
377 // __sync_fetch_and_add_2.
378 #define BUILTIN_ROW(x) \
379 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
380 Builtin::BI##x##_8, Builtin::BI##x##_16 }
382 static const unsigned BuiltinIndices[][5] = {
383 BUILTIN_ROW(__sync_fetch_and_add),
384 BUILTIN_ROW(__sync_fetch_and_sub),
385 BUILTIN_ROW(__sync_fetch_and_or),
386 BUILTIN_ROW(__sync_fetch_and_and),
387 BUILTIN_ROW(__sync_fetch_and_xor),
389 BUILTIN_ROW(__sync_add_and_fetch),
390 BUILTIN_ROW(__sync_sub_and_fetch),
391 BUILTIN_ROW(__sync_and_and_fetch),
392 BUILTIN_ROW(__sync_or_and_fetch),
393 BUILTIN_ROW(__sync_xor_and_fetch),
395 BUILTIN_ROW(__sync_val_compare_and_swap),
396 BUILTIN_ROW(__sync_bool_compare_and_swap),
397 BUILTIN_ROW(__sync_lock_test_and_set),
398 BUILTIN_ROW(__sync_lock_release)
400 #undef BUILTIN_ROW
402 // Determine the index of the size.
403 unsigned SizeIndex;
404 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
405 case 1: SizeIndex = 0; break;
406 case 2: SizeIndex = 1; break;
407 case 4: SizeIndex = 2; break;
408 case 8: SizeIndex = 3; break;
409 case 16: SizeIndex = 4; break;
410 default:
411 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
412 << FirstArg->getType() << FirstArg->getSourceRange();
413 return ExprError();
416 // Each of these builtins has one pointer argument, followed by some number of
417 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
418 // that we ignore. Find out which row of BuiltinIndices to read from as well
419 // as the number of fixed args.
420 unsigned BuiltinID = FDecl->getBuiltinID();
421 unsigned BuiltinIndex, NumFixed = 1;
422 switch (BuiltinID) {
423 default: assert(0 && "Unknown overloaded atomic builtin!");
424 case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
425 case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
426 case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
427 case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
428 case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
430 case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
431 case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
432 case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
433 case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
434 case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
436 case Builtin::BI__sync_val_compare_and_swap:
437 BuiltinIndex = 10;
438 NumFixed = 2;
439 break;
440 case Builtin::BI__sync_bool_compare_and_swap:
441 BuiltinIndex = 11;
442 NumFixed = 2;
443 ResultType = Context.BoolTy;
444 break;
445 case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
446 case Builtin::BI__sync_lock_release:
447 BuiltinIndex = 13;
448 NumFixed = 0;
449 ResultType = Context.VoidTy;
450 break;
453 // Now that we know how many fixed arguments we expect, first check that we
454 // have at least that many.
455 if (TheCall->getNumArgs() < 1+NumFixed) {
456 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
457 << 0 << 1+NumFixed << TheCall->getNumArgs()
458 << TheCall->getCallee()->getSourceRange();
459 return ExprError();
462 // Get the decl for the concrete builtin from this, we can tell what the
463 // concrete integer type we should convert to is.
464 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
465 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
466 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
467 FunctionDecl *NewBuiltinDecl =
468 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
469 TUScope, false, DRE->getLocStart()));
471 // The first argument --- the pointer --- has a fixed type; we
472 // deduce the types of the rest of the arguments accordingly. Walk
473 // the remaining arguments, converting them to the deduced value type.
474 for (unsigned i = 0; i != NumFixed; ++i) {
475 Expr *Arg = TheCall->getArg(i+1);
477 // If the argument is an implicit cast, then there was a promotion due to
478 // "...", just remove it now.
479 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
480 Arg = ICE->getSubExpr();
481 ICE->setSubExpr(0);
482 TheCall->setArg(i+1, Arg);
485 // GCC does an implicit conversion to the pointer or integer ValType. This
486 // can fail in some cases (1i -> int**), check for this error case now.
487 CastKind Kind = CK_Invalid;
488 ExprValueKind VK = VK_RValue;
489 CXXCastPath BasePath;
490 if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, VK, BasePath))
491 return ExprError();
493 // Okay, we have something that *can* be converted to the right type. Check
494 // to see if there is a potentially weird extension going on here. This can
495 // happen when you do an atomic operation on something like an char* and
496 // pass in 42. The 42 gets converted to char. This is even more strange
497 // for things like 45.123 -> char, etc.
498 // FIXME: Do this check.
499 ImpCastExprToType(Arg, ValType, Kind, VK, &BasePath);
500 TheCall->setArg(i+1, Arg);
503 // Switch the DeclRefExpr to refer to the new decl.
504 DRE->setDecl(NewBuiltinDecl);
505 DRE->setType(NewBuiltinDecl->getType());
507 // Set the callee in the CallExpr.
508 // FIXME: This leaks the original parens and implicit casts.
509 Expr *PromotedCall = DRE;
510 UsualUnaryConversions(PromotedCall);
511 TheCall->setCallee(PromotedCall);
513 // Change the result type of the call to match the original value type. This
514 // is arbitrary, but the codegen for these builtins ins design to handle it
515 // gracefully.
516 TheCall->setType(ResultType);
518 return move(TheCallResult);
522 /// CheckObjCString - Checks that the argument to the builtin
523 /// CFString constructor is correct
524 /// Note: It might also make sense to do the UTF-16 conversion here (would
525 /// simplify the backend).
526 bool Sema::CheckObjCString(Expr *Arg) {
527 Arg = Arg->IgnoreParenCasts();
528 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
530 if (!Literal || Literal->isWide()) {
531 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
532 << Arg->getSourceRange();
533 return true;
536 size_t NulPos = Literal->getString().find('\0');
537 if (NulPos != llvm::StringRef::npos) {
538 Diag(getLocationOfStringLiteralByte(Literal, NulPos),
539 diag::warn_cfstring_literal_contains_nul_character)
540 << Arg->getSourceRange();
542 if (Literal->containsNonAsciiOrNull()) {
543 llvm::StringRef String = Literal->getString();
544 unsigned NumBytes = String.size();
545 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
546 const UTF8 *FromPtr = (UTF8 *)String.data();
547 UTF16 *ToPtr = &ToBuf[0];
549 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
550 &ToPtr, ToPtr + NumBytes,
551 strictConversion);
552 // Check for conversion failure.
553 if (Result != conversionOK)
554 Diag(Arg->getLocStart(),
555 diag::warn_cfstring_truncated) << Arg->getSourceRange();
557 return false;
560 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
561 /// Emit an error and return true on failure, return false on success.
562 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
563 Expr *Fn = TheCall->getCallee();
564 if (TheCall->getNumArgs() > 2) {
565 Diag(TheCall->getArg(2)->getLocStart(),
566 diag::err_typecheck_call_too_many_args)
567 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
568 << Fn->getSourceRange()
569 << SourceRange(TheCall->getArg(2)->getLocStart(),
570 (*(TheCall->arg_end()-1))->getLocEnd());
571 return true;
574 if (TheCall->getNumArgs() < 2) {
575 return Diag(TheCall->getLocEnd(),
576 diag::err_typecheck_call_too_few_args_at_least)
577 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
580 // Determine whether the current function is variadic or not.
581 BlockScopeInfo *CurBlock = getCurBlock();
582 bool isVariadic;
583 if (CurBlock)
584 isVariadic = CurBlock->TheDecl->isVariadic();
585 else if (FunctionDecl *FD = getCurFunctionDecl())
586 isVariadic = FD->isVariadic();
587 else
588 isVariadic = getCurMethodDecl()->isVariadic();
590 if (!isVariadic) {
591 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
592 return true;
595 // Verify that the second argument to the builtin is the last argument of the
596 // current function or method.
597 bool SecondArgIsLastNamedArgument = false;
598 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
600 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
601 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
602 // FIXME: This isn't correct for methods (results in bogus warning).
603 // Get the last formal in the current function.
604 const ParmVarDecl *LastArg;
605 if (CurBlock)
606 LastArg = *(CurBlock->TheDecl->param_end()-1);
607 else if (FunctionDecl *FD = getCurFunctionDecl())
608 LastArg = *(FD->param_end()-1);
609 else
610 LastArg = *(getCurMethodDecl()->param_end()-1);
611 SecondArgIsLastNamedArgument = PV == LastArg;
615 if (!SecondArgIsLastNamedArgument)
616 Diag(TheCall->getArg(1)->getLocStart(),
617 diag::warn_second_parameter_of_va_start_not_last_named_argument);
618 return false;
621 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
622 /// friends. This is declared to take (...), so we have to check everything.
623 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
624 if (TheCall->getNumArgs() < 2)
625 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
626 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
627 if (TheCall->getNumArgs() > 2)
628 return Diag(TheCall->getArg(2)->getLocStart(),
629 diag::err_typecheck_call_too_many_args)
630 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
631 << SourceRange(TheCall->getArg(2)->getLocStart(),
632 (*(TheCall->arg_end()-1))->getLocEnd());
634 Expr *OrigArg0 = TheCall->getArg(0);
635 Expr *OrigArg1 = TheCall->getArg(1);
637 // Do standard promotions between the two arguments, returning their common
638 // type.
639 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
641 // Make sure any conversions are pushed back into the call; this is
642 // type safe since unordered compare builtins are declared as "_Bool
643 // foo(...)".
644 TheCall->setArg(0, OrigArg0);
645 TheCall->setArg(1, OrigArg1);
647 if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
648 return false;
650 // If the common type isn't a real floating type, then the arguments were
651 // invalid for this operation.
652 if (!Res->isRealFloatingType())
653 return Diag(OrigArg0->getLocStart(),
654 diag::err_typecheck_call_invalid_ordered_compare)
655 << OrigArg0->getType() << OrigArg1->getType()
656 << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
658 return false;
661 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
662 /// __builtin_isnan and friends. This is declared to take (...), so we have
663 /// to check everything. We expect the last argument to be a floating point
664 /// value.
665 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
666 if (TheCall->getNumArgs() < NumArgs)
667 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
668 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
669 if (TheCall->getNumArgs() > NumArgs)
670 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
671 diag::err_typecheck_call_too_many_args)
672 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
673 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
674 (*(TheCall->arg_end()-1))->getLocEnd());
676 Expr *OrigArg = TheCall->getArg(NumArgs-1);
678 if (OrigArg->isTypeDependent())
679 return false;
681 // This operation requires a non-_Complex floating-point number.
