Fix the memory leak of FloatingLiteral/IntegerLiteral.
[clang.git] / lib / Sema / SemaTemplateDeduction.cpp
blob469118111146d92e6f97442190de26b63721bc53
1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
11 //===----------------------------------------------------------------------===/
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include <algorithm>
25 namespace clang {
26 using namespace sema;
28 /// \brief Various flags that control template argument deduction.
29 ///
30 /// These flags can be bitwise-OR'd together.
31 enum TemplateDeductionFlags {
32 /// \brief No template argument deduction flags, which indicates the
33 /// strictest results for template argument deduction (as used for, e.g.,
34 /// matching class template partial specializations).
35 TDF_None = 0,
36 /// \brief Within template argument deduction from a function call, we are
37 /// matching with a parameter type for which the original parameter was
38 /// a reference.
39 TDF_ParamWithReferenceType = 0x1,
40 /// \brief Within template argument deduction from a function call, we
41 /// are matching in a case where we ignore cv-qualifiers.
42 TDF_IgnoreQualifiers = 0x02,
43 /// \brief Within template argument deduction from a function call,
44 /// we are matching in a case where we can perform template argument
45 /// deduction from a template-id of a derived class of the argument type.
46 TDF_DerivedClass = 0x04,
47 /// \brief Allow non-dependent types to differ, e.g., when performing
48 /// template argument deduction from a function call where conversions
49 /// may apply.
50 TDF_SkipNonDependent = 0x08
54 using namespace clang;
56 /// \brief Compare two APSInts, extending and switching the sign as
57 /// necessary to compare their values regardless of underlying type.
58 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
59 if (Y.getBitWidth() > X.getBitWidth())
60 X.extend(Y.getBitWidth());
61 else if (Y.getBitWidth() < X.getBitWidth())
62 Y.extend(X.getBitWidth());
64 // If there is a signedness mismatch, correct it.
65 if (X.isSigned() != Y.isSigned()) {
66 // If the signed value is negative, then the values cannot be the same.
67 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
68 return false;
70 Y.setIsSigned(true);
71 X.setIsSigned(true);
74 return X == Y;
77 static Sema::TemplateDeductionResult
78 DeduceTemplateArguments(Sema &S,
79 TemplateParameterList *TemplateParams,
80 const TemplateArgument &Param,
81 const TemplateArgument &Arg,
82 TemplateDeductionInfo &Info,
83 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
85 /// \brief If the given expression is of a form that permits the deduction
86 /// of a non-type template parameter, return the declaration of that
87 /// non-type template parameter.
88 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
89 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
90 E = IC->getSubExpr();
92 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
93 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
95 return 0;
98 /// \brief Deduce the value of the given non-type template parameter
99 /// from the given constant.
100 static Sema::TemplateDeductionResult
101 DeduceNonTypeTemplateArgument(Sema &S,
102 NonTypeTemplateParmDecl *NTTP,
103 llvm::APSInt Value, QualType ValueType,
104 bool DeducedFromArrayBound,
105 TemplateDeductionInfo &Info,
106 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
107 assert(NTTP->getDepth() == 0 &&
108 "Cannot deduce non-type template argument with depth > 0");
110 if (Deduced[NTTP->getIndex()].isNull()) {
111 Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
112 DeducedFromArrayBound);
113 return Sema::TDK_Success;
116 if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
117 Info.Param = NTTP;
118 Info.FirstArg = Deduced[NTTP->getIndex()];
119 Info.SecondArg = TemplateArgument(Value, ValueType);
120 return Sema::TDK_Inconsistent;
123 // Extent the smaller of the two values.
124 llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
125 if (!hasSameExtendedValue(PrevValue, Value)) {
126 Info.Param = NTTP;
127 Info.FirstArg = Deduced[NTTP->getIndex()];
128 Info.SecondArg = TemplateArgument(Value, ValueType);
129 return Sema::TDK_Inconsistent;
132 if (!DeducedFromArrayBound)
133 Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
135 return Sema::TDK_Success;
138 /// \brief Deduce the value of the given non-type template parameter
139 /// from the given type- or value-dependent expression.
141 /// \returns true if deduction succeeded, false otherwise.
142 static Sema::TemplateDeductionResult
143 DeduceNonTypeTemplateArgument(Sema &S,
144 NonTypeTemplateParmDecl *NTTP,
145 Expr *Value,
146 TemplateDeductionInfo &Info,
147 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
148 assert(NTTP->getDepth() == 0 &&
149 "Cannot deduce non-type template argument with depth > 0");
150 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
151 "Expression template argument must be type- or value-dependent.");
153 if (Deduced[NTTP->getIndex()].isNull()) {
154 Deduced[NTTP->getIndex()] = TemplateArgument(Value->Retain());
155 return Sema::TDK_Success;
158 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
159 // Okay, we deduced a constant in one case and a dependent expression
160 // in another case. FIXME: Later, we will check that instantiating the
161 // dependent expression gives us the constant value.
162 return Sema::TDK_Success;
165 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
166 // Compare the expressions for equality
167 llvm::FoldingSetNodeID ID1, ID2;
168 Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
169 Value->Profile(ID2, S.Context, true);
170 if (ID1 == ID2)
171 return Sema::TDK_Success;
173 // FIXME: Fill in argument mismatch information
174 return Sema::TDK_NonDeducedMismatch;
177 return Sema::TDK_Success;
180 /// \brief Deduce the value of the given non-type template parameter
181 /// from the given declaration.
183 /// \returns true if deduction succeeded, false otherwise.
184 static Sema::TemplateDeductionResult
185 DeduceNonTypeTemplateArgument(Sema &S,
186 NonTypeTemplateParmDecl *NTTP,
187 Decl *D,
188 TemplateDeductionInfo &Info,
189 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
190 assert(NTTP->getDepth() == 0 &&
191 "Cannot deduce non-type template argument with depth > 0");
193 if (Deduced[NTTP->getIndex()].isNull()) {
194 Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
195 return Sema::TDK_Success;
198 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
199 // Okay, we deduced a declaration in one case and a dependent expression
200 // in another case.
201 return Sema::TDK_Success;
204 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
205 // Compare the declarations for equality
206 if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
207 D->getCanonicalDecl())
208 return Sema::TDK_Success;
210 // FIXME: Fill in argument mismatch information
211 return Sema::TDK_NonDeducedMismatch;
214 return Sema::TDK_Success;
217 static Sema::TemplateDeductionResult
218 DeduceTemplateArguments(Sema &S,
219 TemplateParameterList *TemplateParams,
220 TemplateName Param,
221 TemplateName Arg,
222 TemplateDeductionInfo &Info,
223 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
224 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
225 if (!ParamDecl) {
226 // The parameter type is dependent and is not a template template parameter,
227 // so there is nothing that we can deduce.
228 return Sema::TDK_Success;
231 if (TemplateTemplateParmDecl *TempParam
232 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
233 // Bind the template template parameter to the given template name.
234 TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
235 if (ExistingArg.isNull()) {
236 // This is the first deduction for this template template parameter.
237 ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
238 return Sema::TDK_Success;
241 // Verify that the previous binding matches this deduction.
242 assert(ExistingArg.getKind() == TemplateArgument::Template);
243 if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
244 return Sema::TDK_Success;
246 // Inconsistent deduction.
247 Info.Param = TempParam;
248 Info.FirstArg = ExistingArg;
249 Info.SecondArg = TemplateArgument(Arg);
250 return Sema::TDK_Inconsistent;
253 // Verify that the two template names are equivalent.
254 if (S.Context.hasSameTemplateName(Param, Arg))
255 return Sema::TDK_Success;
257 // Mismatch of non-dependent template parameter to argument.
258 Info.FirstArg = TemplateArgument(Param);
259 Info.SecondArg = TemplateArgument(Arg);
260 return Sema::TDK_NonDeducedMismatch;
263 /// \brief Deduce the template arguments by comparing the template parameter
264 /// type (which is a template-id) with the template argument type.
266 /// \param S the Sema
268 /// \param TemplateParams the template parameters that we are deducing
270 /// \param Param the parameter type
272 /// \param Arg the argument type
274 /// \param Info information about the template argument deduction itself
276 /// \param Deduced the deduced template arguments
278 /// \returns the result of template argument deduction so far. Note that a
279 /// "success" result means that template argument deduction has not yet failed,
280 /// but it may still fail, later, for other reasons.
281 static Sema::TemplateDeductionResult
282 DeduceTemplateArguments(Sema &S,
283 TemplateParameterList *TemplateParams,
284 const TemplateSpecializationType *Param,
285 QualType Arg,
286 TemplateDeductionInfo &Info,
287 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
288 assert(Arg.isCanonical() && "Argument type must be canonical");
290 // Check whether the template argument is a dependent template-id.
291 if (const TemplateSpecializationType *SpecArg
292 = dyn_cast<TemplateSpecializationType>(Arg)) {
293 // Perform template argument deduction for the template name.
294 if (Sema::TemplateDeductionResult Result
295 = DeduceTemplateArguments(S, TemplateParams,
296 Param->getTemplateName(),
297 SpecArg->getTemplateName(),
298 Info, Deduced))
299 return Result;
302 // Perform template argument deduction on each template
303 // argument.
304 unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
305 for (unsigned I = 0; I != NumArgs; ++I)
306 if (Sema::TemplateDeductionResult Result
307 = DeduceTemplateArguments(S, TemplateParams,
308 Param->getArg(I),
309 SpecArg->getArg(I),
310 Info, Deduced))
311 return Result;
313 return Sema::TDK_Success;
316 // If the argument type is a class template specialization, we
317 // perform template argument deduction using its template
318 // arguments.
319 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
320 if (!RecordArg)
321 return Sema::TDK_NonDeducedMismatch;
323 ClassTemplateSpecializationDecl *SpecArg
324 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
325 if (!SpecArg)
326 return Sema::TDK_NonDeducedMismatch;
328 // Perform template argument deduction for the template name.
329 if (Sema::TemplateDeductionResult Result
330 = DeduceTemplateArguments(S,
331 TemplateParams,
332 Param->getTemplateName(),
333 TemplateName(SpecArg->getSpecializedTemplate()),
334 Info, Deduced))
335 return Result;
337 unsigned NumArgs = Param->getNumArgs();
338 const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
339 if (NumArgs != ArgArgs.size())
340 return Sema::TDK_NonDeducedMismatch;
342 for (unsigned I = 0; I != NumArgs; ++I)
343 if (Sema::TemplateDeductionResult Result
344 = DeduceTemplateArguments(S, TemplateParams,
345 Param->getArg(I),
346 ArgArgs.get(I),
347 Info, Deduced))
348 return Result;
350 return Sema::TDK_Success;
353 /// \brief Deduce the template arguments by comparing the parameter type and
354 /// the argument type (C++ [temp.deduct.type]).
356 /// \param S the semantic analysis object within which we are deducing
358 /// \param TemplateParams the template parameters that we are deducing
360 /// \param ParamIn the parameter type
362 /// \param ArgIn the argument type
364 /// \param Info information about the template argument deduction itself
366 /// \param Deduced the deduced template arguments
368 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
369 /// how template argument deduction is performed.
371 /// \returns the result of template argument deduction so far. Note that a
372 /// "success" result means that template argument deduction has not yet failed,
373 /// but it may still fail, later, for other reasons.
