Driver: tweak handling of '--analyze' to invoke
[clang.git] / lib / Sema / SemaAccess.cpp
blob605baf9bada1b0da211559390246bb7f0015341a
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DependentDiagnostic.h"
23 #include "clang/AST/ExprCXX.h"
25 using namespace clang;
26 using namespace sema;
28 /// A copy of Sema's enum without AR_delayed.
29 enum AccessResult {
30 AR_accessible,
31 AR_inaccessible,
32 AR_dependent
35 /// SetMemberAccessSpecifier - Set the access specifier of a member.
36 /// Returns true on error (when the previous member decl access specifier
37 /// is different from the new member decl access specifier).
38 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
39 NamedDecl *PrevMemberDecl,
40 AccessSpecifier LexicalAS) {
41 if (!PrevMemberDecl) {
42 // Use the lexical access specifier.
43 MemberDecl->setAccess(LexicalAS);
44 return false;
47 // C++ [class.access.spec]p3: When a member is redeclared its access
48 // specifier must be same as its initial declaration.
49 if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
50 Diag(MemberDecl->getLocation(),
51 diag::err_class_redeclared_with_different_access)
52 << MemberDecl << LexicalAS;
53 Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
54 << PrevMemberDecl << PrevMemberDecl->getAccess();
56 MemberDecl->setAccess(LexicalAS);
57 return true;
60 MemberDecl->setAccess(PrevMemberDecl->getAccess());
61 return false;
64 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
65 DeclContext *DC = D->getDeclContext();
67 // This can only happen at top: enum decls only "publish" their
68 // immediate members.
69 if (isa<EnumDecl>(DC))
70 DC = cast<EnumDecl>(DC)->getDeclContext();
72 CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
73 while (DeclaringClass->isAnonymousStructOrUnion())
74 DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
75 return DeclaringClass;
78 namespace {
79 struct EffectiveContext {
80 EffectiveContext() : Inner(0), Dependent(false) {}
82 explicit EffectiveContext(DeclContext *DC)
83 : Inner(DC),
84 Dependent(DC->isDependentContext()) {
86 // C++ [class.access.nest]p1:
87 // A nested class is a member and as such has the same access
88 // rights as any other member.
89 // C++ [class.access]p2:
90 // A member of a class can also access all the names to which
91 // the class has access. A local class of a member function
92 // may access the same names that the member function itself
93 // may access.
94 // This almost implies that the privileges of nesting are transitive.
95 // Technically it says nothing about the local classes of non-member
96 // functions (which can gain privileges through friendship), but we
97 // take that as an oversight.
98 while (true) {
99 if (isa<CXXRecordDecl>(DC)) {
100 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
101 Records.push_back(Record);
102 DC = Record->getDeclContext();
103 } else if (isa<FunctionDecl>(DC)) {
104 FunctionDecl *Function = cast<FunctionDecl>(DC)->getCanonicalDecl();
105 Functions.push_back(Function);
106 DC = Function->getDeclContext();
107 } else if (DC->isFileContext()) {
108 break;
109 } else {
110 DC = DC->getParent();
115 bool isDependent() const { return Dependent; }
117 bool includesClass(const CXXRecordDecl *R) const {
118 R = R->getCanonicalDecl();
119 return std::find(Records.begin(), Records.end(), R)
120 != Records.end();
123 /// Retrieves the innermost "useful" context. Can be null if we're
124 /// doing access-control without privileges.
125 DeclContext *getInnerContext() const {
126 return Inner;
129 typedef llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
131 DeclContext *Inner;
132 llvm::SmallVector<FunctionDecl*, 4> Functions;
133 llvm::SmallVector<CXXRecordDecl*, 4> Records;
134 bool Dependent;
137 /// Like sema::AccessedEntity, but kindly lets us scribble all over
138 /// it.
139 struct AccessTarget : public AccessedEntity {
140 AccessTarget(const AccessedEntity &Entity)
141 : AccessedEntity(Entity) {
142 initialize();
145 AccessTarget(ASTContext &Context,
146 MemberNonce _,
147 CXXRecordDecl *NamingClass,
148 DeclAccessPair FoundDecl,
149 QualType BaseObjectType)
150 : AccessedEntity(Context, Member, NamingClass, FoundDecl, BaseObjectType) {
151 initialize();
154 AccessTarget(ASTContext &Context,
155 BaseNonce _,
156 CXXRecordDecl *BaseClass,
157 CXXRecordDecl *DerivedClass,
158 AccessSpecifier Access)
159 : AccessedEntity(Context, Base, BaseClass, DerivedClass, Access) {
160 initialize();
163 bool hasInstanceContext() const {
164 return HasInstanceContext;
167 class SavedInstanceContext {
168 public:
169 ~SavedInstanceContext() {
170 Target.HasInstanceContext = Has;
173 private:
174 friend struct AccessTarget;
175 explicit SavedInstanceContext(AccessTarget &Target)
176 : Target(Target), Has(Target.HasInstanceContext) {}
177 AccessTarget &Target;
178 bool Has;
181 SavedInstanceContext saveInstanceContext() {
182 return SavedInstanceContext(*this);
185 void suppressInstanceContext() {
186 HasInstanceContext = false;
189 const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
190 assert(HasInstanceContext);
191 if (CalculatedInstanceContext)
192 return InstanceContext;
194 CalculatedInstanceContext = true;
195 DeclContext *IC = S.computeDeclContext(getBaseObjectType());
196 InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
197 return InstanceContext;
200 const CXXRecordDecl *getDeclaringClass() const {
201 return DeclaringClass;
204 private:
205 void initialize() {
206 HasInstanceContext = (isMemberAccess() &&
207 !getBaseObjectType().isNull() &&
208 getTargetDecl()->isCXXInstanceMember());
209 CalculatedInstanceContext = false;
210 InstanceContext = 0;
212 if (isMemberAccess())
213 DeclaringClass = FindDeclaringClass(getTargetDecl());
214 else
215 DeclaringClass = getBaseClass();
216 DeclaringClass = DeclaringClass->getCanonicalDecl();
219 bool HasInstanceContext : 1;
220 mutable bool CalculatedInstanceContext : 1;
221 mutable const CXXRecordDecl *InstanceContext;
222 const CXXRecordDecl *DeclaringClass;
227 /// Checks whether one class might instantiate to the other.
