1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements semantic analysis for expressions.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/AnalysisBasedWarnings.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Designator.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/Template.h"
39 using namespace clang
;
43 /// \brief Determine whether the use of this declaration is valid, and
44 /// emit any corresponding diagnostics.
46 /// This routine diagnoses various problems with referencing
47 /// declarations that can occur when using a declaration. For example,
48 /// it might warn if a deprecated or unavailable declaration is being
49 /// used, or produce an error (and return true) if a C++0x deleted
50 /// function is being used.
52 /// If IgnoreDeprecated is set to true, this should not warn about deprecated
55 /// \returns true if there was an error (this declaration cannot be
56 /// referenced), false otherwise.
58 bool Sema::DiagnoseUseOfDecl(NamedDecl
*D
, SourceLocation Loc
,
59 bool UnknownObjCClass
) {
60 if (getLangOptions().CPlusPlus
&& isa
<FunctionDecl
>(D
)) {
61 // If there were any diagnostics suppressed by template argument deduction,
63 llvm::DenseMap
<Decl
*, llvm::SmallVector
<PartialDiagnosticAt
, 1> >::iterator
64 Pos
= SuppressedDiagnostics
.find(D
->getCanonicalDecl());
65 if (Pos
!= SuppressedDiagnostics
.end()) {
66 llvm::SmallVectorImpl
<PartialDiagnosticAt
> &Suppressed
= Pos
->second
;
67 for (unsigned I
= 0, N
= Suppressed
.size(); I
!= N
; ++I
)
68 Diag(Suppressed
[I
].first
, Suppressed
[I
].second
);
70 // Clear out the list of suppressed diagnostics, so that we don't emit
71 // them again for this specialization. However, we don't remove this
72 // entry from the table, because we want to avoid ever emitting these
78 // See if the decl is deprecated.
79 if (const DeprecatedAttr
*DA
= D
->getAttr
<DeprecatedAttr
>())
80 EmitDeprecationWarning(D
, DA
->getMessage(), Loc
, UnknownObjCClass
);
82 // See if the decl is unavailable
83 if (const UnavailableAttr
*UA
= D
->getAttr
<UnavailableAttr
>()) {
84 if (UA
->getMessage().empty()) {
85 if (!UnknownObjCClass
)
86 Diag(Loc
, diag::err_unavailable
) << D
->getDeclName();
88 Diag(Loc
, diag::warn_unavailable_fwdclass_message
)
92 Diag(Loc
, diag::err_unavailable_message
)
93 << D
->getDeclName() << UA
->getMessage();
94 Diag(D
->getLocation(), diag::note_unavailable_here
) << 0;
97 // See if this is a deleted function.
98 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
99 if (FD
->isDeleted()) {
100 Diag(Loc
, diag::err_deleted_function_use
);
101 Diag(D
->getLocation(), diag::note_unavailable_here
) << true;
106 // Warn if this is used but marked unused.
107 if (D
->hasAttr
<UnusedAttr
>())
108 Diag(Loc
, diag::warn_used_but_marked_unused
) << D
->getDeclName();
113 /// DiagnoseSentinelCalls - This routine checks on method dispatch calls
114 /// (and other functions in future), which have been declared with sentinel
115 /// attribute. It warns if call does not have the sentinel argument.
117 void Sema::DiagnoseSentinelCalls(NamedDecl
*D
, SourceLocation Loc
,
118 Expr
**Args
, unsigned NumArgs
) {
119 const SentinelAttr
*attr
= D
->getAttr
<SentinelAttr
>();
123 // FIXME: In C++0x, if any of the arguments are parameter pack
124 // expansions, we can't check for the sentinel now.
125 int sentinelPos
= attr
->getSentinel();
126 int nullPos
= attr
->getNullPos();
128 // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
129 // base class. Then we won't be needing two versions of the same code.
131 bool warnNotEnoughArgs
= false;
133 if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(D
)) {
134 // skip over named parameters.
135 ObjCMethodDecl::param_iterator P
, E
= MD
->param_end();
136 for (P
= MD
->param_begin(); (P
!= E
&& i
< NumArgs
); ++P
) {
142 warnNotEnoughArgs
= (P
!= E
|| i
>= NumArgs
);
144 } else if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
145 // skip over named parameters.
146 ObjCMethodDecl::param_iterator P
, E
= FD
->param_end();
147 for (P
= FD
->param_begin(); (P
!= E
&& i
< NumArgs
); ++P
) {
153 warnNotEnoughArgs
= (P
!= E
|| i
>= NumArgs
);
154 } else if (VarDecl
*V
= dyn_cast
<VarDecl
>(D
)) {
155 // block or function pointer call.
156 QualType Ty
= V
->getType();
157 if (Ty
->isBlockPointerType() || Ty
->isFunctionPointerType()) {
158 const FunctionType
*FT
= Ty
->isFunctionPointerType()
159 ? Ty
->getAs
<PointerType
>()->getPointeeType()->getAs
<FunctionType
>()
160 : Ty
->getAs
<BlockPointerType
>()->getPointeeType()->getAs
<FunctionType
>();
161 if (const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FT
)) {
162 unsigned NumArgsInProto
= Proto
->getNumArgs();
164 for (k
= 0; (k
!= NumArgsInProto
&& i
< NumArgs
); k
++) {
170 warnNotEnoughArgs
= (k
!= NumArgsInProto
|| i
>= NumArgs
);
172 if (Ty
->isBlockPointerType())
179 if (warnNotEnoughArgs
) {
180 Diag(Loc
, diag::warn_not_enough_argument
) << D
->getDeclName();
181 Diag(D
->getLocation(), diag::note_sentinel_here
) << isMethod
;
185 while (sentinelPos
> 0 && i
< NumArgs
-1) {
189 if (sentinelPos
> 0) {
190 Diag(Loc
, diag::warn_not_enough_argument
) << D
->getDeclName();
191 Diag(D
->getLocation(), diag::note_sentinel_here
) << isMethod
;
194 while (i
< NumArgs
-1) {
198 Expr
*sentinelExpr
= Args
[sentinel
];
199 if (!sentinelExpr
) return;
200 if (sentinelExpr
->isTypeDependent()) return;
201 if (sentinelExpr
->isValueDependent()) return;
203 // nullptr_t is always treated as null.
204 if (sentinelExpr
->getType()->isNullPtrType()) return;
206 if (sentinelExpr
->getType()->isAnyPointerType() &&
207 sentinelExpr
->IgnoreParenCasts()->isNullPointerConstant(Context
,
208 Expr::NPC_ValueDependentIsNull
))
211 // Unfortunately, __null has type 'int'.
212 if (isa
<GNUNullExpr
>(sentinelExpr
)) return;
214 Diag(Loc
, diag::warn_missing_sentinel
) << isMethod
;
215 Diag(D
->getLocation(), diag::note_sentinel_here
) << isMethod
;
218 SourceRange
Sema::getExprRange(ExprTy
*E
) const {
219 Expr
*Ex
= (Expr
*)E
;
220 return Ex
? Ex
->getSourceRange() : SourceRange();
223 //===----------------------------------------------------------------------===//
224 // Standard Promotions and Conversions
225 //===----------------------------------------------------------------------===//
227 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
228 void Sema::DefaultFunctionArrayConversion(Expr
*&E
) {
229 QualType Ty
= E
->getType();
230 assert(!Ty
.isNull() && "DefaultFunctionArrayConversion - missing type");
232 if (Ty
->isFunctionType())
233 ImpCastExprToType(E
, Context
.getPointerType(Ty
),
234 CK_FunctionToPointerDecay
);
235 else if (Ty
->isArrayType()) {
236 // In C90 mode, arrays only promote to pointers if the array expression is
237 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
238 // type 'array of type' is converted to an expression that has type 'pointer
239 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
240 // that has type 'array of type' ...". The relevant change is "an lvalue"
241 // (C90) to "an expression" (C99).
244 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
245 // T" can be converted to an rvalue of type "pointer to T".
247 if (getLangOptions().C99
|| getLangOptions().CPlusPlus
|| E
->isLValue())
248 ImpCastExprToType(E
, Context
.getArrayDecayedType(Ty
),
249 CK_ArrayToPointerDecay
);
253 void Sema::DefaultLvalueConversion(Expr
*&E
) {
254 // C++ [conv.lval]p1:
255 // A glvalue of a non-function, non-array type T can be
256 // converted to a prvalue.
257 if (!E
->isGLValue()) return;
259 QualType T
= E
->getType();
260 assert(!T
.isNull() && "r-value conversion on typeless expression?");
262 // Create a load out of an ObjCProperty l-value, if necessary.
263 if (E
->getObjectKind() == OK_ObjCProperty
) {
264 ConvertPropertyForRValue(E
);
269 // We don't want to throw lvalue-to-rvalue casts on top of
270 // expressions of certain types in C++.
271 if (getLangOptions().CPlusPlus
&&
272 (E
->getType() == Context
.OverloadTy
||
273 T
->isDependentType() ||
277 // The C standard is actually really unclear on this point, and
278 // DR106 tells us what the result should be but not why. It's
279 // generally best to say that void types just doesn't undergo
280 // lvalue-to-rvalue at all. Note that expressions of unqualified
281 // 'void' type are never l-values, but qualified void can be.
285 // C++ [conv.lval]p1:
286 // [...] If T is a non-class type, the type of the prvalue is the
287 // cv-unqualified version of T. Otherwise, the type of the
291 // If the lvalue has qualified type, the value has the unqualified
292 // version of the type of the lvalue; otherwise, the value has the
293 // type of the lvalue.
294 if (T
.hasQualifiers())
295 T
= T
.getUnqualifiedType();
297 E
= ImplicitCastExpr::Create(Context
, T
, CK_LValueToRValue
,
301 void Sema::DefaultFunctionArrayLvalueConversion(Expr
*&E
) {
302 DefaultFunctionArrayConversion(E
);
303 DefaultLvalueConversion(E
);
307 /// UsualUnaryConversions - Performs various conversions that are common to most
308 /// operators (C99 6.3). The conversions of array and function types are
309 /// sometimes surpressed. For example, the array->pointer conversion doesn't
310 /// apply if the array is an argument to the sizeof or address (&) operators.
311 /// In these instances, this routine should *not* be called.
312 Expr
*Sema::UsualUnaryConversions(Expr
*&E
) {
313 // First, convert to an r-value.
314 DefaultFunctionArrayLvalueConversion(E
);
316 QualType Ty
= E
->getType();
317 assert(!Ty
.isNull() && "UsualUnaryConversions - missing type");
319 // Try to perform integral promotions if the object has a theoretically
321 if (Ty
->isIntegralOrUnscopedEnumerationType()) {
324 // The following may be used in an expression wherever an int or
325 // unsigned int may be used:
326 // - an object or expression with an integer type whose integer
327 // conversion rank is less than or equal to the rank of int
329 // - A bit-field of type _Bool, int, signed int, or unsigned int.
331 // If an int can represent all values of the original type, the
332 // value is converted to an int; otherwise, it is converted to an
333 // unsigned int. These are called the integer promotions. All
334 // other types are unchanged by the integer promotions.
336 QualType PTy
= Context
.isPromotableBitField(E
);
338 ImpCastExprToType(E
, PTy
, CK_IntegralCast
);
341 if (Ty
->isPromotableIntegerType()) {
342 QualType PT
= Context
.getPromotedIntegerType(Ty
);
343 ImpCastExprToType(E
, PT
, CK_IntegralCast
);
351 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
352 /// do not have a prototype. Arguments that have type float are promoted to
353 /// double. All other argument types are converted by UsualUnaryConversions().
354 void Sema::DefaultArgumentPromotion(Expr
*&Expr
) {
355 QualType Ty
= Expr
->getType();
356 assert(!Ty
.isNull() && "DefaultArgumentPromotion - missing type");
358 UsualUnaryConversions(Expr
);
360 // If this is a 'float' (CVR qualified or typedef) promote to double.
361 if (Ty
->isSpecificBuiltinType(BuiltinType::Float
))
362 return ImpCastExprToType(Expr
, Context
.DoubleTy
, CK_FloatingCast
);
365 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
366 /// will warn if the resulting type is not a POD type, and rejects ObjC
367 /// interfaces passed by value. This returns true if the argument type is
368 /// completely illegal.
369 bool Sema::DefaultVariadicArgumentPromotion(Expr
*&Expr
, VariadicCallType CT
,
370 FunctionDecl
*FDecl
) {
371 DefaultArgumentPromotion(Expr
);
373 // __builtin_va_start takes the second argument as a "varargs" argument, but
374 // it doesn't actually do anything with it. It doesn't need to be non-pod
376 if (FDecl
&& FDecl
->getBuiltinID() == Builtin::BI__builtin_va_start
)
379 if (Expr
->getType()->isObjCObjectType() &&
380 DiagRuntimeBehavior(Expr
->getLocStart(),
381 PDiag(diag::err_cannot_pass_objc_interface_to_vararg
)
382 << Expr
->getType() << CT
))
385 if (!Expr
->getType()->isPODType() &&
386 DiagRuntimeBehavior(Expr
->getLocStart(),
387 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg
)
388 << Expr
->getType() << CT
))
394 /// UsualArithmeticConversions - Performs various conversions that are common to
395 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
396 /// routine returns the first non-arithmetic type found. The client is
397 /// responsible for emitting appropriate error diagnostics.
398 /// FIXME: verify the conversion rules for "complex int" are consistent with
400 QualType
Sema::UsualArithmeticConversions(Expr
*&lhsExpr
, Expr
*&rhsExpr
,
403 UsualUnaryConversions(lhsExpr
);
405 UsualUnaryConversions(rhsExpr
);
407 // For conversion purposes, we ignore any qualifiers.
408 // For example, "const float" and "float" are equivalent.
410 Context
.getCanonicalType(lhsExpr
->getType()).getUnqualifiedType();
412 Context
.getCanonicalType(rhsExpr
->getType()).getUnqualifiedType();
414 // If both types are identical, no conversion is needed.
418 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
419 // The caller can deal with this (e.g. pointer + int).
420 if (!lhs
->isArithmeticType() || !rhs
->isArithmeticType())
423 // Apply unary and bitfield promotions to the LHS's type.
424 QualType lhs_unpromoted
= lhs
;
425 if (lhs
->isPromotableIntegerType())
426 lhs
= Context
.getPromotedIntegerType(lhs
);
427 QualType LHSBitfieldPromoteTy
= Context
.isPromotableBitField(lhsExpr
);
428 if (!LHSBitfieldPromoteTy
.isNull())
429 lhs
= LHSBitfieldPromoteTy
;
430 if (lhs
!= lhs_unpromoted
&& !isCompAssign
)
431 ImpCastExprToType(lhsExpr
, lhs
, CK_IntegralCast
);
433 // If both types are identical, no conversion is needed.
437 // At this point, we have two different arithmetic types.
439 // Handle complex types first (C99 6.3.1.8p1).
440 bool LHSComplexFloat
= lhs
->isComplexType();
441 bool RHSComplexFloat
= rhs
->isComplexType();
442 if (LHSComplexFloat
|| RHSComplexFloat
) {
443 // if we have an integer operand, the result is the complex type.
445 if (!RHSComplexFloat
&& !rhs
->isRealFloatingType()) {
446 if (rhs
->isIntegerType()) {
447 QualType fp
= cast
<ComplexType
>(lhs
)->getElementType();
448 ImpCastExprToType(rhsExpr
, fp
, CK_IntegralToFloating
);
449 ImpCastExprToType(rhsExpr
, lhs
, CK_FloatingRealToComplex
);
451 assert(rhs
->isComplexIntegerType());
452 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralComplexToFloatingComplex
);
457 if (!LHSComplexFloat
&& !lhs
->isRealFloatingType()) {
459 // int -> float -> _Complex float
460 if (lhs
->isIntegerType()) {
461 QualType fp
= cast
<ComplexType
>(rhs
)->getElementType();
462 ImpCastExprToType(lhsExpr
, fp
, CK_IntegralToFloating
);
463 ImpCastExprToType(lhsExpr
, rhs
, CK_FloatingRealToComplex
);
465 assert(lhs
->isComplexIntegerType());
466 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralComplexToFloatingComplex
);
472 // This handles complex/complex, complex/float, or float/complex.
473 // When both operands are complex, the shorter operand is converted to the
474 // type of the longer, and that is the type of the result. This corresponds
475 // to what is done when combining two real floating-point operands.
476 // The fun begins when size promotion occur across type domains.
477 // From H&S 6.3.4: When one operand is complex and the other is a real
478 // floating-point type, the less precise type is converted, within it's
479 // real or complex domain, to the precision of the other type. For example,
480 // when combining a "long double" with a "double _Complex", the
481 // "double _Complex" is promoted to "long double _Complex".
482 int order
= Context
.getFloatingTypeOrder(lhs
, rhs
);
484 // If both are complex, just cast to the more precise type.
485 if (LHSComplexFloat
&& RHSComplexFloat
) {
487 // _Complex float -> _Complex double
488 ImpCastExprToType(rhsExpr
, lhs
, CK_FloatingComplexCast
);
491 } else if (order
< 0) {
492 // _Complex float -> _Complex double
494 ImpCastExprToType(lhsExpr
, rhs
, CK_FloatingComplexCast
);
500 // If just the LHS is complex, the RHS needs to be converted,
501 // and the LHS might need to be promoted.
502 if (LHSComplexFloat
) {
503 if (order
> 0) { // LHS is wider
504 // float -> _Complex double
505 QualType fp
= cast
<ComplexType
>(lhs
)->getElementType();
506 ImpCastExprToType(rhsExpr
, fp
, CK_FloatingCast
);
507 ImpCastExprToType(rhsExpr
, lhs
, CK_FloatingRealToComplex
);
511 // RHS is at least as wide. Find its corresponding complex type.
512 QualType result
= (order
== 0 ? lhs
: Context
.getComplexType(rhs
));
514 // double -> _Complex double
515 ImpCastExprToType(rhsExpr
, result
, CK_FloatingRealToComplex
);
517 // _Complex float -> _Complex double
518 if (!isCompAssign
&& order
< 0)
519 ImpCastExprToType(lhsExpr
, result
, CK_FloatingComplexCast
);
524 // Just the RHS is complex, so the LHS needs to be converted
525 // and the RHS might need to be promoted.
526 assert(RHSComplexFloat
);
528 if (order
< 0) { // RHS is wider
529 // float -> _Complex double
531 QualType fp
= cast
<ComplexType
>(rhs
)->getElementType();
532 ImpCastExprToType(lhsExpr
, fp
, CK_FloatingCast
);
533 ImpCastExprToType(lhsExpr
, rhs
, CK_FloatingRealToComplex
);
538 // LHS is at least as wide. Find its corresponding complex type.
539 QualType result
= (order
== 0 ? rhs
: Context
.getComplexType(lhs
));
541 // double -> _Complex double
543 ImpCastExprToType(lhsExpr
, result
, CK_FloatingRealToComplex
);
545 // _Complex float -> _Complex double
547 ImpCastExprToType(rhsExpr
, result
, CK_FloatingComplexCast
);
552 // Now handle "real" floating types (i.e. float, double, long double).
553 bool LHSFloat
= lhs
->isRealFloatingType();
554 bool RHSFloat
= rhs
->isRealFloatingType();
555 if (LHSFloat
|| RHSFloat
) {
556 // If we have two real floating types, convert the smaller operand
557 // to the bigger result.
558 if (LHSFloat
&& RHSFloat
) {
559 int order
= Context
.getFloatingTypeOrder(lhs
, rhs
);
561 ImpCastExprToType(rhsExpr
, lhs
, CK_FloatingCast
);
565 assert(order
< 0 && "illegal float comparison");
567 ImpCastExprToType(lhsExpr
, rhs
, CK_FloatingCast
);
571 // If we have an integer operand, the result is the real floating type.
573 if (rhs
->isIntegerType()) {
574 // Convert rhs to the lhs floating point type.
575 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralToFloating
);
579 // Convert both sides to the appropriate complex float.
580 assert(rhs
->isComplexIntegerType());
581 QualType result
= Context
.getComplexType(lhs
);
583 // _Complex int -> _Complex float
584 ImpCastExprToType(rhsExpr
, result
, CK_IntegralComplexToFloatingComplex
);
586 // float -> _Complex float
588 ImpCastExprToType(lhsExpr
, result
, CK_FloatingRealToComplex
);
594 if (lhs
->isIntegerType()) {
595 // Convert lhs to the rhs floating point type.
597 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralToFloating
);
601 // Convert both sides to the appropriate complex float.
602 assert(lhs
->isComplexIntegerType());
603 QualType result
= Context
.getComplexType(rhs
);
605 // _Complex int -> _Complex float
607 ImpCastExprToType(lhsExpr
, result
, CK_IntegralComplexToFloatingComplex
);
609 // float -> _Complex float
610 ImpCastExprToType(rhsExpr
, result
, CK_FloatingRealToComplex
);
615 // Handle GCC complex int extension.
616 // FIXME: if the operands are (int, _Complex long), we currently
617 // don't promote the complex. Also, signedness?
618 const ComplexType
*lhsComplexInt
= lhs
->getAsComplexIntegerType();
619 const ComplexType
*rhsComplexInt
= rhs
->getAsComplexIntegerType();
620 if (lhsComplexInt
&& rhsComplexInt
) {
621 int order
= Context
.getIntegerTypeOrder(lhsComplexInt
->getElementType(),
622 rhsComplexInt
->getElementType());
623 assert(order
&& "inequal types with equal element ordering");
625 // _Complex int -> _Complex long
626 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralComplexCast
);
631 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralComplexCast
);
633 } else if (lhsComplexInt
) {
634 // int -> _Complex int
635 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralRealToComplex
);
637 } else if (rhsComplexInt
) {
638 // int -> _Complex int
640 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralRealToComplex
);
644 // Finally, we have two differing integer types.
645 // The rules for this case are in C99 6.3.1.8
646 int compare
= Context
.getIntegerTypeOrder(lhs
, rhs
);
647 bool lhsSigned
= lhs
->hasSignedIntegerRepresentation(),
648 rhsSigned
= rhs
->hasSignedIntegerRepresentation();
649 if (lhsSigned
== rhsSigned
) {
650 // Same signedness; use the higher-ranked type
652 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralCast
);
654 } else if (!isCompAssign
)
655 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralCast
);
657 } else if (compare
!= (lhsSigned
? 1 : -1)) {
658 // The unsigned type has greater than or equal rank to the
659 // signed type, so use the unsigned type
661 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralCast
);
663 } else if (!isCompAssign
)
664 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralCast
);
666 } else if (Context
.getIntWidth(lhs
) != Context
.getIntWidth(rhs
)) {
667 // The two types are different widths; if we are here, that
668 // means the signed type is larger than the unsigned type, so
669 // use the signed type.
671 ImpCastExprToType(rhsExpr
, lhs
, CK_IntegralCast
);
673 } else if (!isCompAssign
)
674 ImpCastExprToType(lhsExpr
, rhs
, CK_IntegralCast
);
677 // The signed type is higher-ranked than the unsigned type,
678 // but isn't actually any bigger (like unsigned int and long
679 // on most 32-bit systems). Use the unsigned type corresponding
680 // to the signed type.
682 Context
.getCorrespondingUnsignedType(lhsSigned
? lhs
: rhs
);
683 ImpCastExprToType(rhsExpr
, result
, CK_IntegralCast
);
685 ImpCastExprToType(lhsExpr
, result
, CK_IntegralCast
);
690 //===----------------------------------------------------------------------===//
691 // Semantic Analysis for various Expression Types
692 //===----------------------------------------------------------------------===//
695 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
696 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
697 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
698 /// multiple tokens. However, the common case is that StringToks points to one
702 Sema::ActOnStringLiteral(const Token
*StringToks
, unsigned NumStringToks
) {
703 assert(NumStringToks
&& "Must have at least one string!");
705 StringLiteralParser
Literal(StringToks
, NumStringToks
, PP
);
706 if (Literal
.hadError
)
709 llvm::SmallVector
<SourceLocation
, 4> StringTokLocs
;
710 for (unsigned i
= 0; i
!= NumStringToks
; ++i
)
711 StringTokLocs
.push_back(StringToks
[i
].getLocation());
713 QualType StrTy
= Context
.CharTy
;
714 if (Literal
.AnyWide
) StrTy
= Context
.getWCharType();
715 if (Literal
.Pascal
) StrTy
= Context
.UnsignedCharTy
;
717 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
718 if (getLangOptions().CPlusPlus
|| getLangOptions().ConstStrings
)
721 // Get an array type for the string, according to C99 6.4.5. This includes
722 // the nul terminator character as well as the string length for pascal
724 StrTy
= Context
.getConstantArrayType(StrTy
,
725 llvm::APInt(32, Literal
.GetNumStringChars()+1),
726 ArrayType::Normal
, 0);
728 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
729 return Owned(StringLiteral::Create(Context
, Literal
.GetString(),
730 Literal
.GetStringLength(),
731 Literal
.AnyWide
, StrTy
,
733 StringTokLocs
.size()));
737 /// No capture is required.
740 /// A capture is required.
743 /// A by-ref capture is required.
746 /// An error occurred when trying to capture the given variable.
750 /// Diagnose an uncapturable value reference.
752 /// \param var - the variable referenced
753 /// \param DC - the context which we couldn't capture through
755 diagnoseUncapturableValueReference(Sema
&S
, SourceLocation loc
,
756 VarDecl
*var
, DeclContext
*DC
) {
757 switch (S
.ExprEvalContexts
.back().Context
) {
758 case Sema::Unevaluated
:
759 // The argument will never be evaluated, so don't complain.
762 case Sema::PotentiallyEvaluated
:
763 case Sema::PotentiallyEvaluatedIfUsed
:
766 case Sema::PotentiallyPotentiallyEvaluated
:
767 // FIXME: delay these!
771 // Don't diagnose about capture if we're not actually in code right
772 // now; in general, there are more appropriate places that will
774 if (!S
.CurContext
->isFunctionOrMethod()) return CR_NoCapture
;
776 // This particular madness can happen in ill-formed default
777 // arguments; claim it's okay and let downstream code handle it.
778 if (isa
<ParmVarDecl
>(var
) &&
779 S
.CurContext
== var
->getDeclContext()->getParent())
782 DeclarationName functionName
;
783 if (FunctionDecl
*fn
= dyn_cast
<FunctionDecl
>(var
->getDeclContext()))
784 functionName
= fn
->getDeclName();
785 // FIXME: variable from enclosing block that we couldn't capture from!
787 S
.Diag(loc
, diag::err_reference_to_local_var_in_enclosing_function
)
788 << var
->getIdentifier() << functionName
;
789 S
.Diag(var
->getLocation(), diag::note_local_variable_declared_here
)
790 << var
->getIdentifier();
795 /// There is a well-formed capture at a particular scope level;
796 /// propagate it through all the nested blocks.
797 static CaptureResult
propagateCapture(Sema
&S
, unsigned validScopeIndex
,
798 const BlockDecl::Capture
&capture
) {
799 VarDecl
*var
= capture
.getVariable();
801 // Update all the inner blocks with the capture information.
802 for (unsigned i
= validScopeIndex
+ 1, e
= S
.FunctionScopes
.size();
804 BlockScopeInfo
*innerBlock
= cast
<BlockScopeInfo
>(S
.FunctionScopes
[i
]);
805 innerBlock
->Captures
.push_back(
806 BlockDecl::Capture(capture
.getVariable(), capture
.isByRef(),
807 /*nested*/ true, capture
.getCopyExpr()));
808 innerBlock
->CaptureMap
[var
] = innerBlock
->Captures
.size(); // +1
811 return capture
.isByRef() ? CR_CaptureByRef
: CR_Capture
;
814 /// shouldCaptureValueReference - Determine if a reference to the
815 /// given value in the current context requires a variable capture.
817 /// This also keeps the captures set in the BlockScopeInfo records
819 static CaptureResult
shouldCaptureValueReference(Sema
&S
, SourceLocation loc
,
821 // Only variables ever require capture.
822 VarDecl
*var
= dyn_cast
<VarDecl
>(value
);
823 if (!var
) return CR_NoCapture
;
825 // Fast path: variables from the current context never require capture.
826 DeclContext
*DC
= S
.CurContext
;
827 if (var
->getDeclContext() == DC
) return CR_NoCapture
;
829 // Only variables with local storage require capture.
830 // FIXME: What about 'const' variables in C++?
831 if (!var
->hasLocalStorage()) return CR_NoCapture
;
833 // Otherwise, we need to capture.
835 unsigned functionScopesIndex
= S
.FunctionScopes
.size() - 1;
837 // Only blocks (and eventually C++0x closures) can capture; other
838 // scopes don't work.
839 if (!isa
<BlockDecl
>(DC
))
840 return diagnoseUncapturableValueReference(S
, loc
, var
, DC
);
842 BlockScopeInfo
*blockScope
=
843 cast
<BlockScopeInfo
>(S
.FunctionScopes
[functionScopesIndex
]);
844 assert(blockScope
->TheDecl
== static_cast<BlockDecl
*>(DC
));
846 // Check whether we've already captured it in this block. If so,
848 if (unsigned indexPlus1
= blockScope
->CaptureMap
[var
])
849 return propagateCapture(S
, functionScopesIndex
,
850 blockScope
->Captures
[indexPlus1
- 1]);
852 functionScopesIndex
--;
853 DC
= cast
<BlockDecl
>(DC
)->getDeclContext();
854 } while (var
->getDeclContext() != DC
);
856 // Okay, we descended all the way to the block that defines the variable.
857 // Actually try to capture it.
858 QualType type
= var
->getType();
860 // Prohibit variably-modified types.
861 if (type
->isVariablyModifiedType()) {
862 S
.Diag(loc
, diag::err_ref_vm_type
);
863 S
.Diag(var
->getLocation(), diag::note_declared_at
);
867 // Prohibit arrays, even in __block variables, but not references to
869 if (type
->isArrayType()) {
870 S
.Diag(loc
, diag::err_ref_array_type
);
871 S
.Diag(var
->getLocation(), diag::note_declared_at
);
875 S
.MarkDeclarationReferenced(loc
, var
);
877 // The BlocksAttr indicates the variable is bound by-reference.
878 bool byRef
= var
->hasAttr
<BlocksAttr
>();
880 // Build a copy expression.
882 if (!byRef
&& S
.getLangOptions().CPlusPlus
&&
883 !type
->isDependentType() && type
->isStructureOrClassType()) {
884 // According to the blocks spec, the capture of a variable from
885 // the stack requires a const copy constructor. This is not true
886 // of the copy/move done to move a __block variable to the heap.
889 Expr
*declRef
= new (S
.Context
) DeclRefExpr(var
, type
, VK_LValue
, loc
);
891 S
.PerformCopyInitialization(
892 InitializedEntity::InitializeBlock(var
->getLocation(),
894 loc
, S
.Owned(declRef
));
896 // Build a full-expression copy expression if initialization
897 // succeeded and used a non-trivial constructor. Recover from
898 // errors by pretending that the copy isn't necessary.
899 if (!result
.isInvalid() &&
900 !cast
<CXXConstructExpr
>(result
.get())->getConstructor()->isTrivial()) {
901 result
= S
.MaybeCreateExprWithCleanups(result
);
902 copyExpr
= result
.take();
906 // We're currently at the declarer; go back to the closure.
907 functionScopesIndex
++;
908 BlockScopeInfo
*blockScope
=
909 cast
<BlockScopeInfo
>(S
.FunctionScopes
[functionScopesIndex
]);
911 // Build a valid capture in this scope.
912 blockScope
->Captures
.push_back(
913 BlockDecl::Capture(var
, byRef
, /*nested*/ false, copyExpr
));
914 blockScope
->CaptureMap
[var
] = blockScope
->Captures
.size(); // +1
916 // Propagate that to inner captures if necessary.
917 return propagateCapture(S
, functionScopesIndex
,
918 blockScope
->Captures
.back());
921 static ExprResult
BuildBlockDeclRefExpr(Sema
&S
, ValueDecl
*vd
,
922 const DeclarationNameInfo
&NameInfo
,
924 assert(isa
<VarDecl
>(vd
) && "capturing non-variable");
926 VarDecl
*var
= cast
<VarDecl
>(vd
);
927 assert(var
->hasLocalStorage() && "capturing non-local");
928 assert(byRef
== var
->hasAttr
<BlocksAttr
>() && "byref set wrong");
930 QualType exprType
= var
->getType().getNonReferenceType();
932 BlockDeclRefExpr
*BDRE
;
934 // The variable will be bound by copy; make it const within the
935 // closure, but record that this was done in the expression.
936 bool constAdded
= !exprType
.isConstQualified();
939 BDRE
= new (S
.Context
) BlockDeclRefExpr(var
, exprType
, VK_LValue
,
940 NameInfo
.getLoc(), false,
943 BDRE
= new (S
.Context
) BlockDeclRefExpr(var
, exprType
, VK_LValue
,
944 NameInfo
.getLoc(), true);
947 return S
.Owned(BDRE
);
951 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
953 const CXXScopeSpec
*SS
) {
954 DeclarationNameInfo
NameInfo(D
->getDeclName(), Loc
);
955 return BuildDeclRefExpr(D
, Ty
, VK
, NameInfo
, SS
);
958 /// BuildDeclRefExpr - Build an expression that references a
959 /// declaration that does not require a closure capture.
961 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
962 const DeclarationNameInfo
&NameInfo
,
963 const CXXScopeSpec
*SS
) {
964 if (Ty
== Context
.UndeducedAutoTy
) {
965 Diag(NameInfo
.getLoc(),
966 diag::err_auto_variable_cannot_appear_in_own_initializer
)
971 MarkDeclarationReferenced(NameInfo
.getLoc(), D
);
973 Expr
*E
= DeclRefExpr::Create(Context
,
974 SS
? (NestedNameSpecifier
*)SS
->getScopeRep() : 0,
975 SS
? SS
->getRange() : SourceRange(),
976 D
, NameInfo
, Ty
, VK
);
978 // Just in case we're building an illegal pointer-to-member.
979 if (isa
<FieldDecl
>(D
) && cast
<FieldDecl
>(D
)->getBitWidth())
980 E
->setObjectKind(OK_BitField
);
986 BuildFieldReferenceExpr(Sema
&S
, Expr
*BaseExpr
, bool IsArrow
,
987 const CXXScopeSpec
&SS
, FieldDecl
*Field
,
988 DeclAccessPair FoundDecl
,
989 const DeclarationNameInfo
&MemberNameInfo
);
992 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec
&SS
,
994 IndirectFieldDecl
*indirectField
,
995 Expr
*baseObjectExpr
,
996 SourceLocation opLoc
) {
997 // First, build the expression that refers to the base object.
999 bool baseObjectIsPointer
= false;
1000 Qualifiers baseQuals
;
1002 // Case 1: the base of the indirect field is not a field.
1003 VarDecl
*baseVariable
= indirectField
->getVarDecl();
1005 assert(baseVariable
->getType()->isRecordType());
1007 // In principle we could have a member access expression that
1008 // accesses an anonymous struct/union that's a static member of
1009 // the base object's class. However, under the current standard,
1010 // static data members cannot be anonymous structs or unions.
1011 // Supporting this is as easy as building a MemberExpr here.
1012 assert(!baseObjectExpr
&& "anonymous struct/union is static data member?");
1014 DeclarationNameInfo
baseNameInfo(DeclarationName(), loc
);
1017 BuildDeclarationNameExpr(SS
, baseNameInfo
, baseVariable
);
1018 if (result
.isInvalid()) return ExprError();
1020 baseObjectExpr
= result
.take();
1021 baseObjectIsPointer
= false;
1022 baseQuals
= baseObjectExpr
->getType().getQualifiers();
1024 // Case 2: the base of the indirect field is a field and the user
1025 // wrote a member expression.
1026 } else if (baseObjectExpr
) {
1027 // The caller provided the base object expression. Determine
1028 // whether its a pointer and whether it adds any qualifiers to the
1029 // anonymous struct/union fields we're looking into.
1030 QualType objectType
= baseObjectExpr
->getType();
1032 if (const PointerType
*ptr
= objectType
->getAs
<PointerType
>()) {
1033 baseObjectIsPointer
= true;
1034 objectType
= ptr
->getPointeeType();
1036 baseObjectIsPointer
= false;
1038 baseQuals
= objectType
.getQualifiers();
1040 // Case 3: the base of the indirect field is a field and we should
1041 // build an implicit member access.
1043 // We've found a member of an anonymous struct/union that is
1044 // inside a non-anonymous struct/union, so in a well-formed
1045 // program our base object expression is "this".
1046 CXXMethodDecl
*method
= tryCaptureCXXThis();
1048 Diag(loc
, diag::err_invalid_member_use_in_static_method
)
1049 << indirectField
->getDeclName();
1053 // Our base object expression is "this".
1055 new (Context
) CXXThisExpr(loc
, method
->getThisType(Context
),
1056 /*isImplicit=*/ true);
1057 baseObjectIsPointer
= true;
1058 baseQuals
= Qualifiers::fromCVRMask(method
->getTypeQualifiers());
1061 // Build the implicit member references to the field of the
1062 // anonymous struct/union.
1063 Expr
*result
= baseObjectExpr
;
1064 IndirectFieldDecl::chain_iterator
1065 FI
= indirectField
->chain_begin(), FEnd
= indirectField
->chain_end();
1067 // Build the first member access in the chain with full information.
1068 if (!baseVariable
) {
1069 FieldDecl
*field
= cast
<FieldDecl
>(*FI
);
1071 // FIXME: use the real found-decl info!
1072 DeclAccessPair foundDecl
= DeclAccessPair::make(field
, field
->getAccess());
1074 // Make a nameInfo that properly uses the anonymous name.
1075 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
1077 result
= BuildFieldReferenceExpr(*this, result
, baseObjectIsPointer
,
1078 SS
, field
, foundDecl
,
1079 memberNameInfo
).take();
1080 baseObjectIsPointer
= false;
1082 // FIXME: check qualified member access
1085 // In all cases, we should now skip the first declaration in the chain.
1088 for (; FI
!= FEnd
; FI
++) {
1089 FieldDecl
*field
= cast
<FieldDecl
>(*FI
);
1091 // FIXME: these are somewhat meaningless
1092 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
1093 DeclAccessPair foundDecl
= DeclAccessPair::make(field
, field
->getAccess());
1094 CXXScopeSpec memberSS
;
1096 result
= BuildFieldReferenceExpr(*this, result
, /*isarrow*/ false,
1097 memberSS
, field
, foundDecl
, memberNameInfo
)
1101 return Owned(result
);
1104 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1105 /// possibly a list of template arguments.
1107 /// If this produces template arguments, it is permitted to call
1108 /// DecomposeTemplateName.
1110 /// This actually loses a lot of source location information for
1111 /// non-standard name kinds; we should consider preserving that in
1113 static void DecomposeUnqualifiedId(Sema
&SemaRef
,
1114 const UnqualifiedId
&Id
,
1115 TemplateArgumentListInfo
&Buffer
,
1116 DeclarationNameInfo
&NameInfo
,
1117 const TemplateArgumentListInfo
*&TemplateArgs
) {
1118 if (Id
.getKind() == UnqualifiedId::IK_TemplateId
) {
1119 Buffer
.setLAngleLoc(Id
.TemplateId
->LAngleLoc
);
1120 Buffer
.setRAngleLoc(Id
.TemplateId
->RAngleLoc
);
1122 ASTTemplateArgsPtr
TemplateArgsPtr(SemaRef
,
1123 Id
.TemplateId
->getTemplateArgs(),
1124 Id
.TemplateId
->NumArgs
);
1125 SemaRef
.translateTemplateArguments(TemplateArgsPtr
, Buffer
);
1126 TemplateArgsPtr
.release();
1128 TemplateName TName
= Id
.TemplateId
->Template
.get();
1129 SourceLocation TNameLoc
= Id
.TemplateId
->TemplateNameLoc
;
1130 NameInfo
= SemaRef
.Context
.getNameForTemplate(TName
, TNameLoc
);
1131 TemplateArgs
= &Buffer
;
1133 NameInfo
= SemaRef
.GetNameFromUnqualifiedId(Id
);
1138 /// Determines if the given class is provably not derived from all of
1139 /// the prospective base classes.
1140 static bool IsProvablyNotDerivedFrom(Sema
&SemaRef
,
1141 CXXRecordDecl
*Record
,
1142 const llvm::SmallPtrSet
<CXXRecordDecl
*, 4> &Bases
) {
1143 if (Bases
.count(Record
->getCanonicalDecl()))
1146 RecordDecl
*RD
= Record
->getDefinition();
1147 if (!RD
) return false;
1148 Record
= cast
<CXXRecordDecl
>(RD
);
1150 for (CXXRecordDecl::base_class_iterator I
= Record
->bases_begin(),
1151 E
= Record
->bases_end(); I
!= E
; ++I
) {
1152 CanQualType BaseT
= SemaRef
.Context
.getCanonicalType((*I
).getType());
1153 CanQual
<RecordType
> BaseRT
= BaseT
->getAs
<RecordType
>();
1154 if (!BaseRT
) return false;
1156 CXXRecordDecl
*BaseRecord
= cast
<CXXRecordDecl
>(BaseRT
->getDecl());
1157 if (!IsProvablyNotDerivedFrom(SemaRef
, BaseRecord
, Bases
))
1165 /// The reference is definitely not an instance member access.
1168 /// The reference may be an implicit instance member access.
1171 /// The reference may be to an instance member, but it is invalid if
1172 /// so, because the context is not an instance method.
1173 IMA_Mixed_StaticContext
,
1175 /// The reference may be to an instance member, but it is invalid if
1176 /// so, because the context is from an unrelated class.
1177 IMA_Mixed_Unrelated
,
1179 /// The reference is definitely an implicit instance member access.
1182 /// The reference may be to an unresolved using declaration.
1185 /// The reference may be to an unresolved using declaration and the
1186 /// context is not an instance method.
1187 IMA_Unresolved_StaticContext
,
1189 /// All possible referrents are instance members and the current
1190 /// context is not an instance method.
1191 IMA_Error_StaticContext
,
1193 /// All possible referrents are instance members of an unrelated
1198 /// The given lookup names class member(s) and is not being used for
1199 /// an address-of-member expression. Classify the type of access
1200 /// according to whether it's possible that this reference names an
1201 /// instance member. This is best-effort; it is okay to
1202 /// conservatively answer "yes", in which case some errors will simply
1203 /// not be caught until template-instantiation.
1204 static IMAKind
ClassifyImplicitMemberAccess(Sema
&SemaRef
,
1205 const LookupResult
&R
) {
1206 assert(!R
.empty() && (*R
.begin())->isCXXClassMember());
1208 DeclContext
*DC
= SemaRef
.getFunctionLevelDeclContext();
1209 bool isStaticContext
=
1210 (!isa
<CXXMethodDecl
>(DC
) ||
1211 cast
<CXXMethodDecl
>(DC
)->isStatic());
1213 if (R
.isUnresolvableResult())
1214 return isStaticContext
? IMA_Unresolved_StaticContext
: IMA_Unresolved
;
1216 // Collect all the declaring classes of instance members we find.
1217 bool hasNonInstance
= false;
1218 bool hasField
= false;
1219 llvm::SmallPtrSet
<CXXRecordDecl
*, 4> Classes
;
1220 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
1223 if (D
->isCXXInstanceMember()) {
1224 if (dyn_cast
<FieldDecl
>(D
))
1227 CXXRecordDecl
*R
= cast
<CXXRecordDecl
>(D
->getDeclContext());
1228 Classes
.insert(R
->getCanonicalDecl());
1231 hasNonInstance
= true;
1234 // If we didn't find any instance members, it can't be an implicit
1235 // member reference.
1236 if (Classes
.empty())
1239 // If the current context is not an instance method, it can't be
1240 // an implicit member reference.
1241 if (isStaticContext
) {
1243 return IMA_Mixed_StaticContext
;
1245 if (SemaRef
.getLangOptions().CPlusPlus0x
&& hasField
) {
1246 // C++0x [expr.prim.general]p10:
1247 // An id-expression that denotes a non-static data member or non-static
1248 // member function of a class can only be used:
1250 // - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
1251 const Sema::ExpressionEvaluationContextRecord
& record
= SemaRef
.ExprEvalContexts
.back();
1252 bool isUnevaluatedExpression
= record
.Context
== Sema::Unevaluated
;
1253 if (isUnevaluatedExpression
)
1254 return IMA_Mixed_StaticContext
;
1257 return IMA_Error_StaticContext
;
1260 // If we can prove that the current context is unrelated to all the
1261 // declaring classes, it can't be an implicit member reference (in
1262 // which case it's an error if any of those members are selected).
1263 if (IsProvablyNotDerivedFrom(SemaRef
,
1264 cast
<CXXMethodDecl
>(DC
)->getParent(),
1266 return (hasNonInstance
? IMA_Mixed_Unrelated
: IMA_Error_Unrelated
);
1268 return (hasNonInstance
? IMA_Mixed
: IMA_Instance
);
1271 /// Diagnose a reference to a field with no object available.
1272 static void DiagnoseInstanceReference(Sema
&SemaRef
,
1273 const CXXScopeSpec
&SS
,
1275 const DeclarationNameInfo
&nameInfo
) {
1276 SourceLocation Loc
= nameInfo
.getLoc();
1277 SourceRange
Range(Loc
);
1278 if (SS
.isSet()) Range
.setBegin(SS
.getRange().getBegin());
1280 if (isa
<FieldDecl
>(rep
) || isa
<IndirectFieldDecl
>(rep
)) {
1281 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(SemaRef
.CurContext
)) {
1282 if (MD
->isStatic()) {
1283 // "invalid use of member 'x' in static member function"
1284 SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_static_method
)
1285 << Range
<< nameInfo
.getName();
1290 SemaRef
.Diag(Loc
, diag::err_invalid_non_static_member_use
)
1291 << nameInfo
.getName() << Range
;
1295 SemaRef
.Diag(Loc
, diag::err_member_call_without_object
) << Range
;
1298 /// Diagnose an empty lookup.
1300 /// \return false if new lookup candidates were found
1301 bool Sema::DiagnoseEmptyLookup(Scope
*S
, CXXScopeSpec
&SS
, LookupResult
&R
,
1302 CorrectTypoContext CTC
) {
1303 DeclarationName Name
= R
.getLookupName();
1305 unsigned diagnostic
= diag::err_undeclared_var_use
;
1306 unsigned diagnostic_suggest
= diag::err_undeclared_var_use_suggest
;
1307 if (Name
.getNameKind() == DeclarationName::CXXOperatorName
||
1308 Name
.getNameKind() == DeclarationName::CXXLiteralOperatorName
||
1309 Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
1310 diagnostic
= diag::err_undeclared_use
;
1311 diagnostic_suggest
= diag::err_undeclared_use_suggest
;
1314 // If the original lookup was an unqualified lookup, fake an
1315 // unqualified lookup. This is useful when (for example) the
1316 // original lookup would not have found something because it was a
1318 for (DeclContext
*DC
= SS
.isEmpty() ? CurContext
: 0;
1319 DC
; DC
= DC
->getParent()) {
1320 if (isa
<CXXRecordDecl
>(DC
)) {
1321 LookupQualifiedName(R
, DC
);
1324 // Don't give errors about ambiguities in this lookup.