374 static Sema::TemplateDeductionResult
375 DeduceTemplateArguments(Sema &S,
376 TemplateParameterList *TemplateParams,
377 QualType ParamIn, QualType ArgIn,
378 TemplateDeductionInfo &Info,
379 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
380 unsigned TDF) {
381 // We only want to look at the canonical types, since typedefs and
382 // sugar are not part of template argument deduction.
383 QualType Param = S.Context.getCanonicalType(ParamIn);
384 QualType Arg = S.Context.getCanonicalType(ArgIn);
386 // C++0x [temp.deduct.call]p4 bullet 1:
387 // - If the original P is a reference type, the deduced A (i.e., the type
388 // referred to by the reference) can be more cv-qualified than the
389 // transformed A.
390 if (TDF & TDF_ParamWithReferenceType) {
391 Qualifiers Quals;
392 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
393 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
394 Arg.getCVRQualifiersThroughArrayTypes());
395 Param = S.Context.getQualifiedType(UnqualParam, Quals);
398 // If the parameter type is not dependent, there is nothing to deduce.
399 if (!Param->isDependentType()) {
400 if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
402 return Sema::TDK_NonDeducedMismatch;
405 return Sema::TDK_Success;
408 // C++ [temp.deduct.type]p9:
409 // A template type argument T, a template template argument TT or a
410 // template non-type argument i can be deduced if P and A have one of
411 // the following forms:
413 // T
414 // cv-list T
415 if (const TemplateTypeParmType *TemplateTypeParm
416 = Param->getAs<TemplateTypeParmType>()) {
417 unsigned Index = TemplateTypeParm->getIndex();
418 bool RecanonicalizeArg = false;
420 // If the argument type is an array type, move the qualifiers up to the
421 // top level, so they can be matched with the qualifiers on the parameter.
422 // FIXME: address spaces, ObjC GC qualifiers
423 if (isa<ArrayType>(Arg)) {
424 Qualifiers Quals;
425 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
426 if (Quals) {
427 Arg = S.Context.getQualifiedType(Arg, Quals);
428 RecanonicalizeArg = true;
432 // The argument type can not be less qualified than the parameter
433 // type.
434 if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
435 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
436 Info.FirstArg = TemplateArgument(Param);
437 Info.SecondArg = TemplateArgument(Arg);
438 return Sema::TDK_Underqualified;
441 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
442 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
443 QualType DeducedType = Arg;
444 DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
445 if (RecanonicalizeArg)
446 DeducedType = S.Context.getCanonicalType(DeducedType);
448 if (Deduced[Index].isNull())
449 Deduced[Index] = TemplateArgument(DeducedType);
450 else {
451 // C++ [temp.deduct.type]p2:
452 // [...] If type deduction cannot be done for any P/A pair, or if for
453 // any pair the deduction leads to more than one possible set of
454 // deduced values, or if different pairs yield different deduced
455 // values, or if any template argument remains neither deduced nor
456 // explicitly specified, template argument deduction fails.
457 if (Deduced[Index].getAsType() != DeducedType) {
458 Info.Param
459 = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
460 Info.FirstArg = Deduced[Index];
461 Info.SecondArg = TemplateArgument(Arg);
462 return Sema::TDK_Inconsistent;
465 return Sema::TDK_Success;
468 // Set up the template argument deduction information for a failure.
469 Info.FirstArg = TemplateArgument(ParamIn);
470 Info.SecondArg = TemplateArgument(ArgIn);
472 // Check the cv-qualifiers on the parameter and argument types.
473 if (!(TDF & TDF_IgnoreQualifiers)) {
474 if (TDF & TDF_ParamWithReferenceType) {
475 if (Param.isMoreQualifiedThan(Arg))
476 return Sema::TDK_NonDeducedMismatch;
477 } else {
478 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
479 return Sema::TDK_NonDeducedMismatch;
483 switch (Param->getTypeClass()) {
484 // No deduction possible for these types
485 case Type::Builtin:
486 return Sema::TDK_NonDeducedMismatch;
488 // T *
489 case Type::Pointer: {
490 QualType PointeeType;
491 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
492 PointeeType = PointerArg->getPointeeType();
493 } else if (const ObjCObjectPointerType *PointerArg
494 = Arg->getAs<ObjCObjectPointerType>()) {
495 PointeeType = PointerArg->getPointeeType();
496 } else {
497 return Sema::TDK_NonDeducedMismatch;
500 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
501 return DeduceTemplateArguments(S, TemplateParams,
502 cast<PointerType>(Param)->getPointeeType(),
503 PointeeType,
504 Info, Deduced, SubTDF);
507 // T &
508 case Type::LValueReference: {
509 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
510 if (!ReferenceArg)
511 return Sema::TDK_NonDeducedMismatch;
513 return DeduceTemplateArguments(S, TemplateParams,
514 cast<LValueReferenceType>(Param)->getPointeeType(),
515 ReferenceArg->getPointeeType(),
516 Info, Deduced, 0);
519 // T && [C++0x]
520 case Type::RValueReference: {
521 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
522 if (!ReferenceArg)
523 return Sema::TDK_NonDeducedMismatch;
525 return DeduceTemplateArguments(S, TemplateParams,
526 cast<RValueReferenceType>(Param)->getPointeeType(),
527 ReferenceArg->getPointeeType(),
528 Info, Deduced, 0);
531 // T [] (implied, but not stated explicitly)
532 case Type::IncompleteArray: {
533 const IncompleteArrayType *IncompleteArrayArg =
534 S.Context.getAsIncompleteArrayType(Arg);
535 if (!IncompleteArrayArg)
536 return Sema::TDK_NonDeducedMismatch;
538 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
539 return DeduceTemplateArguments(S, TemplateParams,
540 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
541 IncompleteArrayArg->getElementType(),
542 Info, Deduced, SubTDF);
545 // T [integer-constant]
546 case Type::ConstantArray: {
547 const ConstantArrayType *ConstantArrayArg =
548 S.Context.getAsConstantArrayType(Arg);
549 if (!ConstantArrayArg)
550 return Sema::TDK_NonDeducedMismatch;
552 const ConstantArrayType *ConstantArrayParm =
553 S.Context.getAsConstantArrayType(Param);
554 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
555 return Sema::TDK_NonDeducedMismatch;
557 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
558 return DeduceTemplateArguments(S, TemplateParams,
559 ConstantArrayParm->getElementType(),
560 ConstantArrayArg->getElementType(),
561 Info, Deduced, SubTDF);
564 // type [i]
565 case Type::DependentSizedArray: {
566 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
567 if (!ArrayArg)
568 return Sema::TDK_NonDeducedMismatch;
570 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
572 // Check the element type of the arrays
573 const DependentSizedArrayType *DependentArrayParm
574 = S.Context.getAsDependentSizedArrayType(Param);
575 if (Sema::TemplateDeductionResult Result
576 = DeduceTemplateArguments(S, TemplateParams,
577 DependentArrayParm->getElementType(),
578 ArrayArg->getElementType(),
579 Info, Deduced, SubTDF))
580 return Result;
582 // Determine the array bound is something we can deduce.
583 NonTypeTemplateParmDecl *NTTP
584 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
585 if (!NTTP)
586 return Sema::TDK_Success;
588 // We can perform template argument deduction for the given non-type
589 // template parameter.
590 assert(NTTP->getDepth() == 0 &&
591 "Cannot deduce non-type template argument at depth > 0");
592 if (const ConstantArrayType *ConstantArrayArg
593 = dyn_cast<ConstantArrayType>(ArrayArg)) {
594 llvm::APSInt Size(ConstantArrayArg->getSize());
595 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
596 S.Context.getSizeType(),
597 /*ArrayBound=*/true,
598 Info, Deduced);
600 if (const DependentSizedArrayType *DependentArrayArg
601 = dyn_cast<DependentSizedArrayType>(ArrayArg))
602 return DeduceNonTypeTemplateArgument(S, NTTP,
603 DependentArrayArg->getSizeExpr(),
604 Info, Deduced);
606 // Incomplete type does not match a dependently-sized array type
607 return Sema::TDK_NonDeducedMismatch;
610 // type(*)(T)
611 // T(*)()
612 // T(*)(T)
613 case Type::FunctionProto: {
614 const FunctionProtoType *FunctionProtoArg =
615 dyn_cast<FunctionProtoType>(Arg);
616 if (!FunctionProtoArg)
617 return Sema::TDK_NonDeducedMismatch;
619 const FunctionProtoType *FunctionProtoParam =
620 cast<FunctionProtoType>(Param);
622 if (FunctionProtoParam->getTypeQuals() !=
623 FunctionProtoArg->getTypeQuals())
624 return Sema::TDK_NonDeducedMismatch;
626 if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
627 return Sema::TDK_NonDeducedMismatch;
629 if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
630 return Sema::TDK_NonDeducedMismatch;
632 // Check return types.
633 if (Sema::TemplateDeductionResult Result
634 = DeduceTemplateArguments(S, TemplateParams,
635 FunctionProtoParam->getResultType(),
636 FunctionProtoArg->getResultType(),
637 Info, Deduced, 0))
638 return Result;
640 for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
641 // Check argument types.
642 if (Sema::TemplateDeductionResult Result
643 = DeduceTemplateArguments(S, TemplateParams,
644 FunctionProtoParam->getArgType(I),
645 FunctionProtoArg->getArgType(I),
646 Info, Deduced, 0))
647 return Result;
650 return Sema::TDK_Success;
653 case Type::InjectedClassName: {
654 // Treat a template's injected-class-name as if the template
655 // specialization type had been used.
656 Param = cast<InjectedClassNameType>(Param)
657 ->getInjectedSpecializationType();
658 assert(isa<TemplateSpecializationType>(Param) &&
659 "injected class name is not a template specialization type");
660 // fall through
663 // template-name<T> (where template-name refers to a class template)
664 // template-name<i>
665 // TT<T>
666 // TT<i>
667 // TT<>
668 case Type::TemplateSpecialization: {
669 const TemplateSpecializationType *SpecParam
670 = cast<TemplateSpecializationType>(Param);
672 // Try to deduce template arguments from the template-id.
673 Sema::TemplateDeductionResult Result
674 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
675 Info, Deduced);
677 if (Result && (TDF & TDF_DerivedClass)) {
678 // C++ [temp.deduct.call]p3b3:
679 // If P is a class, and P has the form template-id, then A can be a
680 // derived class of the deduced A. Likewise, if P is a pointer to a
681 // class of the form template-id, A can be a pointer to a derived
682 // class pointed to by the deduced A.
684 // More importantly:
685 // These alternatives are considered only if type deduction would
686 // otherwise fail.
687 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
688 // We cannot inspect base classes as part of deduction when the type
689 // is incomplete, so either instantiate any templates necessary to
690 // complete the type, or skip over it if it cannot be completed.
691 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
692 return Result;
694 // Use data recursion to crawl through the list of base classes.
695 // Visited contains the set of nodes we have already visited, while
696 // ToVisit is our stack of records that we still need to visit.
697 llvm::SmallPtrSet<const RecordType *, 8> Visited;
698 llvm::SmallVector<const RecordType *, 8> ToVisit;
699 ToVisit.push_back(RecordT);
700 bool Successful = false;
701 while (!ToVisit.empty()) {
702 // Retrieve the next class in the inheritance hierarchy.
