Add CodeGen support for CXXZeroInitValueExpr.
[clang.git] / lib / AST / Expr.cpp
blobb004bde7bd286a339d350b6ce99ff784184e81da
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/TargetInfo.h"
20 using namespace clang;
22 //===----------------------------------------------------------------------===//
23 // Primary Expressions.
24 //===----------------------------------------------------------------------===//
26 /// getValueAsApproximateDouble - This returns the value as an inaccurate
27 /// double. Note that this may cause loss of precision, but is useful for
28 /// debugging dumps, etc.
29 double FloatingLiteral::getValueAsApproximateDouble() const {
30 llvm::APFloat V = getValue();
31 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven);
32 return V.convertToDouble();
36 StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
37 bool Wide, QualType t, SourceLocation firstLoc,
38 SourceLocation lastLoc) :
39 Expr(StringLiteralClass, t) {
40 // OPTIMIZE: could allocate this appended to the StringLiteral.
41 char *AStrData = new char[byteLength];
42 memcpy(AStrData, strData, byteLength);
43 StrData = AStrData;
44 ByteLength = byteLength;
45 IsWide = Wide;
46 firstTokLoc = firstLoc;
47 lastTokLoc = lastLoc;
50 StringLiteral::~StringLiteral() {
51 delete[] StrData;
54 bool UnaryOperator::isPostfix(Opcode Op) {
55 switch (Op) {
56 case PostInc:
57 case PostDec:
58 return true;
59 default:
60 return false;
64 bool UnaryOperator::isPrefix(Opcode Op) {
65 switch (Op) {
66 case PreInc:
67 case PreDec:
68 return true;
69 default:
70 return false;
74 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
75 /// corresponds to, e.g. "sizeof" or "[pre]++".
76 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
77 switch (Op) {
78 default: assert(0 && "Unknown unary operator");
79 case PostInc: return "++";
80 case PostDec: return "--";
81 case PreInc: return "++";
82 case PreDec: return "--";
83 case AddrOf: return "&";
84 case Deref: return "*";
85 case Plus: return "+";
86 case Minus: return "-";
87 case Not: return "~";
88 case LNot: return "!";
89 case Real: return "__real";
90 case Imag: return "__imag";
91 case SizeOf: return "sizeof";
92 case AlignOf: return "alignof";
93 case Extension: return "__extension__";
94 case OffsetOf: return "__builtin_offsetof";
98 //===----------------------------------------------------------------------===//
99 // Postfix Operators.
100 //===----------------------------------------------------------------------===//
103 CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
104 SourceLocation rparenloc)
105 : Expr(CallExprClass, t), NumArgs(numargs) {
106 SubExprs = new Stmt*[numargs+1];
107 SubExprs[FN] = fn;
108 for (unsigned i = 0; i != numargs; ++i)
109 SubExprs[i+ARGS_START] = args[i];
110 RParenLoc = rparenloc;
113 /// setNumArgs - This changes the number of arguments present in this call.
114 /// Any orphaned expressions are deleted by this, and any new operands are set
115 /// to null.
116 void CallExpr::setNumArgs(unsigned NumArgs) {
117 // No change, just return.
118 if (NumArgs == getNumArgs()) return;
120 // If shrinking # arguments, just delete the extras and forgot them.
121 if (NumArgs < getNumArgs()) {
122 for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
123 delete getArg(i);
124 this->NumArgs = NumArgs;
125 return;
128 // Otherwise, we are growing the # arguments. New an bigger argument array.
129 Stmt **NewSubExprs = new Stmt*[NumArgs+1];
130 // Copy over args.
131 for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
132 NewSubExprs[i] = SubExprs[i];
133 // Null out new args.
134 for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
135 NewSubExprs[i] = 0;
137 delete[] SubExprs;
138 SubExprs = NewSubExprs;
139 this->NumArgs = NumArgs;
142 bool CallExpr::isBuiltinConstantExpr() const {
143 // All simple function calls (e.g. func()) are implicitly cast to pointer to
144 // function. As a result, we try and obtain the DeclRefExpr from the
145 // ImplicitCastExpr.
146 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
147 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
148 return false;
150 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
151 if (!DRE)
152 return false;
154 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
155 if (!FDecl)
156 return false;
158 unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
159 if (!builtinID)
160 return false;
162 // We have a builtin that is a constant expression
163 return builtinID == Builtin::BI__builtin___CFStringMakeConstantString ||
164 builtinID == Builtin::BI__builtin_classify_type;
167 bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
168 // The following enum mimics gcc's internal "typeclass.h" file.
169 enum gcc_type_class {
170 no_type_class = -1,
171 void_type_class, integer_type_class, char_type_class,
172 enumeral_type_class, boolean_type_class,
173 pointer_type_class, reference_type_class, offset_type_class,
174 real_type_class, complex_type_class,
175 function_type_class, method_type_class,
176 record_type_class, union_type_class,
177 array_type_class, string_type_class,
178 lang_type_class
180 Result.setIsSigned(true);
182 // All simple function calls (e.g. func()) are implicitly cast to pointer to
183 // function. As a result, we try and obtain the DeclRefExpr from the
184 // ImplicitCastExpr.