1325 R
.suppressDiagnostics();
1327 CXXMethodDecl
*CurMethod
= dyn_cast
<CXXMethodDecl
>(CurContext
);
1328 bool isInstance
= CurMethod
&&
1329 CurMethod
->isInstance() &&
1330 DC
== CurMethod
->getParent();
1332 // Give a code modification hint to insert 'this->'.
1333 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1334 // Actually quite difficult!
1336 UnresolvedLookupExpr
*ULE
= cast
<UnresolvedLookupExpr
>(
1337 CallsUndergoingInstantiation
.back()->getCallee());
1338 CXXMethodDecl
*DepMethod
= cast_or_null
<CXXMethodDecl
>(
1339 CurMethod
->getInstantiatedFromMemberFunction());
1341 Diag(R
.getNameLoc(), diagnostic
) << Name
1342 << FixItHint::CreateInsertion(R
.getNameLoc(), "this->");
1343 QualType DepThisType
= DepMethod
->getThisType(Context
);
1344 CXXThisExpr
*DepThis
= new (Context
) CXXThisExpr(
1345 R
.getNameLoc(), DepThisType
, false);
1346 TemplateArgumentListInfo TList
;
1347 if (ULE
->hasExplicitTemplateArgs())
1348 ULE
->copyTemplateArgumentsInto(TList
);
1349 CXXDependentScopeMemberExpr
*DepExpr
=
1350 CXXDependentScopeMemberExpr::Create(
1351 Context
, DepThis
, DepThisType
, true, SourceLocation(),
1352 ULE
->getQualifier(), ULE
->getQualifierRange(), NULL
,
1353 R
.getLookupNameInfo(), &TList
);
1354 CallsUndergoingInstantiation
.back()->setCallee(DepExpr
);
1356 // FIXME: we should be able to handle this case too. It is correct
1357 // to add this-> here. This is a workaround for PR7947.
1358 Diag(R
.getNameLoc(), diagnostic
) << Name
;
1361 Diag(R
.getNameLoc(), diagnostic
) << Name
;
1364 // Do we really want to note all of these?
1365 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
)
1366 Diag((*I
)->getLocation(), diag::note_dependent_var_use
);
1368 // Tell the callee to try to recover.
1376 // We didn't find anything, so try to correct for a typo.
1377 DeclarationName Corrected
;
1378 if (S
&& (Corrected
= CorrectTypo(R
, S
, &SS
, 0, false, CTC
))) {
1380 if (isa
<ValueDecl
>(*R
.begin()) || isa
<FunctionTemplateDecl
>(*R
.begin())) {
1382 Diag(R
.getNameLoc(), diagnostic_suggest
) << Name
<< R
.getLookupName()
1383 << FixItHint::CreateReplacement(R
.getNameLoc(),
1384 R
.getLookupName().getAsString());
1386 Diag(R
.getNameLoc(), diag::err_no_member_suggest
)
1387 << Name
<< computeDeclContext(SS
, false) << R
.getLookupName()
1389 << FixItHint::CreateReplacement(R
.getNameLoc(),
1390 R
.getLookupName().getAsString());
1391 if (NamedDecl
*ND
= R
.getAsSingle
<NamedDecl
>())
1392 Diag(ND
->getLocation(), diag::note_previous_decl
)
1393 << ND
->getDeclName();
1395 // Tell the callee to try to recover.
1399 if (isa
<TypeDecl
>(*R
.begin()) || isa
<ObjCInterfaceDecl
>(*R
.begin())) {
1400 // FIXME: If we ended up with a typo for a type name or
1401 // Objective-C class name, we're in trouble because the parser
1402 // is in the wrong place to recover. Suggest the typo
1403 // correction, but don't make it a fix-it since we're not going
1404 // to recover well anyway.
1406 Diag(R
.getNameLoc(), diagnostic_suggest
) << Name
<< R
.getLookupName();
1408 Diag(R
.getNameLoc(), diag::err_no_member_suggest
)
1409 << Name
<< computeDeclContext(SS
, false) << R
.getLookupName()
1412 // Don't try to recover; it won't work.
1416 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1417 // because we aren't able to recover.
1419 Diag(R
.getNameLoc(), diagnostic_suggest
) << Name
<< Corrected
;
1421 Diag(R
.getNameLoc(), diag::err_no_member_suggest
)
1422 << Name
<< computeDeclContext(SS
, false) << Corrected
1429 // Emit a special diagnostic for failed member lookups.
1430 // FIXME: computing the declaration context might fail here (?)
1431 if (!SS
.isEmpty()) {
1432 Diag(R
.getNameLoc(), diag::err_no_member
)
1433 << Name
<< computeDeclContext(SS
, false)
1438 // Give up, we can't recover.
1439 Diag(R
.getNameLoc(), diagnostic
) << Name
;
1443 ObjCPropertyDecl
*Sema::canSynthesizeProvisionalIvar(IdentifierInfo
*II
) {
1444 ObjCMethodDecl
*CurMeth
= getCurMethodDecl();
1445 ObjCInterfaceDecl
*IDecl
= CurMeth
->getClassInterface();
1448 ObjCImplementationDecl
*ClassImpDecl
= IDecl
->getImplementation();
1451 ObjCPropertyDecl
*property
= LookupPropertyDecl(IDecl
, II
);
1454 if (ObjCPropertyImplDecl
*PIDecl
= ClassImpDecl
->FindPropertyImplDecl(II
))
1455 if (PIDecl
->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic
||
1456 PIDecl
->getPropertyIvarDecl())
1461 bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl
*Property
) {
1462 ObjCMethodDecl
*CurMeth
= getCurMethodDecl();
1463 ObjCInterfaceDecl
*IDecl
= CurMeth
->getClassInterface();
1466 ObjCImplementationDecl
*ClassImpDecl
= IDecl
->getImplementation();
1469 if (ObjCPropertyImplDecl
*PIDecl
1470 = ClassImpDecl
->FindPropertyImplDecl(Property
->getIdentifier()))
1471 if (PIDecl
->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic
||
1472 PIDecl
->getPropertyIvarDecl())
1478 static ObjCIvarDecl
*SynthesizeProvisionalIvar(Sema
&SemaRef
,
1479 LookupResult
&Lookup
,
1481 SourceLocation NameLoc
) {
1482 ObjCMethodDecl
*CurMeth
= SemaRef
.getCurMethodDecl();
1485 LookForIvars
= true;
1486 else if (CurMeth
->isClassMethod())
1487 LookForIvars
= false;
1489 LookForIvars
= (Lookup
.isSingleResult() &&
1490 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
1491 (Lookup
.getAsSingle
<VarDecl
>() != 0));
1495 ObjCInterfaceDecl
*IDecl
= CurMeth
->getClassInterface();
1498 ObjCImplementationDecl
*ClassImpDecl
= IDecl
->getImplementation();
1501 bool DynamicImplSeen
= false;
1502 ObjCPropertyDecl
*property
= SemaRef
.LookupPropertyDecl(IDecl
, II
);
1505 if (ObjCPropertyImplDecl
*PIDecl
= ClassImpDecl
->FindPropertyImplDecl(II
)) {
1507 (PIDecl
->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic
);
1508 // property implementation has a designated ivar. No need to assume a new
1510 if (!DynamicImplSeen
&& PIDecl
->getPropertyIvarDecl())
1513 if (!DynamicImplSeen
) {
1514 QualType PropType
= SemaRef
.Context
.getCanonicalType(property
->getType());
1515 ObjCIvarDecl
*Ivar
= ObjCIvarDecl::Create(SemaRef
.Context
, ClassImpDecl
,
1517 II
, PropType
, /*Dinfo=*/0,
1518 ObjCIvarDecl::Private
,
1520 ClassImpDecl
->addDecl(Ivar
);
1521 IDecl
->makeDeclVisibleInContext(Ivar
, false);
1522 property
->setPropertyIvarDecl(Ivar
);
1528 ExprResult
Sema::ActOnIdExpression(Scope
*S
,
1531 bool HasTrailingLParen
,
1532 bool isAddressOfOperand
) {
1533 assert(!(isAddressOfOperand
&& HasTrailingLParen
) &&
1534 "cannot be direct & operand and have a trailing lparen");
1539 TemplateArgumentListInfo TemplateArgsBuffer
;
1541 // Decompose the UnqualifiedId into the following data.
1542 DeclarationNameInfo NameInfo
;
1543 const TemplateArgumentListInfo
*TemplateArgs
;
1544 DecomposeUnqualifiedId(*this, Id
, TemplateArgsBuffer
, NameInfo
, TemplateArgs
);
1546 DeclarationName Name
= NameInfo
.getName();
1547 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
1548 SourceLocation NameLoc
= NameInfo
.getLoc();
1550 // C++ [temp.dep.expr]p3:
1551 // An id-expression is type-dependent if it contains:
1552 // -- an identifier that was declared with a dependent type,
1553 // (note: handled after lookup)
1554 // -- a template-id that is dependent,
1555 // (note: handled in BuildTemplateIdExpr)
1556 // -- a conversion-function-id that specifies a dependent type,
1557 // -- a nested-name-specifier that contains a class-name that
1558 // names a dependent type.
1559 // Determine whether this is a member of an unknown specialization;
1560 // we need to handle these differently.
1561 bool DependentID
= false;
1562 if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
&&
1563 Name
.getCXXNameType()->isDependentType()) {
1565 } else if (SS
.isSet()) {
1566 DeclContext
*DC
= computeDeclContext(SS
, false);
1568 if (RequireCompleteDeclContext(SS
, DC
))
1576 return ActOnDependentIdExpression(SS
, NameInfo
, isAddressOfOperand
,
1579 bool IvarLookupFollowUp
= false;
1580 // Perform the required lookup.
1581 LookupResult
R(*this, NameInfo
, LookupOrdinaryName
);
1583 // Lookup the template name again to correctly establish the context in
1584 // which it was found. This is really unfortunate as we already did the
1585 // lookup to determine that it was a template name in the first place. If
1586 // this becomes a performance hit, we can work harder to preserve those
1587 // results until we get here but it's likely not worth it.
1588 bool MemberOfUnknownSpecialization
;
1589 LookupTemplateName(R
, S
, SS
, QualType(), /*EnteringContext=*/false,
1590 MemberOfUnknownSpecialization
);
1592 if (MemberOfUnknownSpecialization
||
1593 (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
))
1594 return ActOnDependentIdExpression(SS
, NameInfo
, isAddressOfOperand
,
1597 IvarLookupFollowUp
= (!SS
.isSet() && II
&& getCurMethodDecl());
1598 LookupParsedName(R
, S
, &SS
, !IvarLookupFollowUp
);
1600 // If the result might be in a dependent base class, this is a dependent
1602 if (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
)
1603 return ActOnDependentIdExpression(SS
, NameInfo
, isAddressOfOperand
,
1606 // If this reference is in an Objective-C method, then we need to do
1607 // some special Objective-C lookup, too.
1608 if (IvarLookupFollowUp
) {
1609 ExprResult
E(LookupInObjCMethod(R
, S
, II
, true));
1613 Expr
*Ex
= E
.takeAs
<Expr
>();
1614 if (Ex
) return Owned(Ex
);
1615 // Synthesize ivars lazily
1616 if (getLangOptions().ObjCDefaultSynthProperties
&&
1617 getLangOptions().ObjCNonFragileABI2
) {
1618 if (SynthesizeProvisionalIvar(*this, R
, II
, NameLoc
)) {
1619 if (const ObjCPropertyDecl
*Property
=
1620 canSynthesizeProvisionalIvar(II
)) {
1621 Diag(NameLoc
, diag::warn_synthesized_ivar_access
) << II
;
1622 Diag(Property
->getLocation(), diag::note_property_declare
);
1624 return ActOnIdExpression(S
, SS
, Id
, HasTrailingLParen
,
1625 isAddressOfOperand
);
1628 // for further use, this must be set to false if in class method.
1629 IvarLookupFollowUp
= getCurMethodDecl()->isInstanceMethod();
1633 if (R
.isAmbiguous())
1636 // Determine whether this name might be a candidate for
1637 // argument-dependent lookup.
1638 bool ADL
= UseArgumentDependentLookup(SS
, R
, HasTrailingLParen
);
1640 if (R
.empty() && !ADL
) {
1641 // Otherwise, this could be an implicitly declared function reference (legal
1642 // in C90, extension in C99, forbidden in C++).
1643 if (HasTrailingLParen
&& II
&& !getLangOptions().CPlusPlus
) {
1644 NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *II
, S
);
1645 if (D
) R
.addDecl(D
);
1648 // If this name wasn't predeclared and if this is not a function
1649 // call, diagnose the problem.
1651 if (DiagnoseEmptyLookup(S
, SS
, R
, CTC_Unknown
))
1654 assert(!R
.empty() &&
1655 "DiagnoseEmptyLookup returned false but added no results");
1657 // If we found an Objective-C instance variable, let
1658 // LookupInObjCMethod build the appropriate expression to
1659 // reference the ivar.
1660 if (ObjCIvarDecl
*Ivar
= R
.getAsSingle
<ObjCIvarDecl
>()) {
1662 ExprResult
E(LookupInObjCMethod(R
, S
, Ivar
->getIdentifier()));
1663 assert(E
.isInvalid() || E
.get());
1669 // This is guaranteed from this point on.
1670 assert(!R
.empty() || ADL
);
1672 if (VarDecl
*Var
= R
.getAsSingle
<VarDecl
>()) {
1673 if (getLangOptions().ObjCNonFragileABI
&& IvarLookupFollowUp
&&
1674 !(getLangOptions().ObjCDefaultSynthProperties
&&
1675 getLangOptions().ObjCNonFragileABI2
) &&
1676 Var
->isFileVarDecl()) {
1677 ObjCPropertyDecl
*Property
= canSynthesizeProvisionalIvar(II
);
1679 Diag(NameLoc
, diag::warn_ivar_variable_conflict
) << Var
->getDeclName();
1680 Diag(Property
->getLocation(), diag::note_property_declare
);
1681 Diag(Var
->getLocation(), diag::note_global_declared_at
);
1686 // Check whether this might be a C++ implicit instance member access.
1687 // C++ [class.mfct.non-static]p3:
1688 // When an id-expression that is not part of a class member access
1689 // syntax and not used to form a pointer to member is used in the
1690 // body of a non-static member function of class X, if name lookup
1691 // resolves the name in the id-expression to a non-static non-type
1692 // member of some class C, the id-expression is transformed into a
1693 // class member access expression using (*this) as the
1694 // postfix-expression to the left of the . operator.
1696 // But we don't actually need to do this for '&' operands if R
1697 // resolved to a function or overloaded function set, because the
1698 // expression is ill-formed if it actually works out to be a
1699 // non-static member function:
1701 // C++ [expr.ref]p4:
1702 // Otherwise, if E1.E2 refers to a non-static member function. . .
1703 // [t]he expression can be used only as the left-hand operand of a
1704 // member function call.
1706 // There are other safeguards against such uses, but it's important
1707 // to get this right here so that we don't end up making a
1708 // spuriously dependent expression if we're inside a dependent
1710 if (!R
.empty() && (*R
.begin())->isCXXClassMember()) {
1711 bool MightBeImplicitMember
;
1712 if (!isAddressOfOperand
)
1713 MightBeImplicitMember
= true;
1714 else if (!SS
.isEmpty())
1715 MightBeImplicitMember
= false;
1716 else if (R
.isOverloadedResult())
1717 MightBeImplicitMember
= false;
1718 else if (R
.isUnresolvableResult())
1719 MightBeImplicitMember
= true;
1721 MightBeImplicitMember
= isa
<FieldDecl
>(R
.getFoundDecl()) ||
1722 isa
<IndirectFieldDecl
>(R
.getFoundDecl());
1724 if (MightBeImplicitMember
)
1725 return BuildPossibleImplicitMemberExpr(SS
, R
, TemplateArgs
);
1729 return BuildTemplateIdExpr(SS
, R
, ADL
, *TemplateArgs
);
1731 return BuildDeclarationNameExpr(SS
, R
, ADL
);
1734 /// Builds an expression which might be an implicit member expression.
1736 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec
&SS
,
1738 const TemplateArgumentListInfo
*TemplateArgs
) {
1739 switch (ClassifyImplicitMemberAccess(*this, R
)) {
1741 return BuildImplicitMemberExpr(SS
, R
, TemplateArgs
, true);
1744 case IMA_Mixed_Unrelated
:
1745 case IMA_Unresolved
:
1746 return BuildImplicitMemberExpr(SS
, R
, TemplateArgs
, false);
1749 case IMA_Mixed_StaticContext
:
1750 case IMA_Unresolved_StaticContext
:
1752 return BuildTemplateIdExpr(SS
, R
, false, *TemplateArgs
);
1753 return BuildDeclarationNameExpr(SS
, R
, false);
1755 case IMA_Error_StaticContext
:
1756 case IMA_Error_Unrelated
:
1757 DiagnoseInstanceReference(*this, SS
, R
.getRepresentativeDecl(),
1758 R
.getLookupNameInfo());
1762 llvm_unreachable("unexpected instance member access kind");
1766 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1767 /// declaration name, generally during template instantiation.
1768 /// There's a large number of things which don't need to be done along
1771 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec
&SS
,
1772 const DeclarationNameInfo
&NameInfo
) {
1774 if (!(DC
= computeDeclContext(SS
, false)) || DC
->isDependentContext())
1775 return BuildDependentDeclRefExpr(SS
, NameInfo
, 0);
1777 if (RequireCompleteDeclContext(SS
, DC
))
1780 LookupResult
R(*this, NameInfo
, LookupOrdinaryName
);
1781 LookupQualifiedName(R
, DC
);
1783 if (R
.isAmbiguous())
1787 Diag(NameInfo
.getLoc(), diag::err_no_member
)
1788 << NameInfo
.getName() << DC
<< SS
.getRange();
1792 return BuildDeclarationNameExpr(SS
, R
, /*ADL*/ false);
1795 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1796 /// detected that we're currently inside an ObjC method. Perform some
1797 /// additional lookup.
1799 /// Ideally, most of this would be done by lookup, but there's
1800 /// actually quite a lot of extra work involved.
1802 /// Returns a null sentinel to indicate trivial success.
1804 Sema::LookupInObjCMethod(LookupResult
&Lookup
, Scope
*S
,
1805 IdentifierInfo
*II
, bool AllowBuiltinCreation
) {
1806 SourceLocation Loc
= Lookup
.getNameLoc();
1807 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
1809 // There are two cases to handle here. 1) scoped lookup could have failed,
1810 // in which case we should look for an ivar. 2) scoped lookup could have
1811 // found a decl, but that decl is outside the current instance method (i.e.
1812 // a global variable). In these two cases, we do a lookup for an ivar with
1813 // this name, if the lookup sucedes, we replace it our current decl.
1815 // If we're in a class method, we don't normally want to look for
1816 // ivars. But if we don't find anything else, and there's an
1817 // ivar, that's an error.
1818 bool IsClassMethod
= CurMethod
->isClassMethod();
1822 LookForIvars
= true;
1823 else if (IsClassMethod
)
1824 LookForIvars
= false;
1826 LookForIvars
= (Lookup
.isSingleResult() &&
1827 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1828 ObjCInterfaceDecl
*IFace
= 0;
1830 IFace
= CurMethod
->getClassInterface();
1831 ObjCInterfaceDecl
*ClassDeclared
;
1832 if (ObjCIvarDecl
*IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
)) {
1833 // Diagnose using an ivar in a class method.
1835 return ExprError(Diag(Loc
, diag::error_ivar_use_in_class_method
)
1836 << IV
->getDeclName());
1838 // If we're referencing an invalid decl, just return this as a silent
1839 // error node. The error diagnostic was already emitted on the decl.
1840 if (IV
->isInvalidDecl())
1843 // Check if referencing a field with __attribute__((deprecated)).
1844 if (DiagnoseUseOfDecl(IV
, Loc
))
1847 // Diagnose the use of an ivar outside of the declaring class.
1848 if (IV
->getAccessControl() == ObjCIvarDecl::Private
&&
1849 ClassDeclared
!= IFace
)
1850 Diag(Loc
, diag::error_private_ivar_access
) << IV
->getDeclName();
1852 // FIXME: This should use a new expr for a direct reference, don't
1853 // turn this into Self->ivar, just return a BareIVarExpr or something.
1854 IdentifierInfo
&II
= Context
.Idents
.get("self");
1855 UnqualifiedId SelfName
;
1856 SelfName
.setIdentifier(&II
, SourceLocation());
1857 CXXScopeSpec SelfScopeSpec
;
1858 ExprResult SelfExpr
= ActOnIdExpression(S
, SelfScopeSpec
,
1859 SelfName
, false, false);
1860 if (SelfExpr
.isInvalid())
1863 Expr
*SelfE
= SelfExpr
.take();
1864 DefaultLvalueConversion(SelfE
);
1866 MarkDeclarationReferenced(Loc
, IV
);
1867 return Owned(new (Context
)
1868 ObjCIvarRefExpr(IV
, IV
->getType(), Loc
,
1869 SelfE
, true, true));
1871 } else if (CurMethod
->isInstanceMethod()) {
1872 // We should warn if a local variable hides an ivar.
1873 ObjCInterfaceDecl
*IFace
= CurMethod
->getClassInterface();
1874 ObjCInterfaceDecl
*ClassDeclared
;
1875 if (ObjCIvarDecl
*IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
)) {
1876 if (IV
->getAccessControl() != ObjCIvarDecl::Private
||
1877 IFace
== ClassDeclared
)
1878 Diag(Loc
, diag::warn_ivar_use_hidden
) << IV
->getDeclName();
1882 if (Lookup
.empty() && II
&& AllowBuiltinCreation
) {
1883 // FIXME. Consolidate this with similar code in LookupName.
1884 if (unsigned BuiltinID
= II
->getBuiltinID()) {
1885 if (!(getLangOptions().CPlusPlus
&&
1886 Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))) {
1887 NamedDecl
*D
= LazilyCreateBuiltin((IdentifierInfo
*)II
, BuiltinID
,
1888 S
, Lookup
.isForRedeclaration(),
1889 Lookup
.getNameLoc());
1890 if (D
) Lookup
.addDecl(D
);
1894 // Sentinel value saying that we didn't do anything special.
1895 return Owned((Expr
*) 0);
1898 /// \brief Cast a base object to a member's actual type.
1900 /// Logically this happens in three phases:
1902 /// * First we cast from the base type to the naming class.
1903 /// The naming class is the class into which we were looking
1904 /// when we found the member; it's the qualifier type if a
1905 /// qualifier was provided, and otherwise it's the base type.
1907 /// * Next we cast from the naming class to the declaring class.
1908 /// If the member we found was brought into a class's scope by
1909 /// a using declaration, this is that class; otherwise it's
1910 /// the class declaring the member.
1912 /// * Finally we cast from the declaring class to the "true"
1913 /// declaring class of the member. This conversion does not
1914 /// obey access control.
1916 Sema::PerformObjectMemberConversion(Expr
*&From
,
1917 NestedNameSpecifier
*Qualifier
,
1918 NamedDecl
*FoundDecl
,
1919 NamedDecl
*Member
) {
1920 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Member
->getDeclContext());
1924 QualType DestRecordType
;
1926 QualType FromRecordType
;
1927 QualType FromType
= From
->getType();
1928 bool PointerConversions
= false;
1929 if (isa
<FieldDecl
>(Member
)) {
1930 DestRecordType
= Context
.getCanonicalType(Context
.getTypeDeclType(RD
));
1932 if (FromType
->getAs
<PointerType
>()) {
1933 DestType
= Context
.getPointerType(DestRecordType
);
1934 FromRecordType
= FromType
->getPointeeType();
1935 PointerConversions
= true;
1937 DestType
= DestRecordType
;
1938 FromRecordType
= FromType
;
1940 } else if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(Member
)) {
1941 if (Method
->isStatic())
1944 DestType
= Method
->getThisType(Context
);
1945 DestRecordType
= DestType
->getPointeeType();
1947 if (FromType
->getAs
<PointerType
>()) {
1948 FromRecordType
= FromType
->getPointeeType();
1949 PointerConversions
= true;
1951 FromRecordType
= FromType
;
1952 DestType
= DestRecordType
;
1955 // No conversion necessary.
1959 if (DestType
->isDependentType() || FromType
->isDependentType())
1962 // If the unqualified types are the same, no conversion is necessary.
1963 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
1966 SourceRange FromRange
= From
->getSourceRange();
1967 SourceLocation FromLoc
= FromRange
.getBegin();
1969 ExprValueKind VK
= CastCategory(From
);
1971 // C++ [class.member.lookup]p8:
1972 // [...] Ambiguities can often be resolved by qualifying a name with its
1975 // If the member was a qualified name and the qualified referred to a
1976 // specific base subobject type, we'll cast to that intermediate type
1977 // first and then to the object in which the member is declared. That allows
1978 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1980 // class Base { public: int x; };
1981 // class Derived1 : public Base { };
1982 // class Derived2 : public Base { };
1983 // class VeryDerived : public Derived1, public Derived2 { void f(); };
1985 // void VeryDerived::f() {
1986 // x = 17; // error: ambiguous base subobjects
1987 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
1990 QualType QType
= QualType(Qualifier
->getAsType(), 0);
1991 assert(!QType
.isNull() && "lookup done with dependent qualifier?");
1992 assert(QType
->isRecordType() && "lookup done with non-record type");
1994 QualType QRecordType
= QualType(QType
->getAs
<RecordType
>(), 0);
1996 // In C++98, the qualifier type doesn't actually have to be a base
1997 // type of the object type, in which case we just ignore it.
1998 // Otherwise build the appropriate casts.
1999 if (IsDerivedFrom(FromRecordType
, QRecordType
)) {
2000 CXXCastPath BasePath
;
2001 if (CheckDerivedToBaseConversion(FromRecordType
, QRecordType
,
2002 FromLoc
, FromRange
, &BasePath
))
2005 if (PointerConversions
)
2006 QType
= Context
.getPointerType(QType
);
2007 ImpCastExprToType(From
, QType
, CK_UncheckedDerivedToBase
,
2011 FromRecordType
= QRecordType
;
2013 // If the qualifier type was the same as the destination type,
2015 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
2020 bool IgnoreAccess
= false;
2022 // If we actually found the member through a using declaration, cast
2023 // down to the using declaration's type.
2025 // Pointer equality is fine here because only one declaration of a
2026 // class ever has member declarations.
2027 if (FoundDecl
->getDeclContext() != Member
->getDeclContext()) {
2028 assert(isa
<UsingShadowDecl
>(FoundDecl
));
2029 QualType URecordType
= Context
.getTypeDeclType(
2030 cast
<CXXRecordDecl
>(FoundDecl
->getDeclContext()));
2032 // We only need to do this if the naming-class to declaring-class
2033 // conversion is non-trivial.
2034 if (!Context
.hasSameUnqualifiedType(FromRecordType
, URecordType
)) {
2035 assert(IsDerivedFrom(FromRecordType
, URecordType
));
2036 CXXCastPath BasePath
;
2037 if (CheckDerivedToBaseConversion(FromRecordType
, URecordType
,
2038 FromLoc
, FromRange
, &BasePath
))
2041 QualType UType
= URecordType
;
2042 if (PointerConversions
)
2043 UType
= Context
.getPointerType(UType
);
2044 ImpCastExprToType(From
, UType
, CK_UncheckedDerivedToBase
,
2047 FromRecordType
= URecordType
;
2050 // We don't do access control for the conversion from the
2051 // declaring class to the true declaring class.
2052 IgnoreAccess
= true;
2055 CXXCastPath BasePath
;
2056 if (CheckDerivedToBaseConversion(FromRecordType
, DestRecordType
,
2057 FromLoc
, FromRange
, &BasePath
,
2061 ImpCastExprToType(From
, DestType
, CK_UncheckedDerivedToBase
,
2066 /// \brief Build a MemberExpr AST node.
2067 static MemberExpr
*BuildMemberExpr(ASTContext
&C
, Expr
*Base
, bool isArrow
,
2068 const CXXScopeSpec
&SS
, ValueDecl
*Member
,
2069 DeclAccessPair FoundDecl
,
2070 const DeclarationNameInfo
&MemberNameInfo
,
2072 ExprValueKind VK
, ExprObjectKind OK
,
2073 const TemplateArgumentListInfo
*TemplateArgs
= 0) {
2074 NestedNameSpecifier
*Qualifier
= 0;
2075 SourceRange QualifierRange
;
2077 Qualifier
= (NestedNameSpecifier
*) SS
.getScopeRep();
2078 QualifierRange
= SS
.getRange();
2081 return MemberExpr::Create(C
, Base
, isArrow
, Qualifier
, QualifierRange
,
2082 Member
, FoundDecl
, MemberNameInfo
,
2083 TemplateArgs
, Ty
, VK
, OK
);
2087 BuildFieldReferenceExpr(Sema
&S
, Expr
*BaseExpr
, bool IsArrow
,
2088 const CXXScopeSpec
&SS
, FieldDecl
*Field
,
2089 DeclAccessPair FoundDecl
,
2090 const DeclarationNameInfo
&MemberNameInfo
) {
2091 // x.a is an l-value if 'a' has a reference type. Otherwise:
2092 // x.a is an l-value/x-value/pr-value if the base is (and note
2093 // that *x is always an l-value), except that if the base isn't
2094 // an ordinary object then we must have an rvalue.
2095 ExprValueKind VK
= VK_LValue
;
2096 ExprObjectKind OK
= OK_Ordinary
;
2098 if (BaseExpr
->getObjectKind() == OK_Ordinary
)
2099 VK
= BaseExpr
->getValueKind();
2103 if (VK
!= VK_RValue
&& Field
->isBitField())
2106 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2107 QualType MemberType
= Field
->getType();
2108 if (const ReferenceType
*Ref
= MemberType
->getAs
<ReferenceType
>()) {
2109 MemberType
= Ref
->getPointeeType();
2112 QualType BaseType
= BaseExpr
->getType();
2113 if (IsArrow
) BaseType
= BaseType
->getAs
<PointerType
>()->getPointeeType();
2115 Qualifiers BaseQuals
= BaseType
.getQualifiers();
2117 // GC attributes are never picked up by members.
2118 BaseQuals
.removeObjCGCAttr();
2120 // CVR attributes from the base are picked up by members,
2121 // except that 'mutable' members don't pick up 'const'.
2122 if (Field
->isMutable()) BaseQuals
.removeConst();
2124 Qualifiers MemberQuals
2125 = S
.Context
.getCanonicalType(MemberType
).getQualifiers();
2127 // TR 18037 does not allow fields to be declared with address spaces.
2128 assert(!MemberQuals
.hasAddressSpace());
2130 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
2131 if (Combined
!= MemberQuals
)
2132 MemberType
= S
.Context
.getQualifiedType(MemberType
, Combined
);
2135 S
.MarkDeclarationReferenced(MemberNameInfo
.getLoc(), Field
);
2136 if (S
.PerformObjectMemberConversion(BaseExpr
, SS
.getScopeRep(),
2139 return S
.Owned(BuildMemberExpr(S
.Context
, BaseExpr
, IsArrow
, SS
,
2140 Field
, FoundDecl
, MemberNameInfo
,
2141 MemberType
, VK
, OK
));
2144 /// Builds an implicit member access expression. The current context
2145 /// is known to be an instance method, and the given unqualified lookup
2146 /// set is known to contain only instance members, at least one of which
2147 /// is from an appropriate type.
2149 Sema::BuildImplicitMemberExpr(const CXXScopeSpec
&SS
,
2151 const TemplateArgumentListInfo
*TemplateArgs
,
2152 bool IsKnownInstance
) {
2153 assert(!R
.empty() && !R
.isAmbiguous());
2155 SourceLocation loc
= R
.getNameLoc();
2157 // We may have found a field within an anonymous union or struct
2158 // (C++ [class.union]).
2159 // FIXME: template-ids inside anonymous structs?
2160 if (IndirectFieldDecl
*FD
= R
.getAsSingle
<IndirectFieldDecl
>())
2161 return BuildAnonymousStructUnionMemberReference(SS
, R
.getNameLoc(), FD
);
2163 // If this is known to be an instance access, go ahead and build an
2164 // implicit 'this' expression now.
2165 // 'this' expression now.
2166 CXXMethodDecl
*method
= tryCaptureCXXThis();
2167 assert(method
&& "didn't correctly pre-flight capture of 'this'");
2169 QualType thisType
= method
->getThisType(Context
);
2170 Expr
*baseExpr
= 0; // null signifies implicit access
2171 if (IsKnownInstance
) {
2172 SourceLocation Loc
= R
.getNameLoc();
2173 if (SS
.getRange().isValid())
2174 Loc
= SS
.getRange().getBegin();
2175 baseExpr
= new (Context
) CXXThisExpr(loc
, thisType
, /*isImplicit=*/true);
2178 return BuildMemberReferenceExpr(baseExpr
, thisType
,
2179 /*OpLoc*/ SourceLocation(),
2182 /*FirstQualifierInScope*/ 0,
2186 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec
&SS
,
2187 const LookupResult
&R
,
2188 bool HasTrailingLParen
) {
2189 // Only when used directly as the postfix-expression of a call.
2190 if (!HasTrailingLParen
)
2193 // Never if a scope specifier was provided.
2197 // Only in C++ or ObjC++.
2198 if (!getLangOptions().CPlusPlus
)
2201 // Turn off ADL when we find certain kinds of declarations during
2203 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
2206 // C++0x [basic.lookup.argdep]p3:
2207 // -- a declaration of a class member
2208 // Since using decls preserve this property, we check this on the
2210 if (D
->isCXXClassMember())
2213 // C++0x [basic.lookup.argdep]p3:
2214 // -- a block-scope function declaration that is not a
2215 // using-declaration
2216 // NOTE: we also trigger this for function templates (in fact, we
2217 // don't check the decl type at all, since all other decl types
2218 // turn off ADL anyway).
2219 if (isa
<UsingShadowDecl
>(D
))
2220 D
= cast
<UsingShadowDecl
>(D
)->getTargetDecl();
2221 else if (D
->getDeclContext()->isFunctionOrMethod())
2224 // C++0x [basic.lookup.argdep]p3:
2225 // -- a declaration that is neither a function or a function
2227 // And also for builtin functions.
2228 if (isa
<FunctionDecl
>(D
)) {
2229 FunctionDecl
*FDecl
= cast
<FunctionDecl
>(D
);
2231 // But also builtin functions.
2232 if (FDecl
->getBuiltinID() && FDecl
->isImplicit())
2234 } else if (!isa
<FunctionTemplateDecl
>(D
))
2242 /// Diagnoses obvious problems with the use of the given declaration
2243 /// as an expression. This is only actually called for lookups that
2244 /// were not overloaded, and it doesn't promise that the declaration
2245 /// will in fact be used.
2246 static bool CheckDeclInExpr(Sema
&S
, SourceLocation Loc
, NamedDecl
*D
) {
2247 if (isa
<TypedefDecl
>(D
)) {
2248 S
.Diag(Loc
, diag::err_unexpected_typedef
) << D
->getDeclName();
2252 if (isa
<ObjCInterfaceDecl
>(D
)) {
2253 S
.Diag(Loc
, diag::err_unexpected_interface
) << D
->getDeclName();
2257 if (isa
<NamespaceDecl
>(D
)) {
2258 S
.Diag(Loc
, diag::err_unexpected_namespace
) << D
->getDeclName();
2266 Sema::BuildDeclarationNameExpr(const CXXScopeSpec
&SS
,
2269 // If this is a single, fully-resolved result and we don't need ADL,
2270 // just build an ordinary singleton decl ref.
2271 if (!NeedsADL
&& R
.isSingleResult() && !R
.getAsSingle
<FunctionTemplateDecl
>())
2272 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(),
2275 // We only need to check the declaration if there's exactly one
2276 // result, because in the overloaded case the results can only be
2277 // functions and function templates.
2278 if (R
.isSingleResult() &&
2279 CheckDeclInExpr(*this, R
.getNameLoc(), R
.getFoundDecl()))
2282 // Otherwise, just build an unresolved lookup expression. Suppress
2283 // any lookup-related diagnostics; we'll hash these out later, when
2284 // we've picked a target.
2285 R
.suppressDiagnostics();
2287 UnresolvedLookupExpr
*ULE
2288 = UnresolvedLookupExpr::Create(Context
, R
.getNamingClass(),
2289 (NestedNameSpecifier
*) SS
.getScopeRep(),
2290 SS
.getRange(), R
.getLookupNameInfo(),
2291 NeedsADL
, R
.isOverloadedResult(),
2292 R
.begin(), R
.end());
2297 /// \brief Complete semantic analysis for a reference to the given declaration.
2299 Sema::BuildDeclarationNameExpr(const CXXScopeSpec
&SS
,
2300 const DeclarationNameInfo
&NameInfo
,
2302 assert(D
&& "Cannot refer to a NULL declaration");
2303 assert(!isa
<FunctionTemplateDecl
>(D
) &&
2304 "Cannot refer unambiguously to a function template");
2306 SourceLocation Loc
= NameInfo
.getLoc();
2307 if (CheckDeclInExpr(*this, Loc
, D
))
2310 if (TemplateDecl
*Template
= dyn_cast
<TemplateDecl
>(D
)) {
2311 // Specifically diagnose references to class templates that are missing
2312 // a template argument list.
2313 Diag(Loc
, diag::err_template_decl_ref
)
2314 << Template
<< SS
.getRange();
2315 Diag(Template
->getLocation(), diag::note_template_decl_here
);
2319 // Make sure that we're referring to a value.
2320 ValueDecl
*VD
= dyn_cast
<ValueDecl
>(D
);
2322 Diag(Loc
, diag::err_ref_non_value
)
2323 << D
<< SS
.getRange();
2324 Diag(D
->getLocation(), diag::note_declared_at
);
2328 // Check whether this declaration can be used. Note that we suppress
2329 // this check when we're going to perform argument-dependent lookup
2330 // on this function name, because this might not be the function
2331 // that overload resolution actually selects.
2332 if (DiagnoseUseOfDecl(VD
, Loc
))
2335 // Only create DeclRefExpr's for valid Decl's.
2336 if (VD
->isInvalidDecl())
2339 // Handle members of anonymous structs and unions. If we got here,
2340 // and the reference is to a class member indirect field, then this
2341 // must be the subject of a pointer-to-member expression.
2342 if (IndirectFieldDecl
*indirectField
= dyn_cast
<IndirectFieldDecl
>(VD
))
2343 if (!indirectField
->isCXXClassMember())
2344 return BuildAnonymousStructUnionMemberReference(SS
, NameInfo
.getLoc(),
2347 // If the identifier reference is inside a block, and it refers to a value
2348 // that is outside the block, create a BlockDeclRefExpr instead of a
2349 // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
2350 // the block is formed.
2352 // We do not do this for things like enum constants, global variables, etc,
2353 // as they do not get snapshotted.
2355 switch (shouldCaptureValueReference(*this, NameInfo
.getLoc(), VD
)) {
2360 assert(!SS
.isSet() && "referenced local variable with scope specifier?");
2361 return BuildBlockDeclRefExpr(*this, VD
, NameInfo
, /*byref*/ false);
2363 case CR_CaptureByRef
:
2364 assert(!SS
.isSet() && "referenced local variable with scope specifier?");
2365 return BuildBlockDeclRefExpr(*this, VD
, NameInfo
, /*byref*/ true);
2367 case CR_NoCapture
: {
2368 // If this reference is not in a block or if the referenced
2369 // variable is within the block, create a normal DeclRefExpr.
2371 QualType type
= VD
->getType();
2372 ExprValueKind valueKind
= VK_RValue
;
2374 switch (D
->getKind()) {
2375 // Ignore all the non-ValueDecl kinds.
2376 #define ABSTRACT_DECL(kind)
2377 #define VALUE(type, base)
2378 #define DECL(type, base) \
2380 #include "clang/AST/DeclNodes.inc"
2381 llvm_unreachable("invalid value decl kind");
2384 // These shouldn't make it here.
2385 case Decl::ObjCAtDefsField
:
2386 case Decl::ObjCIvar
:
2387 llvm_unreachable("forming non-member reference to ivar?");
2390 // Enum constants are always r-values and never references.
2391 // Unresolved using declarations are dependent.
2392 case Decl::EnumConstant
:
2393 case Decl::UnresolvedUsingValue
:
2394 valueKind
= VK_RValue
;
2397 // Fields and indirect fields that got here must be for
2398 // pointer-to-member expressions; we just call them l-values for
2399 // internal consistency, because this subexpression doesn't really
2400 // exist in the high-level semantics.
2402 case Decl::IndirectField
:
2403 assert(getLangOptions().CPlusPlus
&&
2404 "building reference to field in C?");
2406 // These can't have reference type in well-formed programs, but
2407 // for internal consistency we do this anyway.
2408 type
= type
.getNonReferenceType();
2409 valueKind
= VK_LValue
;
2412 // Non-type template parameters are either l-values or r-values
2413 // depending on the type.
2414 case Decl::NonTypeTemplateParm
: {
2415 if (const ReferenceType
*reftype
= type
->getAs
<ReferenceType
>()) {
2416 type
= reftype
->getPointeeType();
2417 valueKind
= VK_LValue
; // even if the parameter is an r-value reference
2421 // For non-references, we need to strip qualifiers just in case
2422 // the template parameter was declared as 'const int' or whatever.
2423 valueKind
= VK_RValue
;
2424 type
= type
.getUnqualifiedType();
2429 // In C, "extern void blah;" is valid and is an r-value.
2430 if (!getLangOptions().CPlusPlus
&&
2431 !type
.hasQualifiers() &&
2432 type
->isVoidType()) {
2433 valueKind
= VK_RValue
;
2438 case Decl::ImplicitParam
:
2440 // These are always l-values.
2441 valueKind
= VK_LValue
;
2442 type
= type
.getNonReferenceType();
2445 case Decl::Function
: {
2446 // Functions are l-values in C++.
2447 if (getLangOptions().CPlusPlus
) {
2448 valueKind
= VK_LValue
;
2452 // C99 DR 316 says that, if a function type comes from a
2453 // function definition (without a prototype), that type is only
2454 // used for checking compatibility. Therefore, when referencing
2455 // the function, we pretend that we don't have the full function
2457 if (!cast
<FunctionDecl
>(VD
)->hasPrototype())
2458 if (const FunctionProtoType
*proto
= type
->getAs
<FunctionProtoType
>())
2459 type
= Context
.getFunctionNoProtoType(proto
->getResultType(),
2460 proto
->getExtInfo());
2462 // Functions are r-values in C.
2463 valueKind
= VK_RValue
;
2467 case Decl::CXXMethod
:
2468 // C++ methods are l-values if static, r-values if non-static.
2469 if (cast
<CXXMethodDecl
>(VD
)->isStatic()) {
2470 valueKind
= VK_LValue
;
2475 case Decl::CXXConversion
:
2476 case Decl::CXXDestructor
:
2477 case Decl::CXXConstructor
:
2478 valueKind
= VK_RValue
;
2482 return BuildDeclRefExpr(VD
, type
, valueKind
, NameInfo
, &SS
);
2487 llvm_unreachable("unknown capture result");
2491 ExprResult
Sema::ActOnPredefinedExpr(SourceLocation Loc
,
2492 tok::TokenKind Kind
) {
2493 PredefinedExpr::IdentType IT
;
2496 default: assert(0 && "Unknown simple primary expr!");
2497 case tok::kw___func__
: IT
= PredefinedExpr::Func
; break; // [C99 6.4.2.2]
2498 case tok::kw___FUNCTION__
: IT
= PredefinedExpr::Function
; break;
2499 case tok::kw___PRETTY_FUNCTION__
: IT
= PredefinedExpr::PrettyFunction
; break;
2502 // Pre-defined identifiers are of type char[x], where x is the length of the
2505 Decl
*currentDecl
= getCurFunctionOrMethodDecl();
2506 if (!currentDecl
&& getCurBlock())
2507 currentDecl
= getCurBlock()->TheDecl
;
2509 Diag(Loc
, diag::ext_predef_outside_function
);
2510 currentDecl
= Context
.getTranslationUnitDecl();
2514 if (cast
<DeclContext
>(currentDecl
)->isDependentContext()) {
2515 ResTy
= Context
.DependentTy
;
2517 unsigned Length
= PredefinedExpr::ComputeName(IT
, currentDecl
).length();
2519 llvm::APInt
LengthI(32, Length
+ 1);
2520 ResTy
= Context
.CharTy
.withConst();
2521 ResTy
= Context
.getConstantArrayType(ResTy
, LengthI
, ArrayType::Normal
, 0);
2523 return Owned(new (Context
) PredefinedExpr(Loc
, ResTy
, IT
));
2526 ExprResult
Sema::ActOnCharacterConstant(const Token
&Tok
) {
2527 llvm::SmallString
<16> CharBuffer
;
2528 bool Invalid
= false;
2529 llvm::StringRef ThisTok
= PP
.getSpelling(Tok
, CharBuffer
, &Invalid
);
2533 CharLiteralParser
Literal(ThisTok
.begin(), ThisTok
.end(), Tok
.getLocation(),
2535 if (Literal
.hadError())
2539 if (!getLangOptions().CPlusPlus
)
2540 Ty
= Context
.IntTy
; // 'x' and L'x' -> int in C.
2541 else if (Literal
.isWide())
2542 Ty
= Context
.WCharTy
; // L'x' -> wchar_t in C++.
2543 else if (Literal
.isMultiChar())
2544 Ty
= Context
.IntTy
; // 'wxyz' -> int in C++.
2546 Ty
= Context
.CharTy
; // 'x' -> char in C++
2548 return Owned(new (Context
) CharacterLiteral(Literal
.getValue(),
2550 Ty
, Tok
.getLocation()));
2553 ExprResult
Sema::ActOnNumericConstant(const Token
&Tok
) {
2554 // Fast path for a single digit (which is quite common). A single digit
2555 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2556 if (Tok
.getLength() == 1) {
2557 const char Val
= PP
.getSpellingOfSingleCharacterNumericConstant(Tok
);
2558 unsigned IntSize
= Context
.Target
.getIntWidth();
2559 return Owned(IntegerLiteral::Create(Context
, llvm::APInt(IntSize
, Val
-'0'),
2560 Context
.IntTy
, Tok
.getLocation()));
2563 llvm::SmallString
<512> IntegerBuffer
;
2564 // Add padding so that NumericLiteralParser can overread by one character.
2565 IntegerBuffer
.resize(Tok
.getLength()+1);
2566 const char *ThisTokBegin
= &IntegerBuffer
[0];
2568 // Get the spelling of the token, which eliminates trigraphs, etc.