682 if (!OrigArg->getType()->isRealFloatingType())
683 return Diag(OrigArg->getLocStart(),
684 diag::err_typecheck_call_invalid_unary_fp)
685 << OrigArg->getType() << OrigArg->getSourceRange();
687 // If this is an implicit conversion from float -> double, remove it.
688 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
689 Expr *CastArg = Cast->getSubExpr();
690 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
691 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
692 "promotion from float to double is the only expected cast here");
693 Cast->setSubExpr(0);
694 TheCall->setArg(NumArgs-1, CastArg);
695 OrigArg = CastArg;
699 return false;
702 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
703 // This is declared to take (...), so we have to check everything.
704 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
705 if (TheCall->getNumArgs() < 2)
706 return ExprError(Diag(TheCall->getLocEnd(),
707 diag::err_typecheck_call_too_few_args_at_least)
708 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
709 << TheCall->getSourceRange());
711 // Determine which of the following types of shufflevector we're checking:
712 // 1) unary, vector mask: (lhs, mask)
713 // 2) binary, vector mask: (lhs, rhs, mask)
714 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
715 QualType resType = TheCall->getArg(0)->getType();
716 unsigned numElements = 0;
718 if (!TheCall->getArg(0)->isTypeDependent() &&
719 !TheCall->getArg(1)->isTypeDependent()) {
720 QualType LHSType = TheCall->getArg(0)->getType();
721 QualType RHSType = TheCall->getArg(1)->getType();
723 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
724 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
725 << SourceRange(TheCall->getArg(0)->getLocStart(),
726 TheCall->getArg(1)->getLocEnd());
727 return ExprError();
730 numElements = LHSType->getAs<VectorType>()->getNumElements();
731 unsigned numResElements = TheCall->getNumArgs() - 2;
733 // Check to see if we have a call with 2 vector arguments, the unary shuffle
734 // with mask. If so, verify that RHS is an integer vector type with the
735 // same number of elts as lhs.
736 if (TheCall->getNumArgs() == 2) {
737 if (!RHSType->hasIntegerRepresentation() ||
738 RHSType->getAs<VectorType>()->getNumElements() != numElements)
739 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
740 << SourceRange(TheCall->getArg(1)->getLocStart(),
741 TheCall->getArg(1)->getLocEnd());
742 numResElements = numElements;
744 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
745 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
746 << SourceRange(TheCall->getArg(0)->getLocStart(),
747 TheCall->getArg(1)->getLocEnd());
748 return ExprError();
749 } else if (numElements != numResElements) {
750 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
751 resType = Context.getVectorType(eltType, numResElements,
752 VectorType::GenericVector);
756 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
757 if (TheCall->getArg(i)->isTypeDependent() ||
758 TheCall->getArg(i)->isValueDependent())
759 continue;
761 llvm::APSInt Result(32);
762 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
763 return ExprError(Diag(TheCall->getLocStart(),
764 diag::err_shufflevector_nonconstant_argument)
765 << TheCall->getArg(i)->getSourceRange());
767 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
768 return ExprError(Diag(TheCall->getLocStart(),
769 diag::err_shufflevector_argument_too_large)
770 << TheCall->getArg(i)->getSourceRange());
773 llvm::SmallVector<Expr*, 32> exprs;
775 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
776 exprs.push_back(TheCall->getArg(i));
777 TheCall->setArg(i, 0);
780 return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
781 exprs.size(), resType,
782 TheCall->getCallee()->getLocStart(),
783 TheCall->getRParenLoc()));
786 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
787 // This is declared to take (const void*, ...) and can take two
788 // optional constant int args.
789 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
790 unsigned NumArgs = TheCall->getNumArgs();
792 if (NumArgs > 3)
793 return Diag(TheCall->getLocEnd(),
794 diag::err_typecheck_call_too_many_args_at_most)
795 << 0 /*function call*/ << 3 << NumArgs
796 << TheCall->getSourceRange();
798 // Argument 0 is checked for us and the remaining arguments must be
799 // constant integers.
800 for (unsigned i = 1; i != NumArgs; ++i) {
801 Expr *Arg = TheCall->getArg(i);
803 llvm::APSInt Result;
804 if (SemaBuiltinConstantArg(TheCall, i, Result))
805 return true;
807 // FIXME: gcc issues a warning and rewrites these to 0. These
808 // seems especially odd for the third argument since the default
809 // is 3.
810 if (i == 1) {
811 if (Result.getLimitedValue() > 1)
812 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
813 << "0" << "1" << Arg->getSourceRange();
814 } else {
815 if (Result.getLimitedValue() > 3)
816 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
817 << "0" << "3" << Arg->getSourceRange();
821 return false;
824 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
825 /// TheCall is a constant expression.
826 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
827 llvm::APSInt &Result) {
828 Expr *Arg = TheCall->getArg(ArgNum);
829 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
830 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
832 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
834 if (!Arg->isIntegerConstantExpr(Result, Context))
835 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
836 << FDecl->getDeclName() << Arg->getSourceRange();
838 return false;
841 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
842 /// int type). This simply type checks that type is one of the defined
843 /// constants (0-3).
844 // For compatability check 0-3, llvm only handles 0 and 2.
845 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
846 llvm::APSInt Result;
848 // Check constant-ness first.
849 if (SemaBuiltinConstantArg(TheCall, 1, Result))
850 return true;
852 Expr *Arg = TheCall->getArg(1);
853 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
854 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
855 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
858 return false;
861 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
862 /// This checks that val is a constant 1.
863 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
864 Expr *Arg = TheCall->getArg(1);
865 llvm::APSInt Result;
867 // TODO: This is less than ideal. Overload this to take a value.
868 if (SemaBuiltinConstantArg(TheCall, 1, Result))
869 return true;
871 if (Result != 1)
872 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
873 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
875 return false;
878 // Handle i > 1 ? "x" : "y", recursivelly
879 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
880 bool HasVAListArg,
881 unsigned format_idx, unsigned firstDataArg,
882 bool isPrintf) {
883 tryAgain:
884 if (E->isTypeDependent() || E->isValueDependent())
885 return false;
887 switch (E->getStmtClass()) {
888 case Stmt::ConditionalOperatorClass: {
889 const ConditionalOperator *C = cast<ConditionalOperator>(E);
890 return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
891 format_idx, firstDataArg, isPrintf)
892 && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
893 format_idx, firstDataArg, isPrintf);
896 case Stmt::IntegerLiteralClass:
897 // Technically -Wformat-nonliteral does not warn about this case.
898 // The behavior of printf and friends in this case is implementation
899 // dependent. Ideally if the format string cannot be null then
900 // it should have a 'nonnull' attribute in the function prototype.
901 return true;
903 case Stmt::ImplicitCastExprClass: {
904 E = cast<ImplicitCastExpr>(E)->getSubExpr();
905 goto tryAgain;
908 case Stmt::ParenExprClass: {
909 E = cast<ParenExpr>(E)->getSubExpr();
910 goto tryAgain;
913 case Stmt::DeclRefExprClass: {
914 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
916 // As an exception, do not flag errors for variables binding to
917 // const string literals.
918 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
919 bool isConstant = false;
920 QualType T = DR->getType();
922 if (const ArrayType *AT = Context.getAsArrayType(T)) {
923 isConstant = AT->getElementType().isConstant(Context);
924 } else if (const PointerType *PT = T->getAs<PointerType>()) {
925 isConstant = T.isConstant(Context) &&
926 PT->getPointeeType().isConstant(Context);
929 if (isConstant) {
930 if (const Expr *Init = VD->getAnyInitializer())
931 return SemaCheckStringLiteral(Init, TheCall,
932 HasVAListArg, format_idx, firstDataArg,
933 isPrintf);
936 // For vprintf* functions (i.e., HasVAListArg==true), we add a
937 // special check to see if the format string is a function parameter
938 // of the function calling the printf function. If the function
939 // has an attribute indicating it is a printf-like function, then we
940 // should suppress warnings concerning non-literals being used in a call
941 // to a vprintf function. For example:
943 // void
944 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
945 // va_list ap;
946 // va_start(ap, fmt);
947 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
948 // ...
951 // FIXME: We don't have full attribute support yet, so just check to see
952 // if the argument is a DeclRefExpr that references a parameter. We'll
953 // add proper support for checking the attribute later.
954 if (HasVAListArg)
955 if (isa<ParmVarDecl>(VD))
956 return true;
959 return false;
962 case Stmt::CallExprClass: {
963 const CallExpr *CE = cast<CallExpr>(E);
964 if (const ImplicitCastExpr *ICE
965 = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
966 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
967 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
968 if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
969 unsigned ArgIndex = FA->getFormatIdx();
970 const Expr *Arg = CE->getArg(ArgIndex - 1);
972 return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
973 format_idx, firstDataArg, isPrintf);
979 return false;
981 case Stmt::ObjCStringLiteralClass:
982 case Stmt::StringLiteralClass: {
983 const StringLiteral *StrE = NULL;
985 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
986 StrE = ObjCFExpr->getString();
987 else
988 StrE = cast<StringLiteral>(E);
990 if (StrE) {
991 CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
992 firstDataArg, isPrintf);
993 return true;
996 return false;
999 default:
1000 return false;
1004 void
1005 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1006 const CallExpr *TheCall) {
1007 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1008 e = NonNull->args_end();
1009 i != e; ++i) {
1010 const Expr *ArgExpr = TheCall->getArg(*i);
1011 if (ArgExpr->isNullPointerConstant(Context,
1012 Expr::NPC_ValueDependentIsNotNull))
1013 Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1014 << ArgExpr->getSourceRange();
1018 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1019 /// functions) for correct use of format strings.
1020 void
1021 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1022 unsigned format_idx, unsigned firstDataArg,
1023 bool isPrintf) {
1025 const Expr *Fn = TheCall->getCallee();
1027 // The way the format attribute works in GCC, the implicit this argument
1028 // of member functions is counted. However, it doesn't appear in our own
1029 // lists, so decrement format_idx in that case.
1030 if (isa<CXXMemberCallExpr>(TheCall)) {
1031 const CXXMethodDecl *method_decl =
1032 dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1033 if (method_decl && method_decl->isInstance()) {
1034 // Catch a format attribute mistakenly referring to the object argument.
1035 if (format_idx == 0)
1036 return;
1037 --format_idx;
1038 if(firstDataArg != 0)
1039 --firstDataArg;
1043 // CHECK: printf/scanf-like function is called with no format string.
1044 if (format_idx >= TheCall->getNumArgs()) {
1045 Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1046 << Fn->getSourceRange();
1047 return;
1050 const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1052 // CHECK: format string is not a string literal.