703 const RecordType *NextT = ToVisit.back();
704 ToVisit.pop_back();
706 // If we have already seen this type, skip it.
707 if (!Visited.insert(NextT))
708 continue;
710 // If this is a base class, try to perform template argument
711 // deduction from it.
712 if (NextT != RecordT) {
713 Sema::TemplateDeductionResult BaseResult
714 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
715 QualType(NextT, 0), Info, Deduced);
717 // If template argument deduction for this base was successful,
718 // note that we had some success.
719 if (BaseResult == Sema::TDK_Success)
720 Successful = true;
723 // Visit base classes
724 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
725 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
726 BaseEnd = Next->bases_end();
727 Base != BaseEnd; ++Base) {
728 assert(Base->getType()->isRecordType() &&
729 "Base class that isn't a record?");
730 ToVisit.push_back(Base->getType()->getAs<RecordType>());
734 if (Successful)
735 return Sema::TDK_Success;
740 return Result;
743 // T type::*
744 // T T::*
745 // T (type::*)()
746 // type (T::*)()
747 // type (type::*)(T)
748 // type (T::*)(T)
749 // T (type::*)(T)
750 // T (T::*)()
751 // T (T::*)(T)
752 case Type::MemberPointer: {
753 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
754 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
755 if (!MemPtrArg)
756 return Sema::TDK_NonDeducedMismatch;
758 if (Sema::TemplateDeductionResult Result
759 = DeduceTemplateArguments(S, TemplateParams,
760 MemPtrParam->getPointeeType(),
761 MemPtrArg->getPointeeType(),
762 Info, Deduced,
763 TDF & TDF_IgnoreQualifiers))
764 return Result;
766 return DeduceTemplateArguments(S, TemplateParams,
767 QualType(MemPtrParam->getClass(), 0),
768 QualType(MemPtrArg->getClass(), 0),
769 Info, Deduced, 0);
772 // (clang extension)
774 // type(^)(T)
775 // T(^)()
776 // T(^)(T)
777 case Type::BlockPointer: {
778 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
779 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
781 if (!BlockPtrArg)
782 return Sema::TDK_NonDeducedMismatch;
784 return DeduceTemplateArguments(S, TemplateParams,
785 BlockPtrParam->getPointeeType(),
786 BlockPtrArg->getPointeeType(), Info,
787 Deduced, 0);
790 case Type::TypeOfExpr:
791 case Type::TypeOf:
792 case Type::DependentName:
793 // No template argument deduction for these types
794 return Sema::TDK_Success;
796 default:
797 break;
800 // FIXME: Many more cases to go (to go).
801 return Sema::TDK_Success;
804 static Sema::TemplateDeductionResult
805 DeduceTemplateArguments(Sema &S,
806 TemplateParameterList *TemplateParams,
807 const TemplateArgument &Param,
808 const TemplateArgument &Arg,
809 TemplateDeductionInfo &Info,
810 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
811 switch (Param.getKind()) {
812 case TemplateArgument::Null:
813 assert(false && "Null template argument in parameter list");
814 break;
816 case TemplateArgument::Type:
817 if (Arg.getKind() == TemplateArgument::Type)
818 return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
819 Arg.getAsType(), Info, Deduced, 0);
820 Info.FirstArg = Param;
821 Info.SecondArg = Arg;
822 return Sema::TDK_NonDeducedMismatch;
824 case TemplateArgument::Template:
825 if (Arg.getKind() == TemplateArgument::Template)
826 return DeduceTemplateArguments(S, TemplateParams,
827 Param.getAsTemplate(),
828 Arg.getAsTemplate(), Info, Deduced);
829 Info.FirstArg = Param;
830 Info.SecondArg = Arg;
831 return Sema::TDK_NonDeducedMismatch;
833 case TemplateArgument::Declaration:
834 if (Arg.getKind() == TemplateArgument::Declaration &&
835 Param.getAsDecl()->getCanonicalDecl() ==
836 Arg.getAsDecl()->getCanonicalDecl())
837 return Sema::TDK_Success;
839 Info.FirstArg = Param;
840 Info.SecondArg = Arg;
841 return Sema::TDK_NonDeducedMismatch;
843 case TemplateArgument::Integral:
844 if (Arg.getKind() == TemplateArgument::Integral) {
845 if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
846 return Sema::TDK_Success;
848 Info.FirstArg = Param;
849 Info.SecondArg = Arg;
850 return Sema::TDK_NonDeducedMismatch;
853 if (Arg.getKind() == TemplateArgument::Expression) {
854 Info.FirstArg = Param;
855 Info.SecondArg = Arg;
856 return Sema::TDK_NonDeducedMismatch;
859 Info.FirstArg = Param;
860 Info.SecondArg = Arg;
861 return Sema::TDK_NonDeducedMismatch;
863 case TemplateArgument::Expression: {
864 if (NonTypeTemplateParmDecl *NTTP
865 = getDeducedParameterFromExpr(Param.getAsExpr())) {
866 if (Arg.getKind() == TemplateArgument::Integral)
867 return DeduceNonTypeTemplateArgument(S, NTTP,
868 *Arg.getAsIntegral(),
869 Arg.getIntegralType(),
870 /*ArrayBound=*/false,
871 Info, Deduced);
872 if (Arg.getKind() == TemplateArgument::Expression)
873 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
874 Info, Deduced);
875 if (Arg.getKind() == TemplateArgument::Declaration)
876 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
877 Info, Deduced);
879 Info.FirstArg = Param;
880 Info.SecondArg = Arg;
881 return Sema::TDK_NonDeducedMismatch;
884 // Can't deduce anything, but that's okay.
885 return Sema::TDK_Success;
887 case TemplateArgument::Pack:
888 assert(0 && "FIXME: Implement!");
889 break;
892 return Sema::TDK_Success;
895 static Sema::TemplateDeductionResult
896 DeduceTemplateArguments(Sema &S,
897 TemplateParameterList *TemplateParams,
898 const TemplateArgumentList &ParamList,
899 const TemplateArgumentList &ArgList,
900 TemplateDeductionInfo &Info,
901 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
902 assert(ParamList.size() == ArgList.size());
903 for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
904 if (Sema::TemplateDeductionResult Result
905 = DeduceTemplateArguments(S, TemplateParams,
906 ParamList[I], ArgList[I],
907 Info, Deduced))
908 return Result;
910 return Sema::TDK_Success;
913 /// \brief Determine whether two template arguments are the same.
914 static bool isSameTemplateArg(ASTContext &Context,
915 const TemplateArgument &X,
916 const TemplateArgument &Y) {
917 if (X.getKind() != Y.getKind())
918 return false;
920 switch (X.getKind()) {
921 case TemplateArgument::Null:
922 assert(false && "Comparing NULL template argument");
923 break;
925 case TemplateArgument::Type:
926 return Context.getCanonicalType(X.getAsType()) ==
927 Context.getCanonicalType(Y.getAsType());
929 case TemplateArgument::Declaration:
930 return X.getAsDecl()->getCanonicalDecl() ==
931 Y.getAsDecl()->getCanonicalDecl();
933 case TemplateArgument::Template:
934 return Context.getCanonicalTemplateName(X.getAsTemplate())
935 .getAsVoidPointer() ==
936 Context.getCanonicalTemplateName(Y.getAsTemplate())
937 .getAsVoidPointer();
939 case TemplateArgument::Integral:
940 return *X.getAsIntegral() == *Y.getAsIntegral();
942 case TemplateArgument::Expression: {
943 llvm::FoldingSetNodeID XID, YID;
944 X.getAsExpr()->Profile(XID, Context, true);
945 Y.getAsExpr()->Profile(YID, Context, true);
946 return XID == YID;
949 case TemplateArgument::Pack:
950 if (X.pack_size() != Y.pack_size())
951 return false;
953 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
954 XPEnd = X.pack_end(),
955 YP = Y.pack_begin();
956 XP != XPEnd; ++XP, ++YP)
957 if (!isSameTemplateArg(Context, *XP, *YP))
958 return false;
960 return true;
963 return false;
966 /// \brief Helper function to build a TemplateParameter when we don't
967 /// know its type statically.
968 static TemplateParameter makeTemplateParameter(Decl *D) {
969 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
970 return TemplateParameter(TTP);
971 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
972 return TemplateParameter(NTTP);
974 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
977 /// Complete template argument deduction for a class template partial
978 /// specialization.
979 static Sema::TemplateDeductionResult
980 FinishTemplateArgumentDeduction(Sema &S,
981 ClassTemplatePartialSpecializationDecl *Partial,
982 const TemplateArgumentList &TemplateArgs,
983 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
984 TemplateDeductionInfo &Info) {
985 // Trap errors.
986 Sema::SFINAETrap Trap(S);
988 Sema::ContextRAII SavedContext(S, Partial);
990 // C++ [temp.deduct.type]p2:
991 // [...] or if any template argument remains neither deduced nor
992 // explicitly specified, template argument deduction fails.
993 TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
994 Deduced.size());
995 for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
996 if (Deduced[I].isNull()) {
997 Decl *Param
998 = const_cast<NamedDecl *>(
999 Partial->getTemplateParameters()->getParam(I));
1000 Info.Param = makeTemplateParameter(Param);
1001 return Sema::TDK_Incomplete;
1004 Builder.Append(Deduced[I]);
1007 // Form the template argument list from the deduced template arguments.
1008 TemplateArgumentList *DeducedArgumentList
1009 = new (S.Context) TemplateArgumentList(S.Context, Builder,
1010 /*TakeArgs=*/true);
1011 Info.reset(DeducedArgumentList);
1013 // Substitute the deduced template arguments into the template
1014 // arguments of the class template partial specialization, and
1015 // verify that the instantiated template arguments are both valid
1016 // and are equivalent to the template arguments originally provided
1017 // to the class template.
1018 // FIXME: Do we have to correct the types of deduced non-type template
1019 // arguments (in particular, integral non-type template arguments?).
1020 LocalInstantiationScope InstScope(S);
1021 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1022 const TemplateArgumentLoc *PartialTemplateArgs
1023 = Partial->getTemplateArgsAsWritten();
1024 unsigned N = Partial->getNumTemplateArgsAsWritten();
1026 // Note that we don't provide the langle and rangle locations.
1027 TemplateArgumentListInfo InstArgs;
1029 for (unsigned I = 0; I != N; ++I) {
1030 Decl *Param = const_cast<NamedDecl *>(
1031 ClassTemplate->getTemplateParameters()->getParam(I));
1032 TemplateArgumentLoc InstArg;
1033 if (S.Subst(PartialTemplateArgs[I], InstArg,
1034 MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1035 Info.Param = makeTemplateParameter(Param);
1036 Info.FirstArg = PartialTemplateArgs[I].getArgument();
1037 return Sema::TDK_SubstitutionFailure;
1039 InstArgs.addArgument(InstArg);
1042 TemplateArgumentListBuilder ConvertedInstArgs(
1043 ClassTemplate->getTemplateParameters(), N);
1045 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1046 InstArgs, false, ConvertedInstArgs))
1047 return Sema::TDK_SubstitutionFailure;
1049 for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1050 TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1052 Decl *Param = const_cast<NamedDecl *>(
1053 ClassTemplate->getTemplateParameters()->getParam(I));
1055 if (InstArg.getKind() == TemplateArgument::Expression) {
1056 // When the argument is an expression, check the expression result
1057 // against the actual template parameter to get down to the canonical
1058 // template argument.