2569 bool Invalid
= false;
2570 unsigned ActualLength
= PP
.getSpelling(Tok
, ThisTokBegin
, &Invalid
);
2574 NumericLiteralParser
Literal(ThisTokBegin
, ThisTokBegin
+ActualLength
,
2575 Tok
.getLocation(), PP
);
2576 if (Literal
.hadError
)
2581 if (Literal
.isFloatingLiteral()) {
2583 if (Literal
.isFloat
)
2584 Ty
= Context
.FloatTy
;
2585 else if (!Literal
.isLong
)
2586 Ty
= Context
.DoubleTy
;
2588 Ty
= Context
.LongDoubleTy
;
2590 const llvm::fltSemantics
&Format
= Context
.getFloatTypeSemantics(Ty
);
2592 using llvm::APFloat
;
2593 APFloat
Val(Format
);
2595 APFloat::opStatus result
= Literal
.GetFloatValue(Val
);
2597 // Overflow is always an error, but underflow is only an error if
2598 // we underflowed to zero (APFloat reports denormals as underflow).
2599 if ((result
& APFloat::opOverflow
) ||
2600 ((result
& APFloat::opUnderflow
) && Val
.isZero())) {
2601 unsigned diagnostic
;
2602 llvm::SmallString
<20> buffer
;
2603 if (result
& APFloat::opOverflow
) {
2604 diagnostic
= diag::warn_float_overflow
;
2605 APFloat::getLargest(Format
).toString(buffer
);
2607 diagnostic
= diag::warn_float_underflow
;
2608 APFloat::getSmallest(Format
).toString(buffer
);
2611 Diag(Tok
.getLocation(), diagnostic
)
2613 << llvm::StringRef(buffer
.data(), buffer
.size());
2616 bool isExact
= (result
== APFloat::opOK
);
2617 Res
= FloatingLiteral::Create(Context
, Val
, isExact
, Ty
, Tok
.getLocation());
2619 if (getLangOptions().SinglePrecisionConstants
&& Ty
== Context
.DoubleTy
)
2620 ImpCastExprToType(Res
, Context
.FloatTy
, CK_FloatingCast
);
2622 } else if (!Literal
.isIntegerLiteral()) {
2627 // long long is a C99 feature.
2628 if (!getLangOptions().C99
&& !getLangOptions().CPlusPlus0x
&&
2630 Diag(Tok
.getLocation(), diag::ext_longlong
);
2632 // Get the value in the widest-possible width.
2633 llvm::APInt
ResultVal(Context
.Target
.getIntMaxTWidth(), 0);
2635 if (Literal
.GetIntegerValue(ResultVal
)) {
2636 // If this value didn't fit into uintmax_t, warn and force to ull.
2637 Diag(Tok
.getLocation(), diag::warn_integer_too_large
);
2638 Ty
= Context
.UnsignedLongLongTy
;
2639 assert(Context
.getTypeSize(Ty
) == ResultVal
.getBitWidth() &&
2640 "long long is not intmax_t?");
2642 // If this value fits into a ULL, try to figure out what else it fits into
2643 // according to the rules of C99 6.4.4.1p5.
2645 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2646 // be an unsigned int.
2647 bool AllowUnsigned
= Literal
.isUnsigned
|| Literal
.getRadix() != 10;
2649 // Check from smallest to largest, picking the smallest type we can.
2651 if (!Literal
.isLong
&& !Literal
.isLongLong
) {
2652 // Are int/unsigned possibilities?
2653 unsigned IntSize
= Context
.Target
.getIntWidth();
2655 // Does it fit in a unsigned int?
2656 if (ResultVal
.isIntN(IntSize
)) {
2657 // Does it fit in a signed int?
2658 if (!Literal
.isUnsigned
&& ResultVal
[IntSize
-1] == 0)
2660 else if (AllowUnsigned
)
2661 Ty
= Context
.UnsignedIntTy
;
2666 // Are long/unsigned long possibilities?
2667 if (Ty
.isNull() && !Literal
.isLongLong
) {
2668 unsigned LongSize
= Context
.Target
.getLongWidth();
2670 // Does it fit in a unsigned long?
2671 if (ResultVal
.isIntN(LongSize
)) {
2672 // Does it fit in a signed long?
2673 if (!Literal
.isUnsigned
&& ResultVal
[LongSize
-1] == 0)
2674 Ty
= Context
.LongTy
;
2675 else if (AllowUnsigned
)
2676 Ty
= Context
.UnsignedLongTy
;
2681 // Finally, check long long if needed.
2683 unsigned LongLongSize
= Context
.Target
.getLongLongWidth();
2685 // Does it fit in a unsigned long long?
2686 if (ResultVal
.isIntN(LongLongSize
)) {
2687 // Does it fit in a signed long long?
2688 // To be compatible with MSVC, hex integer literals ending with the
2689 // LL or i64 suffix are always signed in Microsoft mode.
2690 if (!Literal
.isUnsigned
&& (ResultVal
[LongLongSize
-1] == 0 ||
2691 (getLangOptions().Microsoft
&& Literal
.isLongLong
)))
2692 Ty
= Context
.LongLongTy
;
2693 else if (AllowUnsigned
)
2694 Ty
= Context
.UnsignedLongLongTy
;
2695 Width
= LongLongSize
;
2699 // If we still couldn't decide a type, we probably have something that
2700 // does not fit in a signed long long, but has no U suffix.
2702 Diag(Tok
.getLocation(), diag::warn_integer_too_large_for_signed
);
2703 Ty
= Context
.UnsignedLongLongTy
;
2704 Width
= Context
.Target
.getLongLongWidth();
2707 if (ResultVal
.getBitWidth() != Width
)
2708 ResultVal
= ResultVal
.trunc(Width
);
2710 Res
= IntegerLiteral::Create(Context
, ResultVal
, Ty
, Tok
.getLocation());
2713 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2714 if (Literal
.isImaginary
)
2715 Res
= new (Context
) ImaginaryLiteral(Res
,
2716 Context
.getComplexType(Res
->getType()));
2721 ExprResult
Sema::ActOnParenExpr(SourceLocation L
,
2722 SourceLocation R
, Expr
*E
) {
2723 assert((E
!= 0) && "ActOnParenExpr() missing expr");
2724 return Owned(new (Context
) ParenExpr(L
, R
, E
));
2727 /// The UsualUnaryConversions() function is *not* called by this routine.
2728 /// See C99 6.3.2.1p[2-4] for more details.
2729 bool Sema::CheckSizeOfAlignOfOperand(QualType exprType
,
2730 SourceLocation OpLoc
,
2731 SourceRange ExprRange
,
2733 if (exprType
->isDependentType())
2736 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2737 // the result is the size of the referenced type."
2738 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2739 // result shall be the alignment of the referenced type."
2740 if (const ReferenceType
*Ref
= exprType
->getAs
<ReferenceType
>())
2741 exprType
= Ref
->getPointeeType();
2744 if (exprType
->isFunctionType()) {
2745 // alignof(function) is allowed as an extension.
2747 Diag(OpLoc
, diag::ext_sizeof_function_type
) << ExprRange
;
2751 // Allow sizeof(void)/alignof(void) as an extension.
2752 if (exprType
->isVoidType()) {
2753 Diag(OpLoc
, diag::ext_sizeof_void_type
)
2754 << (isSizeof
? "sizeof" : "__alignof") << ExprRange
;
2758 if (RequireCompleteType(OpLoc
, exprType
,
2759 PDiag(diag::err_sizeof_alignof_incomplete_type
)
2760 << int(!isSizeof
) << ExprRange
))
2763 // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2764 if (LangOpts
.ObjCNonFragileABI
&& exprType
->isObjCObjectType()) {
2765 Diag(OpLoc
, diag::err_sizeof_nonfragile_interface
)
2766 << exprType
<< isSizeof
<< ExprRange
;
2773 static bool CheckAlignOfExpr(Sema
&S
, Expr
*E
, SourceLocation OpLoc
,
2774 SourceRange ExprRange
) {
2775 E
= E
->IgnoreParens();
2777 // alignof decl is always ok.
2778 if (isa
<DeclRefExpr
>(E
))
2781 // Cannot know anything else if the expression is dependent.
2782 if (E
->isTypeDependent())
2785 if (E
->getBitField()) {
2786 S
. Diag(OpLoc
, diag::err_sizeof_alignof_bitfield
) << 1 << ExprRange
;
2790 // Alignment of a field access is always okay, so long as it isn't a
2792 if (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
))
2793 if (isa
<FieldDecl
>(ME
->getMemberDecl()))
2796 return S
.CheckSizeOfAlignOfOperand(E
->getType(), OpLoc
, ExprRange
, false);
2799 /// \brief Build a sizeof or alignof expression given a type operand.
2801 Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo
*TInfo
,
2802 SourceLocation OpLoc
,
2803 bool isSizeOf
, SourceRange R
) {
2807 QualType T
= TInfo
->getType();
2809 if (!T
->isDependentType() &&
2810 CheckSizeOfAlignOfOperand(T
, OpLoc
, R
, isSizeOf
))
2813 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2814 return Owned(new (Context
) SizeOfAlignOfExpr(isSizeOf
, TInfo
,
2815 Context
.getSizeType(), OpLoc
,
2819 /// \brief Build a sizeof or alignof expression given an expression
2822 Sema::CreateSizeOfAlignOfExpr(Expr
*E
, SourceLocation OpLoc
,
2823 bool isSizeOf
, SourceRange R
) {
2824 // Verify that the operand is valid.
2825 bool isInvalid
= false;
2826 if (E
->isTypeDependent()) {
2827 // Delay type-checking for type-dependent expressions.
2828 } else if (!isSizeOf
) {
2829 isInvalid
= CheckAlignOfExpr(*this, E
, OpLoc
, R
);
2830 } else if (E
->getBitField()) { // C99 6.5.3.4p1.
2831 Diag(OpLoc
, diag::err_sizeof_alignof_bitfield
) << 0;
2833 } else if (E
->getType()->isPlaceholderType()) {
2834 ExprResult PE
= CheckPlaceholderExpr(E
, OpLoc
);
2835 if (PE
.isInvalid()) return ExprError();
2836 return CreateSizeOfAlignOfExpr(PE
.take(), OpLoc
, isSizeOf
, R
);
2838 isInvalid
= CheckSizeOfAlignOfOperand(E
->getType(), OpLoc
, R
, true);
2844 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2845 return Owned(new (Context
) SizeOfAlignOfExpr(isSizeOf
, E
,
2846 Context
.getSizeType(), OpLoc
,
2850 /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2851 /// the same for @c alignof and @c __alignof
2852 /// Note that the ArgRange is invalid if isType is false.
2854 Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc
, bool isSizeof
, bool isType
,
2855 void *TyOrEx
, const SourceRange
&ArgRange
) {
2856 // If error parsing type, ignore.
2857 if (TyOrEx
== 0) return ExprError();
2860 TypeSourceInfo
*TInfo
;
2861 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx
), &TInfo
);
2862 return CreateSizeOfAlignOfExpr(TInfo
, OpLoc
, isSizeof
, ArgRange
);
2865 Expr
*ArgEx
= (Expr
*)TyOrEx
;
2867 = CreateSizeOfAlignOfExpr(ArgEx
, OpLoc
, isSizeof
, ArgEx
->getSourceRange());
2869 return move(Result
);
2872 static QualType
CheckRealImagOperand(Sema
&S
, Expr
*&V
, SourceLocation Loc
,
2874 if (V
->isTypeDependent())
2875 return S
.Context
.DependentTy
;
2877 // _Real and _Imag are only l-values for normal l-values.
2878 if (V
->getObjectKind() != OK_Ordinary
)
2879 S
.DefaultLvalueConversion(V
);
2881 // These operators return the element type of a complex type.
2882 if (const ComplexType
*CT
= V
->getType()->getAs
<ComplexType
>())
2883 return CT
->getElementType();
2885 // Otherwise they pass through real integer and floating point types here.
2886 if (V
->getType()->isArithmeticType())
2887 return V
->getType();
2889 // Test for placeholders.
2890 ExprResult PR
= S
.CheckPlaceholderExpr(V
, Loc
);
2891 if (PR
.isInvalid()) return QualType();
2892 if (PR
.take() != V
) {
2894 return CheckRealImagOperand(S
, V
, Loc
, isReal
);
2897 // Reject anything else.
2898 S
.Diag(Loc
, diag::err_realimag_invalid_type
) << V
->getType()
2899 << (isReal
? "__real" : "__imag");
2906 Sema::ActOnPostfixUnaryOp(Scope
*S
, SourceLocation OpLoc
,
2907 tok::TokenKind Kind
, Expr
*Input
) {
2908 UnaryOperatorKind Opc
;
2910 default: assert(0 && "Unknown unary op!");
2911 case tok::plusplus
: Opc
= UO_PostInc
; break;
2912 case tok::minusminus
: Opc
= UO_PostDec
; break;
2915 return BuildUnaryOp(S
, OpLoc
, Opc
, Input
);
2918 /// Expressions of certain arbitrary types are forbidden by C from
2919 /// having l-value type. These are:
2920 /// - 'void', but not qualified void
2921 /// - function types
2923 /// The exact rule here is C99 6.3.2.1:
2924 /// An lvalue is an expression with an object type or an incomplete
2925 /// type other than void.
2926 static bool IsCForbiddenLValueType(ASTContext
&C
, QualType T
) {
2927 return ((T
->isVoidType() && !T
.hasQualifiers()) ||
2928 T
->isFunctionType());
2932 Sema::ActOnArraySubscriptExpr(Scope
*S
, Expr
*Base
, SourceLocation LLoc
,
2933 Expr
*Idx
, SourceLocation RLoc
) {
2934 // Since this might be a postfix expression, get rid of ParenListExprs.
2935 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
2936 if (Result
.isInvalid()) return ExprError();
2937 Base
= Result
.take();
2939 Expr
*LHSExp
= Base
, *RHSExp
= Idx
;
2941 if (getLangOptions().CPlusPlus
&&
2942 (LHSExp
->isTypeDependent() || RHSExp
->isTypeDependent())) {
2943 return Owned(new (Context
) ArraySubscriptExpr(LHSExp
, RHSExp
,
2944 Context
.DependentTy
,
2945 VK_LValue
, OK_Ordinary
,
2949 if (getLangOptions().CPlusPlus
&&
2950 (LHSExp
->getType()->isRecordType() ||
2951 LHSExp
->getType()->isEnumeralType() ||
2952 RHSExp
->getType()->isRecordType() ||
2953 RHSExp
->getType()->isEnumeralType())) {
2954 return CreateOverloadedArraySubscriptExpr(LLoc
, RLoc
, Base
, Idx
);
2957 return CreateBuiltinArraySubscriptExpr(Base
, LLoc
, Idx
, RLoc
);
2962 Sema::CreateBuiltinArraySubscriptExpr(Expr
*Base
, SourceLocation LLoc
,
2963 Expr
*Idx
, SourceLocation RLoc
) {
2964 Expr
*LHSExp
= Base
;
2967 // Perform default conversions.
2968 if (!LHSExp
->getType()->getAs
<VectorType
>())
2969 DefaultFunctionArrayLvalueConversion(LHSExp
);
2970 DefaultFunctionArrayLvalueConversion(RHSExp
);
2972 QualType LHSTy
= LHSExp
->getType(), RHSTy
= RHSExp
->getType();
2973 ExprValueKind VK
= VK_LValue
;
2974 ExprObjectKind OK
= OK_Ordinary
;
2976 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2977 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2978 // in the subscript position. As a result, we need to derive the array base
2979 // and index from the expression types.
2980 Expr
*BaseExpr
, *IndexExpr
;
2981 QualType ResultType
;
2982 if (LHSTy
->isDependentType() || RHSTy
->isDependentType()) {
2985 ResultType
= Context
.DependentTy
;
2986 } else if (const PointerType
*PTy
= LHSTy
->getAs
<PointerType
>()) {
2989 ResultType
= PTy
->getPointeeType();
2990 } else if (const PointerType
*PTy
= RHSTy
->getAs
<PointerType
>()) {
2991 // Handle the uncommon case of "123[Ptr]".
2994 ResultType
= PTy
->getPointeeType();
2995 } else if (const ObjCObjectPointerType
*PTy
=
2996 LHSTy
->getAs
<ObjCObjectPointerType
>()) {
2999 ResultType
= PTy
->getPointeeType();
3000 } else if (const ObjCObjectPointerType
*PTy
=
3001 RHSTy
->getAs
<ObjCObjectPointerType
>()) {
3002 // Handle the uncommon case of "123[Ptr]".
3005 ResultType
= PTy
->getPointeeType();
3006 } else if (const VectorType
*VTy
= LHSTy
->getAs
<VectorType
>()) {
3007 BaseExpr
= LHSExp
; // vectors: V[123]
3009 VK
= LHSExp
->getValueKind();
3010 if (VK
!= VK_RValue
)
3011 OK
= OK_VectorComponent
;
3013 // FIXME: need to deal with const...
3014 ResultType
= VTy
->getElementType();
3015 } else if (LHSTy
->isArrayType()) {
3016 // If we see an array that wasn't promoted by
3017 // DefaultFunctionArrayLvalueConversion, it must be an array that
3018 // wasn't promoted because of the C90 rule that doesn't
3019 // allow promoting non-lvalue arrays. Warn, then
3020 // force the promotion here.
3021 Diag(LHSExp
->getLocStart(), diag::ext_subscript_non_lvalue
) <<
3022 LHSExp
->getSourceRange();
3023 ImpCastExprToType(LHSExp
, Context
.getArrayDecayedType(LHSTy
),
3024 CK_ArrayToPointerDecay
);
3025 LHSTy
= LHSExp
->getType();
3029 ResultType
= LHSTy
->getAs
<PointerType
>()->getPointeeType();
3030 } else if (RHSTy
->isArrayType()) {
3031 // Same as previous, except for 123[f().a] case
3032 Diag(RHSExp
->getLocStart(), diag::ext_subscript_non_lvalue
) <<
3033 RHSExp
->getSourceRange();
3034 ImpCastExprToType(RHSExp
, Context
.getArrayDecayedType(RHSTy
),
3035 CK_ArrayToPointerDecay
);
3036 RHSTy
= RHSExp
->getType();
3040 ResultType
= RHSTy
->getAs
<PointerType
>()->getPointeeType();
3042 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_value
)
3043 << LHSExp
->getSourceRange() << RHSExp
->getSourceRange());
3046 if (!IndexExpr
->getType()->isIntegerType() && !IndexExpr
->isTypeDependent())
3047 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_not_integer
)
3048 << IndexExpr
->getSourceRange());
3050 if ((IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
3051 IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
3052 && !IndexExpr
->isTypeDependent())
3053 Diag(LLoc
, diag::warn_subscript_is_char
) << IndexExpr
->getSourceRange();
3055 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3056 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3057 // type. Note that Functions are not objects, and that (in C99 parlance)
3058 // incomplete types are not object types.
3059 if (ResultType
->isFunctionType()) {
3060 Diag(BaseExpr
->getLocStart(), diag::err_subscript_function_type
)
3061 << ResultType
<< BaseExpr
->getSourceRange();
3065 if (ResultType
->isVoidType() && !getLangOptions().CPlusPlus
) {
3066 // GNU extension: subscripting on pointer to void
3067 Diag(LLoc
, diag::ext_gnu_void_ptr
)
3068 << BaseExpr
->getSourceRange();
3070 // C forbids expressions of unqualified void type from being l-values.
3071 // See IsCForbiddenLValueType.
3072 if (!ResultType
.hasQualifiers()) VK
= VK_RValue
;
3073 } else if (!ResultType
->isDependentType() &&
3074 RequireCompleteType(LLoc
, ResultType
,
3075 PDiag(diag::err_subscript_incomplete_type
)
3076 << BaseExpr
->getSourceRange()))
3079 // Diagnose bad cases where we step over interface counts.
3080 if (ResultType
->isObjCObjectType() && LangOpts
.ObjCNonFragileABI
) {
3081 Diag(LLoc
, diag::err_subscript_nonfragile_interface
)
3082 << ResultType
<< BaseExpr
->getSourceRange();
3086 assert(VK
== VK_RValue
|| LangOpts
.CPlusPlus
||
3087 !IsCForbiddenLValueType(Context
, ResultType
));
3089 return Owned(new (Context
) ArraySubscriptExpr(LHSExp
, RHSExp
,
3090 ResultType
, VK
, OK
, RLoc
));
3093 /// Check an ext-vector component access expression.
3095 /// VK should be set in advance to the value kind of the base
3098 CheckExtVectorComponent(Sema
&S
, QualType baseType
, ExprValueKind
&VK
,
3099 SourceLocation OpLoc
, const IdentifierInfo
*CompName
,
3100 SourceLocation CompLoc
) {
3101 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
3104 // FIXME: This logic can be greatly simplified by splitting it along
3105 // halving/not halving and reworking the component checking.
3106 const ExtVectorType
*vecType
= baseType
->getAs
<ExtVectorType
>();
3108 // The vector accessor can't exceed the number of elements.
3109 const char *compStr
= CompName
->getNameStart();
3111 // This flag determines whether or not the component is one of the four
3112 // special names that indicate a subset of exactly half the elements are
3114 bool HalvingSwizzle
= false;
3116 // This flag determines whether or not CompName has an 's' char prefix,
3117 // indicating that it is a string of hex values to be used as vector indices.
3118 bool HexSwizzle
= *compStr
== 's' || *compStr
== 'S';
3120 bool HasRepeated
= false;
3121 bool HasIndex
[16] = {};
3125 // Check that we've found one of the special components, or that the component
3126 // names must come from the same set.
3127 if (!strcmp(compStr
, "hi") || !strcmp(compStr
, "lo") ||
3128 !strcmp(compStr
, "even") || !strcmp(compStr
, "odd")) {
3129 HalvingSwizzle
= true;
3130 } else if (!HexSwizzle
&&
3131 (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1) {
3133 if (HasIndex
[Idx
]) HasRepeated
= true;
3134 HasIndex
[Idx
] = true;
3136 } while (*compStr
&& (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1);
3138 if (HexSwizzle
) compStr
++;
3139 while ((Idx
= vecType
->getNumericAccessorIdx(*compStr
)) != -1) {
3140 if (HasIndex
[Idx
]) HasRepeated
= true;
3141 HasIndex
[Idx
] = true;
3146 if (!HalvingSwizzle
&& *compStr
) {
3147 // We didn't get to the end of the string. This means the component names
3148 // didn't come from the same set *or* we encountered an illegal name.
3149 S
.Diag(OpLoc
, diag::err_ext_vector_component_name_illegal
)
3150 << llvm::StringRef(compStr
, 1) << SourceRange(CompLoc
);
3154 // Ensure no component accessor exceeds the width of the vector type it
3156 if (!HalvingSwizzle
) {
3157 compStr
= CompName
->getNameStart();
3163 if (!vecType
->isAccessorWithinNumElements(*compStr
++)) {
3164 S
.Diag(OpLoc
, diag::err_ext_vector_component_exceeds_length
)
3165 << baseType
<< SourceRange(CompLoc
);
3171 // The component accessor looks fine - now we need to compute the actual type.
3172 // The vector type is implied by the component accessor. For example,
3173 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
3174 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
3175 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
3176 unsigned CompSize
= HalvingSwizzle
? (vecType
->getNumElements() + 1) / 2
3177 : CompName
->getLength();
3182 return vecType
->getElementType();
3184 if (HasRepeated
) VK
= VK_RValue
;
3186 QualType VT
= S
.Context
.getExtVectorType(vecType
->getElementType(), CompSize
);
3187 // Now look up the TypeDefDecl from the vector type. Without this,
3188 // diagostics look bad. We want extended vector types to appear built-in.
3189 for (unsigned i
= 0, E
= S
.ExtVectorDecls
.size(); i
!= E
; ++i
) {
3190 if (S
.ExtVectorDecls
[i
]->getUnderlyingType() == VT
)
3191 return S
.Context
.getTypedefType(S
.ExtVectorDecls
[i
]);
3193 return VT
; // should never get here (a typedef type should always be found).
3196 static Decl
*FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl
*PDecl
,
3197 IdentifierInfo
*Member
,
3198 const Selector
&Sel
,
3199 ASTContext
&Context
) {
3201 if (ObjCPropertyDecl
*PD
= PDecl
->FindPropertyDeclaration(Member
))
3203 if (ObjCMethodDecl
*OMD
= PDecl
->getInstanceMethod(Sel
))
3206 for (ObjCProtocolDecl::protocol_iterator I
= PDecl
->protocol_begin(),
3207 E
= PDecl
->protocol_end(); I
!= E
; ++I
) {
3208 if (Decl
*D
= FindGetterSetterNameDeclFromProtocolList(*I
, Member
, Sel
,
3215 static Decl
*FindGetterSetterNameDecl(const ObjCObjectPointerType
*QIdTy
,
3216 IdentifierInfo
*Member
,
3217 const Selector
&Sel
,
3218 ASTContext
&Context
) {
3219 // Check protocols on qualified interfaces.
3221 for (ObjCObjectPointerType::qual_iterator I
= QIdTy
->qual_begin(),
3222 E
= QIdTy
->qual_end(); I
!= E
; ++I
) {
3224 if (ObjCPropertyDecl
*PD
= (*I
)->FindPropertyDeclaration(Member
)) {
3228 // Also must look for a getter or setter name which uses property syntax.
3229 if (ObjCMethodDecl
*OMD
= (*I
)->getInstanceMethod(Sel
)) {
3235 for (ObjCObjectPointerType::qual_iterator I
= QIdTy
->qual_begin(),
3236 E
= QIdTy
->qual_end(); I
!= E
; ++I
) {
3237 // Search in the protocol-qualifier list of current protocol.
3238 GDecl
= FindGetterSetterNameDeclFromProtocolList(*I
, Member
, Sel
,
3248 Sema::ActOnDependentMemberExpr(Expr
*BaseExpr
, QualType BaseType
,
3249 bool IsArrow
, SourceLocation OpLoc
,
3250 const CXXScopeSpec
&SS
,
3251 NamedDecl
*FirstQualifierInScope
,
3252 const DeclarationNameInfo
&NameInfo
,
3253 const TemplateArgumentListInfo
*TemplateArgs
) {
3254 // Even in dependent contexts, try to diagnose base expressions with
3255 // obviously wrong types, e.g.:
3260 // In Obj-C++, however, the above expression is valid, since it could be
3261 // accessing the 'f' property if T is an Obj-C interface. The extra check
3262 // allows this, while still reporting an error if T is a struct pointer.
3264 const PointerType
*PT
= BaseType
->getAs
<PointerType
>();
3265 if (PT
&& (!getLangOptions().ObjC1
||
3266 PT
->getPointeeType()->isRecordType())) {
3267 assert(BaseExpr
&& "cannot happen with implicit member accesses");
3268 Diag(NameInfo
.getLoc(), diag::err_typecheck_member_reference_struct_union
)
3269 << BaseType
<< BaseExpr
->getSourceRange();
3274 assert(BaseType
->isDependentType() ||
3275 NameInfo
.getName().isDependentName() ||
3276 isDependentScopeSpecifier(SS
));
3278 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
3279 // must have pointer type, and the accessed type is the pointee.
3280 return Owned(CXXDependentScopeMemberExpr::Create(Context
, BaseExpr
, BaseType
,
3284 FirstQualifierInScope
,
3285 NameInfo
, TemplateArgs
));
3288 /// We know that the given qualified member reference points only to
3289 /// declarations which do not belong to the static type of the base
3290 /// expression. Diagnose the problem.
3291 static void DiagnoseQualifiedMemberReference(Sema
&SemaRef
,
3294 const CXXScopeSpec
&SS
,
3296 const DeclarationNameInfo
&nameInfo
) {
3297 // If this is an implicit member access, use a different set of
3300 return DiagnoseInstanceReference(SemaRef
, SS
, rep
, nameInfo
);
3302 SemaRef
.Diag(nameInfo
.getLoc(), diag::err_qualified_member_of_unrelated
)
3303 << SS
.getRange() << rep
<< BaseType
;
3306 // Check whether the declarations we found through a nested-name
3307 // specifier in a member expression are actually members of the base
3308 // type. The restriction here is:
3310 // C++ [expr.ref]p2:
3311 // ... In these cases, the id-expression shall name a
3312 // member of the class or of one of its base classes.
3314 // So it's perfectly legitimate for the nested-name specifier to name
3315 // an unrelated class, and for us to find an overload set including
3316 // decls from classes which are not superclasses, as long as the decl
3317 // we actually pick through overload resolution is from a superclass.
3318 bool Sema::CheckQualifiedMemberReference(Expr
*BaseExpr
,
3320 const CXXScopeSpec
&SS
,
3321 const LookupResult
&R
) {
3322 const RecordType
*BaseRT
= BaseType
->getAs
<RecordType
>();
3324 // We can't check this yet because the base type is still
3326 assert(BaseType
->isDependentType());
3329 CXXRecordDecl
*BaseRecord
= cast
<CXXRecordDecl
>(BaseRT
->getDecl());
3331 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
3332 // If this is an implicit member reference and we find a
3333 // non-instance member, it's not an error.
3334 if (!BaseExpr
&& !(*I
)->isCXXInstanceMember())
3337 // Note that we use the DC of the decl, not the underlying decl.
3338 DeclContext
*DC
= (*I
)->getDeclContext();
3339 while (DC
->isTransparentContext())
3340 DC
= DC
->getParent();
3342 if (!DC
->isRecord())
3345 llvm::SmallPtrSet
<CXXRecordDecl
*,4> MemberRecord
;
3346 MemberRecord
.insert(cast
<CXXRecordDecl
>(DC
)->getCanonicalDecl());
3348 if (!IsProvablyNotDerivedFrom(*this, BaseRecord
, MemberRecord
))
3352 DiagnoseQualifiedMemberReference(*this, BaseExpr
, BaseType
, SS
,
3353 R
.getRepresentativeDecl(),
3354 R
.getLookupNameInfo());
3359 LookupMemberExprInRecord(Sema
&SemaRef
, LookupResult
&R
,
3360 SourceRange BaseRange
, const RecordType
*RTy
,
3361 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
3362 bool HasTemplateArgs
) {
3363 RecordDecl
*RDecl
= RTy
->getDecl();
3364 if (SemaRef
.RequireCompleteType(OpLoc
, QualType(RTy
, 0),
3365 SemaRef
.PDiag(diag::err_typecheck_incomplete_tag
)
3369 if (HasTemplateArgs
) {
3370 // LookupTemplateName doesn't expect these both to exist simultaneously.
3371 QualType ObjectType
= SS
.isSet() ? QualType() : QualType(RTy
, 0);
3374 SemaRef
.LookupTemplateName(R
, 0, SS
, ObjectType
, false, MOUS
);
3378 DeclContext
*DC
= RDecl
;
3380 // If the member name was a qualified-id, look into the
3381 // nested-name-specifier.
3382 DC
= SemaRef
.computeDeclContext(SS
, false);
3384 if (SemaRef
.RequireCompleteDeclContext(SS
, DC
)) {
3385 SemaRef
.Diag(SS
.getRange().getEnd(), diag::err_typecheck_incomplete_tag
)
3386 << SS
.getRange() << DC
;
3390 assert(DC
&& "Cannot handle non-computable dependent contexts in lookup");
3392 if (!isa
<TypeDecl
>(DC
)) {
3393 SemaRef
.Diag(R
.getNameLoc(), diag::err_qualified_member_nonclass
)
3394 << DC
<< SS
.getRange();
3399 // The record definition is complete, now look up the member.
3400 SemaRef
.LookupQualifiedName(R
, DC
);
3405 // We didn't find anything with the given name, so try to correct
3407 DeclarationName Name
= R
.getLookupName();
3408 if (SemaRef
.CorrectTypo(R
, 0, &SS
, DC
, false, Sema::CTC_MemberLookup
) &&
3410 (isa
<ValueDecl
>(*R
.begin()) || isa
<FunctionTemplateDecl
>(*R
.begin()))) {
3411 SemaRef
.Diag(R
.getNameLoc(), diag::err_no_member_suggest
)
3412 << Name
<< DC
<< R
.getLookupName() << SS
.getRange()
3413 << FixItHint::CreateReplacement(R
.getNameLoc(),
3414 R
.getLookupName().getAsString());
3415 if (NamedDecl
*ND
= R
.getAsSingle
<NamedDecl
>())
3416 SemaRef
.Diag(ND
->getLocation(), diag::note_previous_decl
)
3417 << ND
->getDeclName();
3421 R
.setLookupName(Name
);
3428 Sema::BuildMemberReferenceExpr(Expr
*Base
, QualType BaseType
,
3429 SourceLocation OpLoc
, bool IsArrow
,
3431 NamedDecl
*FirstQualifierInScope
,
3432 const DeclarationNameInfo
&NameInfo
,
3433 const TemplateArgumentListInfo
*TemplateArgs
) {
3434 if (BaseType
->isDependentType() ||
3435 (SS
.isSet() && isDependentScopeSpecifier(SS
)))
3436 return ActOnDependentMemberExpr(Base
, BaseType
,
3438 SS
, FirstQualifierInScope
,
3439 NameInfo
, TemplateArgs
);
3441 LookupResult
R(*this, NameInfo
, LookupMemberName
);
3443 // Implicit member accesses.
3445 QualType RecordTy
= BaseType
;
3446 if (IsArrow
) RecordTy
= RecordTy
->getAs
<PointerType
>()->getPointeeType();
3447 if (LookupMemberExprInRecord(*this, R
, SourceRange(),
3448 RecordTy
->getAs
<RecordType
>(),
3449 OpLoc
, SS
, TemplateArgs
!= 0))
3452 // Explicit member accesses.
3455 LookupMemberExpr(R
, Base
, IsArrow
, OpLoc
,
3456 SS
, /*ObjCImpDecl*/ 0, TemplateArgs
!= 0);
3458 if (Result
.isInvalid()) {
3464 return move(Result
);
3466 // LookupMemberExpr can modify Base, and thus change BaseType
3467 BaseType
= Base
->getType();
3470 return BuildMemberReferenceExpr(Base
, BaseType
,
3471 OpLoc
, IsArrow
, SS
, FirstQualifierInScope
,
3476 Sema::BuildMemberReferenceExpr(Expr
*BaseExpr
, QualType BaseExprType
,
3477 SourceLocation OpLoc
, bool IsArrow
,
3478 const CXXScopeSpec
&SS
,
3479 NamedDecl
*FirstQualifierInScope
,
3481 const TemplateArgumentListInfo
*TemplateArgs
,
3482 bool SuppressQualifierCheck
) {
3483 QualType BaseType
= BaseExprType
;
3485 assert(BaseType
->isPointerType());
3486 BaseType
= BaseType
->getAs
<PointerType
>()->getPointeeType();
3488 R
.setBaseObjectType(BaseType
);
3490 NestedNameSpecifier
*Qualifier
= SS
.getScopeRep();
3491 const DeclarationNameInfo
&MemberNameInfo
= R
.getLookupNameInfo();
3492 DeclarationName MemberName
= MemberNameInfo
.getName();
3493 SourceLocation MemberLoc
= MemberNameInfo
.getLoc();
3495 if (R
.isAmbiguous())
3499 // Rederive where we looked up.
3500 DeclContext
*DC
= (SS
.isSet()
3501 ? computeDeclContext(SS
, false)
3502 : BaseType
->getAs
<RecordType
>()->getDecl());
3504 Diag(R
.getNameLoc(), diag::err_no_member
)
3506 << (BaseExpr
? BaseExpr
->getSourceRange() : SourceRange());
3510 // Diagnose lookups that find only declarations from a non-base
3511 // type. This is possible for either qualified lookups (which may
3512 // have been qualified with an unrelated type) or implicit member
3513 // expressions (which were found with unqualified lookup and thus
3514 // may have come from an enclosing scope). Note that it's okay for
3515 // lookup to find declarations from a non-base type as long as those
3516 // aren't the ones picked by overload resolution.
3517 if ((SS
.isSet() || !BaseExpr
||
3518 (isa
<CXXThisExpr
>(BaseExpr
) &&
3519 cast
<CXXThisExpr
>(BaseExpr
)->isImplicit())) &&
3520 !SuppressQualifierCheck
&&
3521 CheckQualifiedMemberReference(BaseExpr
, BaseType
, SS
, R
))
3524 // Construct an unresolved result if we in fact got an unresolved
3526 if (R
.isOverloadedResult() || R
.isUnresolvableResult()) {
3527 // Suppress any lookup-related diagnostics; we'll do these when we
3529 R
.suppressDiagnostics();
3531 UnresolvedMemberExpr
*MemExpr
3532 = UnresolvedMemberExpr::Create(Context
, R
.isUnresolvableResult(),
3533 BaseExpr
, BaseExprType
,
3535 Qualifier
, SS
.getRange(),
3537 TemplateArgs
, R
.begin(), R
.end());
3539 return Owned(MemExpr
);
3542 assert(R
.isSingleResult());
3543 DeclAccessPair FoundDecl
= R
.begin().getPair();
3544 NamedDecl
*MemberDecl
= R
.getFoundDecl();
3546 // FIXME: diagnose the presence of template arguments now.
3548 // If the decl being referenced had an error, return an error for this
3549 // sub-expr without emitting another error, in order to avoid cascading
3551 if (MemberDecl
->isInvalidDecl())
3554 // Handle the implicit-member-access case.
3556 // If this is not an instance member, convert to a non-member access.
3557 if (!MemberDecl
->isCXXInstanceMember())
3558 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), MemberDecl
);
3560 SourceLocation Loc
= R
.getNameLoc();
3561 if (SS
.getRange().isValid())
3562 Loc
= SS
.getRange().getBegin();
3563 BaseExpr
= new (Context
) CXXThisExpr(Loc
, BaseExprType
,/*isImplicit=*/true);
3566 bool ShouldCheckUse
= true;
3567 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MemberDecl
)) {
3568 // Don't diagnose the use of a virtual member function unless it's
3569 // explicitly qualified.
3570 if (MD
->isVirtual() && !SS
.isSet())
3571 ShouldCheckUse
= false;
3574 // Check the use of this member.
3575 if (ShouldCheckUse
&& DiagnoseUseOfDecl(MemberDecl
, MemberLoc
)) {
3580 // Perform a property load on the base regardless of whether we
3581 // actually need it for the declaration.
3582 if (BaseExpr
->getObjectKind() == OK_ObjCProperty
)
3583 ConvertPropertyForRValue(BaseExpr
);
3585 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(MemberDecl
))
3586 return BuildFieldReferenceExpr(*this, BaseExpr
, IsArrow
,
3587 SS
, FD
, FoundDecl
, MemberNameInfo
);
3589 if (IndirectFieldDecl
*FD
= dyn_cast
<IndirectFieldDecl
>(MemberDecl
))
3590 // We may have found a field within an anonymous union or struct
3591 // (C++ [class.union]).
3592 return BuildAnonymousStructUnionMemberReference(SS
, MemberLoc
, FD
,
3595 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(MemberDecl
)) {
3596 MarkDeclarationReferenced(MemberLoc
, Var
);
3597 return Owned(BuildMemberExpr(Context
, BaseExpr
, IsArrow
, SS
,
3598 Var
, FoundDecl
, MemberNameInfo
,
3599 Var
->getType().getNonReferenceType(),
3600 VK_LValue
, OK_Ordinary
));
3603 if (CXXMethodDecl
*MemberFn
= dyn_cast
<CXXMethodDecl
>(MemberDecl
)) {
3604 MarkDeclarationReferenced(MemberLoc
, MemberDecl
);
3605 return Owned(BuildMemberExpr(Context
, BaseExpr
, IsArrow
, SS
,
3606 MemberFn
, FoundDecl
, MemberNameInfo
,
3607 MemberFn
->getType(),
3608 MemberFn
->isInstance() ? VK_RValue
: VK_LValue
,
3611 assert(!isa
<FunctionDecl
>(MemberDecl
) && "member function not C++ method?");
3613 if (EnumConstantDecl
*Enum
= dyn_cast
<EnumConstantDecl
>(MemberDecl
)) {
3614 MarkDeclarationReferenced(MemberLoc
, MemberDecl
);
3615 return Owned(BuildMemberExpr(Context
, BaseExpr
, IsArrow
, SS
,
3616 Enum
, FoundDecl
, MemberNameInfo
,
3617 Enum
->getType(), VK_RValue
, OK_Ordinary
));
3622 // We found something that we didn't expect. Complain.
3623 if (isa
<TypeDecl
>(MemberDecl
))
3624 Diag(MemberLoc
, diag::err_typecheck_member_reference_type
)
3625 << MemberName
<< BaseType
<< int(IsArrow
);
3627 Diag(MemberLoc
, diag::err_typecheck_member_reference_unknown
)
3628 << MemberName
<< BaseType
<< int(IsArrow
);
3630 Diag(MemberDecl
->getLocation(), diag::note_member_declared_here
)
3632 R
.suppressDiagnostics();
3636 /// Given that normal member access failed on the given expression,
3637 /// and given that the expression's type involves builtin-id or
3638 /// builtin-Class, decide whether substituting in the redefinition
3639 /// types would be profitable. The redefinition type is whatever
3640 /// this translation unit tried to typedef to id/Class; we store
3641 /// it to the side and then re-use it in places like this.
3642 static bool ShouldTryAgainWithRedefinitionType(Sema
&S
, Expr
*&base
) {
3643 const ObjCObjectPointerType
*opty
3644 = base
->getType()->getAs
<ObjCObjectPointerType
>();
3645 if (!opty
) return false;
3647 const ObjCObjectType
*ty
= opty
->getObjectType();
3650 if (ty
->isObjCId()) {
3651 redef
= S
.Context
.ObjCIdRedefinitionType
;
3652 } else if (ty
->isObjCClass()) {
3653 redef
= S
.Context
.ObjCClassRedefinitionType
;
3658 // Do the substitution as long as the redefinition type isn't just a
3659 // possibly-qualified pointer to builtin-id or builtin-Class again.
3660 opty
= redef
->getAs
<ObjCObjectPointerType
>();
3661 if (opty
&& !opty
->getObjectType()->getInterface() != 0)
3664 S
.ImpCastExprToType(base
, redef
, CK_BitCast
);
3668 /// Look up the given member of the given non-type-dependent
3669 /// expression. This can return in one of two ways:
3670 /// * If it returns a sentinel null-but-valid result, the caller will
3671 /// assume that lookup was performed and the results written into
3672 /// the provided structure. It will take over from there.
3673 /// * Otherwise, the returned expression will be produced in place of
3674 /// an ordinary member expression.
3676 /// The ObjCImpDecl bit is a gross hack that will need to be properly
3677 /// fixed for ObjC++.
3679 Sema::LookupMemberExpr(LookupResult
&R
, Expr
*&BaseExpr
,
3680 bool &IsArrow
, SourceLocation OpLoc
,
3682 Decl
*ObjCImpDecl
, bool HasTemplateArgs
) {
3683 assert(BaseExpr
&& "no base expression");
3685 // Perform default conversions.
3686 DefaultFunctionArrayConversion(BaseExpr
);
3687 if (IsArrow
) DefaultLvalueConversion(BaseExpr
);
3689 QualType BaseType
= BaseExpr
->getType();
3690 assert(!BaseType
->isDependentType());
3692 DeclarationName MemberName
= R
.getLookupName();
3693 SourceLocation MemberLoc
= R
.getNameLoc();
3695 // For later type-checking purposes, turn arrow accesses into dot
3696 // accesses. The only access type we support that doesn't follow
3697 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
3698 // and those never use arrows, so this is unaffected.
3700 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>())
3701 BaseType
= Ptr
->getPointeeType();
3702 else if (const ObjCObjectPointerType
*Ptr
3703 = BaseType
->getAs
<ObjCObjectPointerType
>())
3704 BaseType
= Ptr
->getPointeeType();
3705 else if (BaseType
->isRecordType()) {
3706 // Recover from arrow accesses to records, e.g.:
3707 // struct MyRecord foo;
3709 // This is actually well-formed in C++ if MyRecord has an
3710 // overloaded operator->, but that should have been dealt with
3712 Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
3713 << BaseType
<< int(IsArrow
) << BaseExpr
->getSourceRange()
3714 << FixItHint::CreateReplacement(OpLoc
, ".");
3717 Diag(MemberLoc
, diag::err_typecheck_member_reference_arrow
)
3718 << BaseType
<< BaseExpr
->getSourceRange();
3723 // Handle field access to simple records.
3724 if (const RecordType
*RTy
= BaseType
->getAs
<RecordType
>()) {
3725 if (LookupMemberExprInRecord(*this, R
, BaseExpr
->getSourceRange(),
3726 RTy
, OpLoc
, SS
, HasTemplateArgs
))
3729 // Returning valid-but-null is how we indicate to the caller that
3730 // the lookup result was filled in.
3731 return Owned((Expr
*) 0);
3734 // Handle ivar access to Objective-C objects.
3735 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>()) {
3736 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
3738 // There are three cases for the base type:
3739 // - builtin id (qualified or unqualified)
3740 // - builtin Class (qualified or unqualified)
3742 ObjCInterfaceDecl
*IDecl
= OTy
->getInterface();
3744 // There's an implicit 'isa' ivar on all objects.
3745 // But we only actually find it this way on objects of type 'id',
3747 if (OTy
->isObjCId() && Member
->isStr("isa"))
3748 return Owned(new (Context
) ObjCIsaExpr(BaseExpr
, IsArrow
, MemberLoc
,
3749 Context
.getObjCClassType()));
3751 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr
))
3752 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
3753 ObjCImpDecl
, HasTemplateArgs
);
3757 ObjCInterfaceDecl
*ClassDeclared
;
3758 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
3761 // Attempt to correct for typos in ivar names.
3762 LookupResult
Res(*this, R
.getLookupName(), R
.getNameLoc(),
3764 if (CorrectTypo(Res
, 0, 0, IDecl
, false,
3765 IsArrow
? CTC_ObjCIvarLookup
3766 : CTC_ObjCPropertyLookup
) &&
3767 (IV
= Res
.getAsSingle
<ObjCIvarDecl
>())) {
3768 Diag(R
.getNameLoc(),
3769 diag::err_typecheck_member_reference_ivar_suggest
)
3770 << IDecl
->getDeclName() << MemberName
<< IV
->getDeclName()
3771 << FixItHint::CreateReplacement(R
.getNameLoc(),
3772 IV
->getNameAsString());
3773 Diag(IV
->getLocation(), diag::note_previous_decl
)
3774 << IV
->getDeclName();
3777 Res
.setLookupName(Member
);
3779 Diag(MemberLoc
, diag::err_typecheck_member_reference_ivar
)
3780 << IDecl
->getDeclName() << MemberName
3781 << BaseExpr
->getSourceRange();
3786 // If the decl being referenced had an error, return an error for this
3787 // sub-expr without emitting another error, in order to avoid cascading
3789 if (IV
->isInvalidDecl())
3792 // Check whether we can reference this field.
3793 if (DiagnoseUseOfDecl(IV
, MemberLoc
))
3795 if (IV
->getAccessControl() != ObjCIvarDecl::Public
&&
3796 IV
->getAccessControl() != ObjCIvarDecl::Package
) {
3797 ObjCInterfaceDecl
*ClassOfMethodDecl
= 0;
3798 if (ObjCMethodDecl
*MD
= getCurMethodDecl())
3799 ClassOfMethodDecl
= MD
->getClassInterface();
3800 else if (ObjCImpDecl
&& getCurFunctionDecl()) {
3801 // Case of a c-function declared inside an objc implementation.
3802 // FIXME: For a c-style function nested inside an objc implementation
3803 // class, there is no implementation context available, so we pass
3804 // down the context as argument to this routine. Ideally, this context
3805 // need be passed down in the AST node and somehow calculated from the
3806 // AST for a function decl.