185 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
186 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
187 return false;
188 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
189 if (!DRE)
190 return false;
192 // We have a DeclRefExpr.
193 if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
194 // If no argument was supplied, default to "no_type_class". This isn't
195 // ideal, however it's what gcc does.
196 Result = static_cast<uint64_t>(no_type_class);
197 if (NumArgs >= 1) {
198 QualType argType = getArg(0)->getType();
200 if (argType->isVoidType())
201 Result = void_type_class;
202 else if (argType->isEnumeralType())
203 Result = enumeral_type_class;
204 else if (argType->isBooleanType())
205 Result = boolean_type_class;
206 else if (argType->isCharType())
207 Result = string_type_class; // gcc doesn't appear to use char_type_class
208 else if (argType->isIntegerType())
209 Result = integer_type_class;
210 else if (argType->isPointerType())
211 Result = pointer_type_class;
212 else if (argType->isReferenceType())
213 Result = reference_type_class;
214 else if (argType->isRealType())
215 Result = real_type_class;
216 else if (argType->isComplexType())
217 Result = complex_type_class;
218 else if (argType->isFunctionType())
219 Result = function_type_class;
220 else if (argType->isStructureType())
221 Result = record_type_class;
222 else if (argType->isUnionType())
223 Result = union_type_class;
224 else if (argType->isArrayType())
225 Result = array_type_class;
226 else if (argType->isUnionType())
227 Result = union_type_class;
228 else // FIXME: offset_type_class, method_type_class, & lang_type_class?
229 assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
231 return true;
233 return false;
236 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
237 /// corresponds to, e.g. "<<=".
238 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
239 switch (Op) {
240 default: assert(0 && "Unknown binary operator");
241 case Mul: return "*";
242 case Div: return "/";
243 case Rem: return "%";
244 case Add: return "+";
245 case Sub: return "-";
246 case Shl: return "<<";
247 case Shr: return ">>";
248 case LT: return "<";
249 case GT: return ">";
250 case LE: return "<=";
251 case GE: return ">=";
252 case EQ: return "==";
253 case NE: return "!=";
254 case And: return "&";
255 case Xor: return "^";
256 case Or: return "|";
257 case LAnd: return "&&";
258 case LOr: return "||";
259 case Assign: return "=";
260 case MulAssign: return "*=";
261 case DivAssign: return "/=";
262 case RemAssign: return "%=";
263 case AddAssign: return "+=";
264 case SubAssign: return "-=";
265 case ShlAssign: return "<<=";
266 case ShrAssign: return ">>=";
267 case AndAssign: return "&=";
268 case XorAssign: return "^=";
269 case OrAssign: return "|=";
270 case Comma: return ",";
274 InitListExpr::InitListExpr(SourceLocation lbraceloc,
275 Expr **initexprs, unsigned numinits,
276 SourceLocation rbraceloc)
277 : Expr(InitListExprClass, QualType()),
278 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc)
280 for (unsigned i = 0; i != numinits; i++)
281 InitExprs.push_back(initexprs[i]);
284 //===----------------------------------------------------------------------===//
285 // Generic Expression Routines
286 //===----------------------------------------------------------------------===//
288 /// hasLocalSideEffect - Return true if this immediate expression has side
289 /// effects, not counting any sub-expressions.
290 bool Expr::hasLocalSideEffect() const {
291 switch (getStmtClass()) {
292 default:
293 return false;
294 case ParenExprClass:
295 return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
296 case UnaryOperatorClass: {
297 const UnaryOperator *UO = cast<UnaryOperator>(this);
299 switch (UO->getOpcode()) {
300 default: return false;
301 case UnaryOperator::PostInc:
302 case UnaryOperator::PostDec:
303 case UnaryOperator::PreInc:
304 case UnaryOperator::PreDec:
305 return true; // ++/--
307 case UnaryOperator::Deref:
308 // Dereferencing a volatile pointer is a side-effect.
309 return getType().isVolatileQualified();
310 case UnaryOperator::Real:
311 case UnaryOperator::Imag:
312 // accessing a piece of a volatile complex is a side-effect.
313 return UO->getSubExpr()->getType().isVolatileQualified();
315 case UnaryOperator::Extension:
316 return UO->getSubExpr()->hasLocalSideEffect();
319 case BinaryOperatorClass: {
320 const BinaryOperator *BinOp = cast<BinaryOperator>(this);
321 // Consider comma to have side effects if the LHS and RHS both do.
322 if (BinOp->getOpcode() == BinaryOperator::Comma)
323 return BinOp->getLHS()->hasLocalSideEffect() &&
324 BinOp->getRHS()->hasLocalSideEffect();
326 return BinOp->isAssignmentOp();
328 case CompoundAssignOperatorClass:
329 return true;
331 case ConditionalOperatorClass: {
332 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
333 return Exp->getCond()->hasLocalSideEffect()
334 || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
335 || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
338 case MemberExprClass:
339 case ArraySubscriptExprClass:
340 // If the base pointer or element is to a volatile pointer/field, accessing
341 // if is a side effect.