228 static bool MightInstantiateTo(const CXXRecordDecl *From,
229 const CXXRecordDecl *To) {
230 // Declaration names are always preserved by instantiation.
231 if (From->getDeclName() != To->getDeclName())
232 return false;
234 const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
235 const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
236 if (FromDC == ToDC) return true;
237 if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
239 // Be conservative.
240 return true;
243 /// Checks whether one class is derived from another, inclusively.
244 /// Properly indicates when it couldn't be determined due to
245 /// dependence.
247 /// This should probably be donated to AST or at least Sema.
248 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
249 const CXXRecordDecl *Target) {
250 assert(Derived->getCanonicalDecl() == Derived);
251 assert(Target->getCanonicalDecl() == Target);
253 if (Derived == Target) return AR_accessible;
255 bool CheckDependent = Derived->isDependentContext();
256 if (CheckDependent && MightInstantiateTo(Derived, Target))
257 return AR_dependent;
259 AccessResult OnFailure = AR_inaccessible;
260 llvm::SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
262 while (true) {
263 for (CXXRecordDecl::base_class_const_iterator
264 I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
266 const CXXRecordDecl *RD;
268 QualType T = I->getType();
269 if (const RecordType *RT = T->getAs<RecordType>()) {
270 RD = cast<CXXRecordDecl>(RT->getDecl());
271 } else if (const InjectedClassNameType *IT
272 = T->getAs<InjectedClassNameType>()) {
273 RD = IT->getDecl();
274 } else {
275 assert(T->isDependentType() && "non-dependent base wasn't a record?");
276 OnFailure = AR_dependent;
277 continue;
280 RD = RD->getCanonicalDecl();
281 if (RD == Target) return AR_accessible;
282 if (CheckDependent && MightInstantiateTo(RD, Target))
283 OnFailure = AR_dependent;
285 Queue.push_back(RD);
288 if (Queue.empty()) break;
290 Derived = Queue.back();
291 Queue.pop_back();
294 return OnFailure;
298 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
299 DeclContext *Friend) {
300 if (Friend == Context)
301 return true;
303 assert(!Friend->isDependentContext() &&
304 "can't handle friends with dependent contexts here");
306 if (!Context->isDependentContext())
307 return false;
309 if (Friend->isFileContext())
310 return false;
312 // TODO: this is very conservative
313 return true;
316 // Asks whether the type in 'context' can ever instantiate to the type
317 // in 'friend'.
318 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
319 if (Friend == Context)
320 return true;
322 if (!Friend->isDependentType() && !Context->isDependentType())
323 return false;
325 // TODO: this is very conservative.
326 return true;
329 static bool MightInstantiateTo(Sema &S,
330 FunctionDecl *Context,
331 FunctionDecl *Friend) {
332 if (Context->getDeclName() != Friend->getDeclName())
333 return false;
335 if (!MightInstantiateTo(S,
336 Context->getDeclContext(),
337 Friend->getDeclContext()))
338 return false;
340 CanQual<FunctionProtoType> FriendTy
341 = S.Context.getCanonicalType(Friend->getType())
342 ->getAs<FunctionProtoType>();
343 CanQual<FunctionProtoType> ContextTy
344 = S.Context.getCanonicalType(Context->getType())
345 ->getAs<FunctionProtoType>();
347 // There isn't any way that I know of to add qualifiers
348 // during instantiation.
349 if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
350 return false;
352 if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
353 return false;
355 if (!MightInstantiateTo(S,
356 ContextTy->getResultType(),
357 FriendTy->getResultType()))
358 return false;
360 for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
361 if (!MightInstantiateTo(S,
362 ContextTy->getArgType(I),
363 FriendTy->getArgType(I)))
364 return false;
366 return true;
369 static bool MightInstantiateTo(Sema &S,
370 FunctionTemplateDecl *Context,
371 FunctionTemplateDecl *Friend) {
372 return MightInstantiateTo(S,
373 Context->getTemplatedDecl(),
374 Friend->getTemplatedDecl());
377 static AccessResult MatchesFriend(Sema &S,
378 const EffectiveContext &EC,
379 const CXXRecordDecl *Friend) {
380 if (EC.includesClass(Friend))
381 return AR_accessible;
383 if (EC.isDependent()) {
384 CanQualType FriendTy
385 = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
387 for (EffectiveContext::record_iterator
388 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
389 CanQualType ContextTy
390 = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
391 if (MightInstantiateTo(S, ContextTy, FriendTy))
392 return AR_dependent;
396 return AR_inaccessible;
399 static AccessResult MatchesFriend(Sema &S,
400 const EffectiveContext &EC,
401 CanQualType Friend) {
402 if (const RecordType *RT = Friend->getAs<RecordType>())
403 return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
405 // TODO: we can do better than this
406 if (Friend->isDependentType())
407 return AR_dependent;
409 return AR_inaccessible;
412 /// Determines whether the given friend class template matches
413 /// anything in the effective context.
414 static AccessResult MatchesFriend(Sema &S,
415 const EffectiveContext &EC,
416 ClassTemplateDecl *Friend) {
417 AccessResult OnFailure = AR_inaccessible;
419 // Check whether the friend is the template of a class in the
420 // context chain.
421 for (llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator
422 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
423 CXXRecordDecl *Record = *I;
425 // Figure out whether the current class has a template:
426 ClassTemplateDecl *CTD;
428 // A specialization of the template...
429 if (isa<ClassTemplateSpecializationDecl>(Record)) {
430 CTD = cast<ClassTemplateSpecializationDecl>(Record)
431 ->getSpecializedTemplate();
433 // ... or the template pattern itself.
434 } else {
435 CTD = Record->getDescribedClassTemplate();
436 if (!CTD) continue;
439 // It's a match.
440 if (Friend == CTD->getCanonicalDecl())
441 return AR_accessible;
443 // If the context isn't dependent, it can't be a dependent match.
444 if (!EC.isDependent())
445 continue;
447 // If the template names don't match, it can't be a dependent
448 // match. This isn't true in C++0x because of template aliases.