3807 if (ObjCImplementationDecl
*IMPD
=
3808 dyn_cast
<ObjCImplementationDecl
>(ObjCImpDecl
))
3809 ClassOfMethodDecl
= IMPD
->getClassInterface();
3810 else if (ObjCCategoryImplDecl
* CatImplClass
=
3811 dyn_cast
<ObjCCategoryImplDecl
>(ObjCImpDecl
))
3812 ClassOfMethodDecl
= CatImplClass
->getClassInterface();
3815 if (IV
->getAccessControl() == ObjCIvarDecl::Private
) {
3816 if (ClassDeclared
!= IDecl
||
3817 ClassOfMethodDecl
!= ClassDeclared
)
3818 Diag(MemberLoc
, diag::error_private_ivar_access
)
3819 << IV
->getDeclName();
3820 } else if (!IDecl
->isSuperClassOf(ClassOfMethodDecl
))
3822 Diag(MemberLoc
, diag::error_protected_ivar_access
)
3823 << IV
->getDeclName();
3826 return Owned(new (Context
) ObjCIvarRefExpr(IV
, IV
->getType(),
3827 MemberLoc
, BaseExpr
,
3831 // Objective-C property access.
3832 const ObjCObjectPointerType
*OPT
;
3833 if (!IsArrow
&& (OPT
= BaseType
->getAs
<ObjCObjectPointerType
>())) {
3834 // This actually uses the base as an r-value.
3835 DefaultLvalueConversion(BaseExpr
);
3836 assert(Context
.hasSameUnqualifiedType(BaseType
, BaseExpr
->getType()));
3838 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
3840 const ObjCObjectType
*OT
= OPT
->getObjectType();
3842 // id, with and without qualifiers.
3843 if (OT
->isObjCId()) {
3844 // Check protocols on qualified interfaces.
3845 Selector Sel
= PP
.getSelectorTable().getNullarySelector(Member
);
3846 if (Decl
*PMDecl
= FindGetterSetterNameDecl(OPT
, Member
, Sel
, Context
)) {
3847 if (ObjCPropertyDecl
*PD
= dyn_cast
<ObjCPropertyDecl
>(PMDecl
)) {
3848 // Check the use of this declaration
3849 if (DiagnoseUseOfDecl(PD
, MemberLoc
))
3852 return Owned(new (Context
) ObjCPropertyRefExpr(PD
, PD
->getType(),
3859 if (ObjCMethodDecl
*OMD
= dyn_cast
<ObjCMethodDecl
>(PMDecl
)) {
3860 // Check the use of this method.
3861 if (DiagnoseUseOfDecl(OMD
, MemberLoc
))
3863 Selector SetterSel
=
3864 SelectorTable::constructSetterName(PP
.getIdentifierTable(),
3865 PP
.getSelectorTable(), Member
);
3866 ObjCMethodDecl
*SMD
= 0;
3867 if (Decl
*SDecl
= FindGetterSetterNameDecl(OPT
, /*Property id*/0,
3868 SetterSel
, Context
))
3869 SMD
= dyn_cast
<ObjCMethodDecl
>(SDecl
);
3870 QualType PType
= OMD
->getSendResultType();
3872 ExprValueKind VK
= VK_LValue
;
3873 if (!getLangOptions().CPlusPlus
&&
3874 IsCForbiddenLValueType(Context
, PType
))
3876 ExprObjectKind OK
= (VK
== VK_RValue
? OK_Ordinary
: OK_ObjCProperty
);
3878 return Owned(new (Context
) ObjCPropertyRefExpr(OMD
, SMD
, PType
,
3880 MemberLoc
, BaseExpr
));
3884 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr
))
3885 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
3886 ObjCImpDecl
, HasTemplateArgs
);
3888 return ExprError(Diag(MemberLoc
, diag::err_property_not_found
)
3889 << MemberName
<< BaseType
);
3892 // 'Class', unqualified only.
3893 if (OT
->isObjCClass()) {
3894 // Only works in a method declaration (??!).
3895 ObjCMethodDecl
*MD
= getCurMethodDecl();
3897 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr
))
3898 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
3899 ObjCImpDecl
, HasTemplateArgs
);
3904 // Also must look for a getter name which uses property syntax.
3905 Selector Sel
= PP
.getSelectorTable().getNullarySelector(Member
);
3906 ObjCInterfaceDecl
*IFace
= MD
->getClassInterface();
3907 ObjCMethodDecl
*Getter
;
3908 if ((Getter
= IFace
->lookupClassMethod(Sel
))) {
3909 // Check the use of this method.
3910 if (DiagnoseUseOfDecl(Getter
, MemberLoc
))
3913 Getter
= IFace
->lookupPrivateMethod(Sel
, false);
3914 // If we found a getter then this may be a valid dot-reference, we
3915 // will look for the matching setter, in case it is needed.
3916 Selector SetterSel
=
3917 SelectorTable::constructSetterName(PP
.getIdentifierTable(),
3918 PP
.getSelectorTable(), Member
);
3919 ObjCMethodDecl
*Setter
= IFace
->lookupClassMethod(SetterSel
);
3921 // If this reference is in an @implementation, also check for 'private'
3923 Setter
= IFace
->lookupPrivateMethod(SetterSel
, false);
3925 // Look through local category implementations associated with the class.
3927 Setter
= IFace
->getCategoryClassMethod(SetterSel
);
3929 if (Setter
&& DiagnoseUseOfDecl(Setter
, MemberLoc
))
3932 if (Getter
|| Setter
) {
3935 ExprValueKind VK
= VK_LValue
;
3937 PType
= Getter
->getSendResultType();
3938 if (!getLangOptions().CPlusPlus
&&
3939 IsCForbiddenLValueType(Context
, PType
))
3942 // Get the expression type from Setter's incoming parameter.
3943 PType
= (*(Setter
->param_end() -1))->getType();
3945 ExprObjectKind OK
= (VK
== VK_RValue
? OK_Ordinary
: OK_ObjCProperty
);
3947 // FIXME: we must check that the setter has property type.
3948 return Owned(new (Context
) ObjCPropertyRefExpr(Getter
, Setter
,
3950 MemberLoc
, BaseExpr
));
3953 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr
))
3954 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
3955 ObjCImpDecl
, HasTemplateArgs
);
3957 return ExprError(Diag(MemberLoc
, diag::err_property_not_found
)
3958 << MemberName
<< BaseType
);
3961 // Normal property access.
3962 return HandleExprPropertyRefExpr(OPT
, BaseExpr
, MemberName
, MemberLoc
,
3963 SourceLocation(), QualType(), false);
3966 // Handle 'field access' to vectors, such as 'V.xx'.
3967 if (BaseType
->isExtVectorType()) {
3968 // FIXME: this expr should store IsArrow.
3969 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
3970 ExprValueKind VK
= (IsArrow
? VK_LValue
: BaseExpr
->getValueKind());
3971 QualType ret
= CheckExtVectorComponent(*this, BaseType
, VK
, OpLoc
,
3976 return Owned(new (Context
) ExtVectorElementExpr(ret
, VK
, BaseExpr
,
3977 *Member
, MemberLoc
));
3980 // Adjust builtin-sel to the appropriate redefinition type if that's
3981 // not just a pointer to builtin-sel again.
3983 BaseType
->isSpecificBuiltinType(BuiltinType::ObjCSel
) &&
3984 !Context
.ObjCSelRedefinitionType
->isObjCSelType()) {
3985 ImpCastExprToType(BaseExpr
, Context
.ObjCSelRedefinitionType
, CK_BitCast
);
3986 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
3987 ObjCImpDecl
, HasTemplateArgs
);
3993 // There's a possible road to recovery for function types.
3994 const FunctionType
*Fun
= 0;
3996 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>()) {
3997 if ((Fun
= Ptr
->getPointeeType()->getAs
<FunctionType
>())) {
3998 // fall out, handled below.
4000 // Recover from dot accesses to pointers, e.g.:
4003 // This is actually well-formed in two cases:
4004 // - 'type' is an Objective C type
4005 // - 'bar' is a pseudo-destructor name which happens to refer to
4006 // the appropriate pointer type
4007 } else if (!IsArrow
&& Ptr
->getPointeeType()->isRecordType() &&
4008 MemberName
.getNameKind() != DeclarationName::CXXDestructorName
) {
4009 Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
4010 << BaseType
<< int(IsArrow
) << BaseExpr
->getSourceRange()
4011 << FixItHint::CreateReplacement(OpLoc
, "->");
4013 // Recurse as an -> access.
4015 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
4016 ObjCImpDecl
, HasTemplateArgs
);
4019 Fun
= BaseType
->getAs
<FunctionType
>();
4022 // If the user is trying to apply -> or . to a function pointer
4023 // type, it's probably because they forgot parentheses to call that
4024 // function. Suggest the addition of those parentheses, build the
4025 // call, and continue on.
4026 if (Fun
|| BaseType
== Context
.OverloadTy
) {
4028 if (BaseType
== Context
.OverloadTy
) {
4031 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(Fun
)) {
4032 TryCall
= (FPT
->getNumArgs() == 0);
4038 QualType ResultTy
= Fun
->getResultType();
4039 TryCall
= (!IsArrow
&& ResultTy
->isRecordType()) ||
4040 (IsArrow
&& ResultTy
->isPointerType() &&
4041 ResultTy
->getAs
<PointerType
>()->getPointeeType()->isRecordType());
4047 SourceLocation Loc
= PP
.getLocForEndOfToken(BaseExpr
->getLocEnd());
4048 Diag(BaseExpr
->getExprLoc(), diag::err_member_reference_needs_call
)
4050 << FixItHint::CreateInsertion(Loc
, "()");
4053 = ActOnCallExpr(0, BaseExpr
, Loc
, MultiExprArg(*this, 0, 0), Loc
);
4054 if (NewBase
.isInvalid())
4056 BaseExpr
= NewBase
.takeAs
<Expr
>();
4059 DefaultFunctionArrayConversion(BaseExpr
);
4060 BaseType
= BaseExpr
->getType();
4062 return LookupMemberExpr(R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
4063 ObjCImpDecl
, HasTemplateArgs
);
4067 Diag(MemberLoc
, diag::err_typecheck_member_reference_struct_union
)
4068 << BaseType
<< BaseExpr
->getSourceRange();
4073 /// The main callback when the parser finds something like
4074 /// expression . [nested-name-specifier] identifier
4075 /// expression -> [nested-name-specifier] identifier
4076 /// where 'identifier' encompasses a fairly broad spectrum of
4077 /// possibilities, including destructor and operator references.
4079 /// \param OpKind either tok::arrow or tok::period
4080 /// \param HasTrailingLParen whether the next token is '(', which
4081 /// is used to diagnose mis-uses of special members that can
4083 /// \param ObjCImpDecl the current ObjC @implementation decl;
4084 /// this is an ugly hack around the fact that ObjC @implementations
4085 /// aren't properly put in the context chain
4086 ExprResult
Sema::ActOnMemberAccessExpr(Scope
*S
, Expr
*Base
,
4087 SourceLocation OpLoc
,
4088 tok::TokenKind OpKind
,
4092 bool HasTrailingLParen
) {
4093 if (SS
.isSet() && SS
.isInvalid())
4096 // Warn about the explicit constructor calls Microsoft extension.
4097 if (getLangOptions().Microsoft
&&
4098 Id
.getKind() == UnqualifiedId::IK_ConstructorName
)
4099 Diag(Id
.getSourceRange().getBegin(),
4100 diag::ext_ms_explicit_constructor_call
);
4102 TemplateArgumentListInfo TemplateArgsBuffer
;
4104 // Decompose the name into its component parts.
4105 DeclarationNameInfo NameInfo
;
4106 const TemplateArgumentListInfo
*TemplateArgs
;
4107 DecomposeUnqualifiedId(*this, Id
, TemplateArgsBuffer
,
4108 NameInfo
, TemplateArgs
);
4110 DeclarationName Name
= NameInfo
.getName();
4111 bool IsArrow
= (OpKind
== tok::arrow
);
4113 NamedDecl
*FirstQualifierInScope
4114 = (!SS
.isSet() ? 0 : FindFirstQualifierInScope(S
,
4115 static_cast<NestedNameSpecifier
*>(SS
.getScopeRep())));
4117 // This is a postfix expression, so get rid of ParenListExprs.
4118 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
4119 if (Result
.isInvalid()) return ExprError();
4120 Base
= Result
.take();
4122 if (Base
->getType()->isDependentType() || Name
.isDependentName() ||
4123 isDependentScopeSpecifier(SS
)) {
4124 Result
= ActOnDependentMemberExpr(Base
, Base
->getType(),
4126 SS
, FirstQualifierInScope
,
4127 NameInfo
, TemplateArgs
);
4129 LookupResult
R(*this, NameInfo
, LookupMemberName
);
4130 Result
= LookupMemberExpr(R
, Base
, IsArrow
, OpLoc
,
4131 SS
, ObjCImpDecl
, TemplateArgs
!= 0);
4133 if (Result
.isInvalid()) {
4139 // The only way a reference to a destructor can be used is to
4140 // immediately call it, which falls into this case. If the
4141 // next token is not a '(', produce a diagnostic and build the
4143 if (!HasTrailingLParen
&&
4144 Id
.getKind() == UnqualifiedId::IK_DestructorName
)
4145 return DiagnoseDtorReference(NameInfo
.getLoc(), Result
.get());
4147 return move(Result
);
4150 Result
= BuildMemberReferenceExpr(Base
, Base
->getType(),
4151 OpLoc
, IsArrow
, SS
, FirstQualifierInScope
,
4155 return move(Result
);
4158 ExprResult
Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc
,
4160 ParmVarDecl
*Param
) {
4161 if (Param
->hasUnparsedDefaultArg()) {
4163 diag::err_use_of_default_argument_to_function_declared_later
) <<
4164 FD
<< cast
<CXXRecordDecl
>(FD
->getDeclContext())->getDeclName();
4165 Diag(UnparsedDefaultArgLocs
[Param
],
4166 diag::note_default_argument_declared_here
);
4170 if (Param
->hasUninstantiatedDefaultArg()) {
4171 Expr
*UninstExpr
= Param
->getUninstantiatedDefaultArg();
4173 // Instantiate the expression.
4174 MultiLevelTemplateArgumentList ArgList
4175 = getTemplateInstantiationArgs(FD
, 0, /*RelativeToPrimary=*/true);
4177 std::pair
<const TemplateArgument
*, unsigned> Innermost
4178 = ArgList
.getInnermost();
4179 InstantiatingTemplate
Inst(*this, CallLoc
, Param
, Innermost
.first
,
4184 // C++ [dcl.fct.default]p5:
4185 // The names in the [default argument] expression are bound, and
4186 // the semantic constraints are checked, at the point where the
4187 // default argument expression appears.
4188 ContextRAII
SavedContext(*this, FD
);
4189 Result
= SubstExpr(UninstExpr
, ArgList
);
4191 if (Result
.isInvalid())
4194 // Check the expression as an initializer for the parameter.
4195 InitializedEntity Entity
4196 = InitializedEntity::InitializeParameter(Context
, Param
);
4197 InitializationKind Kind
4198 = InitializationKind::CreateCopy(Param
->getLocation(),
4199 /*FIXME:EqualLoc*/UninstExpr
->getSourceRange().getBegin());
4200 Expr
*ResultE
= Result
.takeAs
<Expr
>();
4202 InitializationSequence
InitSeq(*this, Entity
, Kind
, &ResultE
, 1);
4203 Result
= InitSeq
.Perform(*this, Entity
, Kind
,
4204 MultiExprArg(*this, &ResultE
, 1));
4205 if (Result
.isInvalid())
4208 // Build the default argument expression.
4209 return Owned(CXXDefaultArgExpr::Create(Context
, CallLoc
, Param
,
4210 Result
.takeAs
<Expr
>()));
4213 // If the default expression creates temporaries, we need to
4214 // push them to the current stack of expression temporaries so they'll
4215 // be properly destroyed.
4216 // FIXME: We should really be rebuilding the default argument with new
4217 // bound temporaries; see the comment in PR5810.
4218 for (unsigned i
= 0, e
= Param
->getNumDefaultArgTemporaries(); i
!= e
; ++i
) {
4219 CXXTemporary
*Temporary
= Param
->getDefaultArgTemporary(i
);
4220 MarkDeclarationReferenced(Param
->getDefaultArg()->getLocStart(),
4221 const_cast<CXXDestructorDecl
*>(Temporary
->getDestructor()));
4222 ExprTemporaries
.push_back(Temporary
);
4225 // We already type-checked the argument, so we know it works.
4226 // Just mark all of the declarations in this potentially-evaluated expression
4227 // as being "referenced".
4228 MarkDeclarationsReferencedInExpr(Param
->getDefaultArg());
4229 return Owned(CXXDefaultArgExpr::Create(Context
, CallLoc
, Param
));
4232 /// ConvertArgumentsForCall - Converts the arguments specified in
4233 /// Args/NumArgs to the parameter types of the function FDecl with
4234 /// function prototype Proto. Call is the call expression itself, and
4235 /// Fn is the function expression. For a C++ member function, this
4236 /// routine does not attempt to convert the object argument. Returns
4237 /// true if the call is ill-formed.
4239 Sema::ConvertArgumentsForCall(CallExpr
*Call
, Expr
*Fn
,
4240 FunctionDecl
*FDecl
,
4241 const FunctionProtoType
*Proto
,
4242 Expr
**Args
, unsigned NumArgs
,
4243 SourceLocation RParenLoc
) {
4244 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4245 // assignment, to the types of the corresponding parameter, ...
4246 unsigned NumArgsInProto
= Proto
->getNumArgs();
4247 bool Invalid
= false;
4249 // If too few arguments are available (and we don't have default
4250 // arguments for the remaining parameters), don't make the call.
4251 if (NumArgs
< NumArgsInProto
) {
4252 if (!FDecl
|| NumArgs
< FDecl
->getMinRequiredArguments())
4253 return Diag(RParenLoc
, diag::err_typecheck_call_too_few_args
)
4254 << Fn
->getType()->isBlockPointerType()
4255 << NumArgsInProto
<< NumArgs
<< Fn
->getSourceRange();
4256 Call
->setNumArgs(Context
, NumArgsInProto
);
4259 // If too many are passed and not variadic, error on the extras and drop
4261 if (NumArgs
> NumArgsInProto
) {
4262 if (!Proto
->isVariadic()) {
4263 Diag(Args
[NumArgsInProto
]->getLocStart(),
4264 diag::err_typecheck_call_too_many_args
)
4265 << Fn
->getType()->isBlockPointerType()
4266 << NumArgsInProto
<< NumArgs
<< Fn
->getSourceRange()
4267 << SourceRange(Args
[NumArgsInProto
]->getLocStart(),
4268 Args
[NumArgs
-1]->getLocEnd());
4269 // This deletes the extra arguments.
4270 Call
->setNumArgs(Context
, NumArgsInProto
);
4274 llvm::SmallVector
<Expr
*, 8> AllArgs
;
4275 VariadicCallType CallType
=
4276 Proto
->isVariadic() ? VariadicFunction
: VariadicDoesNotApply
;
4277 if (Fn
->getType()->isBlockPointerType())
4278 CallType
= VariadicBlock
; // Block
4279 else if (isa
<MemberExpr
>(Fn
))
4280 CallType
= VariadicMethod
;
4281 Invalid
= GatherArgumentsForCall(Call
->getSourceRange().getBegin(), FDecl
,
4282 Proto
, 0, Args
, NumArgs
, AllArgs
, CallType
);
4285 unsigned TotalNumArgs
= AllArgs
.size();
4286 for (unsigned i
= 0; i
< TotalNumArgs
; ++i
)
4287 Call
->setArg(i
, AllArgs
[i
]);
4292 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc
,
4293 FunctionDecl
*FDecl
,
4294 const FunctionProtoType
*Proto
,
4295 unsigned FirstProtoArg
,
4296 Expr
**Args
, unsigned NumArgs
,
4297 llvm::SmallVector
<Expr
*, 8> &AllArgs
,
4298 VariadicCallType CallType
) {
4299 unsigned NumArgsInProto
= Proto
->getNumArgs();
4300 unsigned NumArgsToCheck
= NumArgs
;
4301 bool Invalid
= false;
4302 if (NumArgs
!= NumArgsInProto
)
4303 // Use default arguments for missing arguments
4304 NumArgsToCheck
= NumArgsInProto
;
4306 // Continue to check argument types (even if we have too few/many args).
4307 for (unsigned i
= FirstProtoArg
; i
!= NumArgsToCheck
; i
++) {
4308 QualType ProtoArgType
= Proto
->getArgType(i
);
4311 if (ArgIx
< NumArgs
) {
4312 Arg
= Args
[ArgIx
++];
4314 if (RequireCompleteType(Arg
->getSourceRange().getBegin(),
4316 PDiag(diag::err_call_incomplete_argument
)
4317 << Arg
->getSourceRange()))
4320 // Pass the argument
4321 ParmVarDecl
*Param
= 0;
4322 if (FDecl
&& i
< FDecl
->getNumParams())
4323 Param
= FDecl
->getParamDecl(i
);
4325 InitializedEntity Entity
=
4326 Param
? InitializedEntity::InitializeParameter(Context
, Param
)
4327 : InitializedEntity::InitializeParameter(Context
, ProtoArgType
);
4328 ExprResult ArgE
= PerformCopyInitialization(Entity
,
4331 if (ArgE
.isInvalid())
4334 Arg
= ArgE
.takeAs
<Expr
>();
4336 ParmVarDecl
*Param
= FDecl
->getParamDecl(i
);
4338 ExprResult ArgExpr
=
4339 BuildCXXDefaultArgExpr(CallLoc
, FDecl
, Param
);
4340 if (ArgExpr
.isInvalid())
4343 Arg
= ArgExpr
.takeAs
<Expr
>();
4345 AllArgs
.push_back(Arg
);
4348 // If this is a variadic call, handle args passed through "...".
4349 if (CallType
!= VariadicDoesNotApply
) {
4350 // Promote the arguments (C99 6.5.2.2p7).
4351 for (unsigned i
= ArgIx
; i
!= NumArgs
; ++i
) {
4352 Expr
*Arg
= Args
[i
];
4353 Invalid
|= DefaultVariadicArgumentPromotion(Arg
, CallType
, FDecl
);
4354 AllArgs
.push_back(Arg
);
4360 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4361 /// This provides the location of the left/right parens and a list of comma
4364 Sema::ActOnCallExpr(Scope
*S
, Expr
*Fn
, SourceLocation LParenLoc
,
4365 MultiExprArg args
, SourceLocation RParenLoc
,
4367 unsigned NumArgs
= args
.size();
4369 // Since this might be a postfix expression, get rid of ParenListExprs.
4370 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Fn
);
4371 if (Result
.isInvalid()) return ExprError();
4374 Expr
**Args
= args
.release();
4376 if (getLangOptions().CPlusPlus
) {
4377 // If this is a pseudo-destructor expression, build the call immediately.
4378 if (isa
<CXXPseudoDestructorExpr
>(Fn
)) {
4380 // Pseudo-destructor calls should not have any arguments.
4381 Diag(Fn
->getLocStart(), diag::err_pseudo_dtor_call_with_args
)
4382 << FixItHint::CreateRemoval(
4383 SourceRange(Args
[0]->getLocStart(),
4384 Args
[NumArgs
-1]->getLocEnd()));
4389 return Owned(new (Context
) CallExpr(Context
, Fn
, 0, 0, Context
.VoidTy
,
4390 VK_RValue
, RParenLoc
));
4393 // Determine whether this is a dependent call inside a C++ template,
4394 // in which case we won't do any semantic analysis now.
4395 // FIXME: Will need to cache the results of name lookup (including ADL) in
4397 bool Dependent
= false;
4398 if (Fn
->isTypeDependent())
4400 else if (Expr::hasAnyTypeDependentArguments(Args
, NumArgs
))
4405 return Owned(new (Context
) CUDAKernelCallExpr(
4406 Context
, Fn
, cast
<CallExpr
>(ExecConfig
), Args
, NumArgs
,
4407 Context
.DependentTy
, VK_RValue
, RParenLoc
));
4409 return Owned(new (Context
) CallExpr(Context
, Fn
, Args
, NumArgs
,
4410 Context
.DependentTy
, VK_RValue
,
4415 // Determine whether this is a call to an object (C++ [over.call.object]).
4416 if (Fn
->getType()->isRecordType())
4417 return Owned(BuildCallToObjectOfClassType(S
, Fn
, LParenLoc
, Args
, NumArgs
,
4420 Expr
*NakedFn
= Fn
->IgnoreParens();
4422 // Determine whether this is a call to an unresolved member function.
4423 if (UnresolvedMemberExpr
*MemE
= dyn_cast
<UnresolvedMemberExpr
>(NakedFn
)) {
4424 // If lookup was unresolved but not dependent (i.e. didn't find
4425 // an unresolved using declaration), it has to be an overloaded
4426 // function set, which means it must contain either multiple
4427 // declarations (all methods or method templates) or a single
4429 assert((MemE
->getNumDecls() > 1) ||
4430 isa
<FunctionTemplateDecl
>(
4431 (*MemE
->decls_begin())->getUnderlyingDecl()));
4434 return BuildCallToMemberFunction(S
, Fn
, LParenLoc
, Args
, NumArgs
,
4438 // Determine whether this is a call to a member function.
4439 if (MemberExpr
*MemExpr
= dyn_cast
<MemberExpr
>(NakedFn
)) {
4440 NamedDecl
*MemDecl
= MemExpr
->getMemberDecl();
4441 if (isa
<CXXMethodDecl
>(MemDecl
))
4442 return BuildCallToMemberFunction(S
, Fn
, LParenLoc
, Args
, NumArgs
,
4446 // Determine whether this is a call to a pointer-to-member function.
4447 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(NakedFn
)) {
4448 if (BO
->getOpcode() == BO_PtrMemD
||
4449 BO
->getOpcode() == BO_PtrMemI
) {
4450 if (const FunctionProtoType
*FPT
4451 = BO
->getType()->getAs
<FunctionProtoType
>()) {
4452 QualType ResultTy
= FPT
->getCallResultType(Context
);
4453 ExprValueKind VK
= Expr::getValueKindForType(FPT
->getResultType());
4455 // Check that the object type isn't more qualified than the
4456 // member function we're calling.
4457 Qualifiers FuncQuals
= Qualifiers::fromCVRMask(FPT
->getTypeQuals());
4458 Qualifiers ObjectQuals
4459 = BO
->getOpcode() == BO_PtrMemD
4460 ? BO
->getLHS()->getType().getQualifiers()
4461 : BO
->getLHS()->getType()->getAs
<PointerType
>()
4462 ->getPointeeType().getQualifiers();
4464 Qualifiers Difference
= ObjectQuals
- FuncQuals
;
4465 Difference
.removeObjCGCAttr();
4466 Difference
.removeAddressSpace();
4468 std::string QualsString
= Difference
.getAsString();
4469 Diag(LParenLoc
, diag::err_pointer_to_member_call_drops_quals
)
4470 << BO
->getType().getUnqualifiedType()
4472 << (QualsString
.find(' ') == std::string::npos
? 1 : 2);
4475 CXXMemberCallExpr
*TheCall
4476 = new (Context
) CXXMemberCallExpr(Context
, Fn
, Args
,
4477 NumArgs
, ResultTy
, VK
,
4480 if (CheckCallReturnType(FPT
->getResultType(),
4481 BO
->getRHS()->getSourceRange().getBegin(),
4485 if (ConvertArgumentsForCall(TheCall
, BO
, 0, FPT
, Args
, NumArgs
,
4489 return MaybeBindToTemporary(TheCall
);
4491 return ExprError(Diag(Fn
->getLocStart(),
4492 diag::err_typecheck_call_not_function
)
4493 << Fn
->getType() << Fn
->getSourceRange());
4498 // If we're directly calling a function, get the appropriate declaration.
4499 // Also, in C++, keep track of whether we should perform argument-dependent
4500 // lookup and whether there were any explicitly-specified template arguments.
4502 Expr
*NakedFn
= Fn
->IgnoreParens();
4503 if (isa
<UnresolvedLookupExpr
>(NakedFn
)) {
4504 UnresolvedLookupExpr
*ULE
= cast
<UnresolvedLookupExpr
>(NakedFn
);
4505 return BuildOverloadedCallExpr(S
, Fn
, ULE
, LParenLoc
, Args
, NumArgs
,
4506 RParenLoc
, ExecConfig
);
4509 NamedDecl
*NDecl
= 0;
4510 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(NakedFn
))
4511 if (UnOp
->getOpcode() == UO_AddrOf
)
4512 NakedFn
= UnOp
->getSubExpr()->IgnoreParens();
4514 if (isa
<DeclRefExpr
>(NakedFn
))
4515 NDecl
= cast
<DeclRefExpr
>(NakedFn
)->getDecl();
4517 return BuildResolvedCallExpr(Fn
, NDecl
, LParenLoc
, Args
, NumArgs
, RParenLoc
,
4522 Sema::ActOnCUDAExecConfigExpr(Scope
*S
, SourceLocation LLLLoc
,
4523 MultiExprArg execConfig
, SourceLocation GGGLoc
) {
4524 FunctionDecl
*ConfigDecl
= Context
.getcudaConfigureCallDecl();
4526 return ExprError(Diag(LLLLoc
, diag::err_undeclared_var_use
)
4527 << "cudaConfigureCall");
4528 QualType ConfigQTy
= ConfigDecl
->getType();
4530 DeclRefExpr
*ConfigDR
= new (Context
) DeclRefExpr(
4531 ConfigDecl
, ConfigQTy
, VK_LValue
, LLLLoc
);
4533 return ActOnCallExpr(S
, ConfigDR
, LLLLoc
, execConfig
, GGGLoc
, 0);
4536 /// BuildResolvedCallExpr - Build a call to a resolved expression,
4537 /// i.e. an expression not of \p OverloadTy. The expression should
4538 /// unary-convert to an expression of function-pointer or
4539 /// block-pointer type.
4541 /// \param NDecl the declaration being called, if available
4543 Sema::BuildResolvedCallExpr(Expr
*Fn
, NamedDecl
*NDecl
,
4544 SourceLocation LParenLoc
,
4545 Expr
**Args
, unsigned NumArgs
,
4546 SourceLocation RParenLoc
,
4548 FunctionDecl
*FDecl
= dyn_cast_or_null
<FunctionDecl
>(NDecl
);
4550 // Promote the function operand.
4551 UsualUnaryConversions(Fn
);
4553 // Make the call expr early, before semantic checks. This guarantees cleanup
4554 // of arguments and function on error.
4557 TheCall
= new (Context
) CUDAKernelCallExpr(Context
, Fn
,
4558 cast
<CallExpr
>(Config
),
4564 TheCall
= new (Context
) CallExpr(Context
, Fn
,
4571 const FunctionType
*FuncT
;
4572 if (!Fn
->getType()->isBlockPointerType()) {
4573 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4574 // have type pointer to function".
4575 const PointerType
*PT
= Fn
->getType()->getAs
<PointerType
>();
4577 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
4578 << Fn
->getType() << Fn
->getSourceRange());
4579 FuncT
= PT
->getPointeeType()->getAs
<FunctionType
>();
4580 } else { // This is a block call.
4581 FuncT
= Fn
->getType()->getAs
<BlockPointerType
>()->getPointeeType()->
4582 getAs
<FunctionType
>();
4585 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
4586 << Fn
->getType() << Fn
->getSourceRange());
4588 // Check for a valid return type
4589 if (CheckCallReturnType(FuncT
->getResultType(),
4590 Fn
->getSourceRange().getBegin(), TheCall
,
4594 // We know the result type of the call, set it.
4595 TheCall
->setType(FuncT
->getCallResultType(Context
));
4596 TheCall
->setValueKind(Expr::getValueKindForType(FuncT
->getResultType()));
4598 if (const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FuncT
)) {
4599 if (ConvertArgumentsForCall(TheCall
, Fn
, FDecl
, Proto
, Args
, NumArgs
,
4603 assert(isa
<FunctionNoProtoType
>(FuncT
) && "Unknown FunctionType!");
4606 // Check if we have too few/too many template arguments, based
4607 // on our knowledge of the function definition.
4608 const FunctionDecl
*Def
= 0;
4609 if (FDecl
->hasBody(Def
) && NumArgs
!= Def
->param_size()) {
4610 const FunctionProtoType
*Proto
4611 = Def
->getType()->getAs
<FunctionProtoType
>();
4612 if (!Proto
|| !(Proto
->isVariadic() && NumArgs
>= Def
->param_size()))
4613 Diag(RParenLoc
, diag::warn_call_wrong_number_of_arguments
)
4614 << (NumArgs
> Def
->param_size()) << FDecl
<< Fn
->getSourceRange();
4617 // If the function we're calling isn't a function prototype, but we have
4618 // a function prototype from a prior declaratiom, use that prototype.
4619 if (!FDecl
->hasPrototype())
4620 Proto
= FDecl
->getType()->getAs
<FunctionProtoType
>();
4623 // Promote the arguments (C99 6.5.2.2p6).
4624 for (unsigned i
= 0; i
!= NumArgs
; i
++) {
4625 Expr
*Arg
= Args
[i
];
4627 if (Proto
&& i
< Proto
->getNumArgs()) {
4628 InitializedEntity Entity
4629 = InitializedEntity::InitializeParameter(Context
,
4630 Proto
->getArgType(i
));
4631 ExprResult ArgE
= PerformCopyInitialization(Entity
,
4634 if (ArgE
.isInvalid())
4637 Arg
= ArgE
.takeAs
<Expr
>();
4640 DefaultArgumentPromotion(Arg
);
4643 if (RequireCompleteType(Arg
->getSourceRange().getBegin(),
4645 PDiag(diag::err_call_incomplete_argument
)
4646 << Arg
->getSourceRange()))
4649 TheCall
->setArg(i
, Arg
);
4653 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(FDecl
))
4654 if (!Method
->isStatic())
4655 return ExprError(Diag(LParenLoc
, diag::err_member_call_without_object
)
4656 << Fn
->getSourceRange());
4658 // Check for sentinels
4660 DiagnoseSentinelCalls(NDecl
, LParenLoc
, Args
, NumArgs
);
4662 // Do special checking on direct calls to functions.
4664 if (CheckFunctionCall(FDecl
, TheCall
))
4667 if (unsigned BuiltinID
= FDecl
->getBuiltinID())
4668 return CheckBuiltinFunctionCall(BuiltinID
, TheCall
);
4670 if (CheckBlockCall(NDecl
, TheCall
))
4674 return MaybeBindToTemporary(TheCall
);
4678 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc
, ParsedType Ty
,
4679 SourceLocation RParenLoc
, Expr
*InitExpr
) {
4680 assert((Ty
!= 0) && "ActOnCompoundLiteral(): missing type");
4681 // FIXME: put back this assert when initializers are worked out.
4682 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4684 TypeSourceInfo
*TInfo
;
4685 QualType literalType
= GetTypeFromParser(Ty
, &TInfo
);
4687 TInfo
= Context
.getTrivialTypeSourceInfo(literalType
);
4689 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, InitExpr
);
4693 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc
, TypeSourceInfo
*TInfo
,
4694 SourceLocation RParenLoc
, Expr
*literalExpr
) {
4695 QualType literalType
= TInfo
->getType();
4697 if (literalType
->isArrayType()) {
4698 if (RequireCompleteType(LParenLoc
, Context
.getBaseElementType(literalType
),
4699 PDiag(diag::err_illegal_decl_array_incomplete_type
)
4700 << SourceRange(LParenLoc
,
4701 literalExpr
->getSourceRange().getEnd())))
4703 if (literalType
->isVariableArrayType())
4704 return ExprError(Diag(LParenLoc
, diag::err_variable_object_no_init
)
4705 << SourceRange(LParenLoc
, literalExpr
->getSourceRange().getEnd()));
4706 } else if (!literalType
->isDependentType() &&
4707 RequireCompleteType(LParenLoc
, literalType
,
4708 PDiag(diag::err_typecheck_decl_incomplete_type
)
4709 << SourceRange(LParenLoc
,
4710 literalExpr
->getSourceRange().getEnd())))
4713 InitializedEntity Entity
4714 = InitializedEntity::InitializeTemporary(literalType
);
4715 InitializationKind Kind
4716 = InitializationKind::CreateCast(SourceRange(LParenLoc
, RParenLoc
),
4717 /*IsCStyleCast=*/true);
4718 InitializationSequence
InitSeq(*this, Entity
, Kind
, &literalExpr
, 1);
4719 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
,
4720 MultiExprArg(*this, &literalExpr
, 1),
4722 if (Result
.isInvalid())
4724 literalExpr
= Result
.get();
4726 bool isFileScope
= getCurFunctionOrMethodDecl() == 0;
4727 if (isFileScope
) { // 6.5.2.5p3
4728 if (CheckForConstantInitializer(literalExpr
, literalType
))
4732 // In C, compound literals are l-values for some reason.
4733 ExprValueKind VK
= getLangOptions().CPlusPlus
? VK_RValue
: VK_LValue
;
4735 return Owned(new (Context
) CompoundLiteralExpr(LParenLoc
, TInfo
, literalType
,
4736 VK
, literalExpr
, isFileScope
));
4740 Sema::ActOnInitList(SourceLocation LBraceLoc
, MultiExprArg initlist
,
4741 SourceLocation RBraceLoc
) {
4742 unsigned NumInit
= initlist
.size();
4743 Expr
**InitList
= initlist
.release();
4745 // Semantic analysis for initializers is done by ActOnDeclarator() and
4746 // CheckInitializer() - it requires knowledge of the object being intialized.
4748 InitListExpr
*E
= new (Context
) InitListExpr(Context
, LBraceLoc
, InitList
,
4749 NumInit
, RBraceLoc
);
4750 E
->setType(Context
.VoidTy
); // FIXME: just a place holder for now.
4754 /// Prepares for a scalar cast, performing all the necessary stages
4755 /// except the final cast and returning the kind required.
4756 static CastKind
PrepareScalarCast(Sema
&S
, Expr
*&Src
, QualType DestTy
) {
4757 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4758 // Also, callers should have filtered out the invalid cases with
4759 // pointers. Everything else should be possible.
4761 QualType SrcTy
= Src
->getType();
4762 if (S
.Context
.hasSameUnqualifiedType(SrcTy
, DestTy
))
4765 switch (SrcTy
->getScalarTypeKind()) {
4766 case Type::STK_MemberPointer
:
4767 llvm_unreachable("member pointer type in C");
4769 case Type::STK_Pointer
:
4770 switch (DestTy
->getScalarTypeKind()) {
4771 case Type::STK_Pointer
:
4772 return DestTy
->isObjCObjectPointerType() ?
4773 CK_AnyPointerToObjCPointerCast
:
4775 case Type::STK_Bool
:
4776 return CK_PointerToBoolean
;
4777 case Type::STK_Integral
:
4778 return CK_PointerToIntegral
;
4779 case Type::STK_Floating
:
4780 case Type::STK_FloatingComplex
:
4781 case Type::STK_IntegralComplex
:
4782 case Type::STK_MemberPointer
:
4783 llvm_unreachable("illegal cast from pointer");
4787 case Type::STK_Bool
: // casting from bool is like casting from an integer
4788 case Type::STK_Integral
:
4789 switch (DestTy
->getScalarTypeKind()) {
4790 case Type::STK_Pointer
:
4791 if (Src
->isNullPointerConstant(S
.Context
, Expr::NPC_ValueDependentIsNull
))
4792 return CK_NullToPointer
;
4793 return CK_IntegralToPointer
;
4794 case Type::STK_Bool
:
4795 return CK_IntegralToBoolean
;
4796 case Type::STK_Integral
:
4797 return CK_IntegralCast
;
4798 case Type::STK_Floating
:
4799 return CK_IntegralToFloating
;
4800 case Type::STK_IntegralComplex
:
4801 S
.ImpCastExprToType(Src
, DestTy
->getAs
<ComplexType
>()->getElementType(),
4803 return CK_IntegralRealToComplex
;
4804 case Type::STK_FloatingComplex
:
4805 S
.ImpCastExprToType(Src
, DestTy
->getAs
<ComplexType
>()->getElementType(),
4806 CK_IntegralToFloating
);
4807 return CK_FloatingRealToComplex
;
4808 case Type::STK_MemberPointer
:
4809 llvm_unreachable("member pointer type in C");
4813 case Type::STK_Floating
:
4814 switch (DestTy
->getScalarTypeKind()) {
4815 case Type::STK_Floating
:
4816 return CK_FloatingCast
;
4817 case Type::STK_Bool
:
4818 return CK_FloatingToBoolean
;
4819 case Type::STK_Integral
:
4820 return CK_FloatingToIntegral
;
4821 case Type::STK_FloatingComplex
:
4822 S
.ImpCastExprToType(Src
, DestTy
->getAs
<ComplexType
>()->getElementType(),
4824 return CK_FloatingRealToComplex
;
4825 case Type::STK_IntegralComplex
:
4826 S
.ImpCastExprToType(Src
, DestTy
->getAs
<ComplexType
>()->getElementType(),
4827 CK_FloatingToIntegral
);
4828 return CK_IntegralRealToComplex
;
4829 case Type::STK_Pointer
:
4830 llvm_unreachable("valid float->pointer cast?");
4831 case Type::STK_MemberPointer
:
4832 llvm_unreachable("member pointer type in C");
4836 case Type::STK_FloatingComplex
:
4837 switch (DestTy
->getScalarTypeKind()) {
4838 case Type::STK_FloatingComplex
:
4839 return CK_FloatingComplexCast
;
4840 case Type::STK_IntegralComplex
:
4841 return CK_FloatingComplexToIntegralComplex
;
4842 case Type::STK_Floating
: {
4843 QualType ET
= SrcTy
->getAs
<ComplexType
>()->getElementType();
4844 if (S
.Context
.hasSameType(ET
, DestTy
))
4845 return CK_FloatingComplexToReal
;
4846 S
.ImpCastExprToType(Src
, ET
, CK_FloatingComplexToReal
);
4847 return CK_FloatingCast
;
4849 case Type::STK_Bool
:
4850 return CK_FloatingComplexToBoolean
;
4851 case Type::STK_Integral
:
4852 S
.ImpCastExprToType(Src
, SrcTy
->getAs
<ComplexType
>()->getElementType(),
4853 CK_FloatingComplexToReal
);
4854 return CK_FloatingToIntegral
;
4855 case Type::STK_Pointer
:
4856 llvm_unreachable("valid complex float->pointer cast?");
4857 case Type::STK_MemberPointer
:
4858 llvm_unreachable("member pointer type in C");
4862 case Type::STK_IntegralComplex
:
4863 switch (DestTy
->getScalarTypeKind()) {
4864 case Type::STK_FloatingComplex
:
4865 return CK_IntegralComplexToFloatingComplex
;
4866 case Type::STK_IntegralComplex
:
4867 return CK_IntegralComplexCast
;
4868 case Type::STK_Integral
: {
4869 QualType ET
= SrcTy
->getAs
<ComplexType
>()->getElementType();
4870 if (S
.Context
.hasSameType(ET
, DestTy
))
4871 return CK_IntegralComplexToReal
;
4872 S
.ImpCastExprToType(Src
, ET
, CK_IntegralComplexToReal
);
4873 return CK_IntegralCast
;
4875 case Type::STK_Bool
:
4876 return CK_IntegralComplexToBoolean
;
4877 case Type::STK_Floating
:
4878 S
.ImpCastExprToType(Src
, SrcTy
->getAs
<ComplexType
>()->getElementType(),
4879 CK_IntegralComplexToReal
);
4880 return CK_IntegralToFloating
;
4881 case Type::STK_Pointer
:
4882 llvm_unreachable("valid complex int->pointer cast?");
4883 case Type::STK_MemberPointer
:
4884 llvm_unreachable("member pointer type in C");
4889 llvm_unreachable("Unhandled scalar cast");
4893 /// CheckCastTypes - Check type constraints for casting between types.
4894 bool Sema::CheckCastTypes(SourceRange TyR
, QualType castType
,
4895 Expr
*&castExpr
, CastKind
& Kind
, ExprValueKind
&VK
,
4896 CXXCastPath
&BasePath
, bool FunctionalStyle
) {
4897 if (getLangOptions().CPlusPlus
)
4898 return CXXCheckCStyleCast(SourceRange(TyR
.getBegin(),
4899 castExpr
->getLocEnd()),
4900 castType
, VK
, castExpr
, Kind
, BasePath
,
4903 // We only support r-value casts in C.
4906 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
4907 // type needs to be scalar.
4908 if (castType
->isVoidType()) {
4909 // We don't necessarily do lvalue-to-rvalue conversions on this.
4910 IgnoredValueConversions(castExpr
);
4912 // Cast to void allows any expr type.
4917 DefaultFunctionArrayLvalueConversion(castExpr
);
4919 if (RequireCompleteType(TyR
.getBegin(), castType
,
4920 diag::err_typecheck_cast_to_incomplete
))
4923 if (!castType
->isScalarType() && !castType
->isVectorType()) {
4924 if (Context
.hasSameUnqualifiedType(castType
, castExpr
->getType()) &&
4925 (castType
->isStructureType() || castType
->isUnionType())) {
4926 // GCC struct/union extension: allow cast to self.
4927 // FIXME: Check that the cast destination type is complete.
4928 Diag(TyR
.getBegin(), diag::ext_typecheck_cast_nonscalar
)
4929 << castType
<< castExpr
->getSourceRange();
4934 if (castType
->isUnionType()) {
4935 // GCC cast to union extension
4936 RecordDecl
*RD
= castType
->getAs
<RecordType
>()->getDecl();
4937 RecordDecl::field_iterator Field
, FieldEnd
;
4938 for (Field
= RD
->field_begin(), FieldEnd
= RD
->field_end();
4939 Field
!= FieldEnd
; ++Field
) {
4940 if (Context
.hasSameUnqualifiedType(Field
->getType(),
4941 castExpr
->getType()) &&
4942 !Field
->isUnnamedBitfield()) {
4943 Diag(TyR
.getBegin(), diag::ext_typecheck_cast_to_union
)
4944 << castExpr
->getSourceRange();
4948 if (Field
== FieldEnd
)
4949 return Diag(TyR
.getBegin(), diag::err_typecheck_cast_to_union_no_type
)
4950 << castExpr
->getType() << castExpr
->getSourceRange();
4955 // Reject any other conversions to non-scalar types.
4956 return Diag(TyR
.getBegin(), diag::err_typecheck_cond_expect_scalar
)
4957 << castType
<< castExpr
->getSourceRange();
4960 // The type we're casting to is known to be a scalar or vector.
4962 // Require the operand to be a scalar or vector.
4963 if (!castExpr
->getType()->isScalarType() &&
4964 !castExpr
->getType()->isVectorType()) {
4965 return Diag(castExpr
->getLocStart(),
4966 diag::err_typecheck_expect_scalar_operand
)
4967 << castExpr
->getType() << castExpr
->getSourceRange();
4970 if (castType
->isExtVectorType())
4971 return CheckExtVectorCast(TyR
, castType
, castExpr
, Kind
);
4973 if (castType
->isVectorType())
4974 return CheckVectorCast(TyR
, castType
, castExpr
->getType(), Kind
);
4975 if (castExpr
->getType()->isVectorType())
4976 return CheckVectorCast(TyR
, castExpr
->getType(), castType
, Kind
);
4978 // The source and target types are both scalars, i.e.