1059 Expr *InstExpr = InstArg.getAsExpr();
1060 if (NonTypeTemplateParmDecl *NTTP
1061 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1062 if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1063 Info.Param = makeTemplateParameter(Param);
1064 Info.FirstArg = Partial->getTemplateArgs()[I];
1065 return Sema::TDK_SubstitutionFailure;
1070 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1071 Info.Param = makeTemplateParameter(Param);
1072 Info.FirstArg = TemplateArgs[I];
1073 Info.SecondArg = InstArg;
1074 return Sema::TDK_NonDeducedMismatch;
1078 if (Trap.hasErrorOccurred())
1079 return Sema::TDK_SubstitutionFailure;
1081 return Sema::TDK_Success;
1084 /// \brief Perform template argument deduction to determine whether
1085 /// the given template arguments match the given class template
1086 /// partial specialization per C++ [temp.class.spec.match].
1087 Sema::TemplateDeductionResult
1088 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1089 const TemplateArgumentList &TemplateArgs,
1090 TemplateDeductionInfo &Info) {
1091 // C++ [temp.class.spec.match]p2:
1092 // A partial specialization matches a given actual template
1093 // argument list if the template arguments of the partial
1094 // specialization can be deduced from the actual template argument
1095 // list (14.8.2).
1096 SFINAETrap Trap(*this);
1097 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1098 Deduced.resize(Partial->getTemplateParameters()->size());
1099 if (TemplateDeductionResult Result
1100 = ::DeduceTemplateArguments(*this,
1101 Partial->getTemplateParameters(),
1102 Partial->getTemplateArgs(),
1103 TemplateArgs, Info, Deduced))
1104 return Result;
1106 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1107 Deduced.data(), Deduced.size());
1108 if (Inst)
1109 return TDK_InstantiationDepth;
1111 if (Trap.hasErrorOccurred())
1112 return Sema::TDK_SubstitutionFailure;
1114 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1115 Deduced, Info);
1118 /// \brief Determine whether the given type T is a simple-template-id type.
1119 static bool isSimpleTemplateIdType(QualType T) {
1120 if (const TemplateSpecializationType *Spec
1121 = T->getAs<TemplateSpecializationType>())
1122 return Spec->getTemplateName().getAsTemplateDecl() != 0;
1124 return false;
1127 /// \brief Substitute the explicitly-provided template arguments into the
1128 /// given function template according to C++ [temp.arg.explicit].
1130 /// \param FunctionTemplate the function template into which the explicit
1131 /// template arguments will be substituted.
1133 /// \param ExplicitTemplateArguments the explicitly-specified template
1134 /// arguments.
1136 /// \param Deduced the deduced template arguments, which will be populated
1137 /// with the converted and checked explicit template arguments.
1139 /// \param ParamTypes will be populated with the instantiated function
1140 /// parameters.
1142 /// \param FunctionType if non-NULL, the result type of the function template
1143 /// will also be instantiated and the pointed-to value will be updated with
1144 /// the instantiated function type.
1146 /// \param Info if substitution fails for any reason, this object will be
1147 /// populated with more information about the failure.
1149 /// \returns TDK_Success if substitution was successful, or some failure
1150 /// condition.
1151 Sema::TemplateDeductionResult
1152 Sema::SubstituteExplicitTemplateArguments(
1153 FunctionTemplateDecl *FunctionTemplate,
1154 const TemplateArgumentListInfo &ExplicitTemplateArgs,
1155 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1156 llvm::SmallVectorImpl<QualType> &ParamTypes,
1157 QualType *FunctionType,
1158 TemplateDeductionInfo &Info) {
1159 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1160 TemplateParameterList *TemplateParams
1161 = FunctionTemplate->getTemplateParameters();
1163 if (ExplicitTemplateArgs.size() == 0) {
1164 // No arguments to substitute; just copy over the parameter types and
1165 // fill in the function type.
1166 for (FunctionDecl::param_iterator P = Function->param_begin(),
1167 PEnd = Function->param_end();
1168 P != PEnd;
1169 ++P)
1170 ParamTypes.push_back((*P)->getType());
1172 if (FunctionType)
1173 *FunctionType = Function->getType();
1174 return TDK_Success;
1177 // Substitution of the explicit template arguments into a function template
1178 /// is a SFINAE context. Trap any errors that might occur.
1179 SFINAETrap Trap(*this);
1181 // C++ [temp.arg.explicit]p3:
1182 // Template arguments that are present shall be specified in the
1183 // declaration order of their corresponding template-parameters. The
1184 // template argument list shall not specify more template-arguments than
1185 // there are corresponding template-parameters.
1186 TemplateArgumentListBuilder Builder(TemplateParams,
1187 ExplicitTemplateArgs.size());
1189 // Enter a new template instantiation context where we check the
1190 // explicitly-specified template arguments against this function template,
1191 // and then substitute them into the function parameter types.
1192 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1193 FunctionTemplate, Deduced.data(), Deduced.size(),
1194 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1195 if (Inst)
1196 return TDK_InstantiationDepth;
1198 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1200 if (CheckTemplateArgumentList(FunctionTemplate,
1201 SourceLocation(),
1202 ExplicitTemplateArgs,
1203 true,
1204 Builder) || Trap.hasErrorOccurred()) {
1205 unsigned Index = Builder.structuredSize();
1206 if (Index >= TemplateParams->size())
1207 Index = TemplateParams->size() - 1;
1208 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1209 return TDK_InvalidExplicitArguments;
1212 // Form the template argument list from the explicitly-specified
1213 // template arguments.
1214 TemplateArgumentList *ExplicitArgumentList
1215 = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1216 Info.reset(ExplicitArgumentList);
1218 // Instantiate the types of each of the function parameters given the
1219 // explicitly-specified template arguments.
1220 for (FunctionDecl::param_iterator P = Function->param_begin(),
1221 PEnd = Function->param_end();
1222 P != PEnd;
1223 ++P) {
1224 QualType ParamType
1225 = SubstType((*P)->getType(),
1226 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1227 (*P)->getLocation(), (*P)->getDeclName());
1228 if (ParamType.isNull() || Trap.hasErrorOccurred())
1229 return TDK_SubstitutionFailure;
1231 ParamTypes.push_back(ParamType);
1234 // If the caller wants a full function type back, instantiate the return
1235 // type and form that function type.
1236 if (FunctionType) {
1237 // FIXME: exception-specifications?
1238 const FunctionProtoType *Proto
1239 = Function->getType()->getAs<FunctionProtoType>();
1240 assert(Proto && "Function template does not have a prototype?");
1242 QualType ResultType
1243 = SubstType(Proto->getResultType(),
1244 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1245 Function->getTypeSpecStartLoc(),
1246 Function->getDeclName());
1247 if (ResultType.isNull() || Trap.hasErrorOccurred())
1248 return TDK_SubstitutionFailure;
1250 *FunctionType = BuildFunctionType(ResultType,
1251 ParamTypes.data(), ParamTypes.size(),
1252 Proto->isVariadic(),
1253 Proto->getTypeQuals(),
1254 Function->getLocation(),
1255 Function->getDeclName(),
1256 Proto->getExtInfo());
1257 if (FunctionType->isNull() || Trap.hasErrorOccurred())
1258 return TDK_SubstitutionFailure;
1261 // C++ [temp.arg.explicit]p2:
1262 // Trailing template arguments that can be deduced (14.8.2) may be
1263 // omitted from the list of explicit template-arguments. If all of the
1264 // template arguments can be deduced, they may all be omitted; in this
1265 // case, the empty template argument list <> itself may also be omitted.
1267 // Take all of the explicitly-specified arguments and put them into the
1268 // set of deduced template arguments.
1269 Deduced.reserve(TemplateParams->size());
1270 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1271 Deduced.push_back(ExplicitArgumentList->get(I));
1273 return TDK_Success;
1276 /// \brief Allocate a TemplateArgumentLoc where all locations have
1277 /// been initialized to the given location.
1279 /// \param S The semantic analysis object.
1281 /// \param The template argument we are producing template argument
1282 /// location information for.
1284 /// \param NTTPType For a declaration template argument, the type of
1285 /// the non-type template parameter that corresponds to this template
1286 /// argument.
1288 /// \param Loc The source location to use for the resulting template
1289 /// argument.
1290 static TemplateArgumentLoc
1291 getTrivialTemplateArgumentLoc(Sema &S,
1292 const TemplateArgument &Arg,
1293 QualType NTTPType,
1294 SourceLocation Loc) {
1295 switch (Arg.getKind()) {
1296 case TemplateArgument::Null:
1297 llvm_unreachable("Can't get a NULL template argument here");
1298 break;
1300 case TemplateArgument::Type:
1301 return TemplateArgumentLoc(Arg,
1302 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1304 case TemplateArgument::Declaration: {
1305 Expr *E
1306 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1307 .takeAs<Expr>();
1308 return TemplateArgumentLoc(TemplateArgument(E), E);
1311 case TemplateArgument::Integral: {
1312 Expr *E
1313 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1314 return TemplateArgumentLoc(TemplateArgument(E), E);
1317 case TemplateArgument::Template:
1318 return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1320 case TemplateArgument::Expression:
1321 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1323 case TemplateArgument::Pack:
1324 llvm_unreachable("Template parameter packs are not yet supported");
1327 return TemplateArgumentLoc();
1330 /// \brief Finish template argument deduction for a function template,
1331 /// checking the deduced template arguments for completeness and forming
1332 /// the function template specialization.
1333 Sema::TemplateDeductionResult
1334 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1335 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1336 unsigned NumExplicitlySpecified,
1337 FunctionDecl *&Specialization,
1338 TemplateDeductionInfo &Info) {
1339 TemplateParameterList *TemplateParams
1340 = FunctionTemplate->getTemplateParameters();
1342 // Template argument deduction for function templates in a SFINAE context.
1343 // Trap any errors that might occur.
1344 SFINAETrap Trap(*this);
1346 // Enter a new template instantiation context while we instantiate the
1347 // actual function declaration.
1348 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1349 FunctionTemplate, Deduced.data(), Deduced.size(),
1350 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1351 if (Inst)
1352 return TDK_InstantiationDepth;
1354 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1356 // C++ [temp.deduct.type]p2:
1357 // [...] or if any template argument remains neither deduced nor
1358 // explicitly specified, template argument deduction fails.
1359 TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1360 for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1361 NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1362 if (!Deduced[I].isNull()) {
1363 if (I < NumExplicitlySpecified ||
1364 Deduced[I].getKind() == TemplateArgument::Type) {
1365 // We have already fully type-checked and converted this
1366 // argument (because it was explicitly-specified) or no
1367 // additional checking is necessary (because it's a template
1368 // type parameter). Just record the presence of this
1369 // parameter.
1370 Builder.Append(Deduced[I]);
1371 continue;
1374 // We have deduced this argument, so it still needs to be
1375 // checked and converted.
1377 // First, for a non-type template parameter type that is
1378 // initialized by a declaration, we need the type of the
1379 // corresponding non-type template parameter.