342 return getType().isVolatileQualified();
344 case CallExprClass:
345 // TODO: check attributes for pure/const. "void foo() { strlen("bar"); }"
346 // should warn.
347 return true;
348 case ObjCMessageExprClass:
349 return true;
350 case StmtExprClass: {
351 // Statement exprs don't logically have side effects themselves, but are
352 // sometimes used in macros in ways that give them a type that is unused.
353 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
354 // however, if the result of the stmt expr is dead, we don't want to emit a
355 // warning.
356 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
357 if (!CS->body_empty())
358 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
359 return E->hasLocalSideEffect();
360 return false;
362 case ExplicitCastExprClass:
363 case CXXFunctionalCastExprClass:
364 // If this is a cast to void, check the operand. Otherwise, the result of
365 // the cast is unused.
366 if (getType()->isVoidType())
367 return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
368 return false;
370 case ImplicitCastExprClass:
371 // Check the operand, since implicit casts are inserted by Sema
372 return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
374 case CXXDefaultArgExprClass:
375 return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
379 /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
380 /// incomplete type other than void. Nonarray expressions that can be lvalues:
381 /// - name, where name must be a variable
382 /// - e[i]
383 /// - (e), where e must be an lvalue
384 /// - e.name, where e must be an lvalue
385 /// - e->name
386 /// - *e, the type of e cannot be a function type
387 /// - string-constant
388 /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension]
389 /// - reference type [C++ [expr]]
391 Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
392 // first, check the type (C99 6.3.2.1)
393 if (TR->isFunctionType()) // from isObjectType()
394 return LV_NotObjectType;
396 // Allow qualified void which is an incomplete type other than void (yuck).
397 if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
398 return LV_IncompleteVoidType;
400 if (TR->isReferenceType()) // C++ [expr]
401 return LV_Valid;
403 // the type looks fine, now check the expression
404 switch (getStmtClass()) {
405 case StringLiteralClass: // C99 6.5.1p4
406 return LV_Valid;
407 case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
408 // For vectors, make sure base is an lvalue (i.e. not a function call).
409 if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
410 return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
411 return LV_Valid;
412 case DeclRefExprClass: { // C99 6.5.1p2
413 const Decl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
414 if (isa<VarDecl>(RefdDecl) || isa<ImplicitParamDecl>(RefdDecl))
415 return LV_Valid;
416 break;
418 case MemberExprClass: { // C99 6.5.2.3p4
419 const MemberExpr *m = cast<MemberExpr>(this);
420 return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
422 case UnaryOperatorClass:
423 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
424 return LV_Valid; // C99 6.5.3p4
426 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
427 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
428 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
429 return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU.
430 break;
431 case ParenExprClass: // C99 6.5.1p5
432 return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
433 case CompoundLiteralExprClass: // C99 6.5.2.5p5
434 return LV_Valid;
435 case ExtVectorElementExprClass:
436 if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
437 return LV_DuplicateVectorComponents;
438 return LV_Valid;
439 case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
440 return LV_Valid;
441 case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
442 return LV_Valid;
443 case PredefinedExprClass:
444 return (cast<PredefinedExpr>(this)->getIdentType()
445 == PredefinedExpr::CXXThis
446 ? LV_InvalidExpression : LV_Valid);
447 case CXXDefaultArgExprClass:
448 return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
449 default:
450 break;
452 return LV_InvalidExpression;
455 /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
456 /// does not have an incomplete type, does not have a const-qualified type, and
457 /// if it is a structure or union, does not have any member (including,
458 /// recursively, any member or element of all contained aggregates or unions)
459 /// with a const-qualified type.
460 Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
461 isLvalueResult lvalResult = isLvalue(Ctx);
463 switch (lvalResult) {
464 case LV_Valid: break;
465 case LV_NotObjectType: return MLV_NotObjectType;
466 case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
467 case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
468 case LV_InvalidExpression: return MLV_InvalidExpression;
471 QualType CT = Ctx.getCanonicalType(getType());
473 if (CT.isConstQualified())
474 return MLV_ConstQualified;
475 if (CT->isArrayType())
476 return MLV_ArrayType;
477 if (CT->isIncompleteType())
478 return MLV_IncompleteType;
480 if (const RecordType *r = CT->getAsRecordType()) {
481 if (r->hasConstFields())
482 return MLV_ConstQualified;
484 return MLV_Valid;
487 /// hasGlobalStorage - Return true if this expression has static storage
488 /// duration. This means that the address of this expression is a link-time
489 /// constant.