4979 // - arithmetic types (fundamental, enum, and complex)
4980 // - all kinds of pointers
4981 // Note that member pointers were filtered out with C++, above.
4983 if (isa
<ObjCSelectorExpr
>(castExpr
))
4984 return Diag(castExpr
->getLocStart(), diag::err_cast_selector_expr
);
4986 // If either type is a pointer, the other type has to be either an
4987 // integer or a pointer.
4988 if (!castType
->isArithmeticType()) {
4989 QualType castExprType
= castExpr
->getType();
4990 if (!castExprType
->isIntegralType(Context
) &&
4991 castExprType
->isArithmeticType())
4992 return Diag(castExpr
->getLocStart(),
4993 diag::err_cast_pointer_from_non_pointer_int
)
4994 << castExprType
<< castExpr
->getSourceRange();
4995 } else if (!castExpr
->getType()->isArithmeticType()) {
4996 if (!castType
->isIntegralType(Context
) && castType
->isArithmeticType())
4997 return Diag(castExpr
->getLocStart(),
4998 diag::err_cast_pointer_to_non_pointer_int
)
4999 << castType
<< castExpr
->getSourceRange();
5002 Kind
= PrepareScalarCast(*this, castExpr
, castType
);
5004 if (Kind
== CK_BitCast
)
5005 CheckCastAlign(castExpr
, castType
, TyR
);
5010 bool Sema::CheckVectorCast(SourceRange R
, QualType VectorTy
, QualType Ty
,
5012 assert(VectorTy
->isVectorType() && "Not a vector type!");
5014 if (Ty
->isVectorType() || Ty
->isIntegerType()) {
5015 if (Context
.getTypeSize(VectorTy
) != Context
.getTypeSize(Ty
))
5016 return Diag(R
.getBegin(),
5017 Ty
->isVectorType() ?
5018 diag::err_invalid_conversion_between_vectors
:
5019 diag::err_invalid_conversion_between_vector_and_integer
)
5020 << VectorTy
<< Ty
<< R
;
5022 return Diag(R
.getBegin(),
5023 diag::err_invalid_conversion_between_vector_and_scalar
)
5024 << VectorTy
<< Ty
<< R
;
5030 bool Sema::CheckExtVectorCast(SourceRange R
, QualType DestTy
, Expr
*&CastExpr
,
5032 assert(DestTy
->isExtVectorType() && "Not an extended vector type!");
5034 QualType SrcTy
= CastExpr
->getType();
5036 // If SrcTy is a VectorType, the total size must match to explicitly cast to
5037 // an ExtVectorType.
5038 if (SrcTy
->isVectorType()) {
5039 if (Context
.getTypeSize(DestTy
) != Context
.getTypeSize(SrcTy
))
5040 return Diag(R
.getBegin(),diag::err_invalid_conversion_between_ext_vectors
)
5041 << DestTy
<< SrcTy
<< R
;
5046 // All non-pointer scalars can be cast to ExtVector type. The appropriate
5047 // conversion will take place first from scalar to elt type, and then
5048 // splat from elt type to vector.
5049 if (SrcTy
->isPointerType())
5050 return Diag(R
.getBegin(),
5051 diag::err_invalid_conversion_between_vector_and_scalar
)
5052 << DestTy
<< SrcTy
<< R
;
5054 QualType DestElemTy
= DestTy
->getAs
<ExtVectorType
>()->getElementType();
5055 ImpCastExprToType(CastExpr
, DestElemTy
,
5056 PrepareScalarCast(*this, CastExpr
, DestElemTy
));
5058 Kind
= CK_VectorSplat
;
5063 Sema::ActOnCastExpr(Scope
*S
, SourceLocation LParenLoc
, ParsedType Ty
,
5064 SourceLocation RParenLoc
, Expr
*castExpr
) {
5065 assert((Ty
!= 0) && (castExpr
!= 0) &&
5066 "ActOnCastExpr(): missing type or expr");
5068 TypeSourceInfo
*castTInfo
;
5069 QualType castType
= GetTypeFromParser(Ty
, &castTInfo
);
5071 castTInfo
= Context
.getTrivialTypeSourceInfo(castType
);
5073 // If the Expr being casted is a ParenListExpr, handle it specially.
5074 if (isa
<ParenListExpr
>(castExpr
))
5075 return ActOnCastOfParenListExpr(S
, LParenLoc
, RParenLoc
, castExpr
,
5078 return BuildCStyleCastExpr(LParenLoc
, castTInfo
, RParenLoc
, castExpr
);
5082 Sema::BuildCStyleCastExpr(SourceLocation LParenLoc
, TypeSourceInfo
*Ty
,
5083 SourceLocation RParenLoc
, Expr
*castExpr
) {
5084 CastKind Kind
= CK_Invalid
;
5085 ExprValueKind VK
= VK_RValue
;
5086 CXXCastPath BasePath
;
5087 if (CheckCastTypes(SourceRange(LParenLoc
, RParenLoc
), Ty
->getType(), castExpr
,
5088 Kind
, VK
, BasePath
))
5091 return Owned(CStyleCastExpr::Create(Context
,
5092 Ty
->getType().getNonLValueExprType(Context
),
5093 VK
, Kind
, castExpr
, &BasePath
, Ty
,
5094 LParenLoc
, RParenLoc
));
5097 /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
5098 /// of comma binary operators.
5100 Sema::MaybeConvertParenListExprToParenExpr(Scope
*S
, Expr
*expr
) {
5101 ParenListExpr
*E
= dyn_cast
<ParenListExpr
>(expr
);
5105 ExprResult
Result(E
->getExpr(0));
5107 for (unsigned i
= 1, e
= E
->getNumExprs(); i
!= e
&& !Result
.isInvalid(); ++i
)
5108 Result
= ActOnBinOp(S
, E
->getExprLoc(), tok::comma
, Result
.get(),
5111 if (Result
.isInvalid()) return ExprError();
5113 return ActOnParenExpr(E
->getLParenLoc(), E
->getRParenLoc(), Result
.get());
5117 Sema::ActOnCastOfParenListExpr(Scope
*S
, SourceLocation LParenLoc
,
5118 SourceLocation RParenLoc
, Expr
*Op
,
5119 TypeSourceInfo
*TInfo
) {
5120 ParenListExpr
*PE
= cast
<ParenListExpr
>(Op
);
5121 QualType Ty
= TInfo
->getType();
5122 bool isAltiVecLiteral
= false;
5124 // Check for an altivec literal,
5125 // i.e. all the elements are integer constants.
5126 if (getLangOptions().AltiVec
&& Ty
->isVectorType()) {
5127 if (PE
->getNumExprs() == 0) {
5128 Diag(PE
->getExprLoc(), diag::err_altivec_empty_initializer
);
5131 if (PE
->getNumExprs() == 1) {
5132 if (!PE
->getExpr(0)->getType()->isVectorType())
5133 isAltiVecLiteral
= true;
5136 isAltiVecLiteral
= true;
5139 // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
5140 // then handle it as such.
5141 if (isAltiVecLiteral
) {
5142 llvm::SmallVector
<Expr
*, 8> initExprs
;
5143 for (unsigned i
= 0, e
= PE
->getNumExprs(); i
!= e
; ++i
)
5144 initExprs
.push_back(PE
->getExpr(i
));
5146 // FIXME: This means that pretty-printing the final AST will produce curly
5147 // braces instead of the original commas.
5148 InitListExpr
*E
= new (Context
) InitListExpr(Context
, LParenLoc
,
5150 initExprs
.size(), RParenLoc
);
5152 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, E
);
5154 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5155 // sequence of BinOp comma operators.
5156 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Op
);
5157 if (Result
.isInvalid()) return ExprError();
5158 return BuildCStyleCastExpr(LParenLoc
, TInfo
, RParenLoc
, Result
.take());
5162 ExprResult
Sema::ActOnParenOrParenListExpr(SourceLocation L
,
5165 ParsedType TypeOfCast
) {
5166 unsigned nexprs
= Val
.size();
5167 Expr
**exprs
= reinterpret_cast<Expr
**>(Val
.release());
5168 assert((exprs
!= 0) && "ActOnParenOrParenListExpr() missing expr list");
5170 if (nexprs
== 1 && TypeOfCast
&& !TypeIsVectorType(TypeOfCast
))
5171 expr
= new (Context
) ParenExpr(L
, R
, exprs
[0]);
5173 expr
= new (Context
) ParenListExpr(Context
, L
, exprs
, nexprs
, R
);
5177 /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
5178 /// In that case, lhs = cond.
5180 QualType
Sema::CheckConditionalOperands(Expr
*&Cond
, Expr
*&LHS
, Expr
*&RHS
,
5181 Expr
*&SAVE
, ExprValueKind
&VK
,
5183 SourceLocation QuestionLoc
) {
5184 // If both LHS and RHS are overloaded functions, try to resolve them.
5185 if (Context
.hasSameType(LHS
->getType(), RHS
->getType()) &&
5186 LHS
->getType()->isSpecificBuiltinType(BuiltinType::Overload
)) {
5187 ExprResult LHSResult
= CheckPlaceholderExpr(LHS
, QuestionLoc
);
5188 if (LHSResult
.isInvalid())
5191 ExprResult RHSResult
= CheckPlaceholderExpr(RHS
, QuestionLoc
);
5192 if (RHSResult
.isInvalid())
5195 LHS
= LHSResult
.take();
5196 RHS
= RHSResult
.take();
5199 // C++ is sufficiently different to merit its own checker.
5200 if (getLangOptions().CPlusPlus
)
5201 return CXXCheckConditionalOperands(Cond
, LHS
, RHS
, SAVE
,
5202 VK
, OK
, QuestionLoc
);
5207 UsualUnaryConversions(Cond
);
5212 UsualUnaryConversions(LHS
);
5213 UsualUnaryConversions(RHS
);
5214 QualType CondTy
= Cond
->getType();
5215 QualType LHSTy
= LHS
->getType();
5216 QualType RHSTy
= RHS
->getType();
5218 // first, check the condition.
5219 if (!CondTy
->isScalarType()) { // C99 6.5.15p2
5220 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
5221 // Throw an error if its not either.
5222 if (getLangOptions().OpenCL
) {
5223 if (!CondTy
->isVectorType()) {
5224 Diag(Cond
->getLocStart(),
5225 diag::err_typecheck_cond_expect_scalar_or_vector
)
5231 Diag(Cond
->getLocStart(), diag::err_typecheck_cond_expect_scalar
)
5237 // Now check the two expressions.
5238 if (LHSTy
->isVectorType() || RHSTy
->isVectorType())
5239 return CheckVectorOperands(QuestionLoc
, LHS
, RHS
);
5241 // OpenCL: If the condition is a vector, and both operands are scalar,
5242 // attempt to implicity convert them to the vector type to act like the
5244 if (getLangOptions().OpenCL
&& CondTy
->isVectorType()) {
5245 // Both operands should be of scalar type.
5246 if (!LHSTy
->isScalarType()) {
5247 Diag(LHS
->getLocStart(), diag::err_typecheck_cond_expect_scalar
)
5251 if (!RHSTy
->isScalarType()) {
5252 Diag(RHS
->getLocStart(), diag::err_typecheck_cond_expect_scalar
)
5256 // Implicity convert these scalars to the type of the condition.
5257 ImpCastExprToType(LHS
, CondTy
, CK_IntegralCast
);
5258 ImpCastExprToType(RHS
, CondTy
, CK_IntegralCast
);
5261 // If both operands have arithmetic type, do the usual arithmetic conversions
5262 // to find a common type: C99 6.5.15p3,5.
5263 if (LHSTy
->isArithmeticType() && RHSTy
->isArithmeticType()) {
5264 UsualArithmeticConversions(LHS
, RHS
);
5265 return LHS
->getType();
5268 // If both operands are the same structure or union type, the result is that
5270 if (const RecordType
*LHSRT
= LHSTy
->getAs
<RecordType
>()) { // C99 6.5.15p3
5271 if (const RecordType
*RHSRT
= RHSTy
->getAs
<RecordType
>())
5272 if (LHSRT
->getDecl() == RHSRT
->getDecl())
5273 // "If both the operands have structure or union type, the result has
5274 // that type." This implies that CV qualifiers are dropped.
5275 return LHSTy
.getUnqualifiedType();
5276 // FIXME: Type of conditional expression must be complete in C mode.
5279 // C99 6.5.15p5: "If both operands have void type, the result has void type."
5280 // The following || allows only one side to be void (a GCC-ism).
5281 if (LHSTy
->isVoidType() || RHSTy
->isVoidType()) {
5282 if (!LHSTy
->isVoidType())
5283 Diag(RHS
->getLocStart(), diag::ext_typecheck_cond_one_void
)
5284 << RHS
->getSourceRange();
5285 if (!RHSTy
->isVoidType())
5286 Diag(LHS
->getLocStart(), diag::ext_typecheck_cond_one_void
)
5287 << LHS
->getSourceRange();
5288 ImpCastExprToType(LHS
, Context
.VoidTy
, CK_ToVoid
);
5289 ImpCastExprToType(RHS
, Context
.VoidTy
, CK_ToVoid
);
5290 return Context
.VoidTy
;
5292 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5293 // the type of the other operand."
5294 if ((LHSTy
->isAnyPointerType() || LHSTy
->isBlockPointerType()) &&
5295 RHS
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
)) {
5296 // promote the null to a pointer.
5297 ImpCastExprToType(RHS
, LHSTy
, CK_NullToPointer
);
5300 if ((RHSTy
->isAnyPointerType() || RHSTy
->isBlockPointerType()) &&
5301 LHS
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
)) {
5302 ImpCastExprToType(LHS
, RHSTy
, CK_NullToPointer
);
5306 // All objective-c pointer type analysis is done here.
5307 QualType compositeType
= FindCompositeObjCPointerType(LHS
, RHS
,
5309 if (!compositeType
.isNull())
5310 return compositeType
;
5313 // Handle block pointer types.
5314 if (LHSTy
->isBlockPointerType() || RHSTy
->isBlockPointerType()) {
5315 if (!LHSTy
->isBlockPointerType() || !RHSTy
->isBlockPointerType()) {
5316 if (LHSTy
->isVoidPointerType() || RHSTy
->isVoidPointerType()) {
5317 QualType destType
= Context
.getPointerType(Context
.VoidTy
);
5318 ImpCastExprToType(LHS
, destType
, CK_BitCast
);
5319 ImpCastExprToType(RHS
, destType
, CK_BitCast
);
5322 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
5323 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5326 // We have 2 block pointer types.
5327 if (Context
.getCanonicalType(LHSTy
) == Context
.getCanonicalType(RHSTy
)) {
5328 // Two identical block pointer types are always compatible.
5331 // The block pointer types aren't identical, continue checking.
5332 QualType lhptee
= LHSTy
->getAs
<BlockPointerType
>()->getPointeeType();
5333 QualType rhptee
= RHSTy
->getAs
<BlockPointerType
>()->getPointeeType();
5335 if (!Context
.typesAreCompatible(lhptee
.getUnqualifiedType(),
5336 rhptee
.getUnqualifiedType())) {
5337 Diag(QuestionLoc
, diag::warn_typecheck_cond_incompatible_pointers
)
5338 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5339 // In this situation, we assume void* type. No especially good
5340 // reason, but this is what gcc does, and we do have to pick
5341 // to get a consistent AST.
5342 QualType incompatTy
= Context
.getPointerType(Context
.VoidTy
);
5343 ImpCastExprToType(LHS
, incompatTy
, CK_BitCast
);
5344 ImpCastExprToType(RHS
, incompatTy
, CK_BitCast
);
5347 // The block pointer types are compatible.
5348 ImpCastExprToType(LHS
, LHSTy
, CK_BitCast
);
5349 ImpCastExprToType(RHS
, LHSTy
, CK_BitCast
);
5353 // Check constraints for C object pointers types (C99 6.5.15p3,6).
5354 if (LHSTy
->isPointerType() && RHSTy
->isPointerType()) {
5355 // get the "pointed to" types
5356 QualType lhptee
= LHSTy
->getAs
<PointerType
>()->getPointeeType();
5357 QualType rhptee
= RHSTy
->getAs
<PointerType
>()->getPointeeType();
5359 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5360 if (lhptee
->isVoidType() && rhptee
->isIncompleteOrObjectType()) {
5361 // Figure out necessary qualifiers (C99 6.5.15p6)
5362 QualType destPointee
5363 = Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
5364 QualType destType
= Context
.getPointerType(destPointee
);
5365 // Add qualifiers if necessary.
5366 ImpCastExprToType(LHS
, destType
, CK_NoOp
);
5367 // Promote to void*.
5368 ImpCastExprToType(RHS
, destType
, CK_BitCast
);
5371 if (rhptee
->isVoidType() && lhptee
->isIncompleteOrObjectType()) {
5372 QualType destPointee
5373 = Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
5374 QualType destType
= Context
.getPointerType(destPointee
);
5375 // Add qualifiers if necessary.
5376 ImpCastExprToType(RHS
, destType
, CK_NoOp
);
5377 // Promote to void*.
5378 ImpCastExprToType(LHS
, destType
, CK_BitCast
);
5382 if (Context
.getCanonicalType(LHSTy
) == Context
.getCanonicalType(RHSTy
)) {
5383 // Two identical pointer types are always compatible.
5386 if (!Context
.typesAreCompatible(lhptee
.getUnqualifiedType(),
5387 rhptee
.getUnqualifiedType())) {
5388 Diag(QuestionLoc
, diag::warn_typecheck_cond_incompatible_pointers
)
5389 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5390 // In this situation, we assume void* type. No especially good
5391 // reason, but this is what gcc does, and we do have to pick
5392 // to get a consistent AST.
5393 QualType incompatTy
= Context
.getPointerType(Context
.VoidTy
);
5394 ImpCastExprToType(LHS
, incompatTy
, CK_BitCast
);
5395 ImpCastExprToType(RHS
, incompatTy
, CK_BitCast
);
5398 // The pointer types are compatible.
5399 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
5400 // differently qualified versions of compatible types, the result type is
5401 // a pointer to an appropriately qualified version of the *composite*
5403 // FIXME: Need to calculate the composite type.
5404 // FIXME: Need to add qualifiers
5405 ImpCastExprToType(LHS
, LHSTy
, CK_BitCast
);
5406 ImpCastExprToType(RHS
, LHSTy
, CK_BitCast
);
5410 // GCC compatibility: soften pointer/integer mismatch. Note that
5411 // null pointers have been filtered out by this point.
5412 if (RHSTy
->isPointerType() && LHSTy
->isIntegerType()) {
5413 Diag(QuestionLoc
, diag::warn_typecheck_cond_pointer_integer_mismatch
)
5414 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5415 ImpCastExprToType(LHS
, RHSTy
, CK_IntegralToPointer
);
5418 if (LHSTy
->isPointerType() && RHSTy
->isIntegerType()) {
5419 Diag(QuestionLoc
, diag::warn_typecheck_cond_pointer_integer_mismatch
)
5420 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5421 ImpCastExprToType(RHS
, LHSTy
, CK_IntegralToPointer
);
5425 // Otherwise, the operands are not compatible.
5426 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
5427 << LHSTy
<< RHSTy
<< LHS
->getSourceRange() << RHS
->getSourceRange();
5431 /// FindCompositeObjCPointerType - Helper method to find composite type of
5432 /// two objective-c pointer types of the two input expressions.
5433 QualType
Sema::FindCompositeObjCPointerType(Expr
*&LHS
, Expr
*&RHS
,
5434 SourceLocation QuestionLoc
) {
5435 QualType LHSTy
= LHS
->getType();
5436 QualType RHSTy
= RHS
->getType();
5438 // Handle things like Class and struct objc_class*. Here we case the result
5439 // to the pseudo-builtin, because that will be implicitly cast back to the
5440 // redefinition type if an attempt is made to access its fields.
5441 if (LHSTy
->isObjCClassType() &&
5442 (Context
.hasSameType(RHSTy
, Context
.ObjCClassRedefinitionType
))) {
5443 ImpCastExprToType(RHS
, LHSTy
, CK_BitCast
);
5446 if (RHSTy
->isObjCClassType() &&
5447 (Context
.hasSameType(LHSTy
, Context
.ObjCClassRedefinitionType
))) {
5448 ImpCastExprToType(LHS
, RHSTy
, CK_BitCast
);
5451 // And the same for struct objc_object* / id
5452 if (LHSTy
->isObjCIdType() &&
5453 (Context
.hasSameType(RHSTy
, Context
.ObjCIdRedefinitionType
))) {
5454 ImpCastExprToType(RHS
, LHSTy
, CK_BitCast
);
5457 if (RHSTy
->isObjCIdType() &&
5458 (Context
.hasSameType(LHSTy
, Context
.ObjCIdRedefinitionType
))) {
5459 ImpCastExprToType(LHS
, RHSTy
, CK_BitCast
);
5462 // And the same for struct objc_selector* / SEL
5463 if (Context
.isObjCSelType(LHSTy
) &&
5464 (Context
.hasSameType(RHSTy
, Context
.ObjCSelRedefinitionType
))) {
5465 ImpCastExprToType(RHS
, LHSTy
, CK_BitCast
);
5468 if (Context
.isObjCSelType(RHSTy
) &&
5469 (Context
.hasSameType(LHSTy
, Context
.ObjCSelRedefinitionType
))) {
5470 ImpCastExprToType(LHS
, RHSTy
, CK_BitCast
);
5473 // Check constraints for Objective-C object pointers types.
5474 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isObjCObjectPointerType()) {
5476 if (Context
.getCanonicalType(LHSTy
) == Context
.getCanonicalType(RHSTy
)) {
5477 // Two identical object pointer types are always compatible.
5480 const ObjCObjectPointerType
*LHSOPT
= LHSTy
->getAs
<ObjCObjectPointerType
>();
5481 const ObjCObjectPointerType
*RHSOPT
= RHSTy
->getAs
<ObjCObjectPointerType
>();
5482 QualType compositeType
= LHSTy
;
5484 // If both operands are interfaces and either operand can be
5485 // assigned to the other, use that type as the composite
5486 // type. This allows
5487 // xxx ? (A*) a : (B*) b
5488 // where B is a subclass of A.
5490 // Additionally, as for assignment, if either type is 'id'
5491 // allow silent coercion. Finally, if the types are
5492 // incompatible then make sure to use 'id' as the composite
5493 // type so the result is acceptable for sending messages to.
5495 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5496 // It could return the composite type.
5497 if (Context
.canAssignObjCInterfaces(LHSOPT
, RHSOPT
)) {
5498 compositeType
= RHSOPT
->isObjCBuiltinType() ? RHSTy
: LHSTy
;
5499 } else if (Context
.canAssignObjCInterfaces(RHSOPT
, LHSOPT
)) {
5500 compositeType
= LHSOPT
->isObjCBuiltinType() ? LHSTy
: RHSTy
;
5501 } else if ((LHSTy
->isObjCQualifiedIdType() ||
5502 RHSTy
->isObjCQualifiedIdType()) &&
5503 Context
.ObjCQualifiedIdTypesAreCompatible(LHSTy
, RHSTy
, true)) {
5504 // Need to handle "id<xx>" explicitly.
5505 // GCC allows qualified id and any Objective-C type to devolve to
5506 // id. Currently localizing to here until clear this should be
5507 // part of ObjCQualifiedIdTypesAreCompatible.
5508 compositeType
= Context
.getObjCIdType();
5509 } else if (LHSTy
->isObjCIdType() || RHSTy
->isObjCIdType()) {
5510 compositeType
= Context
.getObjCIdType();
5511 } else if (!(compositeType
=
5512 Context
.areCommonBaseCompatible(LHSOPT
, RHSOPT
)).isNull())
5515 Diag(QuestionLoc
, diag::ext_typecheck_cond_incompatible_operands
)
5517 << LHS
->getSourceRange() << RHS
->getSourceRange();
5518 QualType incompatTy
= Context
.getObjCIdType();
5519 ImpCastExprToType(LHS
, incompatTy
, CK_BitCast
);
5520 ImpCastExprToType(RHS
, incompatTy
, CK_BitCast
);
5523 // The object pointer types are compatible.
5524 ImpCastExprToType(LHS
, compositeType
, CK_BitCast
);
5525 ImpCastExprToType(RHS
, compositeType
, CK_BitCast
);
5526 return compositeType
;
5528 // Check Objective-C object pointer types and 'void *'
5529 if (LHSTy
->isVoidPointerType() && RHSTy
->isObjCObjectPointerType()) {
5530 QualType lhptee
= LHSTy
->getAs
<PointerType
>()->getPointeeType();
5531 QualType rhptee
= RHSTy
->getAs
<ObjCObjectPointerType
>()->getPointeeType();
5532 QualType destPointee
5533 = Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
5534 QualType destType
= Context
.getPointerType(destPointee
);
5535 // Add qualifiers if necessary.
5536 ImpCastExprToType(LHS
, destType
, CK_NoOp
);
5537 // Promote to void*.
5538 ImpCastExprToType(RHS
, destType
, CK_BitCast
);
5541 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isVoidPointerType()) {
5542 QualType lhptee
= LHSTy
->getAs
<ObjCObjectPointerType
>()->getPointeeType();
5543 QualType rhptee
= RHSTy
->getAs
<PointerType
>()->getPointeeType();
5544 QualType destPointee
5545 = Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
5546 QualType destType
= Context
.getPointerType(destPointee
);
5547 // Add qualifiers if necessary.
5548 ImpCastExprToType(RHS
, destType
, CK_NoOp
);
5549 // Promote to void*.
5550 ImpCastExprToType(LHS
, destType
, CK_BitCast
);
5556 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5557 /// in the case of a the GNU conditional expr extension.
5558 ExprResult
Sema::ActOnConditionalOp(SourceLocation QuestionLoc
,
5559 SourceLocation ColonLoc
,
5560 Expr
*CondExpr
, Expr
*LHSExpr
,
5562 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5563 // was the condition.
5564 bool isLHSNull
= LHSExpr
== 0;
5567 LHSExpr
= SAVEExpr
= CondExpr
;
5570 ExprValueKind VK
= VK_RValue
;
5571 ExprObjectKind OK
= OK_Ordinary
;
5572 QualType result
= CheckConditionalOperands(CondExpr
, LHSExpr
, RHSExpr
,
5573 SAVEExpr
, VK
, OK
, QuestionLoc
);
5574 if (result
.isNull())
5577 return Owned(new (Context
) ConditionalOperator(CondExpr
, QuestionLoc
,
5583 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5584 // being closely modeled after the C99 spec:-). The odd characteristic of this
5585 // routine is it effectively iqnores the qualifiers on the top level pointee.
5586 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5587 // FIXME: add a couple examples in this comment.
5588 static Sema::AssignConvertType
5589 checkPointerTypesForAssignment(Sema
&S
, QualType lhsType
, QualType rhsType
) {
5590 assert(lhsType
.isCanonical() && "LHS not canonicalized!");
5591 assert(rhsType
.isCanonical() && "RHS not canonicalized!");
5593 // get the "pointed to" type (ignoring qualifiers at the top level)
5594 const Type
*lhptee
, *rhptee
;
5595 Qualifiers lhq
, rhq
;
5596 llvm::tie(lhptee
, lhq
) = cast
<PointerType
>(lhsType
)->getPointeeType().split();
5597 llvm::tie(rhptee
, rhq
) = cast
<PointerType
>(rhsType
)->getPointeeType().split();
5599 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
5601 // C99 6.5.16.1p1: This following citation is common to constraints
5602 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5603 // qualifiers of the type *pointed to* by the right;
5606 if (!lhq
.compatiblyIncludes(rhq
)) {
5607 // Treat address-space mismatches as fatal. TODO: address subspaces
5608 if (lhq
.getAddressSpace() != rhq
.getAddressSpace())
5609 ConvTy
= Sema::IncompatiblePointerDiscardsQualifiers
;
5611 // For GCC compatibility, other qualifier mismatches are treated
5612 // as still compatible in C.
5613 else ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
5616 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5617 // incomplete type and the other is a pointer to a qualified or unqualified
5618 // version of void...
5619 if (lhptee
->isVoidType()) {
5620 if (rhptee
->isIncompleteOrObjectType())
5623 // As an extension, we allow cast to/from void* to function pointer.
5624 assert(rhptee
->isFunctionType());
5625 return Sema::FunctionVoidPointer
;
5628 if (rhptee
->isVoidType()) {
5629 if (lhptee
->isIncompleteOrObjectType())
5632 // As an extension, we allow cast to/from void* to function pointer.
5633 assert(lhptee
->isFunctionType());
5634 return Sema::FunctionVoidPointer
;
5637 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5638 // unqualified versions of compatible types, ...
5639 QualType ltrans
= QualType(lhptee
, 0), rtrans
= QualType(rhptee
, 0);
5640 if (!S
.Context
.typesAreCompatible(ltrans
, rtrans
)) {
5641 // Check if the pointee types are compatible ignoring the sign.
5642 // We explicitly check for char so that we catch "char" vs
5643 // "unsigned char" on systems where "char" is unsigned.
5644 if (lhptee
->isCharType())
5645 ltrans
= S
.Context
.UnsignedCharTy
;
5646 else if (lhptee
->hasSignedIntegerRepresentation())
5647 ltrans
= S
.Context
.getCorrespondingUnsignedType(ltrans
);
5649 if (rhptee
->isCharType())
5650 rtrans
= S
.Context
.UnsignedCharTy
;
5651 else if (rhptee
->hasSignedIntegerRepresentation())
5652 rtrans
= S
.Context
.getCorrespondingUnsignedType(rtrans
);
5654 if (ltrans
== rtrans
) {
5655 // Types are compatible ignoring the sign. Qualifier incompatibility
5656 // takes priority over sign incompatibility because the sign
5657 // warning can be disabled.
5658 if (ConvTy
!= Sema::Compatible
)
5661 return Sema::IncompatiblePointerSign
;
5664 // If we are a multi-level pointer, it's possible that our issue is simply
5665 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5666 // the eventual target type is the same and the pointers have the same
5667 // level of indirection, this must be the issue.
5668 if (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
)) {
5670 lhptee
= cast
<PointerType
>(lhptee
)->getPointeeType().getTypePtr();
5671 rhptee
= cast
<PointerType
>(rhptee
)->getPointeeType().getTypePtr();
5672 } while (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
));
5674 if (lhptee
== rhptee
)
5675 return Sema::IncompatibleNestedPointerQualifiers
;
5678 // General pointer incompatibility takes priority over qualifiers.
5679 return Sema::IncompatiblePointer
;
5684 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5685 /// block pointer types are compatible or whether a block and normal pointer
5686 /// are compatible. It is more restrict than comparing two function pointer
5688 static Sema::AssignConvertType
5689 checkBlockPointerTypesForAssignment(Sema
&S
, QualType lhsType
,
5691 assert(lhsType
.isCanonical() && "LHS not canonicalized!");
5692 assert(rhsType
.isCanonical() && "RHS not canonicalized!");
5694 QualType lhptee
, rhptee
;
5696 // get the "pointed to" type (ignoring qualifiers at the top level)
5697 lhptee
= cast
<BlockPointerType
>(lhsType
)->getPointeeType();
5698 rhptee
= cast
<BlockPointerType
>(rhsType
)->getPointeeType();
5700 // In C++, the types have to match exactly.
5701 if (S
.getLangOptions().CPlusPlus
)
5702 return Sema::IncompatibleBlockPointer
;
5704 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
5706 // For blocks we enforce that qualifiers are identical.
5707 if (lhptee
.getLocalQualifiers() != rhptee
.getLocalQualifiers())
5708 ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
5710 if (!S
.Context
.typesAreBlockPointerCompatible(lhsType
, rhsType
))
5711 return Sema::IncompatibleBlockPointer
;
5716 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5717 /// for assignment compatibility.
5718 static Sema::AssignConvertType
5719 checkObjCPointerTypesForAssignment(Sema
&S
, QualType lhsType
, QualType rhsType
) {
5720 assert(lhsType
.isCanonical() && "LHS was not canonicalized!");
5721 assert(rhsType
.isCanonical() && "RHS was not canonicalized!");
5723 if (lhsType
->isObjCBuiltinType()) {
5724 // Class is not compatible with ObjC object pointers.
5725 if (lhsType
->isObjCClassType() && !rhsType
->isObjCBuiltinType() &&
5726 !rhsType
->isObjCQualifiedClassType())
5727 return Sema::IncompatiblePointer
;
5728 return Sema::Compatible
;
5730 if (rhsType
->isObjCBuiltinType()) {
5731 // Class is not compatible with ObjC object pointers.
5732 if (rhsType
->isObjCClassType() && !lhsType
->isObjCBuiltinType() &&
5733 !lhsType
->isObjCQualifiedClassType())
5734 return Sema::IncompatiblePointer
;
5735 return Sema::Compatible
;
5738 lhsType
->getAs
<ObjCObjectPointerType
>()->getPointeeType();
5740 rhsType
->getAs
<ObjCObjectPointerType
>()->getPointeeType();
5742 if (!lhptee
.isAtLeastAsQualifiedAs(rhptee
))
5743 return Sema::CompatiblePointerDiscardsQualifiers
;
5745 if (S
.Context
.typesAreCompatible(lhsType
, rhsType
))
5746 return Sema::Compatible
;
5747 if (lhsType
->isObjCQualifiedIdType() || rhsType
->isObjCQualifiedIdType())
5748 return Sema::IncompatibleObjCQualifiedId
;
5749 return Sema::IncompatiblePointer
;
5752 Sema::AssignConvertType
5753 Sema::CheckAssignmentConstraints(SourceLocation Loc
,
5754 QualType lhsType
, QualType rhsType
) {
5755 // Fake up an opaque expression. We don't actually care about what
5756 // cast operations are required, so if CheckAssignmentConstraints
5757 // adds casts to this they'll be wasted, but fortunately that doesn't
5758 // usually happen on valid code.
5759 OpaqueValueExpr
rhs(Loc
, rhsType
, VK_RValue
);
5760 Expr
*rhsPtr
= &rhs
;
5761 CastKind K
= CK_Invalid
;
5763 return CheckAssignmentConstraints(lhsType
, rhsPtr
, K
);
5766 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5767 /// has code to accommodate several GCC extensions when type checking
5768 /// pointers. Here are some objectionable examples that GCC considers warnings:
5772 /// struct foo *pfoo;
5774 /// pint = pshort; // warning: assignment from incompatible pointer type
5775 /// a = pint; // warning: assignment makes integer from pointer without a cast
5776 /// pint = a; // warning: assignment makes pointer from integer without a cast
5777 /// pint = pfoo; // warning: assignment from incompatible pointer type
5779 /// As a result, the code for dealing with pointers is more complex than the
5780 /// C99 spec dictates.
5782 /// Sets 'Kind' for any result kind except Incompatible.
5783 Sema::AssignConvertType
5784 Sema::CheckAssignmentConstraints(QualType lhsType
, Expr
*&rhs
,
5786 QualType rhsType
= rhs
->getType();
5788 // Get canonical types. We're not formatting these types, just comparing
5790 lhsType
= Context
.getCanonicalType(lhsType
).getUnqualifiedType();
5791 rhsType
= Context
.getCanonicalType(rhsType
).getUnqualifiedType();
5793 // Common case: no conversion required.
5794 if (lhsType
== rhsType
) {
5799 // If the left-hand side is a reference type, then we are in a
5800 // (rare!) case where we've allowed the use of references in C,
5801 // e.g., as a parameter type in a built-in function. In this case,
5802 // just make sure that the type referenced is compatible with the
5803 // right-hand side type. The caller is responsible for adjusting
5804 // lhsType so that the resulting expression does not have reference
5806 if (const ReferenceType
*lhsTypeRef
= lhsType
->getAs
<ReferenceType
>()) {
5807 if (Context
.typesAreCompatible(lhsTypeRef
->getPointeeType(), rhsType
)) {
5808 Kind
= CK_LValueBitCast
;
5811 return Incompatible
;
5814 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5815 // to the same ExtVector type.
5816 if (lhsType
->isExtVectorType()) {
5817 if (rhsType
->isExtVectorType())
5818 return Incompatible
;
5819 if (rhsType
->isArithmeticType()) {
5820 // CK_VectorSplat does T -> vector T, so first cast to the
5822 QualType elType
= cast
<ExtVectorType
>(lhsType
)->getElementType();
5823 if (elType
!= rhsType
) {
5824 Kind
= PrepareScalarCast(*this, rhs
, elType
);
5825 ImpCastExprToType(rhs
, elType
, Kind
);
5827 Kind
= CK_VectorSplat
;
5832 // Conversions to or from vector type.
5833 if (lhsType
->isVectorType() || rhsType
->isVectorType()) {
5834 if (lhsType
->isVectorType() && rhsType
->isVectorType()) {
5835 // Allow assignments of an AltiVec vector type to an equivalent GCC
5836 // vector type and vice versa
5837 if (Context
.areCompatibleVectorTypes(lhsType
, rhsType
)) {
5842 // If we are allowing lax vector conversions, and LHS and RHS are both
5843 // vectors, the total size only needs to be the same. This is a bitcast;
5844 // no bits are changed but the result type is different.
5845 if (getLangOptions().LaxVectorConversions
&&
5846 (Context
.getTypeSize(lhsType
) == Context
.getTypeSize(rhsType
))) {
5848 return IncompatibleVectors
;
5851 return Incompatible
;
5854 // Arithmetic conversions.
5855 if (lhsType
->isArithmeticType() && rhsType
->isArithmeticType() &&
5856 !(getLangOptions().CPlusPlus
&& lhsType
->isEnumeralType())) {
5857 Kind
= PrepareScalarCast(*this, rhs
, lhsType
);
5861 // Conversions to normal pointers.
5862 if (const PointerType
*lhsPointer
= dyn_cast
<PointerType
>(lhsType
)) {
5864 if (isa
<PointerType
>(rhsType
)) {
5866 return checkPointerTypesForAssignment(*this, lhsType
, rhsType
);
5870 if (rhsType
->isIntegerType()) {
5871 Kind
= CK_IntegralToPointer
; // FIXME: null?
5872 return IntToPointer
;
5875 // C pointers are not compatible with ObjC object pointers,
5876 // with two exceptions:
5877 if (isa
<ObjCObjectPointerType
>(rhsType
)) {
5878 // - conversions to void*
5879 if (lhsPointer
->getPointeeType()->isVoidType()) {
5880 Kind
= CK_AnyPointerToObjCPointerCast
;
5884 // - conversions from 'Class' to the redefinition type
5885 if (rhsType
->isObjCClassType() &&
5886 Context
.hasSameType(lhsType
, Context
.ObjCClassRedefinitionType
)) {
5892 return IncompatiblePointer
;
5896 if (rhsType
->getAs
<BlockPointerType
>()) {
5897 if (lhsPointer
->getPointeeType()->isVoidType()) {
5903 return Incompatible
;
5906 // Conversions to block pointers.
5907 if (isa
<BlockPointerType
>(lhsType
)) {
5909 if (rhsType
->isBlockPointerType()) {
5910 Kind
= CK_AnyPointerToBlockPointerCast
;
5911 return checkBlockPointerTypesForAssignment(*this, lhsType
, rhsType
);
5914 // int or null -> T^
5915 if (rhsType
->isIntegerType()) {
5916 Kind
= CK_IntegralToPointer
; // FIXME: null
5917 return IntToBlockPointer
;
5921 if (getLangOptions().ObjC1
&& rhsType
->isObjCIdType()) {
5922 Kind
= CK_AnyPointerToBlockPointerCast
;
5927 if (const PointerType
*RHSPT
= rhsType
->getAs
<PointerType
>())
5928 if (RHSPT
->getPointeeType()->isVoidType()) {
5929 Kind
= CK_AnyPointerToBlockPointerCast
;
5933 return Incompatible
;
5936 // Conversions to Objective-C pointers.
5937 if (isa
<ObjCObjectPointerType
>(lhsType
)) {
5939 if (rhsType
->isObjCObjectPointerType()) {
5941 return checkObjCPointerTypesForAssignment(*this, lhsType
, rhsType
);
5944 // int or null -> A*
5945 if (rhsType
->isIntegerType()) {
5946 Kind
= CK_IntegralToPointer
; // FIXME: null
5947 return IntToPointer
;
5950 // In general, C pointers are not compatible with ObjC object pointers,
5951 // with two exceptions:
5952 if (isa
<PointerType
>(rhsType
)) {
5953 // - conversions from 'void*'
5954 if (rhsType
->isVoidPointerType()) {
5955 Kind
= CK_AnyPointerToObjCPointerCast
;
5959 // - conversions to 'Class' from its redefinition type
5960 if (lhsType
->isObjCClassType() &&
5961 Context
.hasSameType(rhsType
, Context
.ObjCClassRedefinitionType
)) {
5966 Kind
= CK_AnyPointerToObjCPointerCast
;
5967 return IncompatiblePointer
;
5971 if (rhsType
->isBlockPointerType()) {
5972 Kind
= CK_AnyPointerToObjCPointerCast
;
5976 return Incompatible
;
5979 // Conversions from pointers that are not covered by the above.
5980 if (isa
<PointerType
>(rhsType
)) {
5982 if (lhsType
== Context
.BoolTy
) {
5983 Kind
= CK_PointerToBoolean
;
5988 if (lhsType
->isIntegerType()) {
5989 Kind
= CK_PointerToIntegral
;
5990 return PointerToInt
;
5993 return Incompatible
;
5996 // Conversions from Objective-C pointers that are not covered by the above.
5997 if (isa
<ObjCObjectPointerType
>(rhsType
)) {
5999 if (lhsType
== Context
.BoolTy
) {
6000 Kind
= CK_PointerToBoolean
;
6005 if (lhsType
->isIntegerType()) {
6006 Kind
= CK_PointerToIntegral
;
6007 return PointerToInt
;
6010 return Incompatible
;
6013 // struct A -> struct B
6014 if (isa
<TagType
>(lhsType
) && isa
<TagType
>(rhsType
)) {
6015 if (Context
.typesAreCompatible(lhsType
, rhsType
)) {
6021 return Incompatible
;
6024 /// \brief Constructs a transparent union from an expression that is
6025 /// used to initialize the transparent union.
6026 static void ConstructTransparentUnion(ASTContext
&C
, Expr
*&E
,
6027 QualType UnionType
, FieldDecl
*Field
) {
6028 // Build an initializer list that designates the appropriate member
6029 // of the transparent union.
6030 InitListExpr
*Initializer
= new (C
) InitListExpr(C
, SourceLocation(),
6033 Initializer
->setType(UnionType
);
6034 Initializer
->setInitializedFieldInUnion(Field
);
6036 // Build a compound literal constructing a value of the transparent
6037 // union type from this initializer list.
6038 TypeSourceInfo
*unionTInfo
= C
.getTrivialTypeSourceInfo(UnionType
);
6039 E
= new (C
) CompoundLiteralExpr(SourceLocation(), unionTInfo
, UnionType
,
6040 VK_RValue
, Initializer
, false);
6043 Sema::AssignConvertType
6044 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType
, Expr
*&rExpr
) {
6045 QualType FromType
= rExpr
->getType();
6047 // If the ArgType is a Union type, we want to handle a potential
6048 // transparent_union GCC extension.
6049 const RecordType
*UT
= ArgType
->getAsUnionType();
6050 if (!UT
|| !UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
6051 return Incompatible
;
6053 // The field to initialize within the transparent union.
6054 RecordDecl
*UD
= UT
->getDecl();
6055 FieldDecl
*InitField
= 0;
6056 // It's compatible if the expression matches any of the fields.
6057 for (RecordDecl::field_iterator it
= UD
->field_begin(),
6058 itend
= UD
->field_end();
6059 it
!= itend
; ++it
) {
6060 if (it
->getType()->isPointerType()) {
6061 // If the transparent union contains a pointer type, we allow:
6063 // 2) null pointer constant
6064 if (FromType
->isPointerType())
6065 if (FromType
->getAs
<PointerType
>()->getPointeeType()->isVoidType()) {
6066 ImpCastExprToType(rExpr
, it
->getType(), CK_BitCast
);
6071 if (rExpr
->isNullPointerConstant(Context
,
6072 Expr::NPC_ValueDependentIsNull
)) {
6073 ImpCastExprToType(rExpr
, it
->getType(), CK_NullToPointer
);
6080 CastKind Kind
= CK_Invalid
;
6081 if (CheckAssignmentConstraints(it
->getType(), rhs
, Kind
)
6083 ImpCastExprToType(rhs
, it
->getType(), Kind
);
6091 return Incompatible
;
6093 ConstructTransparentUnion(Context
, rExpr
, ArgType
, InitField
);
6097 Sema::AssignConvertType
6098 Sema::CheckSingleAssignmentConstraints(QualType lhsType
, Expr
*&rExpr
) {
6099 if (getLangOptions().CPlusPlus
) {
6100 if (!lhsType
->isRecordType()) {
6101 // C++ 5.17p3: If the left operand is not of class type, the
6102 // expression is implicitly converted (C++ 4) to the
6103 // cv-unqualified type of the left operand.
6104 if (PerformImplicitConversion(rExpr
, lhsType
.getUnqualifiedType(),
6106 return Incompatible
;
6110 // FIXME: Currently, we fall through and treat C++ classes like C
6114 // C99 6.5.16.1p1: the left operand is a pointer and the right is
6115 // a null pointer constant.
6116 if ((lhsType
->isPointerType() ||
6117 lhsType
->isObjCObjectPointerType() ||
6118 lhsType
->isBlockPointerType())
6119 && rExpr
->isNullPointerConstant(Context
,
6120 Expr::NPC_ValueDependentIsNull
)) {
6121 ImpCastExprToType(rExpr
, lhsType
, CK_NullToPointer
);
6125 // This check seems unnatural, however it is necessary to ensure the proper
6126 // conversion of functions/arrays. If the conversion were done for all
6127 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6128 // expressions that suppress this implicit conversion (&, sizeof).
6130 // Suppress this for references: C++ 8.5.3p5.
6131 if (!lhsType
->isReferenceType())
6132 DefaultFunctionArrayLvalueConversion(rExpr
);
6134 CastKind Kind
= CK_Invalid
;
6135 Sema::AssignConvertType result
=
6136 CheckAssignmentConstraints(lhsType
, rExpr
, Kind
);
6138 // C99 6.5.16.1p2: The value of the right operand is converted to the
6139 // type of the assignment expression.
6140 // CheckAssignmentConstraints allows the left-hand side to be a reference,
6141 // so that we can use references in built-in functions even in C.
6142 // The getNonReferenceType() call makes sure that the resulting expression
6143 // does not have reference type.