1380 QualType NTTPType;
1381 if (NonTypeTemplateParmDecl *NTTP
1382 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1383 if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1384 NTTPType = NTTP->getType();
1385 if (NTTPType->isDependentType()) {
1386 TemplateArgumentList TemplateArgs(Context, Builder,
1387 /*TakeArgs=*/false);
1388 NTTPType = SubstType(NTTPType,
1389 MultiLevelTemplateArgumentList(TemplateArgs),
1390 NTTP->getLocation(),
1391 NTTP->getDeclName());
1392 if (NTTPType.isNull()) {
1393 Info.Param = makeTemplateParameter(Param);
1394 Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1395 /*TakeArgs=*/true));
1396 return TDK_SubstitutionFailure;
1402 // Convert the deduced template argument into a template
1403 // argument that we can check, almost as if the user had written
1404 // the template argument explicitly.
1405 TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1406 Deduced[I],
1407 NTTPType,
1408 SourceLocation());
1410 // Check the template argument, converting it as necessary.
1411 if (CheckTemplateArgument(Param, Arg,
1412 FunctionTemplate,
1413 FunctionTemplate->getLocation(),
1414 FunctionTemplate->getSourceRange().getEnd(),
1415 Builder,
1416 Deduced[I].wasDeducedFromArrayBound()
1417 ? CTAK_DeducedFromArrayBound
1418 : CTAK_Deduced)) {
1419 Info.Param = makeTemplateParameter(
1420 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1421 Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1422 /*TakeArgs=*/true));
1423 return TDK_SubstitutionFailure;
1426 continue;
1429 // Substitute into the default template argument, if available.
1430 TemplateArgumentLoc DefArg
1431 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1432 FunctionTemplate->getLocation(),
1433 FunctionTemplate->getSourceRange().getEnd(),
1434 Param,
1435 Builder);
1437 // If there was no default argument, deduction is incomplete.
1438 if (DefArg.getArgument().isNull()) {
1439 Info.Param = makeTemplateParameter(
1440 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1441 return TDK_Incomplete;
1444 // Check whether we can actually use the default argument.
1445 if (CheckTemplateArgument(Param, DefArg,
1446 FunctionTemplate,
1447 FunctionTemplate->getLocation(),
1448 FunctionTemplate->getSourceRange().getEnd(),
1449 Builder,
1450 CTAK_Deduced)) {
1451 Info.Param = makeTemplateParameter(
1452 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1453 Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1454 /*TakeArgs=*/true));
1455 return TDK_SubstitutionFailure;
1458 // If we get here, we successfully used the default template argument.
1461 // Form the template argument list from the deduced template arguments.
1462 TemplateArgumentList *DeducedArgumentList
1463 = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1464 Info.reset(DeducedArgumentList);
1466 // Substitute the deduced template arguments into the function template
1467 // declaration to produce the function template specialization.
1468 DeclContext *Owner = FunctionTemplate->getDeclContext();
1469 if (FunctionTemplate->getFriendObjectKind())
1470 Owner = FunctionTemplate->getLexicalDeclContext();
1471 Specialization = cast_or_null<FunctionDecl>(
1472 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1473 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1474 if (!Specialization)
1475 return TDK_SubstitutionFailure;
1477 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1478 FunctionTemplate->getCanonicalDecl());
1480 // If the template argument list is owned by the function template
1481 // specialization, release it.
1482 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1483 !Trap.hasErrorOccurred())
1484 Info.take();
1486 // There may have been an error that did not prevent us from constructing a
1487 // declaration. Mark the declaration invalid and return with a substitution
1488 // failure.
1489 if (Trap.hasErrorOccurred()) {
1490 Specialization->setInvalidDecl(true);
1491 return TDK_SubstitutionFailure;
1494 return TDK_Success;
1497 /// Gets the type of a function for template-argument-deducton
1498 /// purposes when it's considered as part of an overload set.
1499 static QualType GetTypeOfFunction(ASTContext &Context,
1500 const OverloadExpr::FindResult &R,
1501 FunctionDecl *Fn) {
1502 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1503 if (Method->isInstance()) {
1504 // An instance method that's referenced in a form that doesn't
1505 // look like a member pointer is just invalid.
1506 if (!R.HasFormOfMemberPointer) return QualType();
1508 return Context.getMemberPointerType(Fn->getType(),
1509 Context.getTypeDeclType(Method->getParent()).getTypePtr());
1512 if (!R.IsAddressOfOperand) return Fn->getType();
1513 return Context.getPointerType(Fn->getType());
1516 /// Apply the deduction rules for overload sets.
1518 /// \return the null type if this argument should be treated as an
1519 /// undeduced context
1520 static QualType
1521 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1522 Expr *Arg, QualType ParamType) {
1524 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
1526 OverloadExpr *Ovl = R.Expression;
1528 // If there were explicit template arguments, we can only find
1529 // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1530 // unambiguously name a full specialization.
1531 if (Ovl->hasExplicitTemplateArgs()) {
1532 // But we can still look for an explicit specialization.
1533 if (FunctionDecl *ExplicitSpec
1534 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1535 return GetTypeOfFunction(S.Context, R, ExplicitSpec);
1536 return QualType();
1539 // C++0x [temp.deduct.call]p6:
1540 // When P is a function type, pointer to function type, or pointer
1541 // to member function type:
1543 if (!ParamType->isFunctionType() &&
1544 !ParamType->isFunctionPointerType() &&
1545 !ParamType->isMemberFunctionPointerType())
1546 return QualType();
1548 QualType Match;
1549 for (UnresolvedSetIterator I = Ovl->decls_begin(),
1550 E = Ovl->decls_end(); I != E; ++I) {
1551 NamedDecl *D = (*I)->getUnderlyingDecl();
1553 // - If the argument is an overload set containing one or more
1554 // function templates, the parameter is treated as a
1555 // non-deduced context.
1556 if (isa<FunctionTemplateDecl>(D))
1557 return QualType();
1559 FunctionDecl *Fn = cast<FunctionDecl>(D);
1560 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
1561 if (ArgType.isNull()) continue;
1563 // - If the argument is an overload set (not containing function
1564 // templates), trial argument deduction is attempted using each
1565 // of the members of the set. If deduction succeeds for only one
1566 // of the overload set members, that member is used as the
1567 // argument value for the deduction. If deduction succeeds for
1568 // more than one member of the overload set the parameter is
1569 // treated as a non-deduced context.
1571 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1572 // Type deduction is done independently for each P/A pair, and
1573 // the deduced template argument values are then combined.
1574 // So we do not reject deductions which were made elsewhere.
1575 llvm::SmallVector<DeducedTemplateArgument, 8>
1576 Deduced(TemplateParams->size());
1577 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1578 unsigned TDF = 0;
1580 Sema::TemplateDeductionResult Result
1581 = DeduceTemplateArguments(S, TemplateParams,
1582 ParamType, ArgType,
1583 Info, Deduced, TDF);
1584 if (Result) continue;
1585 if (!Match.isNull()) return QualType();
1586 Match = ArgType;
1589 return Match;
1592 /// \brief Perform template argument deduction from a function call
1593 /// (C++ [temp.deduct.call]).
1595 /// \param FunctionTemplate the function template for which we are performing
1596 /// template argument deduction.
1598 /// \param ExplicitTemplateArguments the explicit template arguments provided
1599 /// for this call.
1601 /// \param Args the function call arguments
1603 /// \param NumArgs the number of arguments in Args
1605 /// \param Name the name of the function being called. This is only significant
1606 /// when the function template is a conversion function template, in which
1607 /// case this routine will also perform template argument deduction based on
1608 /// the function to which
1610 /// \param Specialization if template argument deduction was successful,
1611 /// this will be set to the function template specialization produced by
1612 /// template argument deduction.
1614 /// \param Info the argument will be updated to provide additional information
1615 /// about template argument deduction.
1617 /// \returns the result of template argument deduction.
1618 Sema::TemplateDeductionResult
1619 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1620 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1621 Expr **Args, unsigned NumArgs,
1622 FunctionDecl *&Specialization,
1623 TemplateDeductionInfo &Info) {
1624 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1626 // C++ [temp.deduct.call]p1:
1627 // Template argument deduction is done by comparing each function template
1628 // parameter type (call it P) with the type of the corresponding argument
1629 // of the call (call it A) as described below.
1630 unsigned CheckArgs = NumArgs;
1631 if (NumArgs < Function->getMinRequiredArguments())
1632 return TDK_TooFewArguments;
1633 else if (NumArgs > Function->getNumParams()) {
1634 const FunctionProtoType *Proto
1635 = Function->getType()->getAs<FunctionProtoType>();
1636 if (!Proto->isVariadic())
1637 return TDK_TooManyArguments;
1639 CheckArgs = Function->getNumParams();
1642 // The types of the parameters from which we will perform template argument
1643 // deduction.
1644 LocalInstantiationScope InstScope(*this);
1645 TemplateParameterList *TemplateParams
1646 = FunctionTemplate->getTemplateParameters();
1647 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1648 llvm::SmallVector<QualType, 4> ParamTypes;
1649 unsigned NumExplicitlySpecified = 0;
1650 if (ExplicitTemplateArgs) {
1651 TemplateDeductionResult Result =
1652 SubstituteExplicitTemplateArguments(FunctionTemplate,
1653 *ExplicitTemplateArgs,
1654 Deduced,
1655 ParamTypes,
1657 Info);
1658 if (Result)
1659 return Result;
1661 NumExplicitlySpecified = Deduced.size();
1662 } else {
1663 // Just fill in the parameter types from the function declaration.
1664 for (unsigned I = 0; I != CheckArgs; ++I)
1665 ParamTypes.push_back(Function->getParamDecl(I)->getType());
1668 // Deduce template arguments from the function parameters.
1669 Deduced.resize(TemplateParams->size());
1670 for (unsigned I = 0; I != CheckArgs; ++I) {
1671 QualType ParamType = ParamTypes[I];
1672 QualType ArgType = Args[I]->getType();
1674 // Overload sets usually make this parameter an undeduced
1675 // context, but there are sometimes special circumstances.
1676 if (ArgType == Context.OverloadTy) {
1677 ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1678 Args[I], ParamType);
1679 if (ArgType.isNull())
1680 continue;
1683 // C++ [temp.deduct.call]p2:
1684 // If P is not a reference type:
1685 QualType CanonParamType = Context.getCanonicalType(ParamType);
1686 bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1687 if (!ParamWasReference) {
1688 // - If A is an array type, the pointer type produced by the
1689 // array-to-pointer standard conversion (4.2) is used in place of
1690 // A for type deduction; otherwise,
1691 if (ArgType->isArrayType())
1692 ArgType = Context.getArrayDecayedType(ArgType);
1693 // - If A is a function type, the pointer type produced by the
1694 // function-to-pointer standard conversion (4.3) is used in place
1695 // of A for type deduction; otherwise,
1696 else if (ArgType->isFunctionType())
1697 ArgType = Context.getPointerType(ArgType);
1698 else {
1699 // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1700 // type are ignored for type deduction.
1701 QualType CanonArgType = Context.getCanonicalType(ArgType);
1702 if (CanonArgType.getLocalCVRQualifiers())
1703 ArgType = CanonArgType.getLocalUnqualifiedType();
1707 // C++0x [temp.deduct.call]p3:
1708 // If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1709 // are ignored for type deduction.