449 if (!S.LangOpts.CPlusPlus0x && CTD->getDeclName() != Friend->getDeclName())
450 continue;
452 // If the class's context can't instantiate to the friend's
453 // context, it can't be a dependent match.
454 if (!MightInstantiateTo(S, CTD->getDeclContext(),
455 Friend->getDeclContext()))
456 continue;
458 // Otherwise, it's a dependent match.
459 OnFailure = AR_dependent;
462 return OnFailure;
465 /// Determines whether the given friend function matches anything in
466 /// the effective context.
467 static AccessResult MatchesFriend(Sema &S,
468 const EffectiveContext &EC,
469 FunctionDecl *Friend) {
470 AccessResult OnFailure = AR_inaccessible;
472 for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
473 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
474 if (Friend == *I)
475 return AR_accessible;
477 if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
478 OnFailure = AR_dependent;
481 return OnFailure;
484 /// Determines whether the given friend function template matches
485 /// anything in the effective context.
486 static AccessResult MatchesFriend(Sema &S,
487 const EffectiveContext &EC,
488 FunctionTemplateDecl *Friend) {
489 if (EC.Functions.empty()) return AR_inaccessible;
491 AccessResult OnFailure = AR_inaccessible;
493 for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
494 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
496 FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
497 if (!FTD)
498 FTD = (*I)->getDescribedFunctionTemplate();
499 if (!FTD)
500 continue;
502 FTD = FTD->getCanonicalDecl();
504 if (Friend == FTD)
505 return AR_accessible;
507 if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
508 OnFailure = AR_dependent;
511 return OnFailure;
514 /// Determines whether the given friend declaration matches anything
515 /// in the effective context.
516 static AccessResult MatchesFriend(Sema &S,
517 const EffectiveContext &EC,
518 FriendDecl *FriendD) {
519 // Whitelist accesses if there's an invalid or unsupported friend
520 // declaration.
521 if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
522 return AR_accessible;
524 if (TypeSourceInfo *T = FriendD->getFriendType())
525 return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
527 NamedDecl *Friend
528 = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
530 // FIXME: declarations with dependent or templated scope.
532 if (isa<ClassTemplateDecl>(Friend))
533 return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
535 if (isa<FunctionTemplateDecl>(Friend))
536 return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
538 if (isa<CXXRecordDecl>(Friend))
539 return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
541 assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
542 return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
545 static AccessResult GetFriendKind(Sema &S,
546 const EffectiveContext &EC,
547 const CXXRecordDecl *Class) {
548 AccessResult OnFailure = AR_inaccessible;
550 // Okay, check friends.
551 for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
552 E = Class->friend_end(); I != E; ++I) {
553 FriendDecl *Friend = *I;
555 switch (MatchesFriend(S, EC, Friend)) {
556 case AR_accessible:
557 return AR_accessible;
559 case AR_inaccessible:
560 continue;
562 case AR_dependent:
563 OnFailure = AR_dependent;
564 break;
568 // That's it, give up.
569 return OnFailure;
572 namespace {
574 /// A helper class for checking for a friend which will grant access
575 /// to a protected instance member.
576 struct ProtectedFriendContext {
577 Sema &S;
578 const EffectiveContext &EC;
579 const CXXRecordDecl *NamingClass;
580 bool CheckDependent;
581 bool EverDependent;
583 /// The path down to the current base class.
584 llvm::SmallVector<const CXXRecordDecl*, 20> CurPath;
586 ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
587 const CXXRecordDecl *InstanceContext,
588 const CXXRecordDecl *NamingClass)
589 : S(S), EC(EC), NamingClass(NamingClass),
590 CheckDependent(InstanceContext->isDependentContext() ||
591 NamingClass->isDependentContext()),
592 EverDependent(false) {}
594 /// Check classes in the current path for friendship, starting at
595 /// the given index.
596 bool checkFriendshipAlongPath(unsigned I) {
597 assert(I < CurPath.size());
598 for (unsigned E = CurPath.size(); I != E; ++I) {
599 switch (GetFriendKind(S, EC, CurPath[I])) {
600 case AR_accessible: return true;
601 case AR_inaccessible: continue;
602 case AR_dependent: EverDependent = true; continue;
605 return false;
608 /// Perform a search starting at the given class.
610 /// PrivateDepth is the index of the last (least derived) class
611 /// along the current path such that a notional public member of
612 /// the final class in the path would have access in that class.
613 bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
614 // If we ever reach the naming class, check the current path for
615 // friendship. We can also stop recursing because we obviously
616 // won't find the naming class there again.
617 if (Cur == NamingClass)
618 return checkFriendshipAlongPath(PrivateDepth);
620 if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
621 EverDependent = true;
623 // Recurse into the base classes.
624 for (CXXRecordDecl::base_class_const_iterator
625 I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
627 // If this is private inheritance, then a public member of the
628 // base will not have any access in classes derived from Cur.
629 unsigned BasePrivateDepth = PrivateDepth;
630 if (I->getAccessSpecifier() == AS_private)
631 BasePrivateDepth = CurPath.size() - 1;
633 const CXXRecordDecl *RD;
635 QualType T = I->getType();
636 if (const RecordType *RT = T->getAs<RecordType>()) {
637 RD = cast<CXXRecordDecl>(RT->getDecl());
638 } else if (const InjectedClassNameType *IT
639 = T->getAs<InjectedClassNameType>()) {
640 RD = IT->getDecl();
641 } else {
642 assert(T->isDependentType() && "non-dependent base wasn't a record?");
643 EverDependent = true;
644 continue;
647 // Recurse. We don't need to clean up if this returns true.
648 CurPath.push_back(RD);
649 if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
650 return true;
651 CurPath.pop_back();
654 return false;
657 bool findFriendship(const CXXRecordDecl *Cur) {
658 assert(CurPath.empty());
659 CurPath.push_back(Cur);
660 return findFriendship(Cur, 0);
665 /// Search for a class P that EC is a friend of, under the constraint
666 /// InstanceContext <= P <= NamingClass
667 /// and with the additional restriction that a protected member of
668 /// NamingClass would have some natural access in P.