1054 // Dynamically generated format strings are difficult to
1055 // automatically vet at compile time. Requiring that format strings
1056 // are string literals: (1) permits the checking of format strings by
1057 // the compiler and thereby (2) can practically remove the source of
1058 // many format string exploits.
1060 // Format string can be either ObjC string (e.g. @"%d") or
1061 // C string (e.g. "%d")
1062 // ObjC string uses the same format specifiers as C string, so we can use
1063 // the same format string checking logic for both ObjC and C strings.
1064 if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1065 firstDataArg, isPrintf))
1066 return; // Literal format string found, check done!
1068 // If there are no arguments specified, warn with -Wformat-security, otherwise
1069 // warn only with -Wformat-nonliteral.
1070 if (TheCall->getNumArgs() == format_idx+1)
1071 Diag(TheCall->getArg(format_idx)->getLocStart(),
1072 diag::warn_format_nonliteral_noargs)
1073 << OrigFormatExpr->getSourceRange();
1074 else
1075 Diag(TheCall->getArg(format_idx)->getLocStart(),
1076 diag::warn_format_nonliteral)
1077 << OrigFormatExpr->getSourceRange();
1080 namespace {
1081 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1082 protected:
1083 Sema &S;
1084 const StringLiteral *FExpr;
1085 const Expr *OrigFormatExpr;
1086 const unsigned FirstDataArg;
1087 const unsigned NumDataArgs;
1088 const bool IsObjCLiteral;
1089 const char *Beg; // Start of format string.
1090 const bool HasVAListArg;
1091 const CallExpr *TheCall;
1092 unsigned FormatIdx;
1093 llvm::BitVector CoveredArgs;
1094 bool usesPositionalArgs;
1095 bool atFirstArg;
1096 public:
1097 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1098 const Expr *origFormatExpr, unsigned firstDataArg,
1099 unsigned numDataArgs, bool isObjCLiteral,
1100 const char *beg, bool hasVAListArg,
1101 const CallExpr *theCall, unsigned formatIdx)
1102 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1103 FirstDataArg(firstDataArg),
1104 NumDataArgs(numDataArgs),
1105 IsObjCLiteral(isObjCLiteral), Beg(beg),
1106 HasVAListArg(hasVAListArg),
1107 TheCall(theCall), FormatIdx(formatIdx),
1108 usesPositionalArgs(false), atFirstArg(true) {
1109 CoveredArgs.resize(numDataArgs);
1110 CoveredArgs.reset();
1113 void DoneProcessing();
1115 void HandleIncompleteSpecifier(const char *startSpecifier,
1116 unsigned specifierLen);
1118 virtual void HandleInvalidPosition(const char *startSpecifier,
1119 unsigned specifierLen,
1120 analyze_format_string::PositionContext p);
1122 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1124 void HandleNullChar(const char *nullCharacter);
1126 protected:
1127 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1128 const char *startSpec,
1129 unsigned specifierLen,
1130 const char *csStart, unsigned csLen);
1132 SourceRange getFormatStringRange();
1133 CharSourceRange getSpecifierRange(const char *startSpecifier,
1134 unsigned specifierLen);
1135 SourceLocation getLocationOfByte(const char *x);
1137 const Expr *getDataArg(unsigned i) const;
1139 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1140 const analyze_format_string::ConversionSpecifier &CS,
1141 const char *startSpecifier, unsigned specifierLen,
1142 unsigned argIndex);
1146 SourceRange CheckFormatHandler::getFormatStringRange() {
1147 return OrigFormatExpr->getSourceRange();
1150 CharSourceRange CheckFormatHandler::
1151 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1152 SourceLocation Start = getLocationOfByte(startSpecifier);
1153 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
1155 // Advance the end SourceLocation by one due to half-open ranges.
1156 End = End.getFileLocWithOffset(1);
1158 return CharSourceRange::getCharRange(Start, End);
1161 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1162 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1165 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1166 unsigned specifierLen){
1167 SourceLocation Loc = getLocationOfByte(startSpecifier);
1168 S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1169 << getSpecifierRange(startSpecifier, specifierLen);
1172 void
1173 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1174 analyze_format_string::PositionContext p) {
1175 SourceLocation Loc = getLocationOfByte(startPos);
1176 S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1177 << (unsigned) p << getSpecifierRange(startPos, posLen);
1180 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1181 unsigned posLen) {
1182 SourceLocation Loc = getLocationOfByte(startPos);
1183 S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1184 << getSpecifierRange(startPos, posLen);
1187 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1188 // The presence of a null character is likely an error.
1189 S.Diag(getLocationOfByte(nullCharacter),
1190 diag::warn_printf_format_string_contains_null_char)
1191 << getFormatStringRange();
1194 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1195 return TheCall->getArg(FirstDataArg + i);
1198 void CheckFormatHandler::DoneProcessing() {
1199 // Does the number of data arguments exceed the number of
1200 // format conversions in the format string?
1201 if (!HasVAListArg) {
1202 // Find any arguments that weren't covered.
1203 CoveredArgs.flip();
1204 signed notCoveredArg = CoveredArgs.find_first();
1205 if (notCoveredArg >= 0) {
1206 assert((unsigned)notCoveredArg < NumDataArgs);
1207 S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1208 diag::warn_printf_data_arg_not_used)
1209 << getFormatStringRange();
1214 bool
1215 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1216 SourceLocation Loc,
1217 const char *startSpec,
1218 unsigned specifierLen,
1219 const char *csStart,
1220 unsigned csLen) {
1222 bool keepGoing = true;
1223 if (argIndex < NumDataArgs) {
1224 // Consider the argument coverered, even though the specifier doesn't
1225 // make sense.
1226 CoveredArgs.set(argIndex);
1228 else {
1229 // If argIndex exceeds the number of data arguments we
1230 // don't issue a warning because that is just a cascade of warnings (and
1231 // they may have intended '%%' anyway). We don't want to continue processing
1232 // the format string after this point, however, as we will like just get
1233 // gibberish when trying to match arguments.
1234 keepGoing = false;
1237 S.Diag(Loc, diag::warn_format_invalid_conversion)
1238 << llvm::StringRef(csStart, csLen)
1239 << getSpecifierRange(startSpec, specifierLen);
1241 return keepGoing;
1244 bool
1245 CheckFormatHandler::CheckNumArgs(
1246 const analyze_format_string::FormatSpecifier &FS,
1247 const analyze_format_string::ConversionSpecifier &CS,
1248 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1250 if (argIndex >= NumDataArgs) {
1251 if (FS.usesPositionalArg()) {
1252 S.Diag(getLocationOfByte(CS.getStart()),
1253 diag::warn_printf_positional_arg_exceeds_data_args)
1254 << (argIndex+1) << NumDataArgs
1255 << getSpecifierRange(startSpecifier, specifierLen);
1257 else {
1258 S.Diag(getLocationOfByte(CS.getStart()),
1259 diag::warn_printf_insufficient_data_args)
1260 << getSpecifierRange(startSpecifier, specifierLen);
1263 return false;
1265 return true;
1268 //===--- CHECK: Printf format string checking ------------------------------===//
1270 namespace {
1271 class CheckPrintfHandler : public CheckFormatHandler {
1272 public:
1273 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1274 const Expr *origFormatExpr, unsigned firstDataArg,
1275 unsigned numDataArgs, bool isObjCLiteral,
1276 const char *beg, bool hasVAListArg,
1277 const CallExpr *theCall, unsigned formatIdx)
1278 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1279 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1280 theCall, formatIdx) {}
1283 bool HandleInvalidPrintfConversionSpecifier(
1284 const analyze_printf::PrintfSpecifier &FS,
1285 const char *startSpecifier,
1286 unsigned specifierLen);
1288 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1289 const char *startSpecifier,
1290 unsigned specifierLen);
1292 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1293 const char *startSpecifier, unsigned specifierLen);
1294 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1295 const analyze_printf::OptionalAmount &Amt,
1296 unsigned type,
1297 const char *startSpecifier, unsigned specifierLen);
1298 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1299 const analyze_printf::OptionalFlag &flag,
1300 const char *startSpecifier, unsigned specifierLen);
1301 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1302 const analyze_printf::OptionalFlag &ignoredFlag,
1303 const analyze_printf::OptionalFlag &flag,
1304 const char *startSpecifier, unsigned specifierLen);
1308 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1309 const analyze_printf::PrintfSpecifier &FS,
1310 const char *startSpecifier,
1311 unsigned specifierLen) {
1312 const analyze_printf::PrintfConversionSpecifier &CS =
1313 FS.getConversionSpecifier();
1315 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1316 getLocationOfByte(CS.getStart()),
1317 startSpecifier, specifierLen,
1318 CS.getStart(), CS.getLength());
1321 bool CheckPrintfHandler::HandleAmount(
1322 const analyze_format_string::OptionalAmount &Amt,
1323 unsigned k, const char *startSpecifier,
1324 unsigned specifierLen) {
1326 if (Amt.hasDataArgument()) {
1327 if (!HasVAListArg) {
1328 unsigned argIndex = Amt.getArgIndex();
1329 if (argIndex >= NumDataArgs) {
1330 S.Diag(getLocationOfByte(Amt.getStart()),
1331 diag::warn_printf_asterisk_missing_arg)
1332 << k << getSpecifierRange(startSpecifier, specifierLen);
1333 // Don't do any more checking. We will just emit
1334 // spurious errors.
1335 return false;
1338 // Type check the data argument. It should be an 'int'.
1339 // Although not in conformance with C99, we also allow the argument to be
1340 // an 'unsigned int' as that is a reasonably safe case. GCC also
1341 // doesn't emit a warning for that case.
1342 CoveredArgs.set(argIndex);
1343 const Expr *Arg = getDataArg(argIndex);
1344 QualType T = Arg->getType();
1346 const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1347 assert(ATR.isValid());
1349 if (!ATR.matchesType(S.Context, T)) {
1350 S.Diag(getLocationOfByte(Amt.getStart()),
1351 diag::warn_printf_asterisk_wrong_type)
1352 << k
1353 << ATR.getRepresentativeType(S.Context) << T
1354 << getSpecifierRange(startSpecifier, specifierLen)
1355 << Arg->getSourceRange();
1356 // Don't do any more checking. We will just emit
1357 // spurious errors.