1710 if (CanonParamType.getLocalCVRQualifiers())
1711 ParamType = CanonParamType.getLocalUnqualifiedType();
1712 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1713 // [...] If P is a reference type, the type referred to by P is used
1714 // for type deduction.
1715 ParamType = ParamRefType->getPointeeType();
1717 // [...] If P is of the form T&&, where T is a template parameter, and
1718 // the argument is an lvalue, the type A& is used in place of A for
1719 // type deduction.
1720 if (isa<RValueReferenceType>(ParamRefType) &&
1721 ParamRefType->getAs<TemplateTypeParmType>() &&
1722 Args[I]->isLvalue(Context) == Expr::LV_Valid)
1723 ArgType = Context.getLValueReferenceType(ArgType);
1726 // C++0x [temp.deduct.call]p4:
1727 // In general, the deduction process attempts to find template argument
1728 // values that will make the deduced A identical to A (after the type A
1729 // is transformed as described above). [...]
1730 unsigned TDF = TDF_SkipNonDependent;
1732 // - If the original P is a reference type, the deduced A (i.e., the
1733 // type referred to by the reference) can be more cv-qualified than
1734 // the transformed A.
1735 if (ParamWasReference)
1736 TDF |= TDF_ParamWithReferenceType;
1737 // - The transformed A can be another pointer or pointer to member
1738 // type that can be converted to the deduced A via a qualification
1739 // conversion (4.4).
1740 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
1741 ArgType->isObjCObjectPointerType())
1742 TDF |= TDF_IgnoreQualifiers;
1743 // - If P is a class and P has the form simple-template-id, then the
1744 // transformed A can be a derived class of the deduced A. Likewise,
1745 // if P is a pointer to a class of the form simple-template-id, the
1746 // transformed A can be a pointer to a derived class pointed to by
1747 // the deduced A.
1748 if (isSimpleTemplateIdType(ParamType) ||
1749 (isa<PointerType>(ParamType) &&
1750 isSimpleTemplateIdType(
1751 ParamType->getAs<PointerType>()->getPointeeType())))
1752 TDF |= TDF_DerivedClass;
1754 if (TemplateDeductionResult Result
1755 = ::DeduceTemplateArguments(*this, TemplateParams,
1756 ParamType, ArgType, Info, Deduced,
1757 TDF))
1758 return Result;
1760 // FIXME: we need to check that the deduced A is the same as A,
1761 // modulo the various allowed differences.
1764 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1765 NumExplicitlySpecified,
1766 Specialization, Info);
1769 /// \brief Deduce template arguments when taking the address of a function
1770 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1771 /// a template.
1773 /// \param FunctionTemplate the function template for which we are performing
1774 /// template argument deduction.
1776 /// \param ExplicitTemplateArguments the explicitly-specified template
1777 /// arguments.
1779 /// \param ArgFunctionType the function type that will be used as the
1780 /// "argument" type (A) when performing template argument deduction from the
1781 /// function template's function type. This type may be NULL, if there is no
1782 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1784 /// \param Specialization if template argument deduction was successful,
1785 /// this will be set to the function template specialization produced by
1786 /// template argument deduction.
1788 /// \param Info the argument will be updated to provide additional information
1789 /// about template argument deduction.
1791 /// \returns the result of template argument deduction.
1792 Sema::TemplateDeductionResult
1793 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1794 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1795 QualType ArgFunctionType,
1796 FunctionDecl *&Specialization,
1797 TemplateDeductionInfo &Info) {
1798 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1799 TemplateParameterList *TemplateParams
1800 = FunctionTemplate->getTemplateParameters();
1801 QualType FunctionType = Function->getType();
1803 // Substitute any explicit template arguments.
1804 LocalInstantiationScope InstScope(*this);
1805 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1806 unsigned NumExplicitlySpecified = 0;
1807 llvm::SmallVector<QualType, 4> ParamTypes;
1808 if (ExplicitTemplateArgs) {
1809 if (TemplateDeductionResult Result
1810 = SubstituteExplicitTemplateArguments(FunctionTemplate,
1811 *ExplicitTemplateArgs,
1812 Deduced, ParamTypes,
1813 &FunctionType, Info))
1814 return Result;
1816 NumExplicitlySpecified = Deduced.size();
1819 // Template argument deduction for function templates in a SFINAE context.
1820 // Trap any errors that might occur.
1821 SFINAETrap Trap(*this);
1823 Deduced.resize(TemplateParams->size());
1825 if (!ArgFunctionType.isNull()) {
1826 // Deduce template arguments from the function type.
1827 if (TemplateDeductionResult Result
1828 = ::DeduceTemplateArguments(*this, TemplateParams,
1829 FunctionType, ArgFunctionType, Info,
1830 Deduced, 0))
1831 return Result;
1834 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1835 NumExplicitlySpecified,
1836 Specialization, Info);
1839 /// \brief Deduce template arguments for a templated conversion
1840 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
1841 /// conversion function template specialization.
1842 Sema::TemplateDeductionResult
1843 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1844 QualType ToType,
1845 CXXConversionDecl *&Specialization,
1846 TemplateDeductionInfo &Info) {
1847 CXXConversionDecl *Conv
1848 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1849 QualType FromType = Conv->getConversionType();
1851 // Canonicalize the types for deduction.
1852 QualType P = Context.getCanonicalType(FromType);
1853 QualType A = Context.getCanonicalType(ToType);
1855 // C++0x [temp.deduct.conv]p3:
1856 // If P is a reference type, the type referred to by P is used for
1857 // type deduction.
1858 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1859 P = PRef->getPointeeType();
1861 // C++0x [temp.deduct.conv]p3:
1862 // If A is a reference type, the type referred to by A is used
1863 // for type deduction.
1864 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1865 A = ARef->getPointeeType();
1866 // C++ [temp.deduct.conv]p2:
1868 // If A is not a reference type:
1869 else {
1870 assert(!A->isReferenceType() && "Reference types were handled above");
1872 // - If P is an array type, the pointer type produced by the
1873 // array-to-pointer standard conversion (4.2) is used in place
1874 // of P for type deduction; otherwise,
1875 if (P->isArrayType())
1876 P = Context.getArrayDecayedType(P);
1877 // - If P is a function type, the pointer type produced by the
1878 // function-to-pointer standard conversion (4.3) is used in
1879 // place of P for type deduction; otherwise,
1880 else if (P->isFunctionType())
1881 P = Context.getPointerType(P);
1882 // - If P is a cv-qualified type, the top level cv-qualifiers of
1883 // P’s type are ignored for type deduction.
1884 else
1885 P = P.getUnqualifiedType();
1887 // C++0x [temp.deduct.conv]p3:
1888 // If A is a cv-qualified type, the top level cv-qualifiers of A’s
1889 // type are ignored for type deduction.
1890 A = A.getUnqualifiedType();
1893 // Template argument deduction for function templates in a SFINAE context.
1894 // Trap any errors that might occur.
1895 SFINAETrap Trap(*this);
1897 // C++ [temp.deduct.conv]p1:
1898 // Template argument deduction is done by comparing the return
1899 // type of the template conversion function (call it P) with the
1900 // type that is required as the result of the conversion (call it
1901 // A) as described in 14.8.2.4.
1902 TemplateParameterList *TemplateParams
1903 = FunctionTemplate->getTemplateParameters();
1904 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1905 Deduced.resize(TemplateParams->size());
1907 // C++0x [temp.deduct.conv]p4:
1908 // In general, the deduction process attempts to find template
1909 // argument values that will make the deduced A identical to
1910 // A. However, there are two cases that allow a difference:
1911 unsigned TDF = 0;
1912 // - If the original A is a reference type, A can be more
1913 // cv-qualified than the deduced A (i.e., the type referred to
1914 // by the reference)
1915 if (ToType->isReferenceType())
1916 TDF |= TDF_ParamWithReferenceType;
1917 // - The deduced A can be another pointer or pointer to member
1918 // type that can be converted to A via a qualification
1919 // conversion.
1921 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1922 // both P and A are pointers or member pointers. In this case, we
1923 // just ignore cv-qualifiers completely).
1924 if ((P->isPointerType() && A->isPointerType()) ||
1925 (P->isMemberPointerType() && P->isMemberPointerType()))
1926 TDF |= TDF_IgnoreQualifiers;
1927 if (TemplateDeductionResult Result
1928 = ::DeduceTemplateArguments(*this, TemplateParams,
1929 P, A, Info, Deduced, TDF))
1930 return Result;
1932 // FIXME: we need to check that the deduced A is the same as A,
1933 // modulo the various allowed differences.
1935 // Finish template argument deduction.
1936 LocalInstantiationScope InstScope(*this);
1937 FunctionDecl *Spec = 0;
1938 TemplateDeductionResult Result
1939 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
1940 Info);
1941 Specialization = cast_or_null<CXXConversionDecl>(Spec);
1942 return Result;
1945 /// \brief Deduce template arguments for a function template when there is
1946 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1948 /// \param FunctionTemplate the function template for which we are performing
1949 /// template argument deduction.
1951 /// \param ExplicitTemplateArguments the explicitly-specified template
1952 /// arguments.
1954 /// \param Specialization if template argument deduction was successful,
1955 /// this will be set to the function template specialization produced by
1956 /// template argument deduction.
1958 /// \param Info the argument will be updated to provide additional information
1959 /// about template argument deduction.
1961 /// \returns the result of template argument deduction.
1962 Sema::TemplateDeductionResult
1963 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1964 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1965 FunctionDecl *&Specialization,
1966 TemplateDeductionInfo &Info) {
1967 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1968 QualType(), Specialization, Info);
1971 /// \brief Stores the result of comparing the qualifiers of two types.
1972 enum DeductionQualifierComparison {
1973 NeitherMoreQualified = 0,
1974 ParamMoreQualified,
1975 ArgMoreQualified
1978 /// \brief Deduce the template arguments during partial ordering by comparing
1979 /// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1981 /// \param S the semantic analysis object within which we are deducing
1983 /// \param TemplateParams the template parameters that we are deducing
1985 /// \param ParamIn the parameter type
1987 /// \param ArgIn the argument type
1989 /// \param Info information about the template argument deduction itself
1991 /// \param Deduced the deduced template arguments
1993 /// \returns the result of template argument deduction so far. Note that a
1994 /// "success" result means that template argument deduction has not yet failed,
1995 /// but it may still fail, later, for other reasons.
1996 static Sema::TemplateDeductionResult
1997 DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1998 TemplateParameterList *TemplateParams,
1999 QualType ParamIn, QualType ArgIn,
2000 TemplateDeductionInfo &Info,
2001 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2002 llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2003 CanQualType Param = S.Context.getCanonicalType(ParamIn);
2004 CanQualType Arg = S.Context.getCanonicalType(ArgIn);
2006 // C++0x [temp.deduct.partial]p5:
2007 // Before the partial ordering is done, certain transformations are
2008 // performed on the types used for partial ordering:
2009 // - If P is a reference type, P is replaced by the type referred to.
2010 CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
2011 if (!ParamRef.isNull())
2012 Param = ParamRef->getPointeeType();
2014 // - If A is a reference type, A is replaced by the type referred to.