670 /// That second condition isn't actually quite right: the condition in
671 /// the standard is whether the target would have some natural access
672 /// in P. The difference is that the target might be more accessible
673 /// along some path not passing through NamingClass. Allowing that
674 /// introduces two problems:
675 /// - It breaks encapsulation because you can suddenly access a
676 /// forbidden base class's members by subclassing it elsewhere.
677 /// - It makes access substantially harder to compute because it
678 /// breaks the hill-climbing algorithm: knowing that the target is
679 /// accessible in some base class would no longer let you change
680 /// the question solely to whether the base class is accessible,
681 /// because the original target might have been more accessible
682 /// because of crazy subclassing.
683 /// So we don't implement that.
684 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
685 const CXXRecordDecl *InstanceContext,
686 const CXXRecordDecl *NamingClass) {
687 assert(InstanceContext->getCanonicalDecl() == InstanceContext);
688 assert(NamingClass->getCanonicalDecl() == NamingClass);
690 ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
691 if (PRC.findFriendship(InstanceContext)) return AR_accessible;
692 if (PRC.EverDependent) return AR_dependent;
693 return AR_inaccessible;
696 static AccessResult HasAccess(Sema &S,
697 const EffectiveContext &EC,
698 const CXXRecordDecl *NamingClass,
699 AccessSpecifier Access,
700 const AccessTarget &Target) {
701 assert(NamingClass->getCanonicalDecl() == NamingClass &&
702 "declaration should be canonicalized before being passed here");
704 if (Access == AS_public) return AR_accessible;
705 assert(Access == AS_private || Access == AS_protected);
707 AccessResult OnFailure = AR_inaccessible;
709 for (EffectiveContext::record_iterator
710 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
711 // All the declarations in EC have been canonicalized, so pointer
712 // equality from this point on will work fine.
713 const CXXRecordDecl *ECRecord = *I;
715 // [B2] and [M2]
716 if (Access == AS_private) {
717 if (ECRecord == NamingClass)
718 return AR_accessible;
720 if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
721 OnFailure = AR_dependent;
723 // [B3] and [M3]
724 } else {
725 assert(Access == AS_protected);
726 switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
727 case AR_accessible: break;
728 case AR_inaccessible: continue;
729 case AR_dependent: OnFailure = AR_dependent; continue;
732 if (!Target.hasInstanceContext())
733 return AR_accessible;
735 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
736 if (!InstanceContext) {
737 OnFailure = AR_dependent;
738 continue;
741 // C++ [class.protected]p1:
742 // An additional access check beyond those described earlier in
743 // [class.access] is applied when a non-static data member or
744 // non-static member function is a protected member of its naming
745 // class. As described earlier, access to a protected member is
746 // granted because the reference occurs in a friend or member of
747 // some class C. If the access is to form a pointer to member,
748 // the nested-name-specifier shall name C or a class derived from
749 // C. All other accesses involve a (possibly implicit) object
750 // expression. In this case, the class of the object expression
751 // shall be C or a class derived from C.
753 // We interpret this as a restriction on [M3]. Most of the
754 // conditions are encoded by not having any instance context.
755 switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
756 case AR_accessible: return AR_accessible;
757 case AR_inaccessible: continue;
758 case AR_dependent: OnFailure = AR_dependent; continue;
763 // [M3] and [B3] say that, if the target is protected in N, we grant
764 // access if the access occurs in a friend or member of some class P
765 // that's a subclass of N and where the target has some natural
766 // access in P. The 'member' aspect is easy to handle because P
767 // would necessarily be one of the effective-context records, and we
768 // address that above. The 'friend' aspect is completely ridiculous
769 // to implement because there are no restrictions at all on P
770 // *unless* the [class.protected] restriction applies. If it does,
771 // however, we should ignore whether the naming class is a friend,
772 // and instead rely on whether any potential P is a friend.
773 if (Access == AS_protected && Target.hasInstanceContext()) {
774 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
775 if (!InstanceContext) return AR_dependent;
776 switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
777 case AR_accessible: return AR_accessible;
778 case AR_inaccessible: return OnFailure;
779 case AR_dependent: return AR_dependent;
781 llvm_unreachable("impossible friendship kind");
784 switch (GetFriendKind(S, EC, NamingClass)) {
785 case AR_accessible: return AR_accessible;
786 case AR_inaccessible: return OnFailure;
787 case AR_dependent: return AR_dependent;
790 // Silence bogus warnings
791 llvm_unreachable("impossible friendship kind");
792 return OnFailure;
795 /// Finds the best path from the naming class to the declaring class,
796 /// taking friend declarations into account.
798 /// C++0x [class.access.base]p5:
799 /// A member m is accessible at the point R when named in class N if
800 /// [M1] m as a member of N is public, or
801 /// [M2] m as a member of N is private, and R occurs in a member or
802 /// friend of class N, or
803 /// [M3] m as a member of N is protected, and R occurs in a member or
804 /// friend of class N, or in a member or friend of a class P
805 /// derived from N, where m as a member of P is public, private,
806 /// or protected, or
807 /// [M4] there exists a base class B of N that is accessible at R, and
808 /// m is accessible at R when named in class B.
810 /// C++0x [class.access.base]p4:
811 /// A base class B of N is accessible at R, if
812 /// [B1] an invented public member of B would be a public member of N, or
813 /// [B2] R occurs in a member or friend of class N, and an invented public
814 /// member of B would be a private or protected member of N, or
815 /// [B3] R occurs in a member or friend of a class P derived from N, and an
816 /// invented public member of B would be a private or protected member
817 /// of P, or
818 /// [B4] there exists a class S such that B is a base class of S accessible
819 /// at R and S is a base class of N accessible at R.
821 /// Along a single inheritance path we can restate both of these
822 /// iteratively:
824 /// First, we note that M1-4 are equivalent to B1-4 if the member is
825 /// treated as a notional base of its declaring class with inheritance
826 /// access equivalent to the member's access. Therefore we need only
827 /// ask whether a class B is accessible from a class N in context R.