1358 return false;
1362 return true;
1365 void CheckPrintfHandler::HandleInvalidAmount(
1366 const analyze_printf::PrintfSpecifier &FS,
1367 const analyze_printf::OptionalAmount &Amt,
1368 unsigned type,
1369 const char *startSpecifier,
1370 unsigned specifierLen) {
1371 const analyze_printf::PrintfConversionSpecifier &CS =
1372 FS.getConversionSpecifier();
1373 switch (Amt.getHowSpecified()) {
1374 case analyze_printf::OptionalAmount::Constant:
1375 S.Diag(getLocationOfByte(Amt.getStart()),
1376 diag::warn_printf_nonsensical_optional_amount)
1377 << type
1378 << CS.toString()
1379 << getSpecifierRange(startSpecifier, specifierLen)
1380 << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1381 Amt.getConstantLength()));
1382 break;
1384 default:
1385 S.Diag(getLocationOfByte(Amt.getStart()),
1386 diag::warn_printf_nonsensical_optional_amount)
1387 << type
1388 << CS.toString()
1389 << getSpecifierRange(startSpecifier, specifierLen);
1390 break;
1394 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1395 const analyze_printf::OptionalFlag &flag,
1396 const char *startSpecifier,
1397 unsigned specifierLen) {
1398 // Warn about pointless flag with a fixit removal.
1399 const analyze_printf::PrintfConversionSpecifier &CS =
1400 FS.getConversionSpecifier();
1401 S.Diag(getLocationOfByte(flag.getPosition()),
1402 diag::warn_printf_nonsensical_flag)
1403 << flag.toString() << CS.toString()
1404 << getSpecifierRange(startSpecifier, specifierLen)
1405 << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1408 void CheckPrintfHandler::HandleIgnoredFlag(
1409 const analyze_printf::PrintfSpecifier &FS,
1410 const analyze_printf::OptionalFlag &ignoredFlag,
1411 const analyze_printf::OptionalFlag &flag,
1412 const char *startSpecifier,
1413 unsigned specifierLen) {
1414 // Warn about ignored flag with a fixit removal.
1415 S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1416 diag::warn_printf_ignored_flag)
1417 << ignoredFlag.toString() << flag.toString()
1418 << getSpecifierRange(startSpecifier, specifierLen)
1419 << FixItHint::CreateRemoval(getSpecifierRange(
1420 ignoredFlag.getPosition(), 1));
1423 bool
1424 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1425 &FS,
1426 const char *startSpecifier,
1427 unsigned specifierLen) {
1429 using namespace analyze_format_string;
1430 using namespace analyze_printf;
1431 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1433 if (FS.consumesDataArgument()) {
1434 if (atFirstArg) {
1435 atFirstArg = false;
1436 usesPositionalArgs = FS.usesPositionalArg();
1438 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1439 // Cannot mix-and-match positional and non-positional arguments.
1440 S.Diag(getLocationOfByte(CS.getStart()),
1441 diag::warn_format_mix_positional_nonpositional_args)
1442 << getSpecifierRange(startSpecifier, specifierLen);
1443 return false;
1447 // First check if the field width, precision, and conversion specifier
1448 // have matching data arguments.
1449 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1450 startSpecifier, specifierLen)) {
1451 return false;
1454 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1455 startSpecifier, specifierLen)) {
1456 return false;
1459 if (!CS.consumesDataArgument()) {
1460 // FIXME: Technically specifying a precision or field width here
1461 // makes no sense. Worth issuing a warning at some point.
1462 return true;
1465 // Consume the argument.
1466 unsigned argIndex = FS.getArgIndex();
1467 if (argIndex < NumDataArgs) {
1468 // The check to see if the argIndex is valid will come later.
1469 // We set the bit here because we may exit early from this
1470 // function if we encounter some other error.
1471 CoveredArgs.set(argIndex);
1474 // Check for using an Objective-C specific conversion specifier
1475 // in a non-ObjC literal.
1476 if (!IsObjCLiteral && CS.isObjCArg()) {
1477 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1478 specifierLen);
1481 // Check for invalid use of field width
1482 if (!FS.hasValidFieldWidth()) {
1483 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1484 startSpecifier, specifierLen);
1487 // Check for invalid use of precision
1488 if (!FS.hasValidPrecision()) {
1489 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1490 startSpecifier, specifierLen);
1493 // Check each flag does not conflict with any other component.
1494 if (!FS.hasValidLeadingZeros())
1495 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1496 if (!FS.hasValidPlusPrefix())
1497 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1498 if (!FS.hasValidSpacePrefix())
1499 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1500 if (!FS.hasValidAlternativeForm())
1501 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1502 if (!FS.hasValidLeftJustified())
1503 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1505 // Check that flags are not ignored by another flag
1506 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1507 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1508 startSpecifier, specifierLen);
1509 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1510 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1511 startSpecifier, specifierLen);
1513 // Check the length modifier is valid with the given conversion specifier.
1514 const LengthModifier &LM = FS.getLengthModifier();
1515 if (!FS.hasValidLengthModifier())
1516 S.Diag(getLocationOfByte(LM.getStart()),
1517 diag::warn_format_nonsensical_length)
1518 << LM.toString() << CS.toString()
1519 << getSpecifierRange(startSpecifier, specifierLen)
1520 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1521 LM.getLength()));
1523 // Are we using '%n'?
1524 if (CS.getKind() == ConversionSpecifier::nArg) {
1525 // Issue a warning about this being a possible security issue.
1526 S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1527 << getSpecifierRange(startSpecifier, specifierLen);
1528 // Continue checking the other format specifiers.
1529 return true;
1532 // The remaining checks depend on the data arguments.
1533 if (HasVAListArg)
1534 return true;
1536 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1537 return false;
1539 // Now type check the data expression that matches the
1540 // format specifier.
1541 const Expr *Ex = getDataArg(argIndex);
1542 const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1543 if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1544 // Check if we didn't match because of an implicit cast from a 'char'
1545 // or 'short' to an 'int'. This is done because printf is a varargs
1546 // function.
1547 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1548 if (ICE->getType() == S.Context.IntTy) {
1549 // All further checking is done on the subexpression.
1550 Ex = ICE->getSubExpr();
1551 if (ATR.matchesType(S.Context, Ex->getType()))
1552 return true;
1555 // We may be able to offer a FixItHint if it is a supported type.
1556 PrintfSpecifier fixedFS = FS;
1557 bool success = fixedFS.fixType(Ex->getType());
1559 if (success) {
1560 // Get the fix string from the fixed format specifier
1561 llvm::SmallString<128> buf;
1562 llvm::raw_svector_ostream os(buf);
1563 fixedFS.toString(os);
1565 // FIXME: getRepresentativeType() perhaps should return a string
1566 // instead of a QualType to better handle when the representative
1567 // type is 'wint_t' (which is defined in the system headers).
1568 S.Diag(getLocationOfByte(CS.getStart()),
1569 diag::warn_printf_conversion_argument_type_mismatch)
1570 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1571 << getSpecifierRange(startSpecifier, specifierLen)
1572 << Ex->getSourceRange()
1573 << FixItHint::CreateReplacement(
1574 getSpecifierRange(startSpecifier, specifierLen),
1575 os.str());
1577 else {
1578 S.Diag(getLocationOfByte(CS.getStart()),
1579 diag::warn_printf_conversion_argument_type_mismatch)
1580 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1581 << getSpecifierRange(startSpecifier, specifierLen)
1582 << Ex->getSourceRange();
1586 return true;
1589 //===--- CHECK: Scanf format string checking ------------------------------===//
1591 namespace {
1592 class CheckScanfHandler : public CheckFormatHandler {
1593 public:
1594 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1595 const Expr *origFormatExpr, unsigned firstDataArg,
1596 unsigned numDataArgs, bool isObjCLiteral,
1597 const char *beg, bool hasVAListArg,
1598 const CallExpr *theCall, unsigned formatIdx)
1599 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1600 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1601 theCall, formatIdx) {}
1603 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1604 const char *startSpecifier,
1605 unsigned specifierLen);
1607 bool HandleInvalidScanfConversionSpecifier(
1608 const analyze_scanf::ScanfSpecifier &FS,
1609 const char *startSpecifier,
1610 unsigned specifierLen);
1612 void HandleIncompleteScanList(const char *start, const char *end);
1616 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1617 const char *end) {
1618 S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1619 << getSpecifierRange(start, end - start);
1622 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1623 const analyze_scanf::ScanfSpecifier &FS,
1624 const char *startSpecifier,
1625 unsigned specifierLen) {
1627 const analyze_scanf::ScanfConversionSpecifier &CS =
1628 FS.getConversionSpecifier();
1630 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1631 getLocationOfByte(CS.getStart()),
1632 startSpecifier, specifierLen,
1633 CS.getStart(), CS.getLength());
1636 bool CheckScanfHandler::HandleScanfSpecifier(
1637 const analyze_scanf::ScanfSpecifier &FS,
1638 const char *startSpecifier,
1639 unsigned specifierLen) {
1641 using namespace analyze_scanf;
1642 using namespace analyze_format_string;
1644 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1646 // Handle case where '%' and '*' don't consume an argument. These shouldn't
1647 // be used to decide if we are using positional arguments consistently.
1648 if (FS.consumesDataArgument()) {
1649 if (atFirstArg) {
1650 atFirstArg = false;
1651 usesPositionalArgs = FS.usesPositionalArg();
1653 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1654 // Cannot mix-and-match positional and non-positional arguments.
1655 S.Diag(getLocationOfByte(CS.getStart()),
1656 diag::warn_format_mix_positional_nonpositional_args)
1657 << getSpecifierRange(startSpecifier, specifierLen);
1658 return false;
1662 // Check if the field with is non-zero.
1663 const OptionalAmount &Amt = FS.getFieldWidth();
1664 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1665 if (Amt.getConstantAmount() == 0) {
1666 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1667 Amt.getConstantLength());
1668 S.Diag(getLocationOfByte(Amt.getStart()),
1669 diag::warn_scanf_nonzero_width)
1670 << R << FixItHint::CreateRemoval(R);
1674 if (!FS.consumesDataArgument()) {
1675 // FIXME: Technically specifying a precision or field width here
1676 // makes no sense. Worth issuing a warning at some point.
1677 return true;
1680 // Consume the argument.
1681 unsigned argIndex = FS.getArgIndex();
1682 if (argIndex < NumDataArgs) {
1683 // The check to see if the argIndex is valid will come later.
1684 // We set the bit here because we may exit early from this
1685 // function if we encounter some other error.
1686 CoveredArgs.set(argIndex);
1689 // Check the length modifier is valid with the given conversion specifier.