490 bool Expr::hasGlobalStorage() const {
491 switch (getStmtClass()) {
492 default:
493 return false;
494 case ParenExprClass:
495 return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
496 case ImplicitCastExprClass:
497 return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
498 case CompoundLiteralExprClass:
499 return cast<CompoundLiteralExpr>(this)->isFileScope();
500 case DeclRefExprClass: {
501 const Decl *D = cast<DeclRefExpr>(this)->getDecl();
502 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
503 return VD->hasGlobalStorage();
504 if (isa<FunctionDecl>(D))
505 return true;
506 return false;
508 case MemberExprClass: {
509 const MemberExpr *M = cast<MemberExpr>(this);
510 return !M->isArrow() && M->getBase()->hasGlobalStorage();
512 case ArraySubscriptExprClass:
513 return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
514 case PredefinedExprClass:
515 return true;
516 case CXXDefaultArgExprClass:
517 return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
521 Expr* Expr::IgnoreParens() {
522 Expr* E = this;
523 while (ParenExpr* P = dyn_cast<ParenExpr>(E))
524 E = P->getSubExpr();
526 return E;
529 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
530 /// or CastExprs or ImplicitCastExprs, returning their operand.
531 Expr *Expr::IgnoreParenCasts() {
532 Expr *E = this;
533 while (true) {
534 if (ParenExpr *P = dyn_cast<ParenExpr>(E))
535 E = P->getSubExpr();
536 else if (CastExpr *P = dyn_cast<CastExpr>(E))
537 E = P->getSubExpr();
538 else
539 return E;
544 bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
545 switch (getStmtClass()) {
546 default:
547 if (Loc) *Loc = getLocStart();
548 return false;
549 case ParenExprClass:
550 return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
551 case StringLiteralClass:
552 case ObjCStringLiteralClass:
553 case FloatingLiteralClass:
554 case IntegerLiteralClass:
555 case CharacterLiteralClass:
556 case ImaginaryLiteralClass:
557 case TypesCompatibleExprClass:
558 case CXXBoolLiteralExprClass:
559 case AddrLabelExprClass:
560 return true;
561 case CallExprClass: {
562 const CallExpr *CE = cast<CallExpr>(this);
563 if (CE->isBuiltinConstantExpr())
564 return true;
565 if (Loc) *Loc = getLocStart();
566 return false;
568 case DeclRefExprClass: {
569 const Decl *D = cast<DeclRefExpr>(this)->getDecl();
570 // Accept address of function.
571 if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
572 return true;
573 if (Loc) *Loc = getLocStart();
574 if (isa<VarDecl>(D))
575 return TR->isArrayType();
576 return false;
578 case CompoundLiteralExprClass:
579 if (Loc) *Loc = getLocStart();
580 // Allow "(int []){2,4}", since the array will be converted to a pointer.
581 // Allow "(vector type){2,4}" since the elements are all constant.
582 return TR->isArrayType() || TR->isVectorType();
583 case UnaryOperatorClass: {
584 const UnaryOperator *Exp = cast<UnaryOperator>(this);
586 // C99 6.6p9
587 if (Exp->getOpcode() == UnaryOperator::AddrOf) {
588 if (!Exp->getSubExpr()->hasGlobalStorage()) {
589 if (Loc) *Loc = getLocStart();
590 return false;
592 return true;
595 // Get the operand value. If this is sizeof/alignof, do not evalute the
596 // operand. This affects C99 6.6p3.
597 if (!Exp->isSizeOfAlignOfOp() &&
598 Exp->getOpcode() != UnaryOperator::OffsetOf &&
599 !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
600 return false;
602 switch (Exp->getOpcode()) {
603 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
604 // See C99 6.6p3.
605 default:
606 if (Loc) *Loc = Exp->getOperatorLoc();
607 return false;
608 case UnaryOperator::Extension:
609 return true; // FIXME: this is wrong.
610 case UnaryOperator::SizeOf:
611 case UnaryOperator::AlignOf:
612 case UnaryOperator::OffsetOf:
613 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
614 if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
615 if (Loc) *Loc = Exp->getOperatorLoc();
616 return false;
618 return true;
619 case UnaryOperator::LNot:
620 case UnaryOperator::Plus:
621 case UnaryOperator::Minus:
622 case UnaryOperator::Not:
623 return true;
626 case SizeOfAlignOfTypeExprClass: {
627 const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
628 // alignof always evaluates to a constant.
629 if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
630 !Exp->getArgumentType()->isConstantSizeType()) {
631 if (Loc) *Loc = Exp->getOperatorLoc();
632 return false;
634 return true;
636 case BinaryOperatorClass: {
637 const BinaryOperator *Exp = cast<BinaryOperator>(this);
639 // The LHS of a constant expr is always evaluated and needed.
640 if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
641 return false;
643 if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
644 return false;
645 return true;
647 case ImplicitCastExprClass:
648 case ExplicitCastExprClass:
649 case CXXFunctionalCastExprClass: {
650 const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
651 SourceLocation CastLoc = getLocStart();
652 if (!SubExpr->isConstantExpr(Ctx, Loc)) {
653 if (Loc) *Loc = SubExpr->getLocStart();
654 return false;
656 return true;
658 case ConditionalOperatorClass: {
659 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
660 if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
661 // Handle the GNU extension for missing LHS.