829 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
830 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
831 /// B_i). For i in 1..n, we will calculate ACAB(i), the access to the
832 /// closest accessible base in the path:
833 /// Access(a, b) = (* access on the base specifier from a to b *)
834 /// Merge(a, forbidden) = forbidden
835 /// Merge(a, private) = forbidden
836 /// Merge(a, b) = min(a,b)
837 /// Accessible(c, forbidden) = false
838 /// Accessible(c, private) = (R is c) || IsFriend(c, R)
839 /// Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
840 /// Accessible(c, public) = true
841 /// ACAB(n) = public
842 /// ACAB(i) =
843 /// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
844 /// if Accessible(B_i, AccessToBase) then public else AccessToBase
846 /// B is an accessible base of N at R iff ACAB(1) = public.
848 /// \param FinalAccess the access of the "final step", or AS_public if
849 /// there is no final step.
850 /// \return null if friendship is dependent
851 static CXXBasePath *FindBestPath(Sema &S,
852 const EffectiveContext &EC,
853 AccessTarget &Target,
854 AccessSpecifier FinalAccess,
855 CXXBasePaths &Paths) {
856 // Derive the paths to the desired base.
857 const CXXRecordDecl *Derived = Target.getNamingClass();
858 const CXXRecordDecl *Base = Target.getDeclaringClass();
860 // FIXME: fail correctly when there are dependent paths.
861 bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
862 Paths);
863 assert(isDerived && "derived class not actually derived from base");
864 (void) isDerived;
866 CXXBasePath *BestPath = 0;
868 assert(FinalAccess != AS_none && "forbidden access after declaring class");
870 bool AnyDependent = false;
872 // Derive the friend-modified access along each path.
873 for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
874 PI != PE; ++PI) {
875 AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
877 // Walk through the path backwards.
878 AccessSpecifier PathAccess = FinalAccess;
879 CXXBasePath::iterator I = PI->end(), E = PI->begin();
880 while (I != E) {
881 --I;
883 assert(PathAccess != AS_none);
885 // If the declaration is a private member of a base class, there
886 // is no level of friendship in derived classes that can make it
887 // accessible.
888 if (PathAccess == AS_private) {
889 PathAccess = AS_none;
890 break;
893 const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
895 AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
896 PathAccess = std::max(PathAccess, BaseAccess);
898 switch (HasAccess(S, EC, NC, PathAccess, Target)) {
899 case AR_inaccessible: break;
900 case AR_accessible:
901 PathAccess = AS_public;
903 // Future tests are not against members and so do not have
904 // instance context.
905 Target.suppressInstanceContext();
906 break;
907 case AR_dependent:
908 AnyDependent = true;
909 goto Next;
913 // Note that we modify the path's Access field to the
914 // friend-modified access.
915 if (BestPath == 0 || PathAccess < BestPath->Access) {
916 BestPath = &*PI;
917 BestPath->Access = PathAccess;
919 // Short-circuit if we found a public path.
920 if (BestPath->Access == AS_public)
921 return BestPath;
924 Next: ;
927 assert((!BestPath || BestPath->Access != AS_public) &&
928 "fell out of loop with public path");
930 // We didn't find a public path, but at least one path was subject
931 // to dependent friendship, so delay the check.
932 if (AnyDependent)
933 return 0;
935 return BestPath;
938 /// Given that an entity has protected natural access, check whether
939 /// access might be denied because of the protected member access
940 /// restriction.
942 /// \return true if a note was emitted
943 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
944 AccessTarget &Target) {
945 // Only applies to instance accesses.
946 if (!Target.hasInstanceContext())
947 return false;
948 assert(Target.isMemberAccess());
949 NamedDecl *D = Target.getTargetDecl();
951 const CXXRecordDecl *DeclaringClass = Target.getDeclaringClass();
952 DeclaringClass = DeclaringClass->getCanonicalDecl();
954 for (EffectiveContext::record_iterator
955 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
956 const CXXRecordDecl *ECRecord = *I;
957 switch (IsDerivedFromInclusive(ECRecord, DeclaringClass)) {
958 case AR_accessible: break;
959 case AR_inaccessible: continue;
960 case AR_dependent: continue;
963 // The effective context is a subclass of the declaring class.
964 // If that class isn't a superclass of the instance context,
965 // then the [class.protected] restriction applies.
967 // To get this exactly right, this might need to be checked more
968 // holistically; it's not necessarily the case that gaining
969 // access here would grant us access overall.
971 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
972 assert(InstanceContext && "diagnosing dependent access");
974 switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
975 case AR_accessible: continue;
976 case AR_dependent: continue;
977 case AR_inaccessible:
978 S.Diag(D->getLocation(), diag::note_access_protected_restricted)
979 << (InstanceContext != Target.getNamingClass()->getCanonicalDecl())
980 << S.Context.getTypeDeclType(InstanceContext)
981 << S.Context.getTypeDeclType(ECRecord);
982 return true;
986 return false;
989 /// Diagnose the path which caused the given declaration or base class
990 /// to become inaccessible.
991 static void DiagnoseAccessPath(Sema &S,
992 const EffectiveContext &EC,
993 AccessTarget &Entity) {
994 AccessSpecifier Access = Entity.getAccess();
995 const CXXRecordDecl *NamingClass = Entity.getNamingClass();
996 NamingClass = NamingClass->getCanonicalDecl();
998 NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
999 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1001 // Easy case: the decl's natural access determined its path access.
1002 // We have to check against AS_private here in case Access is AS_none,
1003 // indicating a non-public member of a private base class.
1004 if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1005 switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1006 case AR_inaccessible: {
1007 if (Access == AS_protected &&
1008 TryDiagnoseProtectedAccess(S, EC, Entity))
1009 return;
1011 // Find an original declaration.