6144 if (result
!= Incompatible
&& rExpr
->getType() != lhsType
)
6145 ImpCastExprToType(rExpr
, lhsType
.getNonLValueExprType(Context
), Kind
);
6149 QualType
Sema::InvalidOperands(SourceLocation Loc
, Expr
*&lex
, Expr
*&rex
) {
6150 Diag(Loc
, diag::err_typecheck_invalid_operands
)
6151 << lex
->getType() << rex
->getType()
6152 << lex
->getSourceRange() << rex
->getSourceRange();
6156 QualType
Sema::CheckVectorOperands(SourceLocation Loc
, Expr
*&lex
, Expr
*&rex
) {
6157 // For conversion purposes, we ignore any qualifiers.
6158 // For example, "const float" and "float" are equivalent.
6160 Context
.getCanonicalType(lex
->getType()).getUnqualifiedType();
6162 Context
.getCanonicalType(rex
->getType()).getUnqualifiedType();
6164 // If the vector types are identical, return.
6165 if (lhsType
== rhsType
)
6168 // Handle the case of a vector & extvector type of the same size and element
6169 // type. It would be nice if we only had one vector type someday.
6170 if (getLangOptions().LaxVectorConversions
) {
6171 if (const VectorType
*LV
= lhsType
->getAs
<VectorType
>()) {
6172 if (const VectorType
*RV
= rhsType
->getAs
<VectorType
>()) {
6173 if (LV
->getElementType() == RV
->getElementType() &&
6174 LV
->getNumElements() == RV
->getNumElements()) {
6175 if (lhsType
->isExtVectorType()) {
6176 ImpCastExprToType(rex
, lhsType
, CK_BitCast
);
6180 ImpCastExprToType(lex
, rhsType
, CK_BitCast
);
6182 } else if (Context
.getTypeSize(lhsType
) ==Context
.getTypeSize(rhsType
)){
6183 // If we are allowing lax vector conversions, and LHS and RHS are both
6184 // vectors, the total size only needs to be the same. This is a
6185 // bitcast; no bits are changed but the result type is different.
6186 ImpCastExprToType(rex
, lhsType
, CK_BitCast
);
6193 // Handle the case of equivalent AltiVec and GCC vector types
6194 if (lhsType
->isVectorType() && rhsType
->isVectorType() &&
6195 Context
.areCompatibleVectorTypes(lhsType
, rhsType
)) {
6196 ImpCastExprToType(lex
, rhsType
, CK_BitCast
);
6200 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6201 // swap back (so that we don't reverse the inputs to a subtract, for instance.
6202 bool swapped
= false;
6203 if (rhsType
->isExtVectorType()) {
6205 std::swap(rex
, lex
);
6206 std::swap(rhsType
, lhsType
);
6209 // Handle the case of an ext vector and scalar.
6210 if (const ExtVectorType
*LV
= lhsType
->getAs
<ExtVectorType
>()) {
6211 QualType EltTy
= LV
->getElementType();
6212 if (EltTy
->isIntegralType(Context
) && rhsType
->isIntegralType(Context
)) {
6213 int order
= Context
.getIntegerTypeOrder(EltTy
, rhsType
);
6215 ImpCastExprToType(rex
, EltTy
, CK_IntegralCast
);
6217 ImpCastExprToType(rex
, lhsType
, CK_VectorSplat
);
6218 if (swapped
) std::swap(rex
, lex
);
6222 if (EltTy
->isRealFloatingType() && rhsType
->isScalarType() &&
6223 rhsType
->isRealFloatingType()) {
6224 int order
= Context
.getFloatingTypeOrder(EltTy
, rhsType
);
6226 ImpCastExprToType(rex
, EltTy
, CK_FloatingCast
);
6228 ImpCastExprToType(rex
, lhsType
, CK_VectorSplat
);
6229 if (swapped
) std::swap(rex
, lex
);
6235 // Vectors of different size or scalar and non-ext-vector are errors.
6236 Diag(Loc
, diag::err_typecheck_vector_not_convertable
)
6237 << lex
->getType() << rex
->getType()
6238 << lex
->getSourceRange() << rex
->getSourceRange();
6242 QualType
Sema::CheckMultiplyDivideOperands(
6243 Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
, bool isCompAssign
, bool isDiv
) {
6244 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType())
6245 return CheckVectorOperands(Loc
, lex
, rex
);
6247 QualType compType
= UsualArithmeticConversions(lex
, rex
, isCompAssign
);
6249 if (!lex
->getType()->isArithmeticType() ||
6250 !rex
->getType()->isArithmeticType())
6251 return InvalidOperands(Loc
, lex
, rex
);
6253 // Check for division by zero.
6255 rex
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNotNull
))
6256 DiagRuntimeBehavior(Loc
, PDiag(diag::warn_division_by_zero
)
6257 << rex
->getSourceRange());
6262 QualType
Sema::CheckRemainderOperands(
6263 Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
, bool isCompAssign
) {
6264 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType()) {
6265 if (lex
->getType()->hasIntegerRepresentation() &&
6266 rex
->getType()->hasIntegerRepresentation())
6267 return CheckVectorOperands(Loc
, lex
, rex
);
6268 return InvalidOperands(Loc
, lex
, rex
);
6271 QualType compType
= UsualArithmeticConversions(lex
, rex
, isCompAssign
);
6273 if (!lex
->getType()->isIntegerType() || !rex
->getType()->isIntegerType())
6274 return InvalidOperands(Loc
, lex
, rex
);
6276 // Check for remainder by zero.
6277 if (rex
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNotNull
))
6278 DiagRuntimeBehavior(Loc
, PDiag(diag::warn_remainder_by_zero
)
6279 << rex
->getSourceRange());
6284 QualType
Sema::CheckAdditionOperands( // C99 6.5.6
6285 Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
, QualType
* CompLHSTy
) {
6286 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType()) {
6287 QualType compType
= CheckVectorOperands(Loc
, lex
, rex
);
6288 if (CompLHSTy
) *CompLHSTy
= compType
;
6292 QualType compType
= UsualArithmeticConversions(lex
, rex
, CompLHSTy
);
6294 // handle the common case first (both operands are arithmetic).
6295 if (lex
->getType()->isArithmeticType() &&
6296 rex
->getType()->isArithmeticType()) {
6297 if (CompLHSTy
) *CompLHSTy
= compType
;
6301 // Put any potential pointer into PExp
6302 Expr
* PExp
= lex
, *IExp
= rex
;
6303 if (IExp
->getType()->isAnyPointerType())
6304 std::swap(PExp
, IExp
);
6306 if (PExp
->getType()->isAnyPointerType()) {
6308 if (IExp
->getType()->isIntegerType()) {
6309 QualType PointeeTy
= PExp
->getType()->getPointeeType();
6311 // Check for arithmetic on pointers to incomplete types.
6312 if (PointeeTy
->isVoidType()) {
6313 if (getLangOptions().CPlusPlus
) {
6314 Diag(Loc
, diag::err_typecheck_pointer_arith_void_type
)
6315 << lex
->getSourceRange() << rex
->getSourceRange();
6319 // GNU extension: arithmetic on pointer to void
6320 Diag(Loc
, diag::ext_gnu_void_ptr
)
6321 << lex
->getSourceRange() << rex
->getSourceRange();
6322 } else if (PointeeTy
->isFunctionType()) {
6323 if (getLangOptions().CPlusPlus
) {
6324 Diag(Loc
, diag::err_typecheck_pointer_arith_function_type
)
6325 << lex
->getType() << lex
->getSourceRange();
6329 // GNU extension: arithmetic on pointer to function
6330 Diag(Loc
, diag::ext_gnu_ptr_func_arith
)
6331 << lex
->getType() << lex
->getSourceRange();
6333 // Check if we require a complete type.
6334 if (((PExp
->getType()->isPointerType() &&
6335 !PExp
->getType()->isDependentType()) ||
6336 PExp
->getType()->isObjCObjectPointerType()) &&
6337 RequireCompleteType(Loc
, PointeeTy
,
6338 PDiag(diag::err_typecheck_arithmetic_incomplete_type
)
6339 << PExp
->getSourceRange()
6340 << PExp
->getType()))
6343 // Diagnose bad cases where we step over interface counts.
6344 if (PointeeTy
->isObjCObjectType() && LangOpts
.ObjCNonFragileABI
) {
6345 Diag(Loc
, diag::err_arithmetic_nonfragile_interface
)
6346 << PointeeTy
<< PExp
->getSourceRange();
6351 QualType LHSTy
= Context
.isPromotableBitField(lex
);
6352 if (LHSTy
.isNull()) {
6353 LHSTy
= lex
->getType();
6354 if (LHSTy
->isPromotableIntegerType())
6355 LHSTy
= Context
.getPromotedIntegerType(LHSTy
);
6359 return PExp
->getType();
6363 return InvalidOperands(Loc
, lex
, rex
);
6367 QualType
Sema::CheckSubtractionOperands(Expr
*&lex
, Expr
*&rex
,
6368 SourceLocation Loc
, QualType
* CompLHSTy
) {
6369 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType()) {
6370 QualType compType
= CheckVectorOperands(Loc
, lex
, rex
);
6371 if (CompLHSTy
) *CompLHSTy
= compType
;
6375 QualType compType
= UsualArithmeticConversions(lex
, rex
, CompLHSTy
);
6377 // Enforce type constraints: C99 6.5.6p3.
6379 // Handle the common case first (both operands are arithmetic).
6380 if (lex
->getType()->isArithmeticType()
6381 && rex
->getType()->isArithmeticType()) {
6382 if (CompLHSTy
) *CompLHSTy
= compType
;
6386 // Either ptr - int or ptr - ptr.
6387 if (lex
->getType()->isAnyPointerType()) {
6388 QualType lpointee
= lex
->getType()->getPointeeType();
6390 // The LHS must be an completely-defined object type.
6392 bool ComplainAboutVoid
= false;
6393 Expr
*ComplainAboutFunc
= 0;
6394 if (lpointee
->isVoidType()) {
6395 if (getLangOptions().CPlusPlus
) {
6396 Diag(Loc
, diag::err_typecheck_pointer_arith_void_type
)
6397 << lex
->getSourceRange() << rex
->getSourceRange();
6401 // GNU C extension: arithmetic on pointer to void
6402 ComplainAboutVoid
= true;
6403 } else if (lpointee
->isFunctionType()) {
6404 if (getLangOptions().CPlusPlus
) {
6405 Diag(Loc
, diag::err_typecheck_pointer_arith_function_type
)
6406 << lex
->getType() << lex
->getSourceRange();
6410 // GNU C extension: arithmetic on pointer to function
6411 ComplainAboutFunc
= lex
;
6412 } else if (!lpointee
->isDependentType() &&
6413 RequireCompleteType(Loc
, lpointee
,
6414 PDiag(diag::err_typecheck_sub_ptr_object
)
6415 << lex
->getSourceRange()
6419 // Diagnose bad cases where we step over interface counts.
6420 if (lpointee
->isObjCObjectType() && LangOpts
.ObjCNonFragileABI
) {
6421 Diag(Loc
, diag::err_arithmetic_nonfragile_interface
)
6422 << lpointee
<< lex
->getSourceRange();
6426 // The result type of a pointer-int computation is the pointer type.
6427 if (rex
->getType()->isIntegerType()) {
6428 if (ComplainAboutVoid
)
6429 Diag(Loc
, diag::ext_gnu_void_ptr
)
6430 << lex
->getSourceRange() << rex
->getSourceRange();
6431 if (ComplainAboutFunc
)
6432 Diag(Loc
, diag::ext_gnu_ptr_func_arith
)
6433 << ComplainAboutFunc
->getType()
6434 << ComplainAboutFunc
->getSourceRange();
6436 if (CompLHSTy
) *CompLHSTy
= lex
->getType();
6437 return lex
->getType();
6440 // Handle pointer-pointer subtractions.
6441 if (const PointerType
*RHSPTy
= rex
->getType()->getAs
<PointerType
>()) {
6442 QualType rpointee
= RHSPTy
->getPointeeType();
6444 // RHS must be a completely-type object type.
6445 // Handle the GNU void* extension.
6446 if (rpointee
->isVoidType()) {
6447 if (getLangOptions().CPlusPlus
) {
6448 Diag(Loc
, diag::err_typecheck_pointer_arith_void_type
)
6449 << lex
->getSourceRange() << rex
->getSourceRange();
6453 ComplainAboutVoid
= true;
6454 } else if (rpointee
->isFunctionType()) {
6455 if (getLangOptions().CPlusPlus
) {
6456 Diag(Loc
, diag::err_typecheck_pointer_arith_function_type
)
6457 << rex
->getType() << rex
->getSourceRange();
6461 // GNU extension: arithmetic on pointer to function
6462 if (!ComplainAboutFunc
)
6463 ComplainAboutFunc
= rex
;
6464 } else if (!rpointee
->isDependentType() &&
6465 RequireCompleteType(Loc
, rpointee
,
6466 PDiag(diag::err_typecheck_sub_ptr_object
)
6467 << rex
->getSourceRange()
6471 if (getLangOptions().CPlusPlus
) {
6472 // Pointee types must be the same: C++ [expr.add]
6473 if (!Context
.hasSameUnqualifiedType(lpointee
, rpointee
)) {
6474 Diag(Loc
, diag::err_typecheck_sub_ptr_compatible
)
6475 << lex
->getType() << rex
->getType()
6476 << lex
->getSourceRange() << rex
->getSourceRange();
6480 // Pointee types must be compatible C99 6.5.6p3
6481 if (!Context
.typesAreCompatible(
6482 Context
.getCanonicalType(lpointee
).getUnqualifiedType(),
6483 Context
.getCanonicalType(rpointee
).getUnqualifiedType())) {
6484 Diag(Loc
, diag::err_typecheck_sub_ptr_compatible
)
6485 << lex
->getType() << rex
->getType()
6486 << lex
->getSourceRange() << rex
->getSourceRange();
6491 if (ComplainAboutVoid
)
6492 Diag(Loc
, diag::ext_gnu_void_ptr
)
6493 << lex
->getSourceRange() << rex
->getSourceRange();
6494 if (ComplainAboutFunc
)
6495 Diag(Loc
, diag::ext_gnu_ptr_func_arith
)
6496 << ComplainAboutFunc
->getType()
6497 << ComplainAboutFunc
->getSourceRange();
6499 if (CompLHSTy
) *CompLHSTy
= lex
->getType();
6500 return Context
.getPointerDiffType();
6504 return InvalidOperands(Loc
, lex
, rex
);
6507 static bool isScopedEnumerationType(QualType T
) {
6508 if (const EnumType
*ET
= dyn_cast
<EnumType
>(T
))
6509 return ET
->getDecl()->isScoped();
6514 QualType
Sema::CheckShiftOperands(Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
,
6515 bool isCompAssign
) {
6516 // C99 6.5.7p2: Each of the operands shall have integer type.
6517 if (!lex
->getType()->hasIntegerRepresentation() ||
6518 !rex
->getType()->hasIntegerRepresentation())
6519 return InvalidOperands(Loc
, lex
, rex
);
6521 // C++0x: Don't allow scoped enums. FIXME: Use something better than
6522 // hasIntegerRepresentation() above instead of this.
6523 if (isScopedEnumerationType(lex
->getType()) ||
6524 isScopedEnumerationType(rex
->getType())) {
6525 return InvalidOperands(Loc
, lex
, rex
);
6528 // Vector shifts promote their scalar inputs to vector type.
6529 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType())
6530 return CheckVectorOperands(Loc
, lex
, rex
);
6532 // Shifts don't perform usual arithmetic conversions, they just do integer
6533 // promotions on each operand. C99 6.5.7p3
6535 // For the LHS, do usual unary conversions, but then reset them away
6536 // if this is a compound assignment.
6537 Expr
*old_lex
= lex
;
6538 UsualUnaryConversions(lex
);
6539 QualType LHSTy
= lex
->getType();
6540 if (isCompAssign
) lex
= old_lex
;
6542 // The RHS is simpler.
6543 UsualUnaryConversions(rex
);
6545 // Sanity-check shift operands
6547 // Check right/shifter operand
6548 if (!rex
->isValueDependent() &&
6549 rex
->isIntegerConstantExpr(Right
, Context
)) {
6550 if (Right
.isNegative())
6551 Diag(Loc
, diag::warn_shift_negative
) << rex
->getSourceRange();
6553 llvm::APInt
LeftBits(Right
.getBitWidth(),
6554 Context
.getTypeSize(lex
->getType()));
6555 if (Right
.uge(LeftBits
))
6556 Diag(Loc
, diag::warn_shift_gt_typewidth
) << rex
->getSourceRange();
6560 // "The type of the result is that of the promoted left operand."
6564 static bool IsWithinTemplateSpecialization(Decl
*D
) {
6565 if (DeclContext
*DC
= D
->getDeclContext()) {
6566 if (isa
<ClassTemplateSpecializationDecl
>(DC
))
6568 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(DC
))
6569 return FD
->isFunctionTemplateSpecialization();
6574 // C99 6.5.8, C++ [expr.rel]
6575 QualType
Sema::CheckCompareOperands(Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
,
6576 unsigned OpaqueOpc
, bool isRelational
) {
6577 BinaryOperatorKind Opc
= (BinaryOperatorKind
) OpaqueOpc
;
6579 // Handle vector comparisons separately.
6580 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType())
6581 return CheckVectorCompareOperands(lex
, rex
, Loc
, isRelational
);
6583 QualType lType
= lex
->getType();
6584 QualType rType
= rex
->getType();
6586 if (!lType
->hasFloatingRepresentation() &&
6587 !(lType
->isBlockPointerType() && isRelational
) &&
6588 !lex
->getLocStart().isMacroID() &&
6589 !rex
->getLocStart().isMacroID()) {
6590 // For non-floating point types, check for self-comparisons of the form
6591 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6592 // often indicate logic errors in the program.
6594 // NOTE: Don't warn about comparison expressions resulting from macro
6595 // expansion. Also don't warn about comparisons which are only self
6596 // comparisons within a template specialization. The warnings should catch
6597 // obvious cases in the definition of the template anyways. The idea is to
6598 // warn when the typed comparison operator will always evaluate to the same
6600 Expr
*LHSStripped
= lex
->IgnoreParenImpCasts();
6601 Expr
*RHSStripped
= rex
->IgnoreParenImpCasts();
6602 if (DeclRefExpr
* DRL
= dyn_cast
<DeclRefExpr
>(LHSStripped
)) {
6603 if (DeclRefExpr
* DRR
= dyn_cast
<DeclRefExpr
>(RHSStripped
)) {
6604 if (DRL
->getDecl() == DRR
->getDecl() &&
6605 !IsWithinTemplateSpecialization(DRL
->getDecl())) {
6606 DiagRuntimeBehavior(Loc
, PDiag(diag::warn_comparison_always
)
6611 } else if (lType
->isArrayType() && rType
->isArrayType() &&
6612 !DRL
->getDecl()->getType()->isReferenceType() &&
6613 !DRR
->getDecl()->getType()->isReferenceType()) {
6614 // what is it always going to eval to?
6615 char always_evals_to
;
6617 case BO_EQ
: // e.g. array1 == array2
6618 always_evals_to
= 0; // false
6620 case BO_NE
: // e.g. array1 != array2
6621 always_evals_to
= 1; // true
6624 // best we can say is 'a constant'
6625 always_evals_to
= 2; // e.g. array1 <= array2
6628 DiagRuntimeBehavior(Loc
, PDiag(diag::warn_comparison_always
)
6630 << always_evals_to
);
6635 if (isa
<CastExpr
>(LHSStripped
))
6636 LHSStripped
= LHSStripped
->IgnoreParenCasts();
6637 if (isa
<CastExpr
>(RHSStripped
))
6638 RHSStripped
= RHSStripped
->IgnoreParenCasts();
6640 // Warn about comparisons against a string constant (unless the other
6641 // operand is null), the user probably wants strcmp.
6642 Expr
*literalString
= 0;
6643 Expr
*literalStringStripped
= 0;
6644 if ((isa
<StringLiteral
>(LHSStripped
) || isa
<ObjCEncodeExpr
>(LHSStripped
)) &&
6645 !RHSStripped
->isNullPointerConstant(Context
,
6646 Expr::NPC_ValueDependentIsNull
)) {
6647 literalString
= lex
;
6648 literalStringStripped
= LHSStripped
;
6649 } else if ((isa
<StringLiteral
>(RHSStripped
) ||
6650 isa
<ObjCEncodeExpr
>(RHSStripped
)) &&
6651 !LHSStripped
->isNullPointerConstant(Context
,
6652 Expr::NPC_ValueDependentIsNull
)) {
6653 literalString
= rex
;
6654 literalStringStripped
= RHSStripped
;
6657 if (literalString
) {
6658 std::string resultComparison
;
6660 case BO_LT
: resultComparison
= ") < 0"; break;
6661 case BO_GT
: resultComparison
= ") > 0"; break;
6662 case BO_LE
: resultComparison
= ") <= 0"; break;
6663 case BO_GE
: resultComparison
= ") >= 0"; break;
6664 case BO_EQ
: resultComparison
= ") == 0"; break;
6665 case BO_NE
: resultComparison
= ") != 0"; break;
6666 default: assert(false && "Invalid comparison operator");
6669 DiagRuntimeBehavior(Loc
,
6670 PDiag(diag::warn_stringcompare
)
6671 << isa
<ObjCEncodeExpr
>(literalStringStripped
)
6672 << literalString
->getSourceRange());
6676 // C99 6.5.8p3 / C99 6.5.9p4
6677 if (lex
->getType()->isArithmeticType() && rex
->getType()->isArithmeticType())
6678 UsualArithmeticConversions(lex
, rex
);
6680 UsualUnaryConversions(lex
);
6681 UsualUnaryConversions(rex
);
6684 lType
= lex
->getType();
6685 rType
= rex
->getType();
6687 // The result of comparisons is 'bool' in C++, 'int' in C.
6688 QualType ResultTy
= getLangOptions().CPlusPlus
? Context
.BoolTy
:Context
.IntTy
;
6691 if (lType
->isRealType() && rType
->isRealType())
6694 // Check for comparisons of floating point operands using != and ==.
6695 if (lType
->hasFloatingRepresentation())
6696 CheckFloatComparison(Loc
,lex
,rex
);
6698 if (lType
->isArithmeticType() && rType
->isArithmeticType())
6702 bool LHSIsNull
= lex
->isNullPointerConstant(Context
,
6703 Expr::NPC_ValueDependentIsNull
);
6704 bool RHSIsNull
= rex
->isNullPointerConstant(Context
,
6705 Expr::NPC_ValueDependentIsNull
);
6707 // All of the following pointer-related warnings are GCC extensions, except
6708 // when handling null pointer constants.
6709 if (lType
->isPointerType() && rType
->isPointerType()) { // C99 6.5.8p2
6710 QualType LCanPointeeTy
=
6711 Context
.getCanonicalType(lType
->getAs
<PointerType
>()->getPointeeType());
6712 QualType RCanPointeeTy
=
6713 Context
.getCanonicalType(rType
->getAs
<PointerType
>()->getPointeeType());
6715 if (getLangOptions().CPlusPlus
) {
6716 if (LCanPointeeTy
== RCanPointeeTy
)
6718 if (!isRelational
&&
6719 (LCanPointeeTy
->isVoidType() || RCanPointeeTy
->isVoidType())) {
6720 // Valid unless comparison between non-null pointer and function pointer
6721 // This is a gcc extension compatibility comparison.
6722 // In a SFINAE context, we treat this as a hard error to maintain
6723 // conformance with the C++ standard.
6724 if ((LCanPointeeTy
->isFunctionType() || RCanPointeeTy
->isFunctionType())
6725 && !LHSIsNull
&& !RHSIsNull
) {
6728 diag::err_typecheck_comparison_of_fptr_to_void
6729 : diag::ext_typecheck_comparison_of_fptr_to_void
)
6730 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6732 if (isSFINAEContext())
6735 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6740 // C++ [expr.rel]p2:
6741 // [...] Pointer conversions (4.10) and qualification
6742 // conversions (4.4) are performed on pointer operands (or on
6743 // a pointer operand and a null pointer constant) to bring
6744 // them to their composite pointer type. [...]
6746 // C++ [expr.eq]p1 uses the same notion for (in)equality
6747 // comparisons of pointers.
6748 bool NonStandardCompositeType
= false;
6749 QualType T
= FindCompositePointerType(Loc
, lex
, rex
,
6750 isSFINAEContext()? 0 : &NonStandardCompositeType
);
6752 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_pointers
)
6753 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6755 } else if (NonStandardCompositeType
) {
6757 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard
)
6758 << lType
<< rType
<< T
6759 << lex
->getSourceRange() << rex
->getSourceRange();
6762 ImpCastExprToType(lex
, T
, CK_BitCast
);
6763 ImpCastExprToType(rex
, T
, CK_BitCast
);
6766 // C99 6.5.9p2 and C99 6.5.8p2
6767 if (Context
.typesAreCompatible(LCanPointeeTy
.getUnqualifiedType(),
6768 RCanPointeeTy
.getUnqualifiedType())) {
6769 // Valid unless a relational comparison of function pointers
6770 if (isRelational
&& LCanPointeeTy
->isFunctionType()) {
6771 Diag(Loc
, diag::ext_typecheck_ordered_comparison_of_function_pointers
)
6772 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6774 } else if (!isRelational
&&
6775 (LCanPointeeTy
->isVoidType() || RCanPointeeTy
->isVoidType())) {
6776 // Valid unless comparison between non-null pointer and function pointer
6777 if ((LCanPointeeTy
->isFunctionType() || RCanPointeeTy
->isFunctionType())
6778 && !LHSIsNull
&& !RHSIsNull
) {
6779 Diag(Loc
, diag::ext_typecheck_comparison_of_fptr_to_void
)
6780 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6784 Diag(Loc
, diag::ext_typecheck_comparison_of_distinct_pointers
)
6785 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6787 if (LCanPointeeTy
!= RCanPointeeTy
)
6788 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6792 if (getLangOptions().CPlusPlus
) {
6793 // Comparison of nullptr_t with itself.
6794 if (lType
->isNullPtrType() && rType
->isNullPtrType())
6797 // Comparison of pointers with null pointer constants and equality
6798 // comparisons of member pointers to null pointer constants.
6800 ((lType
->isPointerType() || lType
->isNullPtrType()) ||
6801 (!isRelational
&& lType
->isMemberPointerType()))) {
6802 ImpCastExprToType(rex
, lType
,
6803 lType
->isMemberPointerType()
6804 ? CK_NullToMemberPointer
6805 : CK_NullToPointer
);
6809 ((rType
->isPointerType() || rType
->isNullPtrType()) ||
6810 (!isRelational
&& rType
->isMemberPointerType()))) {
6811 ImpCastExprToType(lex
, rType
,
6812 rType
->isMemberPointerType()
6813 ? CK_NullToMemberPointer
6814 : CK_NullToPointer
);
6818 // Comparison of member pointers.
6819 if (!isRelational
&&
6820 lType
->isMemberPointerType() && rType
->isMemberPointerType()) {
6822 // In addition, pointers to members can be compared, or a pointer to
6823 // member and a null pointer constant. Pointer to member conversions
6824 // (4.11) and qualification conversions (4.4) are performed to bring
6825 // them to a common type. If one operand is a null pointer constant,
6826 // the common type is the type of the other operand. Otherwise, the
6827 // common type is a pointer to member type similar (4.4) to the type
6828 // of one of the operands, with a cv-qualification signature (4.4)
6829 // that is the union of the cv-qualification signatures of the operand
6831 bool NonStandardCompositeType
= false;
6832 QualType T
= FindCompositePointerType(Loc
, lex
, rex
,
6833 isSFINAEContext()? 0 : &NonStandardCompositeType
);
6835 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_pointers
)
6836 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6838 } else if (NonStandardCompositeType
) {
6840 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard
)
6841 << lType
<< rType
<< T
6842 << lex
->getSourceRange() << rex
->getSourceRange();
6845 ImpCastExprToType(lex
, T
, CK_BitCast
);
6846 ImpCastExprToType(rex
, T
, CK_BitCast
);
6851 // Handle block pointer types.
6852 if (!isRelational
&& lType
->isBlockPointerType() && rType
->isBlockPointerType()) {
6853 QualType lpointee
= lType
->getAs
<BlockPointerType
>()->getPointeeType();
6854 QualType rpointee
= rType
->getAs
<BlockPointerType
>()->getPointeeType();
6856 if (!LHSIsNull
&& !RHSIsNull
&&
6857 !Context
.typesAreCompatible(lpointee
, rpointee
)) {
6858 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
6859 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6861 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6864 // Allow block pointers to be compared with null pointer constants.
6866 && ((lType
->isBlockPointerType() && rType
->isPointerType())
6867 || (lType
->isPointerType() && rType
->isBlockPointerType()))) {
6868 if (!LHSIsNull
&& !RHSIsNull
) {
6869 if (!((rType
->isPointerType() && rType
->getAs
<PointerType
>()
6870 ->getPointeeType()->isVoidType())
6871 || (lType
->isPointerType() && lType
->getAs
<PointerType
>()
6872 ->getPointeeType()->isVoidType())))
6873 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
6874 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6876 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6880 if ((lType
->isObjCObjectPointerType() || rType
->isObjCObjectPointerType())) {
6881 if (lType
->isPointerType() || rType
->isPointerType()) {
6882 const PointerType
*LPT
= lType
->getAs
<PointerType
>();
6883 const PointerType
*RPT
= rType
->getAs
<PointerType
>();
6884 bool LPtrToVoid
= LPT
?
6885 Context
.getCanonicalType(LPT
->getPointeeType())->isVoidType() : false;
6886 bool RPtrToVoid
= RPT
?
6887 Context
.getCanonicalType(RPT
->getPointeeType())->isVoidType() : false;
6889 if (!LPtrToVoid
&& !RPtrToVoid
&&
6890 !Context
.typesAreCompatible(lType
, rType
)) {
6891 Diag(Loc
, diag::ext_typecheck_comparison_of_distinct_pointers
)
6892 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6894 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6897 if (lType
->isObjCObjectPointerType() && rType
->isObjCObjectPointerType()) {
6898 if (!Context
.areComparableObjCPointerTypes(lType
, rType
))
6899 Diag(Loc
, diag::ext_typecheck_comparison_of_distinct_pointers
)
6900 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6901 ImpCastExprToType(rex
, lType
, CK_BitCast
);
6905 if ((lType
->isAnyPointerType() && rType
->isIntegerType()) ||
6906 (lType
->isIntegerType() && rType
->isAnyPointerType())) {
6907 unsigned DiagID
= 0;
6908 bool isError
= false;
6909 if ((LHSIsNull
&& lType
->isIntegerType()) ||
6910 (RHSIsNull
&& rType
->isIntegerType())) {
6911 if (isRelational
&& !getLangOptions().CPlusPlus
)
6912 DiagID
= diag::ext_typecheck_ordered_comparison_of_pointer_and_zero
;
6913 } else if (isRelational
&& !getLangOptions().CPlusPlus
)
6914 DiagID
= diag::ext_typecheck_ordered_comparison_of_pointer_integer
;
6915 else if (getLangOptions().CPlusPlus
) {
6916 DiagID
= diag::err_typecheck_comparison_of_pointer_integer
;
6919 DiagID
= diag::ext_typecheck_comparison_of_pointer_integer
;
6923 << lType
<< rType
<< lex
->getSourceRange() << rex
->getSourceRange();
6928 if (lType
->isIntegerType())
6929 ImpCastExprToType(lex
, rType
,
6930 LHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
6932 ImpCastExprToType(rex
, lType
,
6933 RHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
6937 // Handle block pointers.
6938 if (!isRelational
&& RHSIsNull
6939 && lType
->isBlockPointerType() && rType
->isIntegerType()) {
6940 ImpCastExprToType(rex
, lType
, CK_NullToPointer
);
6943 if (!isRelational
&& LHSIsNull
6944 && lType
->isIntegerType() && rType
->isBlockPointerType()) {
6945 ImpCastExprToType(lex
, rType
, CK_NullToPointer
);
6948 return InvalidOperands(Loc
, lex
, rex
);
6951 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
6952 /// operates on extended vector types. Instead of producing an IntTy result,
6953 /// like a scalar comparison, a vector comparison produces a vector of integer
6955 QualType
Sema::CheckVectorCompareOperands(Expr
*&lex
, Expr
*&rex
,
6957 bool isRelational
) {
6958 // Check to make sure we're operating on vectors of the same type and width,
6959 // Allowing one side to be a scalar of element type.
6960 QualType vType
= CheckVectorOperands(Loc
, lex
, rex
);
6964 // If AltiVec, the comparison results in a numeric type, i.e.
6965 // bool for C++, int for C
6966 if (getLangOptions().AltiVec
)
6967 return (getLangOptions().CPlusPlus
? Context
.BoolTy
: Context
.IntTy
);
6969 QualType lType
= lex
->getType();
6970 QualType rType
= rex
->getType();
6972 // For non-floating point types, check for self-comparisons of the form
6973 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6974 // often indicate logic errors in the program.
6975 if (!lType
->hasFloatingRepresentation()) {
6976 if (DeclRefExpr
* DRL
= dyn_cast
<DeclRefExpr
>(lex
->IgnoreParens()))
6977 if (DeclRefExpr
* DRR
= dyn_cast
<DeclRefExpr
>(rex
->IgnoreParens()))
6978 if (DRL
->getDecl() == DRR
->getDecl())
6979 DiagRuntimeBehavior(Loc
,
6980 PDiag(diag::warn_comparison_always
)
6982 << 2 // "a constant"
6986 // Check for comparisons of floating point operands using != and ==.
6987 if (!isRelational
&& lType
->hasFloatingRepresentation()) {
6988 assert (rType
->hasFloatingRepresentation());
6989 CheckFloatComparison(Loc
,lex
,rex
);
6992 // Return the type for the comparison, which is the same as vector type for
6993 // integer vectors, or an integer type of identical size and number of
6994 // elements for floating point vectors.
6995 if (lType
->hasIntegerRepresentation())
6998 const VectorType
*VTy
= lType
->getAs
<VectorType
>();
6999 unsigned TypeSize
= Context
.getTypeSize(VTy
->getElementType());
7000 if (TypeSize
== Context
.getTypeSize(Context
.IntTy
))
7001 return Context
.getExtVectorType(Context
.IntTy
, VTy
->getNumElements());
7002 if (TypeSize
== Context
.getTypeSize(Context
.LongTy
))
7003 return Context
.getExtVectorType(Context
.LongTy
, VTy
->getNumElements());
7005 assert(TypeSize
== Context
.getTypeSize(Context
.LongLongTy
) &&
7006 "Unhandled vector element size in vector compare");
7007 return Context
.getExtVectorType(Context
.LongLongTy
, VTy
->getNumElements());
7010 inline QualType
Sema::CheckBitwiseOperands(
7011 Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
, bool isCompAssign
) {
7012 if (lex
->getType()->isVectorType() || rex
->getType()->isVectorType()) {
7013 if (lex
->getType()->hasIntegerRepresentation() &&
7014 rex
->getType()->hasIntegerRepresentation())
7015 return CheckVectorOperands(Loc
, lex
, rex
);
7017 return InvalidOperands(Loc
, lex
, rex
);
7020 QualType compType
= UsualArithmeticConversions(lex
, rex
, isCompAssign
);
7022 if (lex
->getType()->isIntegralOrUnscopedEnumerationType() &&
7023 rex
->getType()->isIntegralOrUnscopedEnumerationType())
7025 return InvalidOperands(Loc
, lex
, rex
);
7028 inline QualType
Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7029 Expr
*&lex
, Expr
*&rex
, SourceLocation Loc
, unsigned Opc
) {
7031 // Diagnose cases where the user write a logical and/or but probably meant a
7032 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
7034 if (lex
->getType()->isIntegerType() && !lex
->getType()->isBooleanType() &&
7035 rex
->getType()->isIntegerType() && !rex
->isValueDependent() &&
7036 // Don't warn in macros.
7038 // If the RHS can be constant folded, and if it constant folds to something
7039 // that isn't 0 or 1 (which indicate a potential logical operation that
7040 // happened to fold to true/false) then warn.
7041 Expr::EvalResult Result
;
7042 if (rex
->Evaluate(Result
, Context
) && !Result
.HasSideEffects
&&
7043 Result
.Val
.getInt() != 0 && Result
.Val
.getInt() != 1) {
7044 Diag(Loc
, diag::warn_logical_instead_of_bitwise
)
7045 << rex
->getSourceRange()
7046 << (Opc
== BO_LAnd
? "&&" : "||")
7047 << (Opc
== BO_LAnd
? "&" : "|");
7051 if (!Context
.getLangOptions().CPlusPlus
) {
7052 UsualUnaryConversions(lex
);
7053 UsualUnaryConversions(rex
);
7055 if (!lex
->getType()->isScalarType() || !rex
->getType()->isScalarType())
7056 return InvalidOperands(Loc
, lex
, rex
);
7058 return Context
.IntTy
;
7061 // The following is safe because we only use this method for
7062 // non-overloadable operands.
7064 // C++ [expr.log.and]p1
7065 // C++ [expr.log.or]p1
7066 // The operands are both contextually converted to type bool.
7067 if (PerformContextuallyConvertToBool(lex
) ||
7068 PerformContextuallyConvertToBool(rex
))
7069 return InvalidOperands(Loc
, lex
, rex
);
7071 // C++ [expr.log.and]p2
7072 // C++ [expr.log.or]p2
7073 // The result is a bool.
7074 return Context
.BoolTy
;
7077 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7078 /// is a read-only property; return true if so. A readonly property expression
7079 /// depends on various declarations and thus must be treated specially.
7081 static bool IsReadonlyProperty(Expr
*E
, Sema
&S
) {
7082 if (E
->getStmtClass() == Expr::ObjCPropertyRefExprClass
) {
7083 const ObjCPropertyRefExpr
* PropExpr
= cast
<ObjCPropertyRefExpr
>(E
);
7084 if (PropExpr
->isImplicitProperty()) return false;
7086 ObjCPropertyDecl
*PDecl
= PropExpr
->getExplicitProperty();
7087 QualType BaseType
= PropExpr
->isSuperReceiver() ?
7088 PropExpr
->getSuperReceiverType() :
7089 PropExpr
->getBase()->getType();
7091 if (const ObjCObjectPointerType
*OPT
=
7092 BaseType
->getAsObjCInterfacePointerType())
7093 if (ObjCInterfaceDecl
*IFace
= OPT
->getInterfaceDecl())
7094 if (S
.isPropertyReadonly(PDecl
, IFace
))
7100 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
7101 /// emit an error and return true. If so, return false.
7102 static bool CheckForModifiableLvalue(Expr
*E
, SourceLocation Loc
, Sema
&S
) {
7103 SourceLocation OrigLoc
= Loc
;
7104 Expr::isModifiableLvalueResult IsLV
= E
->isModifiableLvalue(S
.Context
,
7106 if (IsLV
== Expr::MLV_Valid
&& IsReadonlyProperty(E
, S
))
7107 IsLV
= Expr::MLV_ReadonlyProperty
;
7108 if (IsLV
== Expr::MLV_Valid
)
7112 bool NeedType
= false;
7113 switch (IsLV
) { // C99 6.5.16p2
7114 case Expr::MLV_ConstQualified
: Diag
= diag::err_typecheck_assign_const
; break;
7115 case Expr::MLV_ArrayType
:
7116 Diag
= diag::err_typecheck_array_not_modifiable_lvalue
;
7119 case Expr::MLV_NotObjectType
:
7120 Diag
= diag::err_typecheck_non_object_not_modifiable_lvalue
;
7123 case Expr::MLV_LValueCast
:
7124 Diag
= diag::err_typecheck_lvalue_casts_not_supported
;
7126 case Expr::MLV_Valid
:
7127 llvm_unreachable("did not take early return for MLV_Valid");
7128 case Expr::MLV_InvalidExpression
:
7129 case Expr::MLV_MemberFunction
:
7130 case Expr::MLV_ClassTemporary
:
7131 Diag
= diag::err_typecheck_expression_not_modifiable_lvalue
;
7133 case Expr::MLV_IncompleteType
:
7134 case Expr::MLV_IncompleteVoidType
:
7135 return S
.RequireCompleteType(Loc
, E
->getType(),
7136 S
.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue
)
7137 << E
->getSourceRange());
7138 case Expr::MLV_DuplicateVectorComponents
:
7139 Diag
= diag::err_typecheck_duplicate_vector_components_not_mlvalue
;
7141 case Expr::MLV_NotBlockQualified
:
7142 Diag
= diag::err_block_decl_ref_not_modifiable_lvalue
;
7144 case Expr::MLV_ReadonlyProperty
:
7145 Diag
= diag::error_readonly_property_assignment
;
7147 case Expr::MLV_NoSetterProperty
:
7148 Diag
= diag::error_nosetter_property_assignment
;
7150 case Expr::MLV_SubObjCPropertySetting
:
7151 Diag
= diag::error_no_subobject_property_setting
;
7157 Assign
= SourceRange(OrigLoc
, OrigLoc
);
7159 S
.Diag(Loc
, Diag
) << E
->getType() << E
->getSourceRange() << Assign
;
7161 S
.Diag(Loc
, Diag
) << E
->getSourceRange() << Assign
;
7168 QualType
Sema::CheckAssignmentOperands(Expr
*LHS
, Expr
*&RHS
,
7170 QualType CompoundType
) {
7171 // Verify that LHS is a modifiable lvalue, and emit error if not.
7172 if (CheckForModifiableLvalue(LHS
, Loc
, *this))
7175 QualType LHSType
= LHS
->getType();
7176 QualType RHSType
= CompoundType
.isNull() ? RHS
->getType() : CompoundType
;
7177 AssignConvertType ConvTy
;
7178 if (CompoundType
.isNull()) {
7179 QualType
LHSTy(LHSType
);
7180 // Simple assignment "x = y".
7181 if (LHS
->getObjectKind() == OK_ObjCProperty
)
7182 ConvertPropertyForLValue(LHS
, RHS
, LHSTy
);
7183 ConvTy
= CheckSingleAssignmentConstraints(LHSTy
, RHS
);
7184 // Special case of NSObject attributes on c-style pointer types.
7185 if (ConvTy
== IncompatiblePointer
&&
7186 ((Context
.isObjCNSObjectType(LHSType
) &&
7187 RHSType
->isObjCObjectPointerType()) ||
7188 (Context
.isObjCNSObjectType(RHSType
) &&
7189 LHSType
->isObjCObjectPointerType())))
7190 ConvTy
= Compatible
;
7192 if (ConvTy
== Compatible
&&
7193 getLangOptions().ObjCNonFragileABI
&&
7194 LHSType
->isObjCObjectType())
7195 Diag(Loc
, diag::err_assignment_requires_nonfragile_object
)
7198 // If the RHS is a unary plus or minus, check to see if they = and + are
7199 // right next to each other. If so, the user may have typo'd "x =+ 4"
7200 // instead of "x += 4".
7201 Expr
*RHSCheck
= RHS
;
7202 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(RHSCheck
))
7203 RHSCheck
= ICE
->getSubExpr();
7204 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(RHSCheck
)) {
7205 if ((UO
->getOpcode() == UO_Plus
||
7206 UO
->getOpcode() == UO_Minus
) &&
7207 Loc
.isFileID() && UO
->getOperatorLoc().isFileID() &&
7208 // Only if the two operators are exactly adjacent.
7209 Loc
.getFileLocWithOffset(1) == UO
->getOperatorLoc() &&
7210 // And there is a space or other character before the subexpr of the
7211 // unary +/-. We don't want to warn on "x=-1".
7212 Loc
.getFileLocWithOffset(2) != UO
->getSubExpr()->getLocStart() &&
7213 UO
->getSubExpr()->getLocStart().isFileID()) {
7214 Diag(Loc
, diag::warn_not_compound_assign
)
7215 << (UO
->getOpcode() == UO_Plus
? "+" : "-")
7216 << SourceRange(UO
->getOperatorLoc(), UO
->getOperatorLoc());
7220 // Compound assignment "x += y"
7221 ConvTy
= CheckAssignmentConstraints(Loc
, LHSType
, RHSType
);
7224 if (DiagnoseAssignmentResult(ConvTy
, Loc
, LHSType
, RHSType
,
7229 // Check to see if the destination operand is a dereferenced null pointer. If
7230 // so, and if not volatile-qualified, this is undefined behavior that the
7231 // optimizer will delete, so warn about it. People sometimes try to use this
7232 // to get a deterministic trap and are surprised by clang's behavior. This
7233 // only handles the pattern "*null = whatever", which is a very syntactic
7235 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(LHS
->IgnoreParenCasts()))
7236 if (UO
->getOpcode() == UO_Deref
&&
7237 UO
->getSubExpr()->IgnoreParenCasts()->
7238 isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNotNull
) &&
7239 !UO
->getType().isVolatileQualified()) {
7240 Diag(UO
->getOperatorLoc(), diag::warn_indirection_through_null
)
7241 << UO
->getSubExpr()->getSourceRange();
7242 Diag(UO
->getOperatorLoc(), diag::note_indirection_through_null
);
7245 // C99 6.5.16p3: The type of an assignment expression is the type of the
7246 // left operand unless the left operand has qualified type, in which case
7247 // it is the unqualified version of the type of the left operand.
7248 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7249 // is converted to the type of the assignment expression (above).
7250 // C++ 5.17p1: the type of the assignment expression is that of its left
7252 return (getLangOptions().CPlusPlus
7253 ? LHSType
: LHSType
.getUnqualifiedType());
7257 static QualType
CheckCommaOperands(Sema
&S
, Expr
*&LHS
, Expr
*&RHS
,
7258 SourceLocation Loc
) {
7259 S
.DiagnoseUnusedExprResult(LHS
);
7261 ExprResult LHSResult
= S
.CheckPlaceholderExpr(LHS
, Loc
);
7262 if (LHSResult
.isInvalid())
7265 ExprResult RHSResult
= S
.CheckPlaceholderExpr(RHS
, Loc
);
7266 if (RHSResult
.isInvalid())
7268 RHS
= RHSResult
.take();
7270 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7271 // operands, but not unary promotions.
7272 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7274 // So we treat the LHS as a ignored value, and in C++ we allow the
7275 // containing site to determine what should be done with the RHS.
7276 S
.IgnoredValueConversions(LHS
);
7278 if (!S
.getLangOptions().CPlusPlus
) {
7279 S
.DefaultFunctionArrayLvalueConversion(RHS
);
7280 if (!RHS
->getType()->isVoidType())
7281 S
.RequireCompleteType(Loc
, RHS
->getType(), diag::err_incomplete_type
);
7284 return RHS
->getType();
7287 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7288 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7289 static QualType
CheckIncrementDecrementOperand(Sema
&S
, Expr
*Op
,
7291 SourceLocation OpLoc
,
7292 bool isInc
, bool isPrefix
) {
7293 if (Op
->isTypeDependent())
7294 return S
.Context
.DependentTy
;
7296 QualType ResType
= Op
->getType();
7297 assert(!ResType
.isNull() && "no type for increment/decrement expression");
7299 if (S
.getLangOptions().CPlusPlus
&& ResType
->isBooleanType()) {
7300 // Decrement of bool is not allowed.
7302 S
.Diag(OpLoc
, diag::err_decrement_bool
) << Op
->getSourceRange();
7305 // Increment of bool sets it to true, but is deprecated.