662 !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
663 !Exp->getRHS()->isConstantExpr(Ctx, Loc))
664 return false;
665 return true;
667 case InitListExprClass: {
668 const InitListExpr *Exp = cast<InitListExpr>(this);
669 unsigned numInits = Exp->getNumInits();
670 for (unsigned i = 0; i < numInits; i++) {
671 if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
672 if (Loc) *Loc = Exp->getInit(i)->getLocStart();
673 return false;
676 return true;
678 case CXXDefaultArgExprClass:
679 return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
683 /// isIntegerConstantExpr - this recursive routine will test if an expression is
684 /// an integer constant expression. Note: With the introduction of VLA's in
685 /// C99 the result of the sizeof operator is no longer always a constant
686 /// expression. The generalization of the wording to include any subexpression
687 /// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
688 /// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
689 /// "0 || f()" can be treated as a constant expression. In C90 this expression,
690 /// occurring in a context requiring a constant, would have been a constraint
691 /// violation. FIXME: This routine currently implements C90 semantics.
692 /// To properly implement C99 semantics this routine will need to evaluate
693 /// expressions involving operators previously mentioned.
695 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
696 /// comma, etc
698 /// FIXME: This should ext-warn on overflow during evaluation! ISO C does not
699 /// permit this. This includes things like (int)1e1000
701 /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
702 /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
703 /// cast+dereference.
704 bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
705 SourceLocation *Loc, bool isEvaluated) const {
706 switch (getStmtClass()) {
707 default:
708 if (Loc) *Loc = getLocStart();
709 return false;
710 case ParenExprClass:
711 return cast<ParenExpr>(this)->getSubExpr()->
712 isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
713 case IntegerLiteralClass:
714 Result = cast<IntegerLiteral>(this)->getValue();
715 break;
716 case CharacterLiteralClass: {
717 const CharacterLiteral *CL = cast<CharacterLiteral>(this);
718 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
719 Result = CL->getValue();
720 Result.setIsUnsigned(!getType()->isSignedIntegerType());
721 break;
723 case CXXZeroInitValueExprClass:
724 Result.clear();
725 break;
726 case TypesCompatibleExprClass: {
727 const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
728 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
729 Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
730 break;
732 case CallExprClass: {
733 const CallExpr *CE = cast<CallExpr>(this);
734 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
735 if (CE->isBuiltinClassifyType(Result))
736 break;
737 if (Loc) *Loc = getLocStart();
738 return false;
740 case DeclRefExprClass:
741 if (const EnumConstantDecl *D =
742 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
743 Result = D->getInitVal();
744 break;
746 if (Loc) *Loc = getLocStart();
747 return false;
748 case UnaryOperatorClass: {
749 const UnaryOperator *Exp = cast<UnaryOperator>(this);
751 // Get the operand value. If this is sizeof/alignof, do not evalute the
752 // operand. This affects C99 6.6p3.
753 if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
754 !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
755 return false;
757 switch (Exp->getOpcode()) {
758 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
759 // See C99 6.6p3.
760 default:
761 if (Loc) *Loc = Exp->getOperatorLoc();
762 return false;
763 case UnaryOperator::Extension:
764 return true; // FIXME: this is wrong.
765 case UnaryOperator::SizeOf:
766 case UnaryOperator::AlignOf:
767 // Return the result in the right width.
768 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
770 // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
771 if (Exp->getSubExpr()->getType()->isVoidType()) {
772 Result = 1;
773 break;
776 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
777 if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
778 if (Loc) *Loc = Exp->getOperatorLoc();
779 return false;
782 // Get information about the size or align.
783 if (Exp->getSubExpr()->getType()->isFunctionType()) {
784 // GCC extension: sizeof(function) = 1.
785 Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
786 } else {
787 unsigned CharSize = Ctx.Target.getCharWidth();
788 if (Exp->getOpcode() == UnaryOperator::AlignOf)
789 Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
790 else
791 Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
793 break;
794 case UnaryOperator::LNot: {
795 bool Val = Result == 0;
796 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
797 Result = Val;
798 break;
800 case UnaryOperator::Plus:
801 break;
802 case UnaryOperator::Minus:
803 Result = -Result;
804 break;
805 case UnaryOperator::Not:
806 Result = ~Result;
807 break;
808 case UnaryOperator::OffsetOf:
809 Result = Exp->evaluateOffsetOf(Ctx);
811 break;
813 case SizeOfAlignOfTypeExprClass: {
814 const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
816 // Return the result in the right width.
817 Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
819 // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
820 if (Exp->getArgumentType()->isVoidType()) {
821 Result = 1;
822 break;
825 // alignof always evaluates to a constant, sizeof does if arg is not VLA.
826 if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
827 if (Loc) *Loc = Exp->getOperatorLoc();
828 return false;
831 // Get information about the size or align.
832 if (Exp->getArgumentType()->isFunctionType()) {
833 // GCC extension: sizeof(function) = 1.
834 Result = Exp->isSizeOf() ? 1 : 4;
835 } else {
836 unsigned CharSize = Ctx.Target.getCharWidth();
837 if (Exp->isSizeOf())
838 Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
839 else
840 Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
842 break;
844 case BinaryOperatorClass: {
845 const BinaryOperator *Exp = cast<BinaryOperator>(this);
847 // The LHS of a constant expr is always evaluated and needed.