1012 while (D->isOutOfLine()) {
1013 NamedDecl *PrevDecl = 0;
1014 if (isa<VarDecl>(D))
1015 PrevDecl = cast<VarDecl>(D)->getPreviousDeclaration();
1016 else if (isa<FunctionDecl>(D))
1017 PrevDecl = cast<FunctionDecl>(D)->getPreviousDeclaration();
1018 else if (isa<TypedefDecl>(D))
1019 PrevDecl = cast<TypedefDecl>(D)->getPreviousDeclaration();
1020 else if (isa<TagDecl>(D)) {
1021 if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1022 break;
1023 PrevDecl = cast<TagDecl>(D)->getPreviousDeclaration();
1025 if (!PrevDecl) break;
1026 D = PrevDecl;
1029 CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1030 Decl *ImmediateChild;
1031 if (D->getDeclContext() == DeclaringClass)
1032 ImmediateChild = D;
1033 else {
1034 DeclContext *DC = D->getDeclContext();
1035 while (DC->getParent() != DeclaringClass)
1036 DC = DC->getParent();
1037 ImmediateChild = cast<Decl>(DC);
1040 // Check whether there's an AccessSpecDecl preceding this in the
1041 // chain of the DeclContext.
1042 bool Implicit = true;
1043 for (CXXRecordDecl::decl_iterator
1044 I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1045 I != E; ++I) {
1046 if (*I == ImmediateChild) break;
1047 if (isa<AccessSpecDecl>(*I)) {
1048 Implicit = false;
1049 break;
1053 S.Diag(D->getLocation(), diag::note_access_natural)
1054 << (unsigned) (Access == AS_protected)
1055 << Implicit;
1056 return;
1059 case AR_accessible: break;
1061 case AR_dependent:
1062 llvm_unreachable("can't diagnose dependent access failures");
1063 return;
1067 CXXBasePaths Paths;
1068 CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1070 CXXBasePath::iterator I = Path.end(), E = Path.begin();
1071 while (I != E) {
1072 --I;
1074 const CXXBaseSpecifier *BS = I->Base;
1075 AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1077 // If this is public inheritance, or the derived class is a friend,
1078 // skip this step.
1079 if (BaseAccess == AS_public)
1080 continue;
1082 switch (GetFriendKind(S, EC, I->Class)) {
1083 case AR_accessible: continue;
1084 case AR_inaccessible: break;
1085 case AR_dependent:
1086 llvm_unreachable("can't diagnose dependent access failures");
1089 // Check whether this base specifier is the tighest point
1090 // constraining access. We have to check against AS_private for
1091 // the same reasons as above.
1092 if (BaseAccess == AS_private || BaseAccess >= Access) {
1094 // We're constrained by inheritance, but we want to say
1095 // "declared private here" if we're diagnosing a hierarchy
1096 // conversion and this is the final step.
1097 unsigned diagnostic;
1098 if (D) diagnostic = diag::note_access_constrained_by_path;
1099 else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1100 else diagnostic = diag::note_access_constrained_by_path;
1102 S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1103 << BS->getSourceRange()
1104 << (BaseAccess == AS_protected)
1105 << (BS->getAccessSpecifierAsWritten() == AS_none);
1107 if (D)
1108 S.Diag(D->getLocation(), diag::note_field_decl);
1110 return;
1114 llvm_unreachable("access not apparently constrained by path");
1117 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1118 const EffectiveContext &EC,
1119 AccessTarget &Entity) {
1120 const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1121 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1122 NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1124 S.Diag(Loc, Entity.getDiag())
1125 << (Entity.getAccess() == AS_protected)
1126 << (D ? D->getDeclName() : DeclarationName())
1127 << S.Context.getTypeDeclType(NamingClass)
1128 << S.Context.getTypeDeclType(DeclaringClass);
1129 DiagnoseAccessPath(S, EC, Entity);
1132 /// Determines whether the accessed entity is accessible. Public members
1133 /// have been weeded out by this point.
1134 static AccessResult IsAccessible(Sema &S,
1135 const EffectiveContext &EC,
1136 AccessTarget &Entity) {
1137 // Determine the actual naming class.
1138 CXXRecordDecl *NamingClass = Entity.getNamingClass();
1139 while (NamingClass->isAnonymousStructOrUnion())
1140 NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1141 NamingClass = NamingClass->getCanonicalDecl();
1143 AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1144 assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1146 // Before we try to recalculate access paths, try to white-list
1147 // accesses which just trade in on the final step, i.e. accesses
1148 // which don't require [M4] or [B4]. These are by far the most
1149 // common forms of privileged access.
1150 if (UnprivilegedAccess != AS_none) {
1151 switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1152 case AR_dependent:
1153 // This is actually an interesting policy decision. We don't
1154 // *have* to delay immediately here: we can do the full access
1155 // calculation in the hope that friendship on some intermediate
1156 // class will make the declaration accessible non-dependently.
1157 // But that's not cheap, and odds are very good (note: assertion
1158 // made without data) that the friend declaration will determine
1159 // access.
1160 return AR_dependent;
1162 case AR_accessible: return AR_accessible;
1163 case AR_inaccessible: break;
1167 AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1169 // We lower member accesses to base accesses by pretending that the
1170 // member is a base class of its declaring class.
1171 AccessSpecifier FinalAccess;
1173 if (Entity.isMemberAccess()) {
1174 // Determine if the declaration is accessible from EC when named
1175 // in its declaring class.
1176 NamedDecl *Target = Entity.getTargetDecl();
1177 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1179 FinalAccess = Target->getAccess();
1180 switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1181 case AR_accessible:
1182 FinalAccess = AS_public;
1183 break;
1184 case AR_inaccessible: break;
1185 case AR_dependent: return AR_dependent; // see above
1188 if (DeclaringClass == NamingClass)
1189 return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1191 Entity.suppressInstanceContext();
1192 } else {
1193 FinalAccess = AS_public;
1196 assert(Entity.getDeclaringClass() != NamingClass);
1198 // Append the declaration's access if applicable.
1199 CXXBasePaths Paths;
1200 CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1201 if (!Path)
1202 return AR_dependent;
1204 assert(Path->Access <= UnprivilegedAccess &&
1205 "access along best path worse than direct?");
1206 if (Path->Access == AS_public)
1207 return AR_accessible;
1208 return AR_inaccessible;
1211 static void DelayDependentAccess(Sema &S,
1212 const EffectiveContext &EC,
1213 SourceLocation Loc,
1214 const AccessTarget &Entity) {
1215 assert(EC.isDependent() && "delaying non-dependent access");
1216 DeclContext *DC = EC.getInnerContext();
1217 assert(DC->isDependentContext() && "delaying non-dependent access");
1218 DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1219 Loc,
1220 Entity.isMemberAccess(),
1221 Entity.getAccess(),
1222 Entity.getTargetDecl(),
1223 Entity.getNamingClass(),
1224 Entity.getBaseObjectType(),
1225 Entity.getDiag());
1228 /// Checks access to an entity from the given effective context.