1690 const LengthModifier &LM = FS.getLengthModifier();
1691 if (!FS.hasValidLengthModifier()) {
1692 S.Diag(getLocationOfByte(LM.getStart()),
1693 diag::warn_format_nonsensical_length)
1694 << LM.toString() << CS.toString()
1695 << getSpecifierRange(startSpecifier, specifierLen)
1696 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1697 LM.getLength()));
1700 // The remaining checks depend on the data arguments.
1701 if (HasVAListArg)
1702 return true;
1704 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1705 return false;
1707 // FIXME: Check that the argument type matches the format specifier.
1709 return true;
1712 void Sema::CheckFormatString(const StringLiteral *FExpr,
1713 const Expr *OrigFormatExpr,
1714 const CallExpr *TheCall, bool HasVAListArg,
1715 unsigned format_idx, unsigned firstDataArg,
1716 bool isPrintf) {
1718 // CHECK: is the format string a wide literal?
1719 if (FExpr->isWide()) {
1720 Diag(FExpr->getLocStart(),
1721 diag::warn_format_string_is_wide_literal)
1722 << OrigFormatExpr->getSourceRange();
1723 return;
1726 // Str - The format string. NOTE: this is NOT null-terminated!
1727 llvm::StringRef StrRef = FExpr->getString();
1728 const char *Str = StrRef.data();
1729 unsigned StrLen = StrRef.size();
1731 // CHECK: empty format string?
1732 if (StrLen == 0) {
1733 Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1734 << OrigFormatExpr->getSourceRange();
1735 return;
1738 if (isPrintf) {
1739 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1740 TheCall->getNumArgs() - firstDataArg,
1741 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1742 HasVAListArg, TheCall, format_idx);
1744 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1745 H.DoneProcessing();
1747 else {
1748 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1749 TheCall->getNumArgs() - firstDataArg,
1750 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1751 HasVAListArg, TheCall, format_idx);
1753 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1754 H.DoneProcessing();
1758 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1760 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1761 static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1763 /// CheckReturnStackAddr - Check if a return statement returns the address
1764 /// of a stack variable.
1765 void
1766 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1767 SourceLocation ReturnLoc) {
1769 Expr *stackE = 0;
1770 llvm::SmallVector<DeclRefExpr *, 8> refVars;
1772 // Perform checking for returned stack addresses, local blocks,
1773 // label addresses or references to temporaries.
1774 if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1775 stackE = EvalAddr(RetValExp, refVars);
1776 } else if (lhsType->isReferenceType()) {
1777 stackE = EvalVal(RetValExp, refVars);
1780 if (stackE == 0)
1781 return; // Nothing suspicious was found.
1783 SourceLocation diagLoc;
1784 SourceRange diagRange;
1785 if (refVars.empty()) {
1786 diagLoc = stackE->getLocStart();
1787 diagRange = stackE->getSourceRange();
1788 } else {
1789 // We followed through a reference variable. 'stackE' contains the
1790 // problematic expression but we will warn at the return statement pointing
1791 // at the reference variable. We will later display the "trail" of
1792 // reference variables using notes.
1793 diagLoc = refVars[0]->getLocStart();
1794 diagRange = refVars[0]->getSourceRange();
1797 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
1798 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
1799 : diag::warn_ret_stack_addr)
1800 << DR->getDecl()->getDeclName() << diagRange;
1801 } else if (isa<BlockExpr>(stackE)) { // local block.
1802 Diag(diagLoc, diag::err_ret_local_block) << diagRange;
1803 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
1804 Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
1805 } else { // local temporary.
1806 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
1807 : diag::warn_ret_local_temp_addr)
1808 << diagRange;
1811 // Display the "trail" of reference variables that we followed until we
1812 // found the problematic expression using notes.
1813 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
1814 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
1815 // If this var binds to another reference var, show the range of the next
1816 // var, otherwise the var binds to the problematic expression, in which case
1817 // show the range of the expression.
1818 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
1819 : stackE->getSourceRange();
1820 Diag(VD->getLocation(), diag::note_ref_var_local_bind)
1821 << VD->getDeclName() << range;
1825 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1826 /// check if the expression in a return statement evaluates to an address
1827 /// to a location on the stack, a local block, an address of a label, or a
1828 /// reference to local temporary. The recursion is used to traverse the
1829 /// AST of the return expression, with recursion backtracking when we
1830 /// encounter a subexpression that (1) clearly does not lead to one of the
1831 /// above problematic expressions (2) is something we cannot determine leads to
1832 /// a problematic expression based on such local checking.
1834 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
1835 /// the expression that they point to. Such variables are added to the
1836 /// 'refVars' vector so that we know what the reference variable "trail" was.
1838 /// EvalAddr processes expressions that are pointers that are used as
1839 /// references (and not L-values). EvalVal handles all other values.
1840 /// At the base case of the recursion is a check for the above problematic
1841 /// expressions.
1843 /// This implementation handles:
1845 /// * pointer-to-pointer casts
1846 /// * implicit conversions from array references to pointers
1847 /// * taking the address of fields
1848 /// * arbitrary interplay between "&" and "*" operators
1849 /// * pointer arithmetic from an address of a stack variable
1850 /// * taking the address of an array element where the array is on the stack
1851 static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
1852 if (E->isTypeDependent())
1853 return NULL;
1855 // We should only be called for evaluating pointer expressions.
1856 assert((E->getType()->isAnyPointerType() ||
1857 E->getType()->isBlockPointerType() ||
1858 E->getType()->isObjCQualifiedIdType()) &&
1859 "EvalAddr only works on pointers");
1861 // Our "symbolic interpreter" is just a dispatch off the currently
1862 // viewed AST node. We then recursively traverse the AST by calling
1863 // EvalAddr and EvalVal appropriately.
1864 switch (E->getStmtClass()) {
1865 case Stmt::ParenExprClass:
1866 // Ignore parentheses.
1867 return EvalAddr(cast<ParenExpr>(E)->getSubExpr(), refVars);
1869 case Stmt::DeclRefExprClass: {
1870 DeclRefExpr *DR = cast<DeclRefExpr>(E);
1872 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1873 // If this is a reference variable, follow through to the expression that
1874 // it points to.
1875 if (V->hasLocalStorage() &&
1876 V->getType()->isReferenceType() && V->hasInit()) {
1877 // Add the reference variable to the "trail".
1878 refVars.push_back(DR);
1879 return EvalAddr(V->getInit(), refVars);
1882 return NULL;
1885 case Stmt::UnaryOperatorClass: {
1886 // The only unary operator that make sense to handle here
1887 // is AddrOf. All others don't make sense as pointers.
1888 UnaryOperator *U = cast<UnaryOperator>(E);
1890 if (U->getOpcode() == UO_AddrOf)
1891 return EvalVal(U->getSubExpr(), refVars);
1892 else
1893 return NULL;
1896 case Stmt::BinaryOperatorClass: {
1897 // Handle pointer arithmetic. All other binary operators are not valid
1898 // in this context.
1899 BinaryOperator *B = cast<BinaryOperator>(E);
1900 BinaryOperatorKind op = B->getOpcode();
1902 if (op != BO_Add && op != BO_Sub)
1903 return NULL;
1905 Expr *Base = B->getLHS();
1907 // Determine which argument is the real pointer base. It could be
1908 // the RHS argument instead of the LHS.
1909 if (!Base->getType()->isPointerType()) Base = B->getRHS();
1911 assert (Base->getType()->isPointerType());
1912 return EvalAddr(Base, refVars);
1915 // For conditional operators we need to see if either the LHS or RHS are
1916 // valid DeclRefExpr*s. If one of them is valid, we return it.
1917 case Stmt::ConditionalOperatorClass: {
1918 ConditionalOperator *C = cast<ConditionalOperator>(E);
1920 // Handle the GNU extension for missing LHS.
1921 if (Expr *lhsExpr = C->getLHS()) {
1922 // In C++, we can have a throw-expression, which has 'void' type.
1923 if (!lhsExpr->getType()->isVoidType())
1924 if (Expr* LHS = EvalAddr(lhsExpr, refVars))
1925 return LHS;
1928 // In C++, we can have a throw-expression, which has 'void' type.
1929 if (C->getRHS()->getType()->isVoidType())
1930 return NULL;
1932 return EvalAddr(C->getRHS(), refVars);
1935 case Stmt::BlockExprClass:
1936 if (cast<BlockExpr>(E)->hasBlockDeclRefExprs())
1937 return E; // local block.
1938 return NULL;
1940 case Stmt::AddrLabelExprClass:
1941 return E; // address of label.
1943 // For casts, we need to handle conversions from arrays to
1944 // pointer values, and pointer-to-pointer conversions.
1945 case Stmt::ImplicitCastExprClass:
1946 case Stmt::CStyleCastExprClass:
1947 case Stmt::CXXFunctionalCastExprClass: {
1948 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1949 QualType T = SubExpr->getType();
1951 if (SubExpr->getType()->isPointerType() ||
1952 SubExpr->getType()->isBlockPointerType() ||
1953 SubExpr->getType()->isObjCQualifiedIdType())
1954 return EvalAddr(SubExpr, refVars);
1955 else if (T->isArrayType())
1956 return EvalVal(SubExpr, refVars);
1957 else
1958 return 0;
1961 // C++ casts. For dynamic casts, static casts, and const casts, we
1962 // are always converting from a pointer-to-pointer, so we just blow
1963 // through the cast. In the case the dynamic cast doesn't fail (and
1964 // return NULL), we take the conservative route and report cases
1965 // where we return the address of a stack variable. For Reinterpre
1966 // FIXME: The comment about is wrong; we're not always converting
1967 // from pointer to pointer. I'm guessing that this code should also
1968 // handle references to objects.
1969 case Stmt::CXXStaticCastExprClass:
1970 case Stmt::CXXDynamicCastExprClass:
1971 case Stmt::CXXConstCastExprClass:
1972 case Stmt::CXXReinterpretCastExprClass: {
1973 Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1974 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1975 return EvalAddr(S, refVars);
1976 else
1977 return NULL;
1980 // Everything else: we simply don't reason about them.
1981 default:
1982 return NULL;
1987 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
1988 /// See the comments for EvalAddr for more details.
1989 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
1990 do {
1991 // We should only be called for evaluating non-pointer expressions, or
1992 // expressions with a pointer type that are not used as references but instead
1993 // are l-values (e.g., DeclRefExpr with a pointer type).
1995 // Our "symbolic interpreter" is just a dispatch off the currently
1996 // viewed AST node. We then recursively traverse the AST by calling
1997 // EvalAddr and EvalVal appropriately.