848 if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
849 return false;
851 llvm::APSInt RHS(Result);
853 // The short-circuiting &&/|| operators don't necessarily evaluate their
854 // RHS. Make sure to pass isEvaluated down correctly.
855 if (Exp->isLogicalOp()) {
856 bool RHSEval;
857 if (Exp->getOpcode() == BinaryOperator::LAnd)
858 RHSEval = Result != 0;
859 else {
860 assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
861 RHSEval = Result == 0;
864 if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
865 isEvaluated & RHSEval))
866 return false;
867 } else {
868 if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
869 return false;
872 switch (Exp->getOpcode()) {
873 default:
874 if (Loc) *Loc = getLocStart();
875 return false;
876 case BinaryOperator::Mul:
877 Result *= RHS;
878 break;
879 case BinaryOperator::Div:
880 if (RHS == 0) {
881 if (!isEvaluated) break;
882 if (Loc) *Loc = getLocStart();
883 return false;
885 Result /= RHS;
886 break;
887 case BinaryOperator::Rem:
888 if (RHS == 0) {
889 if (!isEvaluated) break;
890 if (Loc) *Loc = getLocStart();
891 return false;
893 Result %= RHS;
894 break;
895 case BinaryOperator::Add: Result += RHS; break;
896 case BinaryOperator::Sub: Result -= RHS; break;
897 case BinaryOperator::Shl:
898 Result <<=
899 static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
900 break;
901 case BinaryOperator::Shr:
902 Result >>=
903 static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
904 break;
905 case BinaryOperator::LT: Result = Result < RHS; break;
906 case BinaryOperator::GT: Result = Result > RHS; break;
907 case BinaryOperator::LE: Result = Result <= RHS; break;
908 case BinaryOperator::GE: Result = Result >= RHS; break;
909 case BinaryOperator::EQ: Result = Result == RHS; break;
910 case BinaryOperator::NE: Result = Result != RHS; break;
911 case BinaryOperator::And: Result &= RHS; break;
912 case BinaryOperator::Xor: Result ^= RHS; break;
913 case BinaryOperator::Or: Result |= RHS; break;
914 case BinaryOperator::LAnd:
915 Result = Result != 0 && RHS != 0;
916 break;
917 case BinaryOperator::LOr:
918 Result = Result != 0 || RHS != 0;
919 break;
921 case BinaryOperator::Comma:
922 // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
923 // *except* when they are contained within a subexpression that is not
924 // evaluated". Note that Assignment can never happen due to constraints
925 // on the LHS subexpr, so we don't need to check it here.
926 if (isEvaluated) {
927 if (Loc) *Loc = getLocStart();
928 return false;
931 // The result of the constant expr is the RHS.
932 Result = RHS;
933 return true;
936 assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
937 break;
939 case ImplicitCastExprClass:
940 case ExplicitCastExprClass:
941 case CXXFunctionalCastExprClass: {
942 const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
943 SourceLocation CastLoc = getLocStart();
945 // C99 6.6p6: shall only convert arithmetic types to integer types.
946 if (!SubExpr->getType()->isArithmeticType() ||
947 !getType()->isIntegerType()) {
948 if (Loc) *Loc = SubExpr->getLocStart();
949 return false;
952 uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
954 // Handle simple integer->integer casts.
955 if (SubExpr->getType()->isIntegerType()) {
956 if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
957 return false;
959 // Figure out if this is a truncate, extend or noop cast.
960 // If the input is signed, do a sign extend, noop, or truncate.
961 if (getType()->isBooleanType()) {
962 // Conversion to bool compares against zero.
963 Result = Result != 0;
964 Result.zextOrTrunc(DestWidth);
965 } else if (SubExpr->getType()->isSignedIntegerType())
966 Result.sextOrTrunc(DestWidth);
967 else // If the input is unsigned, do a zero extend, noop, or truncate.
968 Result.zextOrTrunc(DestWidth);
969 break;
972 // Allow floating constants that are the immediate operands of casts or that
973 // are parenthesized.
974 const Expr *Operand = SubExpr;
975 while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
976 Operand = PE->getSubExpr();
978 // If this isn't a floating literal, we can't handle it.
979 const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
980 if (!FL) {
981 if (Loc) *Loc = Operand->getLocStart();
982 return false;
985 // If the destination is boolean, compare against zero.
986 if (getType()->isBooleanType()) {
987 Result = !FL->getValue().isZero();
988 Result.zextOrTrunc(DestWidth);
989 break;
992 // Determine whether we are converting to unsigned or signed.
993 bool DestSigned = getType()->isSignedIntegerType();
995 // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
996 // be called multiple times per AST.