1229 static AccessResult CheckEffectiveAccess(Sema &S,
1230 const EffectiveContext &EC,
1231 SourceLocation Loc,
1232 AccessTarget &Entity) {
1233 assert(Entity.getAccess() != AS_public && "called for public access!");
1235 switch (IsAccessible(S, EC, Entity)) {
1236 case AR_dependent:
1237 DelayDependentAccess(S, EC, Loc, Entity);
1238 return AR_dependent;
1240 case AR_inaccessible:
1241 if (!Entity.isQuiet())
1242 DiagnoseBadAccess(S, Loc, EC, Entity);
1243 return AR_inaccessible;
1245 case AR_accessible:
1246 return AR_accessible;
1249 // silence unnecessary warning
1250 llvm_unreachable("invalid access result");
1251 return AR_accessible;
1254 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1255 AccessTarget &Entity) {
1256 // If the access path is public, it's accessible everywhere.
1257 if (Entity.getAccess() == AS_public)
1258 return Sema::AR_accessible;
1260 if (S.SuppressAccessChecking)
1261 return Sema::AR_accessible;
1263 // If we're currently parsing a top-level declaration, delay
1264 // diagnostics. This is the only case where parsing a declaration
1265 // can actually change our effective context for the purposes of
1266 // access control.
1267 if (S.CurContext->isFileContext() && S.ParsingDeclDepth) {
1268 S.DelayedDiagnostics.push_back(
1269 DelayedDiagnostic::makeAccess(Loc, Entity));
1270 return Sema::AR_delayed;
1273 EffectiveContext EC(S.CurContext);
1274 switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1275 case AR_accessible: return Sema::AR_accessible;
1276 case AR_inaccessible: return Sema::AR_inaccessible;
1277 case AR_dependent: return Sema::AR_dependent;
1279 llvm_unreachable("falling off end");
1280 return Sema::AR_accessible;
1283 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *Ctx) {
1284 // Pretend we did this from the context of the newly-parsed
1285 // declaration. If that declaration itself forms a declaration context,
1286 // include it in the effective context so that parameters and return types of
1287 // befriended functions have that function's access priveledges.
1288 DeclContext *DC = Ctx->getDeclContext();
1289 if (isa<FunctionDecl>(Ctx))
1290 DC = cast<DeclContext>(Ctx);
1291 else if (FunctionTemplateDecl *FnTpl = dyn_cast<FunctionTemplateDecl>(Ctx))
1292 DC = cast<DeclContext>(FnTpl->getTemplatedDecl());
1293 EffectiveContext EC(DC);
1295 AccessTarget Target(DD.getAccessData());
1297 if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1298 DD.Triggered = true;
1301 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1302 const MultiLevelTemplateArgumentList &TemplateArgs) {
1303 SourceLocation Loc = DD.getAccessLoc();
1304 AccessSpecifier Access = DD.getAccess();
1306 Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1307 TemplateArgs);
1308 if (!NamingD) return;
1309 Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1310 TemplateArgs);
1311 if (!TargetD) return;
1313 if (DD.isAccessToMember()) {
1314 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1315 NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1316 QualType BaseObjectType = DD.getAccessBaseObjectType();
1317 if (!BaseObjectType.isNull()) {
1318 BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1319 DeclarationName());
1320 if (BaseObjectType.isNull()) return;
1323 AccessTarget Entity(Context,
1324 AccessTarget::Member,
1325 NamingClass,
1326 DeclAccessPair::make(TargetDecl, Access),
1327 BaseObjectType);
1328 Entity.setDiag(DD.getDiagnostic());
1329 CheckAccess(*this, Loc, Entity);
1330 } else {
1331 AccessTarget Entity(Context,
1332 AccessTarget::Base,
1333 cast<CXXRecordDecl>(TargetD),
1334 cast<CXXRecordDecl>(NamingD),
1335 Access);
1336 Entity.setDiag(DD.getDiagnostic());
1337 CheckAccess(*this, Loc, Entity);
1341 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1342 DeclAccessPair Found) {
1343 if (!getLangOptions().AccessControl ||
1344 !E->getNamingClass() ||
1345 Found.getAccess() == AS_public)
1346 return AR_accessible;
1348 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1349 Found, QualType());
1350 Entity.setDiag(diag::err_access) << E->getSourceRange();
1352 return CheckAccess(*this, E->getNameLoc(), Entity);
1355 /// Perform access-control checking on a previously-unresolved member
1356 /// access which has now been resolved to a member.
1357 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1358 DeclAccessPair Found) {
1359 if (!getLangOptions().AccessControl ||
1360 Found.getAccess() == AS_public)
1361 return AR_accessible;
1363 QualType BaseType = E->getBaseType();
1364 if (E->isArrow())
1365 BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1367 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1368 Found, BaseType);
1369 Entity.setDiag(diag::err_access) << E->getSourceRange();
1371 return CheckAccess(*this, E->getMemberLoc(), Entity);
1374 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1375 CXXDestructorDecl *Dtor,
1376 const PartialDiagnostic &PDiag) {
1377 if (!getLangOptions().AccessControl)
1378 return AR_accessible;
1380 // There's never a path involved when checking implicit destructor access.
1381 AccessSpecifier Access = Dtor->getAccess();
1382 if (Access == AS_public)
1383 return AR_accessible;
1385 CXXRecordDecl *NamingClass = Dtor->getParent();
1386 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1387 DeclAccessPair::make(Dtor, Access),
1388 QualType());
1389 Entity.setDiag(PDiag); // TODO: avoid copy
1391 return CheckAccess(*this, Loc, Entity);
1394 /// Checks access to a constructor.