7306 S
.Diag(OpLoc
, diag::warn_increment_bool
) << Op
->getSourceRange();
7307 } else if (ResType
->isRealType()) {
7309 } else if (ResType
->isAnyPointerType()) {
7310 QualType PointeeTy
= ResType
->getPointeeType();
7312 // C99 6.5.2.4p2, 6.5.6p2
7313 if (PointeeTy
->isVoidType()) {
7314 if (S
.getLangOptions().CPlusPlus
) {
7315 S
.Diag(OpLoc
, diag::err_typecheck_pointer_arith_void_type
)
7316 << Op
->getSourceRange();
7320 // Pointer to void is a GNU extension in C.
7321 S
.Diag(OpLoc
, diag::ext_gnu_void_ptr
) << Op
->getSourceRange();
7322 } else if (PointeeTy
->isFunctionType()) {
7323 if (S
.getLangOptions().CPlusPlus
) {
7324 S
.Diag(OpLoc
, diag::err_typecheck_pointer_arith_function_type
)
7325 << Op
->getType() << Op
->getSourceRange();
7329 S
.Diag(OpLoc
, diag::ext_gnu_ptr_func_arith
)
7330 << ResType
<< Op
->getSourceRange();
7331 } else if (S
.RequireCompleteType(OpLoc
, PointeeTy
,
7332 S
.PDiag(diag::err_typecheck_arithmetic_incomplete_type
)
7333 << Op
->getSourceRange()
7336 // Diagnose bad cases where we step over interface counts.
7337 else if (PointeeTy
->isObjCObjectType() && S
.LangOpts
.ObjCNonFragileABI
) {
7338 S
.Diag(OpLoc
, diag::err_arithmetic_nonfragile_interface
)
7339 << PointeeTy
<< Op
->getSourceRange();
7342 } else if (ResType
->isAnyComplexType()) {
7343 // C99 does not support ++/-- on complex types, we allow as an extension.
7344 S
.Diag(OpLoc
, diag::ext_integer_increment_complex
)
7345 << ResType
<< Op
->getSourceRange();
7346 } else if (ResType
->isPlaceholderType()) {
7347 ExprResult PR
= S
.CheckPlaceholderExpr(Op
, OpLoc
);
7348 if (PR
.isInvalid()) return QualType();
7349 return CheckIncrementDecrementOperand(S
, PR
.take(), VK
, OpLoc
,
7351 } else if (S
.getLangOptions().AltiVec
&& ResType
->isVectorType()) {
7352 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7354 S
.Diag(OpLoc
, diag::err_typecheck_illegal_increment_decrement
)
7355 << ResType
<< int(isInc
) << Op
->getSourceRange();
7358 // At this point, we know we have a real, complex or pointer type.
7359 // Now make sure the operand is a modifiable lvalue.
7360 if (CheckForModifiableLvalue(Op
, OpLoc
, S
))
7362 // In C++, a prefix increment is the same type as the operand. Otherwise
7363 // (in C or with postfix), the increment is the unqualified type of the
7365 if (isPrefix
&& S
.getLangOptions().CPlusPlus
) {
7370 return ResType
.getUnqualifiedType();
7374 void Sema::ConvertPropertyForRValue(Expr
*&E
) {
7375 assert(E
->getValueKind() == VK_LValue
&&
7376 E
->getObjectKind() == OK_ObjCProperty
);
7377 const ObjCPropertyRefExpr
*PRE
= E
->getObjCProperty();
7379 ExprValueKind VK
= VK_RValue
;
7380 if (PRE
->isImplicitProperty()) {
7381 if (const ObjCMethodDecl
*GetterMethod
=
7382 PRE
->getImplicitPropertyGetter()) {
7383 QualType Result
= GetterMethod
->getResultType();
7384 VK
= Expr::getValueKindForType(Result
);
7387 Diag(PRE
->getLocation(), diag::err_getter_not_found
)
7388 << PRE
->getBase()->getType();
7392 E
= ImplicitCastExpr::Create(Context
, E
->getType(), CK_GetObjCProperty
,
7395 ExprResult Result
= MaybeBindToTemporary(E
);
7396 if (!Result
.isInvalid())
7400 void Sema::ConvertPropertyForLValue(Expr
*&LHS
, Expr
*&RHS
, QualType
&LHSTy
) {
7401 assert(LHS
->getValueKind() == VK_LValue
&&
7402 LHS
->getObjectKind() == OK_ObjCProperty
);
7403 const ObjCPropertyRefExpr
*PRE
= LHS
->getObjCProperty();
7405 if (PRE
->isImplicitProperty()) {
7406 // If using property-dot syntax notation for assignment, and there is a
7407 // setter, RHS expression is being passed to the setter argument. So,
7408 // type conversion (and comparison) is RHS to setter's argument type.
7409 if (const ObjCMethodDecl
*SetterMD
= PRE
->getImplicitPropertySetter()) {
7410 ObjCMethodDecl::param_iterator P
= SetterMD
->param_begin();
7411 LHSTy
= (*P
)->getType();
7413 // Otherwise, if the getter returns an l-value, just call that.
7415 QualType Result
= PRE
->getImplicitPropertyGetter()->getResultType();
7416 ExprValueKind VK
= Expr::getValueKindForType(Result
);
7417 if (VK
== VK_LValue
) {
7418 LHS
= ImplicitCastExpr::Create(Context
, LHS
->getType(),
7419 CK_GetObjCProperty
, LHS
, 0, VK
);
7425 if (getLangOptions().CPlusPlus
&& LHSTy
->isRecordType()) {
7426 InitializedEntity Entity
=
7427 InitializedEntity::InitializeParameter(Context
, LHSTy
);
7429 ExprResult ArgE
= PerformCopyInitialization(Entity
, SourceLocation(),
7431 if (!ArgE
.isInvalid())
7432 RHS
= ArgE
.takeAs
<Expr
>();
7437 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7438 /// This routine allows us to typecheck complex/recursive expressions
7439 /// where the declaration is needed for type checking. We only need to
7440 /// handle cases when the expression references a function designator
7441 /// or is an lvalue. Here are some examples:
7443 /// - &*****f => f for f a function designator.
7445 /// - &s.zz[1].yy -> s, if zz is an array
7446 /// - *(x + 1) -> x, if x is an array
7447 /// - &"123"[2] -> 0
7448 /// - & __real__ x -> x
7449 static ValueDecl
*getPrimaryDecl(Expr
*E
) {
7450 switch (E
->getStmtClass()) {
7451 case Stmt::DeclRefExprClass
:
7452 return cast
<DeclRefExpr
>(E
)->getDecl();
7453 case Stmt::MemberExprClass
:
7454 // If this is an arrow operator, the address is an offset from
7455 // the base's value, so the object the base refers to is
7457 if (cast
<MemberExpr
>(E
)->isArrow())
7459 // Otherwise, the expression refers to a part of the base
7460 return getPrimaryDecl(cast
<MemberExpr
>(E
)->getBase());
7461 case Stmt::ArraySubscriptExprClass
: {
7462 // FIXME: This code shouldn't be necessary! We should catch the implicit
7463 // promotion of register arrays earlier.
7464 Expr
* Base
= cast
<ArraySubscriptExpr
>(E
)->getBase();
7465 if (ImplicitCastExpr
* ICE
= dyn_cast
<ImplicitCastExpr
>(Base
)) {
7466 if (ICE
->getSubExpr()->getType()->isArrayType())
7467 return getPrimaryDecl(ICE
->getSubExpr());
7471 case Stmt::UnaryOperatorClass
: {
7472 UnaryOperator
*UO
= cast
<UnaryOperator
>(E
);
7474 switch(UO
->getOpcode()) {
7478 return getPrimaryDecl(UO
->getSubExpr());
7483 case Stmt::ParenExprClass
:
7484 return getPrimaryDecl(cast
<ParenExpr
>(E
)->getSubExpr());
7485 case Stmt::ImplicitCastExprClass
:
7486 // If the result of an implicit cast is an l-value, we care about
7487 // the sub-expression; otherwise, the result here doesn't matter.
7488 return getPrimaryDecl(cast
<ImplicitCastExpr
>(E
)->getSubExpr());
7494 /// CheckAddressOfOperand - The operand of & must be either a function
7495 /// designator or an lvalue designating an object. If it is an lvalue, the
7496 /// object cannot be declared with storage class register or be a bit field.
7497 /// Note: The usual conversions are *not* applied to the operand of the &
7498 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7499 /// In C++, the operand might be an overloaded function name, in which case
7500 /// we allow the '&' but retain the overloaded-function type.
7501 static QualType
CheckAddressOfOperand(Sema
&S
, Expr
*OrigOp
,
7502 SourceLocation OpLoc
) {
7503 if (OrigOp
->isTypeDependent())
7504 return S
.Context
.DependentTy
;
7505 if (OrigOp
->getType() == S
.Context
.OverloadTy
)
7506 return S
.Context
.OverloadTy
;
7508 ExprResult PR
= S
.CheckPlaceholderExpr(OrigOp
, OpLoc
);
7509 if (PR
.isInvalid()) return QualType();
7512 // Make sure to ignore parentheses in subsequent checks
7513 Expr
*op
= OrigOp
->IgnoreParens();
7515 if (S
.getLangOptions().C99
) {
7516 // Implement C99-only parts of addressof rules.
7517 if (UnaryOperator
* uOp
= dyn_cast
<UnaryOperator
>(op
)) {
7518 if (uOp
->getOpcode() == UO_Deref
)
7519 // Per C99 6.5.3.2, the address of a deref always returns a valid result
7520 // (assuming the deref expression is valid).
7521 return uOp
->getSubExpr()->getType();
7523 // Technically, there should be a check for array subscript
7524 // expressions here, but the result of one is always an lvalue anyway.
7526 ValueDecl
*dcl
= getPrimaryDecl(op
);
7527 Expr::LValueClassification lval
= op
->ClassifyLValue(S
.Context
);
7529 if (lval
== Expr::LV_ClassTemporary
) {
7530 bool sfinae
= S
.isSFINAEContext();
7531 S
.Diag(OpLoc
, sfinae
? diag::err_typecheck_addrof_class_temporary
7532 : diag::ext_typecheck_addrof_class_temporary
)
7533 << op
->getType() << op
->getSourceRange();
7536 } else if (isa
<ObjCSelectorExpr
>(op
)) {
7537 return S
.Context
.getPointerType(op
->getType());
7538 } else if (lval
== Expr::LV_MemberFunction
) {
7539 // If it's an instance method, make a member pointer.
7540 // The expression must have exactly the form &A::foo.
7542 // If the underlying expression isn't a decl ref, give up.
7543 if (!isa
<DeclRefExpr
>(op
)) {
7544 S
.Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
7545 << OrigOp
->getSourceRange();
7548 DeclRefExpr
*DRE
= cast
<DeclRefExpr
>(op
);
7549 CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(DRE
->getDecl());
7551 // The id-expression was parenthesized.
7552 if (OrigOp
!= DRE
) {
7553 S
.Diag(OpLoc
, diag::err_parens_pointer_member_function
)
7554 << OrigOp
->getSourceRange();
7556 // The method was named without a qualifier.
7557 } else if (!DRE
->getQualifier()) {
7558 S
.Diag(OpLoc
, diag::err_unqualified_pointer_member_function
)
7559 << op
->getSourceRange();
7562 return S
.Context
.getMemberPointerType(op
->getType(),
7563 S
.Context
.getTypeDeclType(MD
->getParent()).getTypePtr());
7564 } else if (lval
!= Expr::LV_Valid
&& lval
!= Expr::LV_IncompleteVoidType
) {
7566 // The operand must be either an l-value or a function designator
7567 if (!op
->getType()->isFunctionType()) {
7568 // FIXME: emit more specific diag...
7569 S
.Diag(OpLoc
, diag::err_typecheck_invalid_lvalue_addrof
)
7570 << op
->getSourceRange();
7573 } else if (op
->getObjectKind() == OK_BitField
) { // C99 6.5.3.2p1
7574 // The operand cannot be a bit-field
7575 S
.Diag(OpLoc
, diag::err_typecheck_address_of
)
7576 << "bit-field" << op
->getSourceRange();
7578 } else if (op
->getObjectKind() == OK_VectorComponent
) {
7579 // The operand cannot be an element of a vector
7580 S
.Diag(OpLoc
, diag::err_typecheck_address_of
)
7581 << "vector element" << op
->getSourceRange();
7583 } else if (op
->getObjectKind() == OK_ObjCProperty
) {
7584 // cannot take address of a property expression.
7585 S
.Diag(OpLoc
, diag::err_typecheck_address_of
)
7586 << "property expression" << op
->getSourceRange();
7588 } else if (dcl
) { // C99 6.5.3.2p1
7589 // We have an lvalue with a decl. Make sure the decl is not declared
7590 // with the register storage-class specifier.
7591 if (const VarDecl
*vd
= dyn_cast
<VarDecl
>(dcl
)) {
7592 // in C++ it is not error to take address of a register
7593 // variable (c++03 7.1.1P3)
7594 if (vd
->getStorageClass() == SC_Register
&&
7595 !S
.getLangOptions().CPlusPlus
) {
7596 S
.Diag(OpLoc
, diag::err_typecheck_address_of
)
7597 << "register variable" << op
->getSourceRange();
7600 } else if (isa
<FunctionTemplateDecl
>(dcl
)) {
7601 return S
.Context
.OverloadTy
;
7602 } else if (isa
<FieldDecl
>(dcl
) || isa
<IndirectFieldDecl
>(dcl
)) {
7603 // Okay: we can take the address of a field.
7604 // Could be a pointer to member, though, if there is an explicit
7605 // scope qualifier for the class.
7606 if (isa
<DeclRefExpr
>(op
) && cast
<DeclRefExpr
>(op
)->getQualifier()) {
7607 DeclContext
*Ctx
= dcl
->getDeclContext();
7608 if (Ctx
&& Ctx
->isRecord()) {
7609 if (dcl
->getType()->isReferenceType()) {
7611 diag::err_cannot_form_pointer_to_member_of_reference_type
)
7612 << dcl
->getDeclName() << dcl
->getType();
7616 while (cast
<RecordDecl
>(Ctx
)->isAnonymousStructOrUnion())
7617 Ctx
= Ctx
->getParent();
7618 return S
.Context
.getMemberPointerType(op
->getType(),
7619 S
.Context
.getTypeDeclType(cast
<RecordDecl
>(Ctx
)).getTypePtr());
7622 } else if (!isa
<FunctionDecl
>(dcl
))
7623 assert(0 && "Unknown/unexpected decl type");
7626 if (lval
== Expr::LV_IncompleteVoidType
) {
7627 // Taking the address of a void variable is technically illegal, but we
7628 // allow it in cases which are otherwise valid.
7629 // Example: "extern void x; void* y = &x;".
7630 S
.Diag(OpLoc
, diag::ext_typecheck_addrof_void
) << op
->getSourceRange();
7633 // If the operand has type "type", the result has type "pointer to type".
7634 if (op
->getType()->isObjCObjectType())
7635 return S
.Context
.getObjCObjectPointerType(op
->getType());
7636 return S
.Context
.getPointerType(op
->getType());
7639 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7640 static QualType
CheckIndirectionOperand(Sema
&S
, Expr
*Op
, ExprValueKind
&VK
,
7641 SourceLocation OpLoc
) {
7642 if (Op
->isTypeDependent())
7643 return S
.Context
.DependentTy
;
7645 S
.UsualUnaryConversions(Op
);
7646 QualType OpTy
= Op
->getType();
7649 // Note that per both C89 and C99, indirection is always legal, even if OpTy
7650 // is an incomplete type or void. It would be possible to warn about
7651 // dereferencing a void pointer, but it's completely well-defined, and such a
7652 // warning is unlikely to catch any mistakes.
7653 if (const PointerType
*PT
= OpTy
->getAs
<PointerType
>())
7654 Result
= PT
->getPointeeType();
7655 else if (const ObjCObjectPointerType
*OPT
=
7656 OpTy
->getAs
<ObjCObjectPointerType
>())
7657 Result
= OPT
->getPointeeType();
7659 ExprResult PR
= S
.CheckPlaceholderExpr(Op
, OpLoc
);
7660 if (PR
.isInvalid()) return QualType();
7661 if (PR
.take() != Op
)
7662 return CheckIndirectionOperand(S
, PR
.take(), VK
, OpLoc
);
7665 if (Result
.isNull()) {
7666 S
.Diag(OpLoc
, diag::err_typecheck_indirection_requires_pointer
)
7667 << OpTy
<< Op
->getSourceRange();
7671 // Dereferences are usually l-values...
7674 // ...except that certain expressions are never l-values in C.
7675 if (!S
.getLangOptions().CPlusPlus
&&
7676 IsCForbiddenLValueType(S
.Context
, Result
))
7682 static inline BinaryOperatorKind
ConvertTokenKindToBinaryOpcode(
7683 tok::TokenKind Kind
) {
7684 BinaryOperatorKind Opc
;
7686 default: assert(0 && "Unknown binop!");
7687 case tok::periodstar
: Opc
= BO_PtrMemD
; break;
7688 case tok::arrowstar
: Opc
= BO_PtrMemI
; break;
7689 case tok::star
: Opc
= BO_Mul
; break;
7690 case tok::slash
: Opc
= BO_Div
; break;
7691 case tok::percent
: Opc
= BO_Rem
; break;
7692 case tok::plus
: Opc
= BO_Add
; break;
7693 case tok::minus
: Opc
= BO_Sub
; break;
7694 case tok::lessless
: Opc
= BO_Shl
; break;
7695 case tok::greatergreater
: Opc
= BO_Shr
; break;
7696 case tok::lessequal
: Opc
= BO_LE
; break;
7697 case tok::less
: Opc
= BO_LT
; break;
7698 case tok::greaterequal
: Opc
= BO_GE
; break;
7699 case tok::greater
: Opc
= BO_GT
; break;
7700 case tok::exclaimequal
: Opc
= BO_NE
; break;
7701 case tok::equalequal
: Opc
= BO_EQ
; break;
7702 case tok::amp
: Opc
= BO_And
; break;
7703 case tok::caret
: Opc
= BO_Xor
; break;
7704 case tok::pipe
: Opc
= BO_Or
; break;
7705 case tok::ampamp
: Opc
= BO_LAnd
; break;
7706 case tok::pipepipe
: Opc
= BO_LOr
; break;
7707 case tok::equal
: Opc
= BO_Assign
; break;
7708 case tok::starequal
: Opc
= BO_MulAssign
; break;
7709 case tok::slashequal
: Opc
= BO_DivAssign
; break;
7710 case tok::percentequal
: Opc
= BO_RemAssign
; break;
7711 case tok::plusequal
: Opc
= BO_AddAssign
; break;
7712 case tok::minusequal
: Opc
= BO_SubAssign
; break;
7713 case tok::lesslessequal
: Opc
= BO_ShlAssign
; break;
7714 case tok::greatergreaterequal
: Opc
= BO_ShrAssign
; break;
7715 case tok::ampequal
: Opc
= BO_AndAssign
; break;
7716 case tok::caretequal
: Opc
= BO_XorAssign
; break;
7717 case tok::pipeequal
: Opc
= BO_OrAssign
; break;
7718 case tok::comma
: Opc
= BO_Comma
; break;
7723 static inline UnaryOperatorKind
ConvertTokenKindToUnaryOpcode(
7724 tok::TokenKind Kind
) {
7725 UnaryOperatorKind Opc
;
7727 default: assert(0 && "Unknown unary op!");
7728 case tok::plusplus
: Opc
= UO_PreInc
; break;
7729 case tok::minusminus
: Opc
= UO_PreDec
; break;
7730 case tok::amp
: Opc
= UO_AddrOf
; break;
7731 case tok::star
: Opc
= UO_Deref
; break;
7732 case tok::plus
: Opc
= UO_Plus
; break;
7733 case tok::minus
: Opc
= UO_Minus
; break;
7734 case tok::tilde
: Opc
= UO_Not
; break;
7735 case tok::exclaim
: Opc
= UO_LNot
; break;
7736 case tok::kw___real
: Opc
= UO_Real
; break;
7737 case tok::kw___imag
: Opc
= UO_Imag
; break;
7738 case tok::kw___extension__
: Opc
= UO_Extension
; break;
7743 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7744 /// This warning is only emitted for builtin assignment operations. It is also
7745 /// suppressed in the event of macro expansions.
7746 static void DiagnoseSelfAssignment(Sema
&S
, Expr
*lhs
, Expr
*rhs
,
7747 SourceLocation OpLoc
) {
7748 if (!S
.ActiveTemplateInstantiations
.empty())
7750 if (OpLoc
.isInvalid() || OpLoc
.isMacroID())
7752 lhs
= lhs
->IgnoreParenImpCasts();
7753 rhs
= rhs
->IgnoreParenImpCasts();
7754 const DeclRefExpr
*LeftDeclRef
= dyn_cast
<DeclRefExpr
>(lhs
);
7755 const DeclRefExpr
*RightDeclRef
= dyn_cast
<DeclRefExpr
>(rhs
);
7756 if (!LeftDeclRef
|| !RightDeclRef
||
7757 LeftDeclRef
->getLocation().isMacroID() ||
7758 RightDeclRef
->getLocation().isMacroID())
7760 const ValueDecl
*LeftDecl
=
7761 cast
<ValueDecl
>(LeftDeclRef
->getDecl()->getCanonicalDecl());
7762 const ValueDecl
*RightDecl
=
7763 cast
<ValueDecl
>(RightDeclRef
->getDecl()->getCanonicalDecl());
7764 if (LeftDecl
!= RightDecl
)
7766 if (LeftDecl
->getType().isVolatileQualified())
7768 if (const ReferenceType
*RefTy
= LeftDecl
->getType()->getAs
<ReferenceType
>())
7769 if (RefTy
->getPointeeType().isVolatileQualified())
7772 S
.Diag(OpLoc
, diag::warn_self_assignment
)
7773 << LeftDeclRef
->getType()
7774 << lhs
->getSourceRange() << rhs
->getSourceRange();
7777 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
7778 /// operator @p Opc at location @c TokLoc. This routine only supports
7779 /// built-in operations; ActOnBinOp handles overloaded operators.
7780 ExprResult
Sema::CreateBuiltinBinOp(SourceLocation OpLoc
,
7781 BinaryOperatorKind Opc
,
7782 Expr
*lhs
, Expr
*rhs
) {
7783 QualType ResultTy
; // Result type of the binary operator.
7784 // The following two variables are used for compound assignment operators
7785 QualType CompLHSTy
; // Type of LHS after promotions for computation
7786 QualType CompResultTy
; // Type of computation result
7787 ExprValueKind VK
= VK_RValue
;
7788 ExprObjectKind OK
= OK_Ordinary
;
7792 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, QualType());
7793 if (getLangOptions().CPlusPlus
&&
7794 lhs
->getObjectKind() != OK_ObjCProperty
) {
7795 VK
= lhs
->getValueKind();
7796 OK
= lhs
->getObjectKind();
7798 if (!ResultTy
.isNull())
7799 DiagnoseSelfAssignment(*this, lhs
, rhs
, OpLoc
);
7803 ResultTy
= CheckPointerToMemberOperands(lhs
, rhs
, VK
, OpLoc
,
7808 ResultTy
= CheckMultiplyDivideOperands(lhs
, rhs
, OpLoc
, false,
7812 ResultTy
= CheckRemainderOperands(lhs
, rhs
, OpLoc
);
7815 ResultTy
= CheckAdditionOperands(lhs
, rhs
, OpLoc
);
7818 ResultTy
= CheckSubtractionOperands(lhs
, rhs
, OpLoc
);
7822 ResultTy
= CheckShiftOperands(lhs
, rhs
, OpLoc
);
7828 ResultTy
= CheckCompareOperands(lhs
, rhs
, OpLoc
, Opc
, true);
7832 ResultTy
= CheckCompareOperands(lhs
, rhs
, OpLoc
, Opc
, false);
7837 ResultTy
= CheckBitwiseOperands(lhs
, rhs
, OpLoc
);
7841 ResultTy
= CheckLogicalOperands(lhs
, rhs
, OpLoc
, Opc
);
7845 CompResultTy
= CheckMultiplyDivideOperands(lhs
, rhs
, OpLoc
, true,
7846 Opc
== BO_DivAssign
);
7847 CompLHSTy
= CompResultTy
;
7848 if (!CompResultTy
.isNull())
7849 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7852 CompResultTy
= CheckRemainderOperands(lhs
, rhs
, OpLoc
, true);
7853 CompLHSTy
= CompResultTy
;
7854 if (!CompResultTy
.isNull())
7855 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7858 CompResultTy
= CheckAdditionOperands(lhs
, rhs
, OpLoc
, &CompLHSTy
);
7859 if (!CompResultTy
.isNull())
7860 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7863 CompResultTy
= CheckSubtractionOperands(lhs
, rhs
, OpLoc
, &CompLHSTy
);
7864 if (!CompResultTy
.isNull())
7865 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7869 CompResultTy
= CheckShiftOperands(lhs
, rhs
, OpLoc
, true);
7870 CompLHSTy
= CompResultTy
;
7871 if (!CompResultTy
.isNull())
7872 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7877 CompResultTy
= CheckBitwiseOperands(lhs
, rhs
, OpLoc
, true);
7878 CompLHSTy
= CompResultTy
;
7879 if (!CompResultTy
.isNull())
7880 ResultTy
= CheckAssignmentOperands(lhs
, rhs
, OpLoc
, CompResultTy
);
7883 ResultTy
= CheckCommaOperands(*this, lhs
, rhs
, OpLoc
);
7884 if (getLangOptions().CPlusPlus
) {
7885 VK
= rhs
->getValueKind();
7886 OK
= rhs
->getObjectKind();
7890 if (ResultTy
.isNull())
7892 if (CompResultTy
.isNull())
7893 return Owned(new (Context
) BinaryOperator(lhs
, rhs
, Opc
, ResultTy
,
7896 if (getLangOptions().CPlusPlus
&& lhs
->getObjectKind() != OK_ObjCProperty
) {
7898 OK
= lhs
->getObjectKind();
7900 return Owned(new (Context
) CompoundAssignOperator(lhs
, rhs
, Opc
, ResultTy
,
7902 CompResultTy
, OpLoc
));
7905 /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
7906 /// ParenRange in parentheses.
7907 static void SuggestParentheses(Sema
&Self
, SourceLocation Loc
,
7908 const PartialDiagnostic
&PD
,
7909 const PartialDiagnostic
&FirstNote
,
7910 SourceRange FirstParenRange
,
7911 const PartialDiagnostic
&SecondNote
,
7912 SourceRange SecondParenRange
) {
7915 if (!FirstNote
.getDiagID())
7918 SourceLocation EndLoc
= Self
.PP
.getLocForEndOfToken(FirstParenRange
.getEnd());
7919 if (!FirstParenRange
.getEnd().isFileID() || EndLoc
.isInvalid()) {
7920 // We can't display the parentheses, so just return.
7924 Self
.Diag(Loc
, FirstNote
)
7925 << FixItHint::CreateInsertion(FirstParenRange
.getBegin(), "(")
7926 << FixItHint::CreateInsertion(EndLoc
, ")");
7928 if (!SecondNote
.getDiagID())
7931 EndLoc
= Self
.PP
.getLocForEndOfToken(SecondParenRange
.getEnd());
7932 if (!SecondParenRange
.getEnd().isFileID() || EndLoc
.isInvalid()) {
7933 // We can't display the parentheses, so just dig the
7934 // warning/error and return.
7935 Self
.Diag(Loc
, SecondNote
);
7939 Self
.Diag(Loc
, SecondNote
)
7940 << FixItHint::CreateInsertion(SecondParenRange
.getBegin(), "(")
7941 << FixItHint::CreateInsertion(EndLoc
, ")");
7944 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7945 /// operators are mixed in a way that suggests that the programmer forgot that
7946 /// comparison operators have higher precedence. The most typical example of
7947 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
7948 static void DiagnoseBitwisePrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
7949 SourceLocation OpLoc
,Expr
*lhs
,Expr
*rhs
){
7950 typedef BinaryOperator BinOp
;
7951 BinOp::Opcode lhsopc
= static_cast<BinOp::Opcode
>(-1),
7952 rhsopc
= static_cast<BinOp::Opcode
>(-1);
7953 if (BinOp
*BO
= dyn_cast
<BinOp
>(lhs
))
7954 lhsopc
= BO
->getOpcode();
7955 if (BinOp
*BO
= dyn_cast
<BinOp
>(rhs
))
7956 rhsopc
= BO
->getOpcode();
7958 // Subs are not binary operators.
7959 if (lhsopc
== -1 && rhsopc
== -1)
7962 // Bitwise operations are sometimes used as eager logical ops.
7963 // Don't diagnose this.
7964 if ((BinOp::isComparisonOp(lhsopc
) || BinOp::isBitwiseOp(lhsopc
)) &&
7965 (BinOp::isComparisonOp(rhsopc
) || BinOp::isBitwiseOp(rhsopc
)))
7968 if (BinOp::isComparisonOp(lhsopc
))
7969 SuggestParentheses(Self
, OpLoc
,
7970 Self
.PDiag(diag::warn_precedence_bitwise_rel
)
7971 << SourceRange(lhs
->getLocStart(), OpLoc
)
7972 << BinOp::getOpcodeStr(Opc
) << BinOp::getOpcodeStr(lhsopc
),
7973 Self
.PDiag(diag::note_precedence_bitwise_first
)
7974 << BinOp::getOpcodeStr(Opc
),
7975 SourceRange(cast
<BinOp
>(lhs
)->getRHS()->getLocStart(), rhs
->getLocEnd()),
7976 Self
.PDiag(diag::note_precedence_bitwise_silence
)
7977 << BinOp::getOpcodeStr(lhsopc
),
7978 lhs
->getSourceRange());
7979 else if (BinOp::isComparisonOp(rhsopc
))
7980 SuggestParentheses(Self
, OpLoc
,
7981 Self
.PDiag(diag::warn_precedence_bitwise_rel
)
7982 << SourceRange(OpLoc
, rhs
->getLocEnd())
7983 << BinOp::getOpcodeStr(Opc
) << BinOp::getOpcodeStr(rhsopc
),
7984 Self
.PDiag(diag::note_precedence_bitwise_first
)
7985 << BinOp::getOpcodeStr(Opc
),
7986 SourceRange(lhs
->getLocEnd(), cast
<BinOp
>(rhs
)->getLHS()->getLocStart()),
7987 Self
.PDiag(diag::note_precedence_bitwise_silence
)
7988 << BinOp::getOpcodeStr(rhsopc
),
7989 rhs
->getSourceRange());
7992 /// \brief It accepts a '&&' expr that is inside a '||' one.
7993 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7996 EmitDiagnosticForLogicalAndInLogicalOr(Sema
&Self
, SourceLocation OpLoc
,
7998 assert(isa
<BinaryOperator
>(E
) &&
7999 cast
<BinaryOperator
>(E
)->getOpcode() == BO_LAnd
);
8000 SuggestParentheses(Self
, OpLoc
,
8001 Self
.PDiag(diag::warn_logical_and_in_logical_or
)
8002 << E
->getSourceRange(),
8003 Self
.PDiag(diag::note_logical_and_in_logical_or_silence
),
8004 E
->getSourceRange(),
8005 Self
.PDiag(0), SourceRange());
8008 /// \brief Returns true if the given expression can be evaluated as a constant
8010 static bool EvaluatesAsTrue(Sema
&S
, Expr
*E
) {
8012 return E
->EvaluateAsBooleanCondition(Res
, S
.getASTContext()) && Res
;
8015 /// \brief Returns true if the given expression can be evaluated as a constant
8017 static bool EvaluatesAsFalse(Sema
&S
, Expr
*E
) {
8019 return E
->EvaluateAsBooleanCondition(Res
, S
.getASTContext()) && !Res
;
8022 /// \brief Look for '&&' in the left hand of a '||' expr.
8023 static void DiagnoseLogicalAndInLogicalOrLHS(Sema
&S
, SourceLocation OpLoc
,
8024 Expr
*OrLHS
, Expr
*OrRHS
) {
8025 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(OrLHS
)) {
8026 if (Bop
->getOpcode() == BO_LAnd
) {
8027 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8028 if (EvaluatesAsFalse(S
, OrRHS
))
8030 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8031 if (!EvaluatesAsTrue(S
, Bop
->getLHS()))
8032 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
8033 } else if (Bop
->getOpcode() == BO_LOr
) {
8034 if (BinaryOperator
*RBop
= dyn_cast
<BinaryOperator
>(Bop
->getRHS())) {
8035 // If it's "a || b && 1 || c" we didn't warn earlier for
8036 // "a || b && 1", but warn now.
8037 if (RBop
->getOpcode() == BO_LAnd
&& EvaluatesAsTrue(S
, RBop
->getRHS()))
8038 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, RBop
);
8044 /// \brief Look for '&&' in the right hand of a '||' expr.
8045 static void DiagnoseLogicalAndInLogicalOrRHS(Sema
&S
, SourceLocation OpLoc
,
8046 Expr
*OrLHS
, Expr
*OrRHS
) {
8047 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(OrRHS
)) {
8048 if (Bop
->getOpcode() == BO_LAnd
) {
8049 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8050 if (EvaluatesAsFalse(S
, OrLHS
))
8052 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8053 if (!EvaluatesAsTrue(S
, Bop
->getRHS()))
8054 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
8059 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8061 static void DiagnoseBinOpPrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
8062 SourceLocation OpLoc
, Expr
*lhs
, Expr
*rhs
){
8063 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8064 if (BinaryOperator::isBitwiseOp(Opc
))
8065 return DiagnoseBitwisePrecedence(Self
, Opc
, OpLoc
, lhs
, rhs
);
8067 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8068 // We don't warn for 'assert(a || b && "bad")' since this is safe.
8069 if (Opc
== BO_LOr
&& !OpLoc
.isMacroID()/* Don't warn in macros. */) {
8070 DiagnoseLogicalAndInLogicalOrLHS(Self
, OpLoc
, lhs
, rhs
);
8071 DiagnoseLogicalAndInLogicalOrRHS(Self
, OpLoc
, lhs
, rhs
);
8075 // Binary Operators. 'Tok' is the token for the operator.
8076 ExprResult
Sema::ActOnBinOp(Scope
*S
, SourceLocation TokLoc
,
8077 tok::TokenKind Kind
,
8078 Expr
*lhs
, Expr
*rhs
) {
8079 BinaryOperatorKind Opc
= ConvertTokenKindToBinaryOpcode(Kind
);
8080 assert((lhs
!= 0) && "ActOnBinOp(): missing left expression");
8081 assert((rhs
!= 0) && "ActOnBinOp(): missing right expression");
8083 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8084 DiagnoseBinOpPrecedence(*this, Opc
, TokLoc
, lhs
, rhs
);
8086 return BuildBinOp(S
, TokLoc
, Opc
, lhs
, rhs
);
8089 ExprResult
Sema::BuildBinOp(Scope
*S
, SourceLocation OpLoc
,
8090 BinaryOperatorKind Opc
,
8091 Expr
*lhs
, Expr
*rhs
) {
8092 if (getLangOptions().CPlusPlus
) {
8093 bool UseBuiltinOperator
;
8095 if (lhs
->isTypeDependent() || rhs
->isTypeDependent()) {
8096 UseBuiltinOperator
= false;
8097 } else if (Opc
== BO_Assign
&& lhs
->getObjectKind() == OK_ObjCProperty
) {
8098 UseBuiltinOperator
= true;
8100 UseBuiltinOperator
= !lhs
->getType()->isOverloadableType() &&
8101 !rhs
->getType()->isOverloadableType();
8104 if (!UseBuiltinOperator
) {
8105 // Find all of the overloaded operators visible from this
8106 // point. We perform both an operator-name lookup from the local
8107 // scope and an argument-dependent lookup based on the types of
8109 UnresolvedSet
<16> Functions
;
8110 OverloadedOperatorKind OverOp
8111 = BinaryOperator::getOverloadedOperator(Opc
);
8112 if (S
&& OverOp
!= OO_None
)
8113 LookupOverloadedOperatorName(OverOp
, S
, lhs
->getType(), rhs
->getType(),
8116 // Build the (potentially-overloaded, potentially-dependent)
8117 // binary operation.
8118 return CreateOverloadedBinOp(OpLoc
, Opc
, Functions
, lhs
, rhs
);
8122 // Build a built-in binary operation.
8123 return CreateBuiltinBinOp(OpLoc
, Opc
, lhs
, rhs
);
8126 ExprResult
Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc
,
8127 UnaryOperatorKind Opc
,
8129 ExprValueKind VK
= VK_RValue
;
8130 ExprObjectKind OK
= OK_Ordinary
;
8131 QualType resultType
;
8137 resultType
= CheckIncrementDecrementOperand(*this, Input
, VK
, OpLoc
,
8144 resultType
= CheckAddressOfOperand(*this, Input
, OpLoc
);
8147 DefaultFunctionArrayLvalueConversion(Input
);
8148 resultType
= CheckIndirectionOperand(*this, Input
, VK
, OpLoc
);
8152 UsualUnaryConversions(Input
);
8153 resultType
= Input
->getType();
8154 if (resultType
->isDependentType())
8156 if (resultType
->isArithmeticType() || // C99 6.5.3.3p1
8157 resultType
->isVectorType())
8159 else if (getLangOptions().CPlusPlus
&& // C++ [expr.unary.op]p6-7
8160 resultType
->isEnumeralType())
8162 else if (getLangOptions().CPlusPlus
&& // C++ [expr.unary.op]p6
8164 resultType
->isPointerType())
8166 else if (resultType
->isPlaceholderType()) {
8167 ExprResult PR
= CheckPlaceholderExpr(Input
, OpLoc
);
8168 if (PR
.isInvalid()) return ExprError();
8169 return CreateBuiltinUnaryOp(OpLoc
, Opc
, PR
.take());
8172 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
8173 << resultType
<< Input
->getSourceRange());
8174 case UO_Not
: // bitwise complement
8175 UsualUnaryConversions(Input
);
8176 resultType
= Input
->getType();
8177 if (resultType
->isDependentType())
8179 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8180 if (resultType
->isComplexType() || resultType
->isComplexIntegerType())
8181 // C99 does not support '~' for complex conjugation.
8182 Diag(OpLoc
, diag::ext_integer_complement_complex
)
8183 << resultType
<< Input
->getSourceRange();
8184 else if (resultType
->hasIntegerRepresentation())
8186 else if (resultType
->isPlaceholderType()) {
8187 ExprResult PR
= CheckPlaceholderExpr(Input
, OpLoc
);
8188 if (PR
.isInvalid()) return ExprError();
8189 return CreateBuiltinUnaryOp(OpLoc
, Opc
, PR
.take());
8191 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
8192 << resultType
<< Input
->getSourceRange());
8195 case UO_LNot
: // logical negation
8196 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8197 DefaultFunctionArrayLvalueConversion(Input
);
8198 resultType
= Input
->getType();
8199 if (resultType
->isDependentType())
8201 if (resultType
->isScalarType()) { // C99 6.5.3.3p1
8203 } else if (resultType
->isPlaceholderType()) {
8204 ExprResult PR
= CheckPlaceholderExpr(Input
, OpLoc
);
8205 if (PR
.isInvalid()) return ExprError();
8206 return CreateBuiltinUnaryOp(OpLoc
, Opc
, PR
.take());
8208 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
8209 << resultType
<< Input
->getSourceRange());
8212 // LNot always has type int. C99 6.5.3.3p5.
8213 // In C++, it's bool. C++ 5.3.1p8
8214 resultType
= getLangOptions().CPlusPlus
? Context
.BoolTy
: Context
.IntTy
;
8218 resultType
= CheckRealImagOperand(*this, Input
, OpLoc
, Opc
== UO_Real
);
8219 // _Real and _Imag map ordinary l-values into ordinary l-values.
8220 if (Input
->getValueKind() != VK_RValue
&&
8221 Input
->getObjectKind() == OK_Ordinary
)
8222 VK
= Input
->getValueKind();
8225 resultType
= Input
->getType();
8226 VK
= Input
->getValueKind();
8227 OK
= Input
->getObjectKind();
8230 if (resultType
.isNull())
8233 return Owned(new (Context
) UnaryOperator(Input
, Opc
, resultType
,
8237 ExprResult
Sema::BuildUnaryOp(Scope
*S
, SourceLocation OpLoc
,
8238 UnaryOperatorKind Opc
,
8240 if (getLangOptions().CPlusPlus
&& Input
->getType()->isOverloadableType() &&
8241 UnaryOperator::getOverloadedOperator(Opc
) != OO_None
) {
8242 // Find all of the overloaded operators visible from this
8243 // point. We perform both an operator-name lookup from the local
8244 // scope and an argument-dependent lookup based on the types of
8246 UnresolvedSet
<16> Functions
;
8247 OverloadedOperatorKind OverOp
= UnaryOperator::getOverloadedOperator(Opc
);
8248 if (S
&& OverOp
!= OO_None
)
8249 LookupOverloadedOperatorName(OverOp
, S
, Input
->getType(), QualType(),
8252 return CreateOverloadedUnaryOp(OpLoc
, Opc
, Functions
, Input
);
8255 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
);
8258 // Unary Operators. 'Tok' is the token for the operator.
8259 ExprResult
Sema::ActOnUnaryOp(Scope
*S
, SourceLocation OpLoc
,
8260 tok::TokenKind Op
, Expr
*Input
) {
8261 return BuildUnaryOp(S
, OpLoc
, ConvertTokenKindToUnaryOpcode(Op
), Input
);
8264 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8265 ExprResult
Sema::ActOnAddrLabel(SourceLocation OpLoc
,
8266 SourceLocation LabLoc
,
8267 IdentifierInfo
*LabelII
) {
8268 // Look up the record for this label identifier.
8269 LabelStmt
*&LabelDecl
= getCurFunction()->LabelMap
[LabelII
];
8271 // If we haven't seen this label yet, create a forward reference. It
8272 // will be validated and/or cleaned up in ActOnFinishFunctionBody.
8274 LabelDecl
= new (Context
) LabelStmt(LabLoc
, LabelII
, 0);
8276 LabelDecl
->setUsed();
8277 // Create the AST node. The address of a label always has type 'void*'.
8278 return Owned(new (Context
) AddrLabelExpr(OpLoc
, LabLoc
, LabelDecl
,
8279 Context
.getPointerType(Context
.VoidTy
)));
8283 Sema::ActOnStmtExpr(SourceLocation LPLoc
, Stmt
*SubStmt
,
8284 SourceLocation RPLoc
) { // "({..})"
8285 assert(SubStmt
&& isa
<CompoundStmt
>(SubStmt
) && "Invalid action invocation!");
8286 CompoundStmt
*Compound
= cast
<CompoundStmt
>(SubStmt
);
8289 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8291 return ExprError(Diag(LPLoc
, diag::err_stmtexpr_file_scope
));
8293 // FIXME: there are a variety of strange constraints to enforce here, for
8294 // example, it is not possible to goto into a stmt expression apparently.
8295 // More semantic analysis is needed.
8297 // If there are sub stmts in the compound stmt, take the type of the last one
8298 // as the type of the stmtexpr.
8299 QualType Ty
= Context
.VoidTy
;
8300 bool StmtExprMayBindToTemp
= false;
8301 if (!Compound
->body_empty()) {
8302 Stmt
*LastStmt
= Compound
->body_back();
8303 LabelStmt
*LastLabelStmt
= 0;
8304 // If LastStmt is a label, skip down through into the body.
8305 while (LabelStmt
*Label
= dyn_cast
<LabelStmt
>(LastStmt
)) {
8306 LastLabelStmt
= Label
;
8307 LastStmt
= Label
->getSubStmt();
8309 if (Expr
*LastExpr
= dyn_cast
<Expr
>(LastStmt
)) {
8310 // Do function/array conversion on the last expression, but not
8311 // lvalue-to-rvalue. However, initialize an unqualified type.
8312 DefaultFunctionArrayConversion(LastExpr
);
8313 Ty
= LastExpr
->getType().getUnqualifiedType();
8315 if (!Ty
->isDependentType() && !LastExpr
->isTypeDependent()) {
8316 ExprResult Res
= PerformCopyInitialization(
8317 InitializedEntity::InitializeResult(LPLoc
,
8322 if (Res
.isInvalid())
8324 if ((LastExpr
= Res
.takeAs
<Expr
>())) {
8326 Compound
->setLastStmt(LastExpr
);
8328 LastLabelStmt
->setSubStmt(LastExpr
);
8329 StmtExprMayBindToTemp
= true;
8335 // FIXME: Check that expression type is complete/non-abstract; statement
8336 // expressions are not lvalues.
8337 Expr
*ResStmtExpr
= new (Context
) StmtExpr(Compound
, Ty
, LPLoc
, RPLoc
);
8338 if (StmtExprMayBindToTemp
)
8339 return MaybeBindToTemporary(ResStmtExpr
);
8340 return Owned(ResStmtExpr
);
8343 ExprResult
Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc
,
8344 TypeSourceInfo
*TInfo
,
8345 OffsetOfComponent
*CompPtr
,
8346 unsigned NumComponents
,
8347 SourceLocation RParenLoc
) {
8348 QualType ArgTy
= TInfo
->getType();
8349 bool Dependent
= ArgTy
->isDependentType();
8350 SourceRange TypeRange
= TInfo
->getTypeLoc().getLocalSourceRange();
8352 // We must have at least one component that refers to the type, and the first
8353 // one is known to be a field designator. Verify that the ArgTy represents
8354 // a struct/union/class.
8355 if (!Dependent
&& !ArgTy
->isRecordType())
8356 return ExprError(Diag(BuiltinLoc
, diag::err_offsetof_record_type
)
8357 << ArgTy
<< TypeRange
);
8359 // Type must be complete per C99 7.17p3 because a declaring a variable
8360 // with an incomplete type would be ill-formed.
8362 && RequireCompleteType(BuiltinLoc
, ArgTy
,
8363 PDiag(diag::err_offsetof_incomplete_type
)
8367 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8368 // GCC extension, diagnose them.
8369 // FIXME: This diagnostic isn't actually visible because the location is in
8371 if (NumComponents
!= 1)
8372 Diag(BuiltinLoc
, diag::ext_offsetof_extended_field_designator
)
8373 << SourceRange(CompPtr
[1].LocStart
, CompPtr
[NumComponents
-1].LocEnd
);
8375 bool DidWarnAboutNonPOD
= false;
8376 QualType CurrentType
= ArgTy
;
8377 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode
;
8378 llvm::SmallVector
<OffsetOfNode
, 4> Comps
;
8379 llvm::SmallVector
<Expr
*, 4> Exprs
;
8380 for (unsigned i
= 0; i
!= NumComponents
; ++i
) {
8381 const OffsetOfComponent
&OC
= CompPtr
[i
];
8382 if (OC
.isBrackets
) {
8383 // Offset of an array sub-field. TODO: Should we allow vector elements?
8384 if (!CurrentType
->isDependentType()) {
8385 const ArrayType
*AT
= Context
.getAsArrayType(CurrentType
);
8387 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_array_type
)
8389 CurrentType
= AT
->getElementType();
8391 CurrentType
= Context
.DependentTy
;
8393 // The expression must be an integral expression.
8394 // FIXME: An integral constant expression?