997 uint64_t Space[4];
998 (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
999 llvm::APFloat::rmTowardZero);
1000 Result = llvm::APInt(DestWidth, 4, Space);
1001 break;
1003 case ConditionalOperatorClass: {
1004 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1006 if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1007 return false;
1009 const Expr *TrueExp = Exp->getLHS();
1010 const Expr *FalseExp = Exp->getRHS();
1011 if (Result == 0) std::swap(TrueExp, FalseExp);
1013 // Evaluate the false one first, discard the result.
1014 if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1015 return false;
1016 // Evalute the true one, capture the result.
1017 if (TrueExp &&
1018 !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1019 return false;
1020 break;
1022 case CXXDefaultArgExprClass:
1023 return cast<CXXDefaultArgExpr>(this)
1024 ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1027 // Cases that are valid constant exprs fall through to here.
1028 Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1029 return true;
1032 /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
1033 /// integer constant expression with the value zero, or if this is one that is
1034 /// cast to void*.
1035 bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1036 // Strip off a cast to void*, if it exists.
1037 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1038 // Check that it is a cast to void*.
1039 if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1040 QualType Pointee = PT->getPointeeType();
1041 if (Pointee.getCVRQualifiers() == 0 &&
1042 Pointee->isVoidType() && // to void*
1043 CE->getSubExpr()->getType()->isIntegerType()) // from int.
1044 return CE->getSubExpr()->isNullPointerConstant(Ctx);
1046 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1047 // Ignore the ImplicitCastExpr type entirely.
1048 return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1049 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1050 // Accept ((void*)0) as a null pointer constant, as many other
1051 // implementations do.
1052 return PE->getSubExpr()->isNullPointerConstant(Ctx);
1053 } else if (const CXXDefaultArgExpr *DefaultArg
1054 = dyn_cast<CXXDefaultArgExpr>(this)) {
1055 // See through default argument expressions
1056 return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1059 // This expression must be an integer type.
1060 if (!getType()->isIntegerType())
1061 return false;
1063 // If we have an integer constant expression, we need to *evaluate* it and
1064 // test for the value 0.
1065 llvm::APSInt Val(32);
1066 return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1069 unsigned ExtVectorElementExpr::getNumElements() const {
1070 if (const VectorType *VT = getType()->getAsVectorType())
1071 return VT->getNumElements();
1072 return 1;
1075 /// containsDuplicateElements - Return true if any element access is repeated.
1076 bool ExtVectorElementExpr::containsDuplicateElements() const {
1077 const char *compStr = Accessor.getName();
1078 unsigned length = strlen(compStr);
1080 for (unsigned i = 0; i < length-1; i++) {
1081 const char *s = compStr+i;
1082 for (const char c = *s++; *s; s++)
1083 if (c == *s)
1084 return true;
1086 return false;
1089 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1090 void ExtVectorElementExpr::getEncodedElementAccess(
1091 llvm::SmallVectorImpl<unsigned> &Elts) const {
1092 const char *compStr = Accessor.getName();
1094 bool isHi = !strcmp(compStr, "hi");
1095 bool isLo = !strcmp(compStr, "lo");
1096 bool isEven = !strcmp(compStr, "e");
1097 bool isOdd = !strcmp(compStr, "o");
1099 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1100 uint64_t Index;
1102 if (isHi)
1103 Index = e + i;
1104 else if (isLo)
1105 Index = i;
1106 else if (isEven)
1107 Index = 2 * i;
1108 else if (isOdd)
1109 Index = 2 * i + 1;
1110 else
1111 Index = ExtVectorType::getAccessorIdx(compStr[i]);
1113 Elts.push_back(Index);
1117 // constructor for instance messages.
1118 ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1119 QualType retType, ObjCMethodDecl *mproto,
1120 SourceLocation LBrac, SourceLocation RBrac,
1121 Expr **ArgExprs, unsigned nargs)
1122 : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1123 MethodProto(mproto) {
1124 NumArgs = nargs;
1125 SubExprs = new Stmt*[NumArgs+1];
1126 SubExprs[RECEIVER] = receiver;
1127 if (NumArgs) {
1128 for (unsigned i = 0; i != NumArgs; ++i)
1129 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1131 LBracloc = LBrac;
1132 RBracloc = RBrac;
1135 // constructor for class messages.
1136 // FIXME: clsName should be typed to ObjCInterfaceType
1137 ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1138 QualType retType, ObjCMethodDecl *mproto,
1139 SourceLocation LBrac, SourceLocation RBrac,
1140 Expr **ArgExprs, unsigned nargs)
1141 : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1142 MethodProto(mproto) {
1143 NumArgs = nargs;
1144 SubExprs = new Stmt*[NumArgs+1];
1145 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1146 if (NumArgs) {
1147 for (unsigned i = 0; i != NumArgs; ++i)
1148 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1150 LBracloc = LBrac;
1151 RBracloc = RBrac;
1154 // constructor for class messages.