1395 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1396 CXXConstructorDecl *Constructor,
1397 const InitializedEntity &Entity,
1398 AccessSpecifier Access,
1399 bool IsCopyBindingRefToTemp) {
1400 if (!getLangOptions().AccessControl ||
1401 Access == AS_public)
1402 return AR_accessible;
1404 CXXRecordDecl *NamingClass = Constructor->getParent();
1405 AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1406 DeclAccessPair::make(Constructor, Access),
1407 QualType());
1408 switch (Entity.getKind()) {
1409 default:
1410 AccessEntity.setDiag(IsCopyBindingRefToTemp
1411 ? diag::ext_rvalue_to_reference_access_ctor
1412 : diag::err_access_ctor);
1413 break;
1415 case InitializedEntity::EK_Base:
1416 AccessEntity.setDiag(PDiag(diag::err_access_base)
1417 << Entity.isInheritedVirtualBase()
1418 << Entity.getBaseSpecifier()->getType()
1419 << getSpecialMember(Constructor));
1420 break;
1422 case InitializedEntity::EK_Member: {
1423 const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1424 AccessEntity.setDiag(PDiag(diag::err_access_field)
1425 << Field->getType()
1426 << getSpecialMember(Constructor));
1427 break;
1432 return CheckAccess(*this, UseLoc, AccessEntity);
1435 /// Checks direct (i.e. non-inherited) access to an arbitrary class
1436 /// member.
1437 Sema::AccessResult Sema::CheckDirectMemberAccess(SourceLocation UseLoc,
1438 NamedDecl *Target,
1439 const PartialDiagnostic &Diag) {
1440 AccessSpecifier Access = Target->getAccess();
1441 if (!getLangOptions().AccessControl ||
1442 Access == AS_public)
1443 return AR_accessible;
1445 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Target->getDeclContext());
1446 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1447 DeclAccessPair::make(Target, Access),
1448 QualType());
1449 Entity.setDiag(Diag);
1450 return CheckAccess(*this, UseLoc, Entity);
1454 /// Checks access to an overloaded operator new or delete.
1455 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1456 SourceRange PlacementRange,
1457 CXXRecordDecl *NamingClass,
1458 DeclAccessPair Found) {
1459 if (!getLangOptions().AccessControl ||
1460 !NamingClass ||
1461 Found.getAccess() == AS_public)
1462 return AR_accessible;
1464 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1465 QualType());
1466 Entity.setDiag(diag::err_access)
1467 << PlacementRange;
1469 return CheckAccess(*this, OpLoc, Entity);
1472 /// Checks access to an overloaded member operator, including
1473 /// conversion operators.
1474 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1475 Expr *ObjectExpr,
1476 Expr *ArgExpr,
1477 DeclAccessPair Found) {
1478 if (!getLangOptions().AccessControl ||
1479 Found.getAccess() == AS_public)
1480 return AR_accessible;
1482 const RecordType *RT = ObjectExpr->getType()->getAs<RecordType>();
1483 assert(RT && "found member operator but object expr not of record type");
1484 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1486 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1487 ObjectExpr->getType());
1488 Entity.setDiag(diag::err_access)
1489 << ObjectExpr->getSourceRange()
1490 << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1492 return CheckAccess(*this, OpLoc, Entity);
1495 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1496 DeclAccessPair Found) {
1497 if (!getLangOptions().AccessControl ||
1498 Found.getAccess() == AS_none ||
1499 Found.getAccess() == AS_public)
1500 return AR_accessible;
1502 OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1503 CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1505 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1506 Context.getTypeDeclType(NamingClass));
1507 Entity.setDiag(diag::err_access)
1508 << Ovl->getSourceRange();
1510 return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1513 /// Checks access for a hierarchy conversion.
1515 /// \param IsBaseToDerived whether this is a base-to-derived conversion (true)
1516 /// or a derived-to-base conversion (false)
1517 /// \param ForceCheck true if this check should be performed even if access
1518 /// control is disabled; some things rely on this for semantics
1519 /// \param ForceUnprivileged true if this check should proceed as if the
1520 /// context had no special privileges
1521 /// \param ADK controls the kind of diagnostics that are used
1522 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1523 QualType Base,
1524 QualType Derived,
1525 const CXXBasePath &Path,
1526 unsigned DiagID,
1527 bool ForceCheck,
1528 bool ForceUnprivileged) {
1529 if (!ForceCheck && !getLangOptions().AccessControl)
1530 return AR_accessible;
1532 if (Path.Access == AS_public)
1533 return AR_accessible;
1535 CXXRecordDecl *BaseD, *DerivedD;
1536 BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1537 DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1539 AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1540 Path.Access);
1541 if (DiagID)
1542 Entity.setDiag(DiagID) << Derived << Base;
1544 if (ForceUnprivileged) {
1545 switch (CheckEffectiveAccess(*this, EffectiveContext(),
1546 AccessLoc, Entity)) {
1547 case ::AR_accessible: return Sema::AR_accessible;
1548 case ::AR_inaccessible: return Sema::AR_inaccessible;
1549 case ::AR_dependent: return Sema::AR_dependent;
1551 llvm_unreachable("unexpected result from CheckEffectiveAccess");
1553 return CheckAccess(*this, AccessLoc, Entity);
1556 /// Checks access to all the declarations in the given result set.
1557 void Sema::CheckLookupAccess(const LookupResult &R) {
1558 assert(getLangOptions().AccessControl
1559 && "performing access check without access control");
1560 assert(R.getNamingClass() && "performing access check without naming class");
1562 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1563 if (I.getAccess() != AS_public) {
1564 AccessTarget Entity(Context, AccessedEntity::Member,
1565 R.getNamingClass(), I.getPair(),
1566 R.getBaseObjectType());
1567 Entity.setDiag(diag::err_access);
1569 CheckAccess(*this, R.getNameLoc(), Entity);
1574 void Sema::ActOnStartSuppressingAccessChecks() {
1575 assert(!SuppressAccessChecking &&
1576 "Tried to start access check suppression when already started.");
1577 SuppressAccessChecking = true;
1580 void Sema::ActOnStopSuppressingAccessChecks() {
1581 assert(SuppressAccessChecking &&
1582 "Tried to stop access check suprression when already stopped.");
1583 SuppressAccessChecking = false;