8395 Expr
*Idx
= static_cast<Expr
*>(OC
.U
.E
);
8396 if (!Idx
->isTypeDependent() && !Idx
->isValueDependent() &&
8397 !Idx
->getType()->isIntegerType())
8398 return ExprError(Diag(Idx
->getLocStart(),
8399 diag::err_typecheck_subscript_not_integer
)
8400 << Idx
->getSourceRange());
8402 // Record this array index.
8403 Comps
.push_back(OffsetOfNode(OC
.LocStart
, Exprs
.size(), OC
.LocEnd
));
8404 Exprs
.push_back(Idx
);
8408 // Offset of a field.
8409 if (CurrentType
->isDependentType()) {
8410 // We have the offset of a field, but we can't look into the dependent
8411 // type. Just record the identifier of the field.
8412 Comps
.push_back(OffsetOfNode(OC
.LocStart
, OC
.U
.IdentInfo
, OC
.LocEnd
));
8413 CurrentType
= Context
.DependentTy
;
8417 // We need to have a complete type to look into.
8418 if (RequireCompleteType(OC
.LocStart
, CurrentType
,
8419 diag::err_offsetof_incomplete_type
))
8422 // Look for the designated field.
8423 const RecordType
*RC
= CurrentType
->getAs
<RecordType
>();
8425 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_record_type
)
8427 RecordDecl
*RD
= RC
->getDecl();
8429 // C++ [lib.support.types]p5:
8430 // The macro offsetof accepts a restricted set of type arguments in this
8431 // International Standard. type shall be a POD structure or a POD union
8433 if (CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
8434 if (!CRD
->isPOD() && !DidWarnAboutNonPOD
&&
8435 DiagRuntimeBehavior(BuiltinLoc
,
8436 PDiag(diag::warn_offsetof_non_pod_type
)
8437 << SourceRange(CompPtr
[0].LocStart
, OC
.LocEnd
)
8439 DidWarnAboutNonPOD
= true;
8442 // Look for the field.
8443 LookupResult
R(*this, OC
.U
.IdentInfo
, OC
.LocStart
, LookupMemberName
);
8444 LookupQualifiedName(R
, RD
);
8445 FieldDecl
*MemberDecl
= R
.getAsSingle
<FieldDecl
>();
8446 IndirectFieldDecl
*IndirectMemberDecl
= 0;
8448 if ((IndirectMemberDecl
= R
.getAsSingle
<IndirectFieldDecl
>()))
8449 MemberDecl
= IndirectMemberDecl
->getAnonField();
8453 return ExprError(Diag(BuiltinLoc
, diag::err_no_member
)
8454 << OC
.U
.IdentInfo
<< RD
<< SourceRange(OC
.LocStart
,
8458 // (If the specified member is a bit-field, the behavior is undefined.)
8460 // We diagnose this as an error.
8461 if (MemberDecl
->getBitWidth()) {
8462 Diag(OC
.LocEnd
, diag::err_offsetof_bitfield
)
8463 << MemberDecl
->getDeclName()
8464 << SourceRange(BuiltinLoc
, RParenLoc
);
8465 Diag(MemberDecl
->getLocation(), diag::note_bitfield_decl
);
8469 RecordDecl
*Parent
= MemberDecl
->getParent();
8470 if (IndirectMemberDecl
)
8471 Parent
= cast
<RecordDecl
>(IndirectMemberDecl
->getDeclContext());
8473 // If the member was found in a base class, introduce OffsetOfNodes for
8474 // the base class indirections.
8475 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8476 /*DetectVirtual=*/false);
8477 if (IsDerivedFrom(CurrentType
, Context
.getTypeDeclType(Parent
), Paths
)) {
8478 CXXBasePath
&Path
= Paths
.front();
8479 for (CXXBasePath::iterator B
= Path
.begin(), BEnd
= Path
.end();
8481 Comps
.push_back(OffsetOfNode(B
->Base
));
8484 if (IndirectMemberDecl
) {
8485 for (IndirectFieldDecl::chain_iterator FI
=
8486 IndirectMemberDecl
->chain_begin(),
8487 FEnd
= IndirectMemberDecl
->chain_end(); FI
!= FEnd
; FI
++) {
8488 assert(isa
<FieldDecl
>(*FI
));
8489 Comps
.push_back(OffsetOfNode(OC
.LocStart
,
8490 cast
<FieldDecl
>(*FI
), OC
.LocEnd
));
8493 Comps
.push_back(OffsetOfNode(OC
.LocStart
, MemberDecl
, OC
.LocEnd
));
8495 CurrentType
= MemberDecl
->getType().getNonReferenceType();
8498 return Owned(OffsetOfExpr::Create(Context
, Context
.getSizeType(), BuiltinLoc
,
8499 TInfo
, Comps
.data(), Comps
.size(),
8500 Exprs
.data(), Exprs
.size(), RParenLoc
));
8503 ExprResult
Sema::ActOnBuiltinOffsetOf(Scope
*S
,
8504 SourceLocation BuiltinLoc
,
8505 SourceLocation TypeLoc
,
8507 OffsetOfComponent
*CompPtr
,
8508 unsigned NumComponents
,
8509 SourceLocation RPLoc
) {
8511 TypeSourceInfo
*ArgTInfo
;
8512 QualType ArgTy
= GetTypeFromParser(argty
, &ArgTInfo
);
8517 ArgTInfo
= Context
.getTrivialTypeSourceInfo(ArgTy
, TypeLoc
);
8519 return BuildBuiltinOffsetOf(BuiltinLoc
, ArgTInfo
, CompPtr
, NumComponents
,
8524 ExprResult
Sema::ActOnChooseExpr(SourceLocation BuiltinLoc
,
8526 Expr
*LHSExpr
, Expr
*RHSExpr
,
8527 SourceLocation RPLoc
) {
8528 assert((CondExpr
&& LHSExpr
&& RHSExpr
) && "Missing type argument(s)");
8530 ExprValueKind VK
= VK_RValue
;
8531 ExprObjectKind OK
= OK_Ordinary
;
8533 bool ValueDependent
= false;
8534 if (CondExpr
->isTypeDependent() || CondExpr
->isValueDependent()) {
8535 resType
= Context
.DependentTy
;
8536 ValueDependent
= true;
8538 // The conditional expression is required to be a constant expression.
8539 llvm::APSInt
condEval(32);
8540 SourceLocation ExpLoc
;
8541 if (!CondExpr
->isIntegerConstantExpr(condEval
, Context
, &ExpLoc
))
8542 return ExprError(Diag(ExpLoc
,
8543 diag::err_typecheck_choose_expr_requires_constant
)
8544 << CondExpr
->getSourceRange());
8546 // If the condition is > zero, then the AST type is the same as the LSHExpr.
8547 Expr
*ActiveExpr
= condEval
.getZExtValue() ? LHSExpr
: RHSExpr
;
8549 resType
= ActiveExpr
->getType();
8550 ValueDependent
= ActiveExpr
->isValueDependent();
8551 VK
= ActiveExpr
->getValueKind();
8552 OK
= ActiveExpr
->getObjectKind();
8555 return Owned(new (Context
) ChooseExpr(BuiltinLoc
, CondExpr
, LHSExpr
, RHSExpr
,
8556 resType
, VK
, OK
, RPLoc
,
8557 resType
->isDependentType(),
8561 //===----------------------------------------------------------------------===//
8562 // Clang Extensions.
8563 //===----------------------------------------------------------------------===//
8565 /// ActOnBlockStart - This callback is invoked when a block literal is started.
8566 void Sema::ActOnBlockStart(SourceLocation CaretLoc
, Scope
*BlockScope
) {
8567 BlockDecl
*Block
= BlockDecl::Create(Context
, CurContext
, CaretLoc
);
8568 PushBlockScope(BlockScope
, Block
);
8569 CurContext
->addDecl(Block
);
8571 PushDeclContext(BlockScope
, Block
);
8576 void Sema::ActOnBlockArguments(Declarator
&ParamInfo
, Scope
*CurScope
) {
8577 assert(ParamInfo
.getIdentifier()==0 && "block-id should have no identifier!");
8578 assert(ParamInfo
.getContext() == Declarator::BlockLiteralContext
);
8579 BlockScopeInfo
*CurBlock
= getCurBlock();
8581 TypeSourceInfo
*Sig
= GetTypeForDeclarator(ParamInfo
, CurScope
);
8582 QualType T
= Sig
->getType();
8584 // GetTypeForDeclarator always produces a function type for a block
8585 // literal signature. Furthermore, it is always a FunctionProtoType
8586 // unless the function was written with a typedef.
8587 assert(T
->isFunctionType() &&
8588 "GetTypeForDeclarator made a non-function block signature");
8590 // Look for an explicit signature in that function type.
8591 FunctionProtoTypeLoc ExplicitSignature
;
8593 TypeLoc tmp
= Sig
->getTypeLoc().IgnoreParens();
8594 if (isa
<FunctionProtoTypeLoc
>(tmp
)) {
8595 ExplicitSignature
= cast
<FunctionProtoTypeLoc
>(tmp
);
8597 // Check whether that explicit signature was synthesized by
8598 // GetTypeForDeclarator. If so, don't save that as part of the
8599 // written signature.
8600 if (ExplicitSignature
.getLParenLoc() ==
8601 ExplicitSignature
.getRParenLoc()) {
8602 // This would be much cheaper if we stored TypeLocs instead of
8604 TypeLoc Result
= ExplicitSignature
.getResultLoc();
8605 unsigned Size
= Result
.getFullDataSize();
8606 Sig
= Context
.CreateTypeSourceInfo(Result
.getType(), Size
);
8607 Sig
->getTypeLoc().initializeFullCopy(Result
, Size
);
8609 ExplicitSignature
= FunctionProtoTypeLoc();
8613 CurBlock
->TheDecl
->setSignatureAsWritten(Sig
);
8614 CurBlock
->FunctionType
= T
;
8616 const FunctionType
*Fn
= T
->getAs
<FunctionType
>();
8617 QualType RetTy
= Fn
->getResultType();
8619 (isa
<FunctionProtoType
>(Fn
) && cast
<FunctionProtoType
>(Fn
)->isVariadic());
8621 CurBlock
->TheDecl
->setIsVariadic(isVariadic
);
8623 // Don't allow returning a objc interface by value.
8624 if (RetTy
->isObjCObjectType()) {
8625 Diag(ParamInfo
.getSourceRange().getBegin(),
8626 diag::err_object_cannot_be_passed_returned_by_value
) << 0 << RetTy
;
8630 // Context.DependentTy is used as a placeholder for a missing block
8631 // return type. TODO: what should we do with declarators like:
8633 // If the answer is "apply template argument deduction"....
8634 if (RetTy
!= Context
.DependentTy
)
8635 CurBlock
->ReturnType
= RetTy
;
8637 // Push block parameters from the declarator if we had them.
8638 llvm::SmallVector
<ParmVarDecl
*, 8> Params
;
8639 if (ExplicitSignature
) {
8640 for (unsigned I
= 0, E
= ExplicitSignature
.getNumArgs(); I
!= E
; ++I
) {
8641 ParmVarDecl
*Param
= ExplicitSignature
.getArg(I
);
8642 if (Param
->getIdentifier() == 0 &&
8643 !Param
->isImplicit() &&
8644 !Param
->isInvalidDecl() &&
8645 !getLangOptions().CPlusPlus
)
8646 Diag(Param
->getLocation(), diag::err_parameter_name_omitted
);
8647 Params
.push_back(Param
);
8650 // Fake up parameter variables if we have a typedef, like
8652 } else if (const FunctionProtoType
*Fn
= T
->getAs
<FunctionProtoType
>()) {
8653 for (FunctionProtoType::arg_type_iterator
8654 I
= Fn
->arg_type_begin(), E
= Fn
->arg_type_end(); I
!= E
; ++I
) {
8655 ParmVarDecl
*Param
=
8656 BuildParmVarDeclForTypedef(CurBlock
->TheDecl
,
8657 ParamInfo
.getSourceRange().getBegin(),
8659 Params
.push_back(Param
);
8663 // Set the parameters on the block decl.
8664 if (!Params
.empty()) {
8665 CurBlock
->TheDecl
->setParams(Params
.data(), Params
.size());
8666 CheckParmsForFunctionDef(CurBlock
->TheDecl
->param_begin(),
8667 CurBlock
->TheDecl
->param_end(),
8668 /*CheckParameterNames=*/false);
8671 // Finally we can process decl attributes.
8672 ProcessDeclAttributes(CurScope
, CurBlock
->TheDecl
, ParamInfo
);
8674 if (!isVariadic
&& CurBlock
->TheDecl
->getAttr
<SentinelAttr
>()) {
8675 Diag(ParamInfo
.getAttributes()->getLoc(),
8676 diag::warn_attribute_sentinel_not_variadic
) << 1;
8677 // FIXME: remove the attribute.
8680 // Put the parameter variables in scope. We can bail out immediately
8681 // if we don't have any.
8685 for (BlockDecl::param_iterator AI
= CurBlock
->TheDecl
->param_begin(),
8686 E
= CurBlock
->TheDecl
->param_end(); AI
!= E
; ++AI
) {
8687 (*AI
)->setOwningFunction(CurBlock
->TheDecl
);
8689 // If this has an identifier, add it to the scope stack.
8690 if ((*AI
)->getIdentifier()) {
8691 CheckShadow(CurBlock
->TheScope
, *AI
);
8693 PushOnScopeChains(*AI
, CurBlock
->TheScope
);
8698 /// ActOnBlockError - If there is an error parsing a block, this callback
8699 /// is invoked to pop the information about the block from the action impl.
8700 void Sema::ActOnBlockError(SourceLocation CaretLoc
, Scope
*CurScope
) {
8701 // Pop off CurBlock, handle nested blocks.
8703 PopFunctionOrBlockScope();
8706 /// ActOnBlockStmtExpr - This is called when the body of a block statement
8707 /// literal was successfully completed. ^(int x){...}
8708 ExprResult
Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc
,
8709 Stmt
*Body
, Scope
*CurScope
) {
8710 // If blocks are disabled, emit an error.
8711 if (!LangOpts
.Blocks
)
8712 Diag(CaretLoc
, diag::err_blocks_disable
);
8714 BlockScopeInfo
*BSI
= cast
<BlockScopeInfo
>(FunctionScopes
.back());
8718 QualType RetTy
= Context
.VoidTy
;
8719 if (!BSI
->ReturnType
.isNull())
8720 RetTy
= BSI
->ReturnType
;
8722 bool NoReturn
= BSI
->TheDecl
->getAttr
<NoReturnAttr
>();
8725 // Set the captured variables on the block.
8726 BSI
->TheDecl
->setCaptures(Context
, BSI
->Captures
.begin(), BSI
->Captures
.end(),
8727 BSI
->CapturesCXXThis
);
8729 // If the user wrote a function type in some form, try to use that.
8730 if (!BSI
->FunctionType
.isNull()) {
8731 const FunctionType
*FTy
= BSI
->FunctionType
->getAs
<FunctionType
>();
8733 FunctionType::ExtInfo Ext
= FTy
->getExtInfo();
8734 if (NoReturn
&& !Ext
.getNoReturn()) Ext
= Ext
.withNoReturn(true);
8736 // Turn protoless block types into nullary block types.
8737 if (isa
<FunctionNoProtoType
>(FTy
)) {
8738 FunctionProtoType::ExtProtoInfo EPI
;
8740 BlockTy
= Context
.getFunctionType(RetTy
, 0, 0, EPI
);
8742 // Otherwise, if we don't need to change anything about the function type,
8743 // preserve its sugar structure.
8744 } else if (FTy
->getResultType() == RetTy
&&
8745 (!NoReturn
|| FTy
->getNoReturnAttr())) {
8746 BlockTy
= BSI
->FunctionType
;
8748 // Otherwise, make the minimal modifications to the function type.
8750 const FunctionProtoType
*FPT
= cast
<FunctionProtoType
>(FTy
);
8751 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
8752 EPI
.TypeQuals
= 0; // FIXME: silently?
8754 BlockTy
= Context
.getFunctionType(RetTy
,
8755 FPT
->arg_type_begin(),
8760 // If we don't have a function type, just build one from nothing.
8762 FunctionProtoType::ExtProtoInfo EPI
;
8763 EPI
.ExtInfo
= FunctionType::ExtInfo(NoReturn
, 0, CC_Default
);
8764 BlockTy
= Context
.getFunctionType(RetTy
, 0, 0, EPI
);
8767 DiagnoseUnusedParameters(BSI
->TheDecl
->param_begin(),
8768 BSI
->TheDecl
->param_end());
8769 BlockTy
= Context
.getBlockPointerType(BlockTy
);
8771 // If needed, diagnose invalid gotos and switches in the block.
8772 if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
8773 DiagnoseInvalidJumps(cast
<CompoundStmt
>(Body
));
8775 BSI
->TheDecl
->setBody(cast
<CompoundStmt
>(Body
));
8778 // Check goto/label use.
8779 for (llvm::DenseMap
<IdentifierInfo
*, LabelStmt
*>::iterator
8780 I
= BSI
->LabelMap
.begin(), E
= BSI
->LabelMap
.end(); I
!= E
; ++I
) {
8781 LabelStmt
*L
= I
->second
;
8783 // Verify that we have no forward references left. If so, there was a goto
8784 // or address of a label taken, but no definition of it.
8785 if (L
->getSubStmt() != 0) {
8787 Diag(L
->getIdentLoc(), diag::warn_unused_label
) << L
->getName();
8792 Diag(L
->getIdentLoc(), diag::err_undeclared_label_use
) << L
->getName();
8796 PopFunctionOrBlockScope();
8800 BlockExpr
*Result
= new (Context
) BlockExpr(BSI
->TheDecl
, BlockTy
);
8802 // Issue any analysis-based warnings.
8803 const sema::AnalysisBasedWarnings::Policy
&WP
=
8804 AnalysisWarnings
.getDefaultPolicy();
8805 AnalysisWarnings
.IssueWarnings(WP
, Result
);
8807 PopFunctionOrBlockScope();
8808 return Owned(Result
);
8811 ExprResult
Sema::ActOnVAArg(SourceLocation BuiltinLoc
,
8812 Expr
*expr
, ParsedType type
,
8813 SourceLocation RPLoc
) {
8814 TypeSourceInfo
*TInfo
;
8815 GetTypeFromParser(type
, &TInfo
);
8816 return BuildVAArgExpr(BuiltinLoc
, expr
, TInfo
, RPLoc
);
8819 ExprResult
Sema::BuildVAArgExpr(SourceLocation BuiltinLoc
,
8820 Expr
*E
, TypeSourceInfo
*TInfo
,
8821 SourceLocation RPLoc
) {
8824 // Get the va_list type
8825 QualType VaListType
= Context
.getBuiltinVaListType();
8826 if (VaListType
->isArrayType()) {
8827 // Deal with implicit array decay; for example, on x86-64,
8828 // va_list is an array, but it's supposed to decay to
8829 // a pointer for va_arg.
8830 VaListType
= Context
.getArrayDecayedType(VaListType
);
8831 // Make sure the input expression also decays appropriately.
8832 UsualUnaryConversions(E
);
8834 // Otherwise, the va_list argument must be an l-value because
8835 // it is modified by va_arg.
8836 if (!E
->isTypeDependent() &&
8837 CheckForModifiableLvalue(E
, BuiltinLoc
, *this))
8841 if (!E
->isTypeDependent() &&
8842 !Context
.hasSameType(VaListType
, E
->getType())) {
8843 return ExprError(Diag(E
->getLocStart(),
8844 diag::err_first_argument_to_va_arg_not_of_type_va_list
)
8845 << OrigExpr
->getType() << E
->getSourceRange());
8848 // FIXME: Check that type is complete/non-abstract
8849 // FIXME: Warn if a non-POD type is passed in.
8851 QualType T
= TInfo
->getType().getNonLValueExprType(Context
);
8852 return Owned(new (Context
) VAArgExpr(BuiltinLoc
, E
, TInfo
, RPLoc
, T
));
8855 ExprResult
Sema::ActOnGNUNullExpr(SourceLocation TokenLoc
) {
8856 // The type of __null will be int or long, depending on the size of
8857 // pointers on the target.
8859 unsigned pw
= Context
.Target
.getPointerWidth(0);
8860 if (pw
== Context
.Target
.getIntWidth())
8862 else if (pw
== Context
.Target
.getLongWidth())
8863 Ty
= Context
.LongTy
;
8864 else if (pw
== Context
.Target
.getLongLongWidth())
8865 Ty
= Context
.LongLongTy
;
8867 assert(!"I don't know size of pointer!");
8871 return Owned(new (Context
) GNUNullExpr(Ty
, TokenLoc
));
8874 static void MakeObjCStringLiteralFixItHint(Sema
& SemaRef
, QualType DstType
,
8875 Expr
*SrcExpr
, FixItHint
&Hint
) {
8876 if (!SemaRef
.getLangOptions().ObjC1
)
8879 const ObjCObjectPointerType
*PT
= DstType
->getAs
<ObjCObjectPointerType
>();
8883 // Check if the destination is of type 'id'.
8884 if (!PT
->isObjCIdType()) {
8885 // Check if the destination is the 'NSString' interface.
8886 const ObjCInterfaceDecl
*ID
= PT
->getInterfaceDecl();
8887 if (!ID
|| !ID
->getIdentifier()->isStr("NSString"))
8891 // Strip off any parens and casts.
8892 StringLiteral
*SL
= dyn_cast
<StringLiteral
>(SrcExpr
->IgnoreParenCasts());
8893 if (!SL
|| SL
->isWide())
8896 Hint
= FixItHint::CreateInsertion(SL
->getLocStart(), "@");
8899 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy
,
8901 QualType DstType
, QualType SrcType
,
8902 Expr
*SrcExpr
, AssignmentAction Action
,
8905 *Complained
= false;
8907 // Decode the result (notice that AST's are still created for extensions).
8908 bool isInvalid
= false;
8913 default: assert(0 && "Unknown conversion type");
8914 case Compatible
: return false;
8916 DiagKind
= diag::ext_typecheck_convert_pointer_int
;
8919 DiagKind
= diag::ext_typecheck_convert_int_pointer
;
8921 case IncompatiblePointer
:
8922 MakeObjCStringLiteralFixItHint(*this, DstType
, SrcExpr
, Hint
);
8923 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer
;
8925 case IncompatiblePointerSign
:
8926 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer_sign
;
8928 case FunctionVoidPointer
:
8929 DiagKind
= diag::ext_typecheck_convert_pointer_void_func
;
8931 case IncompatiblePointerDiscardsQualifiers
: {
8932 // Perform array-to-pointer decay if necessary.
8933 if (SrcType
->isArrayType()) SrcType
= Context
.getArrayDecayedType(SrcType
);
8935 Qualifiers lhq
= SrcType
->getPointeeType().getQualifiers();
8936 Qualifiers rhq
= DstType
->getPointeeType().getQualifiers();
8937 if (lhq
.getAddressSpace() != rhq
.getAddressSpace()) {
8938 DiagKind
= diag::err_typecheck_incompatible_address_space
;
8942 llvm_unreachable("unknown error case for discarding qualifiers!");
8945 case CompatiblePointerDiscardsQualifiers
:
8946 // If the qualifiers lost were because we were applying the
8947 // (deprecated) C++ conversion from a string literal to a char*
8948 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
8949 // Ideally, this check would be performed in
8950 // checkPointerTypesForAssignment. However, that would require a
8951 // bit of refactoring (so that the second argument is an
8952 // expression, rather than a type), which should be done as part
8953 // of a larger effort to fix checkPointerTypesForAssignment for
8955 if (getLangOptions().CPlusPlus
&&
8956 IsStringLiteralToNonConstPointerConversion(SrcExpr
, DstType
))
8958 DiagKind
= diag::ext_typecheck_convert_discards_qualifiers
;
8960 case IncompatibleNestedPointerQualifiers
:
8961 DiagKind
= diag::ext_nested_pointer_qualifier_mismatch
;
8963 case IntToBlockPointer
:
8964 DiagKind
= diag::err_int_to_block_pointer
;
8966 case IncompatibleBlockPointer
:
8967 DiagKind
= diag::err_typecheck_convert_incompatible_block_pointer
;
8969 case IncompatibleObjCQualifiedId
:
8970 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
8971 // it can give a more specific diagnostic.
8972 DiagKind
= diag::warn_incompatible_qualified_id
;
8974 case IncompatibleVectors
:
8975 DiagKind
= diag::warn_incompatible_vectors
;
8978 DiagKind
= diag::err_typecheck_convert_incompatible
;
8983 QualType FirstType
, SecondType
;
8986 case AA_Initializing
:
8987 // The destination type comes first.
8988 FirstType
= DstType
;
8989 SecondType
= SrcType
;
8997 // The source type comes first.
8998 FirstType
= SrcType
;
8999 SecondType
= DstType
;
9003 Diag(Loc
, DiagKind
) << FirstType
<< SecondType
<< Action
9004 << SrcExpr
->getSourceRange() << Hint
;
9010 bool Sema::VerifyIntegerConstantExpression(const Expr
*E
, llvm::APSInt
*Result
){
9011 llvm::APSInt ICEResult
;
9012 if (E
->isIntegerConstantExpr(ICEResult
, Context
)) {
9014 *Result
= ICEResult
;
9018 Expr::EvalResult EvalResult
;
9020 if (!E
->Evaluate(EvalResult
, Context
) || !EvalResult
.Val
.isInt() ||
9021 EvalResult
.HasSideEffects
) {
9022 Diag(E
->getExprLoc(), diag::err_expr_not_ice
) << E
->getSourceRange();
9024 if (EvalResult
.Diag
) {
9025 // We only show the note if it's not the usual "invalid subexpression"
9026 // or if it's actually in a subexpression.
9027 if (EvalResult
.Diag
!= diag::note_invalid_subexpr_in_ice
||
9028 E
->IgnoreParens() != EvalResult
.DiagExpr
->IgnoreParens())
9029 Diag(EvalResult
.DiagLoc
, EvalResult
.Diag
);
9035 Diag(E
->getExprLoc(), diag::ext_expr_not_ice
) <<
9036 E
->getSourceRange();
9038 if (EvalResult
.Diag
&&
9039 Diags
.getDiagnosticLevel(diag::ext_expr_not_ice
, EvalResult
.DiagLoc
)
9040 != Diagnostic::Ignored
)
9041 Diag(EvalResult
.DiagLoc
, EvalResult
.Diag
);
9044 *Result
= EvalResult
.Val
.getInt();
9049 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext
) {
9050 ExprEvalContexts
.push_back(
9051 ExpressionEvaluationContextRecord(NewContext
, ExprTemporaries
.size()));
9055 Sema::PopExpressionEvaluationContext() {
9056 // Pop the current expression evaluation context off the stack.
9057 ExpressionEvaluationContextRecord Rec
= ExprEvalContexts
.back();
9058 ExprEvalContexts
.pop_back();
9060 if (Rec
.Context
== PotentiallyPotentiallyEvaluated
) {
9061 if (Rec
.PotentiallyReferenced
) {
9062 // Mark any remaining declarations in the current position of the stack
9063 // as "referenced". If they were not meant to be referenced, semantic
9064 // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
9065 for (PotentiallyReferencedDecls::iterator
9066 I
= Rec
.PotentiallyReferenced
->begin(),
9067 IEnd
= Rec
.PotentiallyReferenced
->end();
9069 MarkDeclarationReferenced(I
->first
, I
->second
);
9072 if (Rec
.PotentiallyDiagnosed
) {
9073 // Emit any pending diagnostics.
9074 for (PotentiallyEmittedDiagnostics::iterator
9075 I
= Rec
.PotentiallyDiagnosed
->begin(),
9076 IEnd
= Rec
.PotentiallyDiagnosed
->end();
9078 Diag(I
->first
, I
->second
);
9082 // When are coming out of an unevaluated context, clear out any
9083 // temporaries that we may have created as part of the evaluation of
9084 // the expression in that context: they aren't relevant because they
9085 // will never be constructed.
9086 if (Rec
.Context
== Unevaluated
&&
9087 ExprTemporaries
.size() > Rec
.NumTemporaries
)
9088 ExprTemporaries
.erase(ExprTemporaries
.begin() + Rec
.NumTemporaries
,
9089 ExprTemporaries
.end());
9091 // Destroy the popped expression evaluation record.
9095 /// \brief Note that the given declaration was referenced in the source code.
9097 /// This routine should be invoke whenever a given declaration is referenced
9098 /// in the source code, and where that reference occurred. If this declaration
9099 /// reference means that the the declaration is used (C++ [basic.def.odr]p2,
9100 /// C99 6.9p3), then the declaration will be marked as used.
9102 /// \param Loc the location where the declaration was referenced.
9104 /// \param D the declaration that has been referenced by the source code.
9105 void Sema::MarkDeclarationReferenced(SourceLocation Loc
, Decl
*D
) {
9106 assert(D
&& "No declaration?");
9108 if (D
->isUsed(false))
9111 // Mark a parameter or variable declaration "used", regardless of whether we're in a
9112 // template or not. The reason for this is that unevaluated expressions
9113 // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
9114 // -Wunused-parameters)
9115 if (isa
<ParmVarDecl
>(D
) ||
9116 (isa
<VarDecl
>(D
) && D
->getDeclContext()->isFunctionOrMethod())) {
9121 if (!isa
<VarDecl
>(D
) && !isa
<FunctionDecl
>(D
))
9124 // Do not mark anything as "used" within a dependent context; wait for
9125 // an instantiation.
9126 if (CurContext
->isDependentContext())
9129 switch (ExprEvalContexts
.back().Context
) {
9131 // We are in an expression that is not potentially evaluated; do nothing.
9134 case PotentiallyEvaluated
:
9135 // We are in a potentially-evaluated expression, so this declaration is
9136 // "used"; handle this below.
9139 case PotentiallyPotentiallyEvaluated
:
9140 // We are in an expression that may be potentially evaluated; queue this
9141 // declaration reference until we know whether the expression is
9142 // potentially evaluated.
9143 ExprEvalContexts
.back().addReferencedDecl(Loc
, D
);
9146 case PotentiallyEvaluatedIfUsed
:
9147 // Referenced declarations will only be used if the construct in the
9148 // containing expression is used.
9152 // Note that this declaration has been used.
9153 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(D
)) {
9155 if (Constructor
->isImplicit() && Constructor
->isDefaultConstructor()) {
9156 if (Constructor
->getParent()->hasTrivialConstructor())
9158 if (!Constructor
->isUsed(false))
9159 DefineImplicitDefaultConstructor(Loc
, Constructor
);
9160 } else if (Constructor
->isImplicit() &&
9161 Constructor
->isCopyConstructor(TypeQuals
)) {
9162 if (!Constructor
->isUsed(false))
9163 DefineImplicitCopyConstructor(Loc
, Constructor
, TypeQuals
);
9166 MarkVTableUsed(Loc
, Constructor
->getParent());
9167 } else if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(D
)) {
9168 if (Destructor
->isImplicit() && !Destructor
->isUsed(false))
9169 DefineImplicitDestructor(Loc
, Destructor
);
9170 if (Destructor
->isVirtual())
9171 MarkVTableUsed(Loc
, Destructor
->getParent());
9172 } else if (CXXMethodDecl
*MethodDecl
= dyn_cast
<CXXMethodDecl
>(D
)) {
9173 if (MethodDecl
->isImplicit() && MethodDecl
->isOverloadedOperator() &&
9174 MethodDecl
->getOverloadedOperator() == OO_Equal
) {
9175 if (!MethodDecl
->isUsed(false))
9176 DefineImplicitCopyAssignment(Loc
, MethodDecl
);
9177 } else if (MethodDecl
->isVirtual())
9178 MarkVTableUsed(Loc
, MethodDecl
->getParent());
9180 if (FunctionDecl
*Function
= dyn_cast
<FunctionDecl
>(D
)) {
9181 // Implicit instantiation of function templates and member functions of
9183 if (Function
->isImplicitlyInstantiable()) {
9184 bool AlreadyInstantiated
= false;
9185 if (FunctionTemplateSpecializationInfo
*SpecInfo
9186 = Function
->getTemplateSpecializationInfo()) {
9187 if (SpecInfo
->getPointOfInstantiation().isInvalid())
9188 SpecInfo
->setPointOfInstantiation(Loc
);
9189 else if (SpecInfo
->getTemplateSpecializationKind()
9190 == TSK_ImplicitInstantiation
)
9191 AlreadyInstantiated
= true;
9192 } else if (MemberSpecializationInfo
*MSInfo
9193 = Function
->getMemberSpecializationInfo()) {
9194 if (MSInfo
->getPointOfInstantiation().isInvalid())
9195 MSInfo
->setPointOfInstantiation(Loc
);
9196 else if (MSInfo
->getTemplateSpecializationKind()
9197 == TSK_ImplicitInstantiation
)
9198 AlreadyInstantiated
= true;
9201 if (!AlreadyInstantiated
) {
9202 if (isa
<CXXRecordDecl
>(Function
->getDeclContext()) &&
9203 cast
<CXXRecordDecl
>(Function
->getDeclContext())->isLocalClass())
9204 PendingLocalImplicitInstantiations
.push_back(std::make_pair(Function
,
9207 PendingInstantiations
.push_back(std::make_pair(Function
, Loc
));
9209 } else // Walk redefinitions, as some of them may be instantiable.
9210 for (FunctionDecl::redecl_iterator
i(Function
->redecls_begin()),
9211 e(Function
->redecls_end()); i
!= e
; ++i
) {
9212 if (!i
->isUsed(false) && i
->isImplicitlyInstantiable())
9213 MarkDeclarationReferenced(Loc
, *i
);
9216 // FIXME: keep track of references to static functions
9218 // Recursive functions should be marked when used from another function.
9219 if (CurContext
!= Function
)
9220 Function
->setUsed(true);
9225 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(D
)) {
9226 // Implicit instantiation of static data members of class templates.
9227 if (Var
->isStaticDataMember() &&
9228 Var
->getInstantiatedFromStaticDataMember()) {
9229 MemberSpecializationInfo
*MSInfo
= Var
->getMemberSpecializationInfo();
9230 assert(MSInfo
&& "Missing member specialization information?");
9231 if (MSInfo
->getPointOfInstantiation().isInvalid() &&
9232 MSInfo
->getTemplateSpecializationKind()== TSK_ImplicitInstantiation
) {
9233 MSInfo
->setPointOfInstantiation(Loc
);
9234 PendingInstantiations
.push_back(std::make_pair(Var
, Loc
));
9238 // FIXME: keep track of references to static data?
9246 // Mark all of the declarations referenced
9247 // FIXME: Not fully implemented yet! We need to have a better understanding
9248 // of when we're entering
9249 class MarkReferencedDecls
: public RecursiveASTVisitor
<MarkReferencedDecls
> {
9254 typedef RecursiveASTVisitor
<MarkReferencedDecls
> Inherited
;
9256 MarkReferencedDecls(Sema
&S
, SourceLocation Loc
) : S(S
), Loc(Loc
) { }
9258 bool TraverseTemplateArgument(const TemplateArgument
&Arg
);
9259 bool TraverseRecordType(RecordType
*T
);
9263 bool MarkReferencedDecls::TraverseTemplateArgument(
9264 const TemplateArgument
&Arg
) {
9265 if (Arg
.getKind() == TemplateArgument::Declaration
) {
9266 S
.MarkDeclarationReferenced(Loc
, Arg
.getAsDecl());
9269 return Inherited::TraverseTemplateArgument(Arg
);
9272 bool MarkReferencedDecls::TraverseRecordType(RecordType
*T
) {
9273 if (ClassTemplateSpecializationDecl
*Spec
9274 = dyn_cast
<ClassTemplateSpecializationDecl
>(T
->getDecl())) {
9275 const TemplateArgumentList
&Args
= Spec
->getTemplateArgs();
9276 return TraverseTemplateArguments(Args
.data(), Args
.size());
9282 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc
, QualType T
) {
9283 MarkReferencedDecls
Marker(*this, Loc
);
9284 Marker
.TraverseType(Context
.getCanonicalType(T
));
9288 /// \brief Helper class that marks all of the declarations referenced by
9289 /// potentially-evaluated subexpressions as "referenced".
9290 class EvaluatedExprMarker
: public EvaluatedExprVisitor
<EvaluatedExprMarker
> {
9294 typedef EvaluatedExprVisitor
<EvaluatedExprMarker
> Inherited
;
9296 explicit EvaluatedExprMarker(Sema
&S
) : Inherited(S
.Context
), S(S
) { }
9298 void VisitDeclRefExpr(DeclRefExpr
*E
) {
9299 S
.MarkDeclarationReferenced(E
->getLocation(), E
->getDecl());
9302 void VisitMemberExpr(MemberExpr
*E
) {
9303 S
.MarkDeclarationReferenced(E
->getMemberLoc(), E
->getMemberDecl());
9304 Inherited::VisitMemberExpr(E
);
9307 void VisitCXXNewExpr(CXXNewExpr
*E
) {
9308 if (E
->getConstructor())
9309 S
.MarkDeclarationReferenced(E
->getLocStart(), E
->getConstructor());
9310 if (E
->getOperatorNew())
9311 S
.MarkDeclarationReferenced(E
->getLocStart(), E
->getOperatorNew());
9312 if (E
->getOperatorDelete())
9313 S
.MarkDeclarationReferenced(E
->getLocStart(), E
->getOperatorDelete());
9314 Inherited::VisitCXXNewExpr(E
);
9317 void VisitCXXDeleteExpr(CXXDeleteExpr
*E
) {
9318 if (E
->getOperatorDelete())
9319 S
.MarkDeclarationReferenced(E
->getLocStart(), E
->getOperatorDelete());
9320 QualType Destroyed
= S
.Context
.getBaseElementType(E
->getDestroyedType());
9321 if (const RecordType
*DestroyedRec
= Destroyed
->getAs
<RecordType
>()) {
9322 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DestroyedRec
->getDecl());
9323 S
.MarkDeclarationReferenced(E
->getLocStart(),
9324 S
.LookupDestructor(Record
));
9327 Inherited::VisitCXXDeleteExpr(E
);
9330 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
9331 S
.MarkDeclarationReferenced(E
->getLocStart(), E
->getConstructor());
9332 Inherited::VisitCXXConstructExpr(E
);
9335 void VisitBlockDeclRefExpr(BlockDeclRefExpr
*E
) {
9336 S
.MarkDeclarationReferenced(E
->getLocation(), E
->getDecl());
9339 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr
*E
) {
9340 Visit(E
->getExpr());
9345 /// \brief Mark any declarations that appear within this expression or any
9346 /// potentially-evaluated subexpressions as "referenced".
9347 void Sema::MarkDeclarationsReferencedInExpr(Expr
*E
) {
9348 EvaluatedExprMarker(*this).Visit(E
);
9351 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
9352 /// of the program being compiled.
9354 /// This routine emits the given diagnostic when the code currently being
9355 /// type-checked is "potentially evaluated", meaning that there is a
9356 /// possibility that the code will actually be executable. Code in sizeof()
9357 /// expressions, code used only during overload resolution, etc., are not
9358 /// potentially evaluated. This routine will suppress such diagnostics or,
9359 /// in the absolutely nutty case of potentially potentially evaluated
9360 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
9363 /// This routine should be used for all diagnostics that describe the run-time
9364 /// behavior of a program, such as passing a non-POD value through an ellipsis.
9365 /// Failure to do so will likely result in spurious diagnostics or failures
9366 /// during overload resolution or within sizeof/alignof/typeof/typeid.
9367 bool Sema::DiagRuntimeBehavior(SourceLocation Loc
,
9368 const PartialDiagnostic
&PD
) {
9369 switch (ExprEvalContexts
.back().Context
) {
9371 // The argument will never be evaluated, so don't complain.
9374 case PotentiallyEvaluated
:
9375 case PotentiallyEvaluatedIfUsed
:
9379 case PotentiallyPotentiallyEvaluated
:
9380 ExprEvalContexts
.back().addDiagnostic(Loc
, PD
);
9387 bool Sema::CheckCallReturnType(QualType ReturnType
, SourceLocation Loc
,
9388 CallExpr
*CE
, FunctionDecl
*FD
) {
9389 if (ReturnType
->isVoidType() || !ReturnType
->isIncompleteType())
9392 PartialDiagnostic Note
=
9393 FD
? PDiag(diag::note_function_with_incomplete_return_type_declared_here
)
9394 << FD
->getDeclName() : PDiag();
9395 SourceLocation NoteLoc
= FD
? FD
->getLocation() : SourceLocation();
9397 if (RequireCompleteType(Loc
, ReturnType
,
9399 PDiag(diag::err_call_function_incomplete_return
)
9400 << CE
->getSourceRange() << FD
->getDeclName() :
9401 PDiag(diag::err_call_incomplete_return
)
9402 << CE
->getSourceRange(),
9403 std::make_pair(NoteLoc
, Note
)))
9409 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
9410 // will prevent this condition from triggering, which is what we want.
9411 void Sema::DiagnoseAssignmentAsCondition(Expr
*E
) {
9414 unsigned diagnostic
= diag::warn_condition_is_assignment
;
9415 bool IsOrAssign
= false;
9417 if (isa
<BinaryOperator
>(E
)) {
9418 BinaryOperator
*Op
= cast
<BinaryOperator
>(E
);
9419 if (Op
->getOpcode() != BO_Assign
&& Op
->getOpcode() != BO_OrAssign
)
9422 IsOrAssign
= Op
->getOpcode() == BO_OrAssign
;
9424 // Greylist some idioms by putting them into a warning subcategory.
9425 if (ObjCMessageExpr
*ME
9426 = dyn_cast
<ObjCMessageExpr
>(Op
->getRHS()->IgnoreParenCasts())) {
9427 Selector Sel
= ME
->getSelector();
9429 // self = [<foo> init...]
9430 if (isSelfExpr(Op
->getLHS())
9431 && Sel
.getIdentifierInfoForSlot(0)->getName().startswith("init"))
9432 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
9434 // <foo> = [<bar> nextObject]
9435 else if (Sel
.isUnarySelector() &&
9436 Sel
.getIdentifierInfoForSlot(0)->getName() == "nextObject")
9437 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
9440 Loc
= Op
->getOperatorLoc();
9441 } else if (isa
<CXXOperatorCallExpr
>(E
)) {
9442 CXXOperatorCallExpr
*Op
= cast
<CXXOperatorCallExpr
>(E
);
9443 if (Op
->getOperator() != OO_Equal
&& Op
->getOperator() != OO_PipeEqual
)
9446 IsOrAssign
= Op
->getOperator() == OO_PipeEqual
;
9447 Loc
= Op
->getOperatorLoc();
9449 // Not an assignment.
9453 SourceLocation Open
= E
->getSourceRange().getBegin();
9454 SourceLocation Close
= PP
.getLocForEndOfToken(E
->getSourceRange().getEnd());
9456 Diag(Loc
, diagnostic
) << E
->getSourceRange();
9459 Diag(Loc
, diag::note_condition_or_assign_to_comparison
)
9460 << FixItHint::CreateReplacement(Loc
, "!=");
9462 Diag(Loc
, diag::note_condition_assign_to_comparison
)
9463 << FixItHint::CreateReplacement(Loc
, "==");
9465 Diag(Loc
, diag::note_condition_assign_silence
)
9466 << FixItHint::CreateInsertion(Open
, "(")
9467 << FixItHint::CreateInsertion(Close
, ")");
9470 /// \brief Redundant parentheses over an equality comparison can indicate
9471 /// that the user intended an assignment used as condition.
9472 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr
*parenE
) {
9473 // Don't warn if the parens came from a macro.
9474 SourceLocation parenLoc
= parenE
->getLocStart();
9475 if (parenLoc
.isInvalid() || parenLoc
.isMacroID())
9478 Expr
*E
= parenE
->IgnoreParens();
9480 if (BinaryOperator
*opE
= dyn_cast
<BinaryOperator
>(E
))
9481 if (opE
->getOpcode() == BO_EQ
&&
9482 opE
->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context
)
9483 == Expr::MLV_Valid
) {
9484 SourceLocation Loc
= opE
->getOperatorLoc();
9486 Diag(Loc
, diag::warn_equality_with_extra_parens
) << E
->getSourceRange();
9487 Diag(Loc
, diag::note_equality_comparison_to_assign
)
9488 << FixItHint::CreateReplacement(Loc
, "=");
9489 Diag(Loc
, diag::note_equality_comparison_silence
)
9490 << FixItHint::CreateRemoval(parenE
->getSourceRange().getBegin())
9491 << FixItHint::CreateRemoval(parenE
->getSourceRange().getEnd());
9495 bool Sema::CheckBooleanCondition(Expr
*&E
, SourceLocation Loc
) {
9496 DiagnoseAssignmentAsCondition(E
);
9497 if (ParenExpr
*parenE
= dyn_cast
<ParenExpr
>(E
))
9498 DiagnoseEqualityWithExtraParens(parenE
);
9500 if (!E
->isTypeDependent()) {
9501 if (E
->isBoundMemberFunction(Context
))
9502 return Diag(E
->getLocStart(), diag::err_invalid_use_of_bound_member_func
)
9503 << E
->getSourceRange();
9505 if (getLangOptions().CPlusPlus
)
9506 return CheckCXXBooleanCondition(E
); // C++ 6.4p4
9508 DefaultFunctionArrayLvalueConversion(E
);
9510 QualType T
= E
->getType();
9511 if (!T
->isScalarType()) // C99 6.8.4.1p1
9512 return Diag(Loc
, diag::err_typecheck_statement_requires_scalar
)
9513 << T
<< E
->getSourceRange();
9519 ExprResult
Sema::ActOnBooleanCondition(Scope
*S
, SourceLocation Loc
,
9524 if (CheckBooleanCondition(Sub
, Loc
))
9530 /// Check for operands with placeholder types and complain if found.
9531 /// Returns true if there was an error and no recovery was possible.
9532 ExprResult
Sema::CheckPlaceholderExpr(Expr
*E
, SourceLocation Loc
) {
9533 const BuiltinType
*BT
= E
->getType()->getAs
<BuiltinType
>();
9534 if (!BT
|| !BT
->isPlaceholderType()) return Owned(E
);
9536 // If this is overload, check for a single overload.
9537 if (BT
->getKind() == BuiltinType::Overload
) {
9538 if (FunctionDecl
*Specialization
9539 = ResolveSingleFunctionTemplateSpecialization(E
)) {
9540 // The access doesn't really matter in this case.
9541 DeclAccessPair Found
= DeclAccessPair::make(Specialization
,
9542 Specialization
->getAccess());
9543 E
= FixOverloadedFunctionReference(E
, Found
, Specialization
);
9544 if (!E
) return ExprError();
9548 Diag(Loc
, diag::err_ovl_unresolvable
) << E
->getSourceRange();
9552 // Otherwise it's a use of undeduced auto.
9553 assert(BT
->getKind() == BuiltinType::UndeducedAuto
);
9555 DeclRefExpr
*DRE
= cast
<DeclRefExpr
>(E
->IgnoreParens());
9556 Diag(Loc
, diag::err_auto_variable_cannot_appear_in_own_initializer
)
9557 << DRE
->getDecl() << E
->getSourceRange();