2015 CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
2016 if (!ArgRef.isNull())
2017 Arg = ArgRef->getPointeeType();
2019 if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2020 // C++0x [temp.deduct.partial]p6:
2021 // If both P and A were reference types (before being replaced with the
2022 // type referred to above), determine which of the two types (if any) is
2023 // more cv-qualified than the other; otherwise the types are considered to
2024 // be equally cv-qualified for partial ordering purposes. The result of this
2025 // determination will be used below.
2027 // We save this information for later, using it only when deduction
2028 // succeeds in both directions.
2029 DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2030 if (Param.isMoreQualifiedThan(Arg))
2031 QualifierResult = ParamMoreQualified;
2032 else if (Arg.isMoreQualifiedThan(Param))
2033 QualifierResult = ArgMoreQualified;
2034 QualifierComparisons->push_back(QualifierResult);
2037 // C++0x [temp.deduct.partial]p7:
2038 // Remove any top-level cv-qualifiers:
2039 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
2040 // version of P.
2041 Param = Param.getUnqualifiedType();
2042 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
2043 // version of A.
2044 Arg = Arg.getUnqualifiedType();
2046 // C++0x [temp.deduct.partial]p8:
2047 // Using the resulting types P and A the deduction is then done as
2048 // described in 14.9.2.5. If deduction succeeds for a given type, the type
2049 // from the argument template is considered to be at least as specialized
2050 // as the type from the parameter template.
2051 return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2052 Deduced, TDF_None);
2055 static void
2056 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2057 bool OnlyDeduced,
2058 unsigned Level,
2059 llvm::SmallVectorImpl<bool> &Deduced);
2061 /// \brief Determine whether the function template \p FT1 is at least as
2062 /// specialized as \p FT2.
2063 static bool isAtLeastAsSpecializedAs(Sema &S,
2064 SourceLocation Loc,
2065 FunctionTemplateDecl *FT1,
2066 FunctionTemplateDecl *FT2,
2067 TemplatePartialOrderingContext TPOC,
2068 llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2069 FunctionDecl *FD1 = FT1->getTemplatedDecl();
2070 FunctionDecl *FD2 = FT2->getTemplatedDecl();
2071 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2072 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2074 assert(Proto1 && Proto2 && "Function templates must have prototypes");
2075 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2076 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2077 Deduced.resize(TemplateParams->size());
2079 // C++0x [temp.deduct.partial]p3:
2080 // The types used to determine the ordering depend on the context in which
2081 // the partial ordering is done:
2082 TemplateDeductionInfo Info(S.Context, Loc);
2083 switch (TPOC) {
2084 case TPOC_Call: {
2085 // - In the context of a function call, the function parameter types are
2086 // used.
2087 unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2088 for (unsigned I = 0; I != NumParams; ++I)
2089 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2090 TemplateParams,
2091 Proto2->getArgType(I),
2092 Proto1->getArgType(I),
2093 Info,
2094 Deduced,
2095 QualifierComparisons))
2096 return false;
2098 break;
2101 case TPOC_Conversion:
2102 // - In the context of a call to a conversion operator, the return types
2103 // of the conversion function templates are used.
2104 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2105 TemplateParams,
2106 Proto2->getResultType(),
2107 Proto1->getResultType(),
2108 Info,
2109 Deduced,
2110 QualifierComparisons))
2111 return false;
2112 break;
2114 case TPOC_Other:
2115 // - In other contexts (14.6.6.2) the function template’s function type
2116 // is used.
2117 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2118 TemplateParams,
2119 FD2->getType(),
2120 FD1->getType(),
2121 Info,
2122 Deduced,
2123 QualifierComparisons))
2124 return false;
2125 break;
2128 // C++0x [temp.deduct.partial]p11:
2129 // In most cases, all template parameters must have values in order for
2130 // deduction to succeed, but for partial ordering purposes a template
2131 // parameter may remain without a value provided it is not used in the
2132 // types being used for partial ordering. [ Note: a template parameter used
2133 // in a non-deduced context is considered used. -end note]
2134 unsigned ArgIdx = 0, NumArgs = Deduced.size();
2135 for (; ArgIdx != NumArgs; ++ArgIdx)
2136 if (Deduced[ArgIdx].isNull())
2137 break;
2139 if (ArgIdx == NumArgs) {
2140 // All template arguments were deduced. FT1 is at least as specialized
2141 // as FT2.
2142 return true;
2145 // Figure out which template parameters were used.
2146 llvm::SmallVector<bool, 4> UsedParameters;
2147 UsedParameters.resize(TemplateParams->size());
2148 switch (TPOC) {
2149 case TPOC_Call: {
2150 unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2151 for (unsigned I = 0; I != NumParams; ++I)
2152 ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2153 TemplateParams->getDepth(),
2154 UsedParameters);
2155 break;
2158 case TPOC_Conversion:
2159 ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2160 TemplateParams->getDepth(),
2161 UsedParameters);
2162 break;
2164 case TPOC_Other:
2165 ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2166 TemplateParams->getDepth(),
2167 UsedParameters);
2168 break;
2171 for (; ArgIdx != NumArgs; ++ArgIdx)
2172 // If this argument had no value deduced but was used in one of the types
2173 // used for partial ordering, then deduction fails.
2174 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2175 return false;
2177 return true;
2181 /// \brief Returns the more specialized function template according
2182 /// to the rules of function template partial ordering (C++ [temp.func.order]).
2184 /// \param FT1 the first function template
2186 /// \param FT2 the second function template
2188 /// \param TPOC the context in which we are performing partial ordering of
2189 /// function templates.
2191 /// \returns the more specialized function template. If neither
2192 /// template is more specialized, returns NULL.
2193 FunctionTemplateDecl *
2194 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2195 FunctionTemplateDecl *FT2,
2196 SourceLocation Loc,
2197 TemplatePartialOrderingContext TPOC) {
2198 llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2199 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2200 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2201 &QualifierComparisons);
2203 if (Better1 != Better2) // We have a clear winner
2204 return Better1? FT1 : FT2;
2206 if (!Better1 && !Better2) // Neither is better than the other
2207 return 0;
2210 // C++0x [temp.deduct.partial]p10:
2211 // If for each type being considered a given template is at least as
2212 // specialized for all types and more specialized for some set of types and
2213 // the other template is not more specialized for any types or is not at
2214 // least as specialized for any types, then the given template is more
2215 // specialized than the other template. Otherwise, neither template is more
2216 // specialized than the other.
2217 Better1 = false;
2218 Better2 = false;
2219 for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2220 // C++0x [temp.deduct.partial]p9:
2221 // If, for a given type, deduction succeeds in both directions (i.e., the
2222 // types are identical after the transformations above) and if the type
2223 // from the argument template is more cv-qualified than the type from the
2224 // parameter template (as described above) that type is considered to be
2225 // more specialized than the other. If neither type is more cv-qualified
2226 // than the other then neither type is more specialized than the other.
2227 switch (QualifierComparisons[I]) {
2228 case NeitherMoreQualified:
2229 break;
2231 case ParamMoreQualified:
2232 Better1 = true;
2233 if (Better2)
2234 return 0;
2235 break;
2237 case ArgMoreQualified:
2238 Better2 = true;
2239 if (Better1)
2240 return 0;
2241 break;
2245 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2246 if (Better1)
2247 return FT1;
2248 else if (Better2)
2249 return FT2;
2250 else
2251 return 0;
2254 /// \brief Determine if the two templates are equivalent.
2255 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2256 if (T1 == T2)
2257 return true;
2259 if (!T1 || !T2)
2260 return false;
2262 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2265 /// \brief Retrieve the most specialized of the given function template
2266 /// specializations.
2268 /// \param SpecBegin the start iterator of the function template
2269 /// specializations that we will be comparing.
2271 /// \param SpecEnd the end iterator of the function template
2272 /// specializations, paired with \p SpecBegin.
2274 /// \param TPOC the partial ordering context to use to compare the function
2275 /// template specializations.
2277 /// \param Loc the location where the ambiguity or no-specializations
2278 /// diagnostic should occur.
2280 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
2281 /// no matching candidates.
2283 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2284 /// occurs.
2286 /// \param CandidateDiag partial diagnostic used for each function template
2287 /// specialization that is a candidate in the ambiguous ordering. One parameter
2288 /// in this diagnostic should be unbound, which will correspond to the string
2289 /// describing the template arguments for the function template specialization.
2291 /// \param Index if non-NULL and the result of this function is non-nULL,
2292 /// receives the index corresponding to the resulting function template
2293 /// specialization.
2295 /// \returns the most specialized function template specialization, if
2296 /// found. Otherwise, returns SpecEnd.
2298 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2299 /// template argument deduction.
2300 UnresolvedSetIterator
2301 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2302 UnresolvedSetIterator SpecEnd,
2303 TemplatePartialOrderingContext TPOC,
2304 SourceLocation Loc,
2305 const PartialDiagnostic &NoneDiag,
2306 const PartialDiagnostic &AmbigDiag,
2307 const PartialDiagnostic &CandidateDiag) {
2308 if (SpecBegin == SpecEnd) {
2309 Diag(Loc, NoneDiag);
2310 return SpecEnd;
2313 if (SpecBegin + 1 == SpecEnd)
2314 return SpecBegin;
2316 // Find the function template that is better than all of the templates it
2317 // has been compared to.
2318 UnresolvedSetIterator Best = SpecBegin;
2319 FunctionTemplateDecl *BestTemplate
2320 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2321 assert(BestTemplate && "Not a function template specialization?");
2322 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2323 FunctionTemplateDecl *Challenger
2324 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2325 assert(Challenger && "Not a function template specialization?");
2326 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2327 Loc, TPOC),
2328 Challenger)) {
2329 Best = I;
2330 BestTemplate = Challenger;
2334 // Make sure that the "best" function template is more specialized than all
2335 // of the others.
2336 bool Ambiguous = false;
2337 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2338 FunctionTemplateDecl *Challenger
2339 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2340 if (I != Best &&
2341 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2342 Loc, TPOC),
2343 BestTemplate)) {
2344 Ambiguous = true;
2345 break;
2349 if (!Ambiguous) {
2350 // We found an answer. Return it.
2351 return Best;
2354 // Diagnose the ambiguity.
2355 Diag(Loc, AmbigDiag);
2357 // FIXME: Can we order the candidates in some sane way?
2358 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2359 Diag((*I)->getLocation(), CandidateDiag)
2360 << getTemplateArgumentBindingsText(
2361 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2362 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2364 return SpecEnd;
2367 /// \brief Returns the more specialized class template partial specialization
2368 /// according to the rules of partial ordering of class template partial
2369 /// specializations (C++ [temp.class.order]).
2371 /// \param PS1 the first class template partial specialization
2373 /// \param PS2 the second class template partial specialization
2375 /// \returns the more specialized class template partial specialization. If
2376 /// neither partial specialization is more specialized, returns NULL.