1998 switch (E->getStmtClass()) {
1999 case Stmt::ImplicitCastExprClass: {
2000 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2001 if (IE->getValueKind() == VK_LValue) {
2002 E = IE->getSubExpr();
2003 continue;
2005 return NULL;
2008 case Stmt::DeclRefExprClass: {
2009 // When we hit a DeclRefExpr we are looking at code that refers to a
2010 // variable's name. If it's not a reference variable we check if it has
2011 // local storage within the function, and if so, return the expression.
2012 DeclRefExpr *DR = cast<DeclRefExpr>(E);
2014 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2015 if (V->hasLocalStorage()) {
2016 if (!V->getType()->isReferenceType())
2017 return DR;
2019 // Reference variable, follow through to the expression that
2020 // it points to.
2021 if (V->hasInit()) {
2022 // Add the reference variable to the "trail".
2023 refVars.push_back(DR);
2024 return EvalVal(V->getInit(), refVars);
2028 return NULL;
2031 case Stmt::ParenExprClass: {
2032 // Ignore parentheses.
2033 E = cast<ParenExpr>(E)->getSubExpr();
2034 continue;
2037 case Stmt::UnaryOperatorClass: {
2038 // The only unary operator that make sense to handle here
2039 // is Deref. All others don't resolve to a "name." This includes
2040 // handling all sorts of rvalues passed to a unary operator.
2041 UnaryOperator *U = cast<UnaryOperator>(E);
2043 if (U->getOpcode() == UO_Deref)
2044 return EvalAddr(U->getSubExpr(), refVars);
2046 return NULL;
2049 case Stmt::ArraySubscriptExprClass: {
2050 // Array subscripts are potential references to data on the stack. We
2051 // retrieve the DeclRefExpr* for the array variable if it indeed
2052 // has local storage.
2053 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2056 case Stmt::ConditionalOperatorClass: {
2057 // For conditional operators we need to see if either the LHS or RHS are
2058 // non-NULL Expr's. If one is non-NULL, we return it.
2059 ConditionalOperator *C = cast<ConditionalOperator>(E);
2061 // Handle the GNU extension for missing LHS.
2062 if (Expr *lhsExpr = C->getLHS())
2063 if (Expr *LHS = EvalVal(lhsExpr, refVars))
2064 return LHS;
2066 return EvalVal(C->getRHS(), refVars);
2069 // Accesses to members are potential references to data on the stack.
2070 case Stmt::MemberExprClass: {
2071 MemberExpr *M = cast<MemberExpr>(E);
2073 // Check for indirect access. We only want direct field accesses.
2074 if (M->isArrow())
2075 return NULL;
2077 // Check whether the member type is itself a reference, in which case
2078 // we're not going to refer to the member, but to what the member refers to.
2079 if (M->getMemberDecl()->getType()->isReferenceType())
2080 return NULL;
2082 return EvalVal(M->getBase(), refVars);
2085 default:
2086 // Check that we don't return or take the address of a reference to a
2087 // temporary. This is only useful in C++.
2088 if (!E->isTypeDependent() && E->isRValue())
2089 return E;
2091 // Everything else: we simply don't reason about them.
2092 return NULL;
2094 } while (true);
2097 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2099 /// Check for comparisons of floating point operands using != and ==.
2100 /// Issue a warning if these are no self-comparisons, as they are not likely
2101 /// to do what the programmer intended.
2102 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2103 bool EmitWarning = true;
2105 Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2106 Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2108 // Special case: check for x == x (which is OK).
2109 // Do not emit warnings for such cases.
2110 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2111 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2112 if (DRL->getDecl() == DRR->getDecl())
2113 EmitWarning = false;
2116 // Special case: check for comparisons against literals that can be exactly
2117 // represented by APFloat. In such cases, do not emit a warning. This
2118 // is a heuristic: often comparison against such literals are used to
2119 // detect if a value in a variable has not changed. This clearly can
2120 // lead to false negatives.
2121 if (EmitWarning) {
2122 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2123 if (FLL->isExact())
2124 EmitWarning = false;
2125 } else
2126 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2127 if (FLR->isExact())
2128 EmitWarning = false;
2132 // Check for comparisons with builtin types.
2133 if (EmitWarning)
2134 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2135 if (CL->isBuiltinCall(Context))
2136 EmitWarning = false;
2138 if (EmitWarning)
2139 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2140 if (CR->isBuiltinCall(Context))
2141 EmitWarning = false;
2143 // Emit the diagnostic.
2144 if (EmitWarning)
2145 Diag(loc, diag::warn_floatingpoint_eq)
2146 << lex->getSourceRange() << rex->getSourceRange();
2149 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2150 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2152 namespace {
2154 /// Structure recording the 'active' range of an integer-valued
2155 /// expression.
2156 struct IntRange {
2157 /// The number of bits active in the int.
2158 unsigned Width;
2160 /// True if the int is known not to have negative values.
2161 bool NonNegative;
2163 IntRange(unsigned Width, bool NonNegative)
2164 : Width(Width), NonNegative(NonNegative)
2167 /// Returns the range of the bool type.
2168 static IntRange forBoolType() {
2169 return IntRange(1, true);
2172 /// Returns the range of an opaque value of the given integral type.
2173 static IntRange forValueOfType(ASTContext &C, QualType T) {
2174 return forValueOfCanonicalType(C,
2175 T->getCanonicalTypeInternal().getTypePtr());
2178 /// Returns the range of an opaque value of a canonical integral type.
2179 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2180 assert(T->isCanonicalUnqualified());
2182 if (const VectorType *VT = dyn_cast<VectorType>(T))
2183 T = VT->getElementType().getTypePtr();
2184 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2185 T = CT->getElementType().getTypePtr();
2187 // For enum types, use the known bit width of the enumerators.
2188 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2189 EnumDecl *Enum = ET->getDecl();
2190 if (!Enum->isDefinition())
2191 return IntRange(C.getIntWidth(QualType(T, 0)), false);
2193 unsigned NumPositive = Enum->getNumPositiveBits();
2194 unsigned NumNegative = Enum->getNumNegativeBits();
2196 return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2199 const BuiltinType *BT = cast<BuiltinType>(T);
2200 assert(BT->isInteger());
2202 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2205 /// Returns the "target" range of a canonical integral type, i.e.
2206 /// the range of values expressible in the type.
2208 /// This matches forValueOfCanonicalType except that enums have the
2209 /// full range of their type, not the range of their enumerators.
2210 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2211 assert(T->isCanonicalUnqualified());
2213 if (const VectorType *VT = dyn_cast<VectorType>(T))
2214 T = VT->getElementType().getTypePtr();
2215 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2216 T = CT->getElementType().getTypePtr();
2217 if (const EnumType *ET = dyn_cast<EnumType>(T))
2218 T = ET->getDecl()->getIntegerType().getTypePtr();
2220 const BuiltinType *BT = cast<BuiltinType>(T);
2221 assert(BT->isInteger());
2223 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2226 /// Returns the supremum of two ranges: i.e. their conservative merge.
2227 static IntRange join(IntRange L, IntRange R) {
2228 return IntRange(std::max(L.Width, R.Width),
2229 L.NonNegative && R.NonNegative);
2232 /// Returns the infinum of two ranges: i.e. their aggressive merge.
2233 static IntRange meet(IntRange L, IntRange R) {
2234 return IntRange(std::min(L.Width, R.Width),
2235 L.NonNegative || R.NonNegative);
2239 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2240 if (value.isSigned() && value.isNegative())
2241 return IntRange(value.getMinSignedBits(), false);
2243 if (value.getBitWidth() > MaxWidth)
2244 value = value.trunc(MaxWidth);
2246 // isNonNegative() just checks the sign bit without considering
2247 // signedness.
2248 return IntRange(value.getActiveBits(), true);
2251 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2252 unsigned MaxWidth) {
2253 if (result.isInt())
2254 return GetValueRange(C, result.getInt(), MaxWidth);
2256 if (result.isVector()) {
2257 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2258 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2259 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2260 R = IntRange::join(R, El);
2262 return R;
2265 if (result.isComplexInt()) {
2266 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2267 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2268 return IntRange::join(R, I);
2271 // This can happen with lossless casts to intptr_t of "based" lvalues.
2272 // Assume it might use arbitrary bits.
2273 // FIXME: The only reason we need to pass the type in here is to get
2274 // the sign right on this one case. It would be nice if APValue
2275 // preserved this.
2276 assert(result.isLValue());
2277 return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2280 /// Pseudo-evaluate the given integer expression, estimating the
2281 /// range of values it might take.
2283 /// \param MaxWidth - the width to which the value will be truncated
2284 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2285 E = E->IgnoreParens();
2287 // Try a full evaluation first.
2288 Expr::EvalResult result;
2289 if (E->Evaluate(result, C))
2290 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2292 // I think we only want to look through implicit casts here; if the
2293 // user has an explicit widening cast, we should treat the value as
2294 // being of the new, wider type.
2295 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2296 if (CE->getCastKind() == CK_NoOp)
2297 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2299 IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2301 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2303 // Assume that non-integer casts can span the full range of the type.
2304 if (!isIntegerCast)
2305 return OutputTypeRange;
2307 IntRange SubRange
2308 = GetExprRange(C, CE->getSubExpr(),
2309 std::min(MaxWidth, OutputTypeRange.Width));
2311 // Bail out if the subexpr's range is as wide as the cast type.
2312 if (SubRange.Width >= OutputTypeRange.Width)
2313 return OutputTypeRange;
2315 // Otherwise, we take the smaller width, and we're non-negative if
2316 // either the output type or the subexpr is.
2317 return IntRange(SubRange.Width,
2318 SubRange.NonNegative || OutputTypeRange.NonNegative);
2321 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2322 // If we can fold the condition, just take that operand.
2323 bool CondResult;
2324 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2325 return GetExprRange(C, CondResult ? CO->getTrueExpr()
2326 : CO->getFalseExpr(),
2327 MaxWidth);
2329 // Otherwise, conservatively merge.
2330 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2331 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2332 return IntRange::join(L, R);
2335 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2336 switch (BO->getOpcode()) {
2338 // Boolean-valued operations are single-bit and positive.
2339 case BO_LAnd:
2340 case BO_LOr:
2341 case BO_LT:
2342 case BO_GT:
2343 case BO_LE:
2344 case BO_GE:
2345 case BO_EQ:
2346 case BO_NE:
2347 return IntRange::forBoolType();
2349 // The type of these compound assignments is the type of the LHS,
2350 // so the RHS is not necessarily an integer.
2351 case BO_MulAssign:
2352 case BO_DivAssign:
2353 case BO_RemAssign:
2354 case BO_AddAssign:
2355 case BO_SubAssign:
2356 return IntRange::forValueOfType(C, E->getType());
2358 // Operations with opaque sources are black-listed.
2359 case BO_PtrMemD:
2360 case BO_PtrMemI:
2361 return IntRange::forValueOfType(C, E->getType());
2363 // Bitwise-and uses the *infinum* of the two source ranges.
2364 case BO_And:
2365 case BO_AndAssign:
2366 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2367 GetExprRange(C, BO->getRHS(), MaxWidth));
2369 // Left shift gets black-listed based on a judgement call.
2370 case BO_Shl:
2371 // ...except that we want to treat '1 << (blah)' as logically
2372 // positive. It's an important idiom.
2373 if (IntegerLiteral *I
2374 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2375 if (I->getValue() == 1) {
2376 IntRange R = IntRange::forValueOfType(C, E->getType());
2377 return IntRange(R.Width, /*NonNegative*/ true);
2380 // fallthrough
2382 case BO_ShlAssign:
2383 return IntRange::forValueOfType(C, E->getType());
2385 // Right shift by a constant can narrow its left argument.
2386 case BO_Shr:
2387 case BO_ShrAssign: {
2388 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2390 // If the shift amount is a positive constant, drop the width by
2391 // that much.
2392 llvm::APSInt shift;
2393 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2394 shift.isNonNegative()) {
2395 unsigned zext = shift.getZExtValue();
2396 if (zext >= L.Width)
2397 L.Width = (L.NonNegative ? 0 : 1);
2398 else
2399 L.Width -= zext;
2402 return L;
2405 // Comma acts as its right operand.
2406 case BO_Comma:
2407 return GetExprRange(C, BO->getRHS(), MaxWidth);
2409 // Black-list pointer subtractions.
2410 case BO_Sub:
2411 if (BO->getLHS()->getType()->isPointerType())
2412 return IntRange::forValueOfType(C, E->getType());
2413 // fallthrough
2415 default:
2416 break;
2419 // Treat every other operator as if it were closed on the
2420 // narrowest type that encompasses both operands.
2421 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2422 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2423 return IntRange::join(L, R);
2426 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2427 switch (UO->getOpcode()) {
2428 // Boolean-valued operations are white-listed.
2429 case UO_LNot:
2430 return IntRange::forBoolType();
2432 // Operations with opaque sources are black-listed.
2433 case UO_Deref:
2434 case UO_AddrOf: // should be impossible
2435 return IntRange::forValueOfType(C, E->getType());
2437 default:
2438 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2442 if (dyn_cast<OffsetOfExpr>(E)) {
2443 IntRange::forValueOfType(C, E->getType());
2446 FieldDecl *BitField = E->getBitField();
2447 if (BitField) {
2448 llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2449 unsigned BitWidth = BitWidthAP.getZExtValue();
2451 return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2454 return IntRange::forValueOfType(C, E->getType());
2457 IntRange GetExprRange(ASTContext &C, Expr *E) {
2458 return GetExprRange(C, E, C.getIntWidth(E->getType()));
2461 /// Checks whether the given value, which currently has the given
2462 /// source semantics, has the same value when coerced through the
2463 /// target semantics.
2464 bool IsSameFloatAfterCast(const llvm::APFloat &value,
2465 const llvm::fltSemantics &Src,
2466 const llvm::fltSemantics &Tgt) {
2467 llvm::APFloat truncated = value;
2469 bool ignored;
2470 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2471 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2473 return truncated.bitwiseIsEqual(value);
2476 /// Checks whether the given value, which currently has the given
2477 /// source semantics, has the same value when coerced through the
2478 /// target semantics.
2480 /// The value might be a vector of floats (or a complex number).
2481 bool IsSameFloatAfterCast(const APValue &value,
2482 const llvm::fltSemantics &Src,
2483 const llvm::fltSemantics &Tgt) {
2484 if (value.isFloat())
2485 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2487 if (value.isVector()) {
2488 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2489 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2490 return false;
2491 return true;
2494 assert(value.isComplexFloat());
2495 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2496 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2499 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2501 static bool IsZero(Sema &S, Expr *E) {
2502 // Suppress cases where we are comparing against an enum constant.
2503 if (const DeclRefExpr *DR =
2504 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2505 if (isa<EnumConstantDecl>(DR->getDecl()))
2506 return false;
2508 // Suppress cases where the '0' value is expanded from a macro.
2509 if (E->getLocStart().isMacroID())
2510 return false;
2512 llvm::APSInt Value;
2513 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2516 static bool HasEnumType(Expr *E) {
2517 // Strip off implicit integral promotions.
2518 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2519 if (ICE->getCastKind() != CK_IntegralCast &&
2520 ICE->getCastKind() != CK_NoOp)
2521 break;
2522 E = ICE->getSubExpr();
2525 return E->getType()->isEnumeralType();
2528 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2529 BinaryOperatorKind op = E->getOpcode();
2530 if (op == BO_LT && IsZero(S, E->getRHS())) {
2531 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2532 << "< 0" << "false" << HasEnumType(E->getLHS())
2533 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2534 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2535 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2536 << ">= 0" << "true" << HasEnumType(E->getLHS())
2537 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2538 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2539 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2540 << "0 >" << "false" << HasEnumType(E->getRHS())
2541 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2542 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2543 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2544 << "0 <=" << "true" << HasEnumType(E->getRHS())
2545 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2549 /// Analyze the operands of the given comparison. Implements the
2550 /// fallback case from AnalyzeComparison.
2551 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2552 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2553 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2556 /// \brief Implements -Wsign-compare.
2558 /// \param lex the left-hand expression
2559 /// \param rex the right-hand expression
2560 /// \param OpLoc the location of the joining operator
2561 /// \param BinOpc binary opcode or 0
2562 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2563 // The type the comparison is being performed in.
2564 QualType T = E->getLHS()->getType();
2565 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2566 && "comparison with mismatched types");
2568 // We don't do anything special if this isn't an unsigned integral
2569 // comparison: we're only interested in integral comparisons, and
2570 // signed comparisons only happen in cases we don't care to warn about.
2571 if (!T->hasUnsignedIntegerRepresentation())
2572 return AnalyzeImpConvsInComparison(S, E);
2574 Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2575 Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2577 // Check to see if one of the (unmodified) operands is of different
2578 // signedness.
2579 Expr *signedOperand, *unsignedOperand;
2580 if (lex->getType()->hasSignedIntegerRepresentation()) {
2581 assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2582 "unsigned comparison between two signed integer expressions?");
2583 signedOperand = lex;
2584 unsignedOperand = rex;
2585 } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2586 signedOperand = rex;
2587 unsignedOperand = lex;
2588 } else {
2589 CheckTrivialUnsignedComparison(S, E);
2590 return AnalyzeImpConvsInComparison(S, E);
2593 // Otherwise, calculate the effective range of the signed operand.
2594 IntRange signedRange = GetExprRange(S.Context, signedOperand);
2596 // Go ahead and analyze implicit conversions in the operands. Note
2597 // that we skip the implicit conversions on both sides.
2598 AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2599 AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2601 // If the signed range is non-negative, -Wsign-compare won't fire,
2602 // but we should still check for comparisons which are always true
2603 // or false.
2604 if (signedRange.NonNegative)
2605 return CheckTrivialUnsignedComparison(S, E);
2607 // For (in)equality comparisons, if the unsigned operand is a
2608 // constant which cannot collide with a overflowed signed operand,
2609 // then reinterpreting the signed operand as unsigned will not
2610 // change the result of the comparison.
2611 if (E->isEqualityOp()) {
2612 unsigned comparisonWidth = S.Context.getIntWidth(T);
2613 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2615 // We should never be unable to prove that the unsigned operand is
2616 // non-negative.
2617 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2619 if (unsignedRange.Width < comparisonWidth)
2620 return;
2623 S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2624 << lex->getType() << rex->getType()
2625 << lex->getSourceRange() << rex->getSourceRange();
2628 /// Analyzes an attempt to assign the given value to a bitfield.
2630 /// Returns true if there was something fishy about the attempt.
2631 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2632 SourceLocation InitLoc) {
2633 assert(Bitfield->isBitField());
2634 if (Bitfield->isInvalidDecl())
2635 return false;
2637 // White-list bool bitfields.
2638 if (Bitfield->getType()->isBooleanType())
2639 return false;
2641 Expr *OriginalInit = Init->IgnoreParenImpCasts();
2643 llvm::APSInt Width(32);
2644 Expr::EvalResult InitValue;
2645 if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2646 !OriginalInit->Evaluate(InitValue, S.Context) ||
2647 !InitValue.Val.isInt())
2648 return false;
2650 const llvm::APSInt &Value = InitValue.Val.getInt();
2651 unsigned OriginalWidth = Value.getBitWidth();
2652 unsigned FieldWidth = Width.getZExtValue();
2654 if (OriginalWidth <= FieldWidth)
2655 return false;
2657 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
2659 // It's fairly common to write values into signed bitfields
2660 // that, if sign-extended, would end up becoming a different
2661 // value. We don't want to warn about that.
2662 if (Value.isSigned() && Value.isNegative())
2663 TruncatedValue = TruncatedValue.sext(OriginalWidth);
2664 else
2665 TruncatedValue = TruncatedValue.zext(OriginalWidth);
2667 if (Value == TruncatedValue)
2668 return false;
2670 std::string PrettyValue = Value.toString(10);
2671 std::string PrettyTrunc = TruncatedValue.toString(10);
2673 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2674 << PrettyValue << PrettyTrunc << OriginalInit->getType()
2675 << Init->getSourceRange();
2677 return true;
2680 /// Analyze the given simple or compound assignment for warning-worthy
2681 /// operations.
2682 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2683 // Just recurse on the LHS.
2684 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2686 // We want to recurse on the RHS as normal unless we're assigning to
2687 // a bitfield.
2688 if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2689 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2690 E->getOperatorLoc())) {
2691 // Recurse, ignoring any implicit conversions on the RHS.
2692 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2693 E->getOperatorLoc());
2697 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2700 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
2701 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2702 unsigned diag) {
2703 S.Diag(E->getExprLoc(), diag)
2704 << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2707 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2708 if (!Range.Width) return "0";
2710 llvm::APSInt ValueInRange = Value;
2711 ValueInRange.setIsSigned(!Range.NonNegative);
2712 ValueInRange = ValueInRange.trunc(Range.Width);
2713 return ValueInRange.toString(10);
2716 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2717 SourceLocation CC, bool *ICContext = 0) {
2718 if (E->isTypeDependent() || E->isValueDependent()) return;
2720 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2721 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2722 if (Source == Target) return;
2723 if (Target->isDependentType()) return;
2725 // If the conversion context location is invalid or instantiated
2726 // from a system macro, don't complain.