2377 ClassTemplatePartialSpecializationDecl *
2378 Sema::getMoreSpecializedPartialSpecialization(
2379 ClassTemplatePartialSpecializationDecl *PS1,
2380 ClassTemplatePartialSpecializationDecl *PS2,
2381 SourceLocation Loc) {
2382 // C++ [temp.class.order]p1:
2383 // For two class template partial specializations, the first is at least as
2384 // specialized as the second if, given the following rewrite to two
2385 // function templates, the first function template is at least as
2386 // specialized as the second according to the ordering rules for function
2387 // templates (14.6.6.2):
2388 // - the first function template has the same template parameters as the
2389 // first partial specialization and has a single function parameter
2390 // whose type is a class template specialization with the template
2391 // arguments of the first partial specialization, and
2392 // - the second function template has the same template parameters as the
2393 // second partial specialization and has a single function parameter
2394 // whose type is a class template specialization with the template
2395 // arguments of the second partial specialization.
2397 // Rather than synthesize function templates, we merely perform the
2398 // equivalent partial ordering by performing deduction directly on
2399 // the template arguments of the class template partial
2400 // specializations. This computation is slightly simpler than the
2401 // general problem of function template partial ordering, because
2402 // class template partial specializations are more constrained. We
2403 // know that every template parameter is deducible from the class
2404 // template partial specialization's template arguments, for
2405 // example.
2406 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2407 TemplateDeductionInfo Info(Context, Loc);
2409 QualType PT1 = PS1->getInjectedSpecializationType();
2410 QualType PT2 = PS2->getInjectedSpecializationType();
2412 // Determine whether PS1 is at least as specialized as PS2
2413 Deduced.resize(PS2->getTemplateParameters()->size());
2414 bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2415 PS2->getTemplateParameters(),
2416 PT2,
2417 PT1,
2418 Info,
2419 Deduced,
2421 if (Better1)
2422 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2423 PS1->getTemplateArgs(),
2424 Deduced, Info);
2426 // Determine whether PS2 is at least as specialized as PS1
2427 Deduced.clear();
2428 Deduced.resize(PS1->getTemplateParameters()->size());
2429 bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2430 PS1->getTemplateParameters(),
2431 PT1,
2432 PT2,
2433 Info,
2434 Deduced,
2436 if (Better2)
2437 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2438 PS2->getTemplateArgs(),
2439 Deduced, Info);
2441 if (Better1 == Better2)
2442 return 0;
2444 return Better1? PS1 : PS2;
2447 static void
2448 MarkUsedTemplateParameters(Sema &SemaRef,
2449 const TemplateArgument &TemplateArg,
2450 bool OnlyDeduced,
2451 unsigned Depth,
2452 llvm::SmallVectorImpl<bool> &Used);
2454 /// \brief Mark the template parameters that are used by the given
2455 /// expression.
2456 static void
2457 MarkUsedTemplateParameters(Sema &SemaRef,
2458 const Expr *E,
2459 bool OnlyDeduced,
2460 unsigned Depth,
2461 llvm::SmallVectorImpl<bool> &Used) {
2462 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2463 // find other occurrences of template parameters.
2464 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2465 if (!DRE)
2466 return;
2468 const NonTypeTemplateParmDecl *NTTP
2469 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2470 if (!NTTP)
2471 return;
2473 if (NTTP->getDepth() == Depth)
2474 Used[NTTP->getIndex()] = true;
2477 /// \brief Mark the template parameters that are used by the given
2478 /// nested name specifier.
2479 static void
2480 MarkUsedTemplateParameters(Sema &SemaRef,
2481 NestedNameSpecifier *NNS,
2482 bool OnlyDeduced,
2483 unsigned Depth,
2484 llvm::SmallVectorImpl<bool> &Used) {
2485 if (!NNS)
2486 return;
2488 MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2489 Used);
2490 MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2491 OnlyDeduced, Depth, Used);
2494 /// \brief Mark the template parameters that are used by the given
2495 /// template name.
2496 static void
2497 MarkUsedTemplateParameters(Sema &SemaRef,
2498 TemplateName Name,
2499 bool OnlyDeduced,
2500 unsigned Depth,
2501 llvm::SmallVectorImpl<bool> &Used) {
2502 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2503 if (TemplateTemplateParmDecl *TTP
2504 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2505 if (TTP->getDepth() == Depth)
2506 Used[TTP->getIndex()] = true;
2508 return;
2511 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2512 MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2513 Depth, Used);
2514 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2515 MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2516 Depth, Used);
2519 /// \brief Mark the template parameters that are used by the given
2520 /// type.
2521 static void
2522 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2523 bool OnlyDeduced,
2524 unsigned Depth,
2525 llvm::SmallVectorImpl<bool> &Used) {
2526 if (T.isNull())
2527 return;
2529 // Non-dependent types have nothing deducible
2530 if (!T->isDependentType())
2531 return;
2533 T = SemaRef.Context.getCanonicalType(T);
2534 switch (T->getTypeClass()) {
2535 case Type::Pointer:
2536 MarkUsedTemplateParameters(SemaRef,
2537 cast<PointerType>(T)->getPointeeType(),
2538 OnlyDeduced,
2539 Depth,
2540 Used);
2541 break;
2543 case Type::BlockPointer:
2544 MarkUsedTemplateParameters(SemaRef,
2545 cast<BlockPointerType>(T)->getPointeeType(),
2546 OnlyDeduced,
2547 Depth,
2548 Used);
2549 break;
2551 case Type::LValueReference:
2552 case Type::RValueReference:
2553 MarkUsedTemplateParameters(SemaRef,
2554 cast<ReferenceType>(T)->getPointeeType(),
2555 OnlyDeduced,
2556 Depth,
2557 Used);
2558 break;
2560 case Type::MemberPointer: {
2561 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2562 MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2563 Depth, Used);
2564 MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2565 OnlyDeduced, Depth, Used);
2566 break;
2569 case Type::DependentSizedArray:
2570 MarkUsedTemplateParameters(SemaRef,
2571 cast<DependentSizedArrayType>(T)->getSizeExpr(),
2572 OnlyDeduced, Depth, Used);
2573 // Fall through to check the element type
2575 case Type::ConstantArray:
2576 case Type::IncompleteArray:
2577 MarkUsedTemplateParameters(SemaRef,
2578 cast<ArrayType>(T)->getElementType(),
2579 OnlyDeduced, Depth, Used);
2580 break;
2582 case Type::Vector:
2583 case Type::ExtVector:
2584 MarkUsedTemplateParameters(SemaRef,
2585 cast<VectorType>(T)->getElementType(),
2586 OnlyDeduced, Depth, Used);
2587 break;
2589 case Type::DependentSizedExtVector: {
2590 const DependentSizedExtVectorType *VecType
2591 = cast<DependentSizedExtVectorType>(T);
2592 MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2593 Depth, Used);
2594 MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2595 Depth, Used);
2596 break;
2599 case Type::FunctionProto: {
2600 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2601 MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2602 Depth, Used);
2603 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2604 MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2605 Depth, Used);
2606 break;
2609 case Type::TemplateTypeParm: {
2610 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2611 if (TTP->getDepth() == Depth)
2612 Used[TTP->getIndex()] = true;
2613 break;
2616 case Type::InjectedClassName:
2617 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
2618 // fall through
2620 case Type::TemplateSpecialization: {
2621 const TemplateSpecializationType *Spec
2622 = cast<TemplateSpecializationType>(T);
2623 MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2624 Depth, Used);
2625 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2626 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2627 Used);
2628 break;
2631 case Type::Complex:
2632 if (!OnlyDeduced)
2633 MarkUsedTemplateParameters(SemaRef,
2634 cast<ComplexType>(T)->getElementType(),
2635 OnlyDeduced, Depth, Used);
2636 break;
2638 case Type::DependentName:
2639 if (!OnlyDeduced)
2640 MarkUsedTemplateParameters(SemaRef,
2641 cast<DependentNameType>(T)->getQualifier(),
2642 OnlyDeduced, Depth, Used);
2643 break;
2645 case Type::DependentTemplateSpecialization: {
2646 const DependentTemplateSpecializationType *Spec
2647 = cast<DependentTemplateSpecializationType>(T);
2648 if (!OnlyDeduced)
2649 MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
2650 OnlyDeduced, Depth, Used);
2651 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2652 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2653 Used);
2654 break;
2657 case Type::TypeOf:
2658 if (!OnlyDeduced)
2659 MarkUsedTemplateParameters(SemaRef,
2660 cast<TypeOfType>(T)->getUnderlyingType(),
2661 OnlyDeduced, Depth, Used);
2662 break;
2664 case Type::TypeOfExpr:
2665 if (!OnlyDeduced)
2666 MarkUsedTemplateParameters(SemaRef,
2667 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2668 OnlyDeduced, Depth, Used);
2669 break;
2671 case Type::Decltype:
2672 if (!OnlyDeduced)
2673 MarkUsedTemplateParameters(SemaRef,
2674 cast<DecltypeType>(T)->getUnderlyingExpr(),
2675 OnlyDeduced, Depth, Used);
2676 break;
2678 // None of these types have any template parameters in them.
2679 case Type::Builtin:
2680 case Type::VariableArray:
2681 case Type::FunctionNoProto:
2682 case Type::Record:
2683 case Type::Enum:
2684 case Type::ObjCInterface:
2685 case Type::ObjCObject:
2686 case Type::ObjCObjectPointer:
2687 case Type::UnresolvedUsing:
2688 #define TYPE(Class, Base)
2689 #define ABSTRACT_TYPE(Class, Base)
2690 #define DEPENDENT_TYPE(Class, Base)
2691 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2692 #include "clang/AST/TypeNodes.def"
2693 break;
2697 /// \brief Mark the template parameters that are used by this
2698 /// template argument.
2699 static void
2700 MarkUsedTemplateParameters(Sema &SemaRef,
2701 const TemplateArgument &TemplateArg,
2702 bool OnlyDeduced,
2703 unsigned Depth,
2704 llvm::SmallVectorImpl<bool> &Used) {
2705 switch (TemplateArg.getKind()) {
2706 case TemplateArgument::Null:
2707 case TemplateArgument::Integral:
2708 case TemplateArgument::Declaration:
2709 break;
2711 case TemplateArgument::Type:
2712 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2713 Depth, Used);
2714 break;
2716 case TemplateArgument::Template:
2717 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2718 OnlyDeduced, Depth, Used);
2719 break;
2721 case TemplateArgument::Expression:
2722 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2723 Depth, Used);
2724 break;
2726 case TemplateArgument::Pack:
2727 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2728 PEnd = TemplateArg.pack_end();
2729 P != PEnd; ++P)
2730 MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2731 break;
2735 /// \brief Mark the template parameters can be deduced by the given
2736 /// template argument list.
2738 /// \param TemplateArgs the template argument list from which template
2739 /// parameters will be deduced.
2741 /// \param Deduced a bit vector whose elements will be set to \c true
2742 /// to indicate when the corresponding template parameter will be
2743 /// deduced.
2744 void
2745 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2746 bool OnlyDeduced, unsigned Depth,
2747 llvm::SmallVectorImpl<bool> &Used) {
2748 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2749 ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2750 Depth, Used);
2753 /// \brief Marks all of the template parameters that will be deduced by a
2754 /// call to the given function template.
2755 void
2756 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2757 llvm::SmallVectorImpl<bool> &Deduced) {
2758 TemplateParameterList *TemplateParams
2759 = FunctionTemplate->getTemplateParameters();
2760 Deduced.clear();
2761 Deduced.resize(TemplateParams->size());
2763 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2764 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2765 ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2766 true, TemplateParams->getDepth(), Deduced);