2727 if (CC.isInvalid() ||
2728 (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2729 S.Context.getSourceManager().getSpellingLoc(CC))))
2730 return;
2732 // Never diagnose implicit casts to bool.
2733 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2734 return;
2736 // Strip vector types.
2737 if (isa<VectorType>(Source)) {
2738 if (!isa<VectorType>(Target))
2739 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2741 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2742 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2745 // Strip complex types.
2746 if (isa<ComplexType>(Source)) {
2747 if (!isa<ComplexType>(Target))
2748 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2750 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2751 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2754 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2755 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2757 // If the source is floating point...
2758 if (SourceBT && SourceBT->isFloatingPoint()) {
2759 // ...and the target is floating point...
2760 if (TargetBT && TargetBT->isFloatingPoint()) {
2761 // ...then warn if we're dropping FP rank.
2763 // Builtin FP kinds are ordered by increasing FP rank.
2764 if (SourceBT->getKind() > TargetBT->getKind()) {
2765 // Don't warn about float constants that are precisely
2766 // representable in the target type.
2767 Expr::EvalResult result;
2768 if (E->Evaluate(result, S.Context)) {
2769 // Value might be a float, a float vector, or a float complex.
2770 if (IsSameFloatAfterCast(result.Val,
2771 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2772 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2773 return;
2776 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2778 return;
2781 // If the target is integral, always warn.
2782 if ((TargetBT && TargetBT->isInteger()))
2783 // TODO: don't warn for integer values?
2784 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2786 return;
2789 if (!Source->isIntegerType() || !Target->isIntegerType())
2790 return;
2792 IntRange SourceRange = GetExprRange(S.Context, E);
2793 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2795 if (SourceRange.Width > TargetRange.Width) {
2796 // If the source is a constant, use a default-on diagnostic.
2797 // TODO: this should happen for bitfield stores, too.
2798 llvm::APSInt Value(32);
2799 if (E->isIntegerConstantExpr(Value, S.Context)) {
2800 std::string PrettySourceValue = Value.toString(10);
2801 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2803 S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2804 << PrettySourceValue << PrettyTargetValue
2805 << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2806 return;
2809 // People want to build with -Wshorten-64-to-32 and not -Wconversion
2810 // and by god we'll let them.
2811 if (SourceRange.Width == 64 && TargetRange.Width == 32)
2812 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2813 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2816 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2817 (!TargetRange.NonNegative && SourceRange.NonNegative &&
2818 SourceRange.Width == TargetRange.Width)) {
2819 unsigned DiagID = diag::warn_impcast_integer_sign;
2821 // Traditionally, gcc has warned about this under -Wsign-compare.
2822 // We also want to warn about it in -Wconversion.
2823 // So if -Wconversion is off, use a completely identical diagnostic
2824 // in the sign-compare group.
2825 // The conditional-checking code will
2826 if (ICContext) {
2827 DiagID = diag::warn_impcast_integer_sign_conditional;
2828 *ICContext = true;
2831 return DiagnoseImpCast(S, E, T, CC, DiagID);
2834 return;
2837 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2839 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2840 SourceLocation CC, bool &ICContext) {
2841 E = E->IgnoreParenImpCasts();
2843 if (isa<ConditionalOperator>(E))
2844 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2846 AnalyzeImplicitConversions(S, E, CC);
2847 if (E->getType() != T)
2848 return CheckImplicitConversion(S, E, T, CC, &ICContext);
2849 return;
2852 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2853 SourceLocation CC = E->getQuestionLoc();
2855 AnalyzeImplicitConversions(S, E->getCond(), CC);
2857 bool Suspicious = false;
2858 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2859 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2861 // If -Wconversion would have warned about either of the candidates
2862 // for a signedness conversion to the context type...
2863 if (!Suspicious) return;
2865 // ...but it's currently ignored...
2866 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2867 return;
2869 // ...and -Wsign-compare isn't...
2870 if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2871 return;
2873 // ...then check whether it would have warned about either of the
2874 // candidates for a signedness conversion to the condition type.
2875 if (E->getType() != T) {
2876 Suspicious = false;
2877 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2878 E->getType(), CC, &Suspicious);
2879 if (!Suspicious)
2880 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2881 E->getType(), CC, &Suspicious);
2882 if (!Suspicious)
2883 return;
2886 // If so, emit a diagnostic under -Wsign-compare.
2887 Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2888 Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2889 S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2890 << lex->getType() << rex->getType()
2891 << lex->getSourceRange() << rex->getSourceRange();
2894 /// AnalyzeImplicitConversions - Find and report any interesting
2895 /// implicit conversions in the given expression. There are a couple
2896 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
2897 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2898 QualType T = OrigE->getType();
2899 Expr *E = OrigE->IgnoreParenImpCasts();
2901 // For conditional operators, we analyze the arguments as if they
2902 // were being fed directly into the output.
2903 if (isa<ConditionalOperator>(E)) {
2904 ConditionalOperator *CO = cast<ConditionalOperator>(E);
2905 CheckConditionalOperator(S, CO, T);
2906 return;
2909 // Go ahead and check any implicit conversions we might have skipped.
2910 // The non-canonical typecheck is just an optimization;
2911 // CheckImplicitConversion will filter out dead implicit conversions.
2912 if (E->getType() != T)
2913 CheckImplicitConversion(S, E, T, CC);
2915 // Now continue drilling into this expression.
2917 // Skip past explicit casts.
2918 if (isa<ExplicitCastExpr>(E)) {
2919 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2920 return AnalyzeImplicitConversions(S, E, CC);
2923 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2924 // Do a somewhat different check with comparison operators.
2925 if (BO->isComparisonOp())
2926 return AnalyzeComparison(S, BO);
2928 // And with assignments and compound assignments.
2929 if (BO->isAssignmentOp())
2930 return AnalyzeAssignment(S, BO);
2933 // These break the otherwise-useful invariant below. Fortunately,
2934 // we don't really need to recurse into them, because any internal
2935 // expressions should have been analyzed already when they were
2936 // built into statements.
2937 if (isa<StmtExpr>(E)) return;
2939 // Don't descend into unevaluated contexts.
2940 if (isa<SizeOfAlignOfExpr>(E)) return;
2942 // Now just recurse over the expression's children.
2943 CC = E->getExprLoc();
2944 for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2945 I != IE; ++I)
2946 AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2949 } // end anonymous namespace
2951 /// Diagnoses "dangerous" implicit conversions within the given
2952 /// expression (which is a full expression). Implements -Wconversion
2953 /// and -Wsign-compare.
2955 /// \param CC the "context" location of the implicit conversion, i.e.
2956 /// the most location of the syntactic entity requiring the implicit
2957 /// conversion
2958 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2959 // Don't diagnose in unevaluated contexts.
2960 if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2961 return;
2963 // Don't diagnose for value- or type-dependent expressions.
2964 if (E->isTypeDependent() || E->isValueDependent())
2965 return;
2967 // This is not the right CC for (e.g.) a variable initialization.
2968 AnalyzeImplicitConversions(*this, E, CC);
2971 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
2972 FieldDecl *BitField,
2973 Expr *Init) {
2974 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
2977 /// CheckParmsForFunctionDef - Check that the parameters of the given
2978 /// function are appropriate for the definition of a function. This
2979 /// takes care of any checks that cannot be performed on the
2980 /// declaration itself, e.g., that the types of each of the function
2981 /// parameters are complete.
2982 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
2983 bool CheckParameterNames) {
2984 bool HasInvalidParm = false;
2985 for (; P != PEnd; ++P) {
2986 ParmVarDecl *Param = *P;
2988 // C99 6.7.5.3p4: the parameters in a parameter type list in a
2989 // function declarator that is part of a function definition of
2990 // that function shall not have incomplete type.
2992 // This is also C++ [dcl.fct]p6.
2993 if (!Param->isInvalidDecl() &&
2994 RequireCompleteType(Param->getLocation(), Param->getType(),
2995 diag::err_typecheck_decl_incomplete_type)) {
2996 Param->setInvalidDecl();
2997 HasInvalidParm = true;
3000 // C99 6.9.1p5: If the declarator includes a parameter type list, the
3001 // declaration of each parameter shall include an identifier.
3002 if (CheckParameterNames &&
3003 Param->getIdentifier() == 0 &&
3004 !Param->isImplicit() &&
3005 !getLangOptions().CPlusPlus)
3006 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3008 // C99 6.7.5.3p12:
3009 // If the function declarator is not part of a definition of that
3010 // function, parameters may have incomplete type and may use the [*]
3011 // notation in their sequences of declarator specifiers to specify
3012 // variable length array types.
3013 QualType PType = Param->getOriginalType();
3014 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3015 if (AT->getSizeModifier() == ArrayType::Star) {
3016 // FIXME: This diagnosic should point the the '[*]' if source-location
3017 // information is added for it.
3018 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3023 return HasInvalidParm;
3026 /// CheckCastAlign - Implements -Wcast-align, which warns when a
3027 /// pointer cast increases the alignment requirements.
3028 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3029 // This is actually a lot of work to potentially be doing on every
3030 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3031 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
3032 == Diagnostic::Ignored)
3033 return;
3035 // Ignore dependent types.
3036 if (T->isDependentType() || Op->getType()->isDependentType())
3037 return;
3039 // Require that the destination be a pointer type.
3040 const PointerType *DestPtr = T->getAs<PointerType>();
3041 if (!DestPtr) return;
3043 // If the destination has alignment 1, we're done.
3044 QualType DestPointee = DestPtr->getPointeeType();
3045 if (DestPointee->isIncompleteType()) return;
3046 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3047 if (DestAlign.isOne()) return;
3049 // Require that the source be a pointer type.
3050 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3051 if (!SrcPtr) return;
3052 QualType SrcPointee = SrcPtr->getPointeeType();
3054 // Whitelist casts from cv void*. We already implicitly
3055 // whitelisted casts to cv void*, since they have alignment 1.
3056 // Also whitelist casts involving incomplete types, which implicitly
3057 // includes 'void'.
3058 if (SrcPointee->isIncompleteType()) return;
3060 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3061 if (SrcAlign >= DestAlign) return;
3063 Diag(TRange.getBegin(), diag::warn_cast_align)
3064 << Op->getType() << T
3065 << static_cast<unsigned>(SrcAlign.getQuantity())
3066 << static_cast<unsigned>(DestAlign.getQuantity())
3067 << TRange << Op->getSourceRange();