1155 ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1156 QualType retType, ObjCMethodDecl *mproto,
1157 SourceLocation LBrac, SourceLocation RBrac,
1158 Expr **ArgExprs, unsigned nargs)
1159 : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1160 MethodProto(mproto) {
1161 NumArgs = nargs;
1162 SubExprs = new Stmt*[NumArgs+1];
1163 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1164 if (NumArgs) {
1165 for (unsigned i = 0; i != NumArgs; ++i)
1166 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1168 LBracloc = LBrac;
1169 RBracloc = RBrac;
1172 ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1173 uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1174 switch (x & Flags) {
1175 default:
1176 assert(false && "Invalid ObjCMessageExpr.");
1177 case IsInstMeth:
1178 return ClassInfo(0, 0);
1179 case IsClsMethDeclUnknown:
1180 return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1181 case IsClsMethDeclKnown: {
1182 ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1183 return ClassInfo(D, D->getIdentifier());
1188 bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1189 return getCond()->getIntegerConstantExprValue(C) != 0;
1192 static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1194 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1195 QualType Ty = ME->getBase()->getType();
1197 RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1198 const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1199 FieldDecl *FD = ME->getMemberDecl();
1201 // FIXME: This is linear time.
1202 unsigned i = 0, e = 0;
1203 for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1204 if (RD->getMember(i) == FD)
1205 break;
1208 return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1209 } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1210 const Expr *Base = ASE->getBase();
1212 int64_t size = C.getTypeSize(ASE->getType());
1213 size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1215 return size + evaluateOffsetOf(C, Base);
1216 } else if (isa<CompoundLiteralExpr>(E))
1217 return 0;
1219 assert(0 && "Unknown offsetof subexpression!");
1220 return 0;
1223 int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1225 assert(Opc == OffsetOf && "Unary operator not offsetof!");
1227 unsigned CharSize = C.Target.getCharWidth();
1228 return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1231 //===----------------------------------------------------------------------===//
1232 // Child Iterators for iterating over subexpressions/substatements
1233 //===----------------------------------------------------------------------===//
1235 // DeclRefExpr
1236 Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1237 Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1239 // ObjCIvarRefExpr
1240 Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1241 Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1243 // ObjCPropertyRefExpr
1244 Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1245 Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1247 // PredefinedExpr
1248 Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1249 Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1251 // IntegerLiteral
1252 Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1253 Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1255 // CharacterLiteral
1256 Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1257 Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1259 // FloatingLiteral
1260 Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1261 Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1263 // ImaginaryLiteral
1264 Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1265 Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1267 // StringLiteral
1268 Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1269 Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1271 // ParenExpr
1272 Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1273 Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1275 // UnaryOperator
1276 Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1277 Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1279 // SizeOfAlignOfTypeExpr
1280 Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1281 // If the type is a VLA type (and not a typedef), the size expression of the
1282 // VLA needs to be treated as an executable expression.
1283 if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1284 return child_iterator(T);
1285 else
1286 return child_iterator();
1288 Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1289 return child_iterator();
1292 // ArraySubscriptExpr
1293 Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1294 return &SubExprs[0];
1296 Stmt::child_iterator ArraySubscriptExpr::child_end() {
1297 return &SubExprs[0]+END_EXPR;
1300 // CallExpr
1301 Stmt::child_iterator CallExpr::child_begin() {
1302 return &SubExprs[0];
1304 Stmt::child_iterator CallExpr::child_end() {
1305 return &SubExprs[0]+NumArgs+ARGS_START;
1308 // MemberExpr
1309 Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1310 Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1312 // ExtVectorElementExpr
1313 Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1314 Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1316 // CompoundLiteralExpr
1317 Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1318 Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1320 // CastExpr
1321 Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1322 Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1324 // BinaryOperator
1325 Stmt::child_iterator BinaryOperator::child_begin() {
1326 return &SubExprs[0];
1328 Stmt::child_iterator BinaryOperator::child_end() {
1329 return &SubExprs[0]+END_EXPR;
1332 // ConditionalOperator
1333 Stmt::child_iterator ConditionalOperator::child_begin() {
1334 return &SubExprs[0];
1336 Stmt::child_iterator ConditionalOperator::child_end() {
1337 return &SubExprs[0]+END_EXPR;
1340 // AddrLabelExpr
1341 Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1342 Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1344 // StmtExpr
1345 Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1346 Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1348 // TypesCompatibleExpr
1349 Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1350 return child_iterator();
1353 Stmt::child_iterator TypesCompatibleExpr::child_end() {
1354 return child_iterator();
1357 // ChooseExpr
1358 Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1359 Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1361 // OverloadExpr
1362 Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1363 Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1365 // ShuffleVectorExpr
1366 Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1367 return &SubExprs[0];
1369 Stmt::child_iterator ShuffleVectorExpr::child_end() {
1370 return &SubExprs[0]+NumExprs;
1373 // VAArgExpr
1374 Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1375 Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1377 // InitListExpr
1378 Stmt::child_iterator InitListExpr::child_begin() {
1379 return InitExprs.size() ? &InitExprs[0] : 0;
1381 Stmt::child_iterator InitListExpr::child_end() {
1382 return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1385 // ObjCStringLiteral
1386 Stmt::child_iterator ObjCStringLiteral::child_begin() {
1387 return child_iterator();
1389 Stmt::child_iterator ObjCStringLiteral::child_end() {
1390 return child_iterator();
1393 // ObjCEncodeExpr
1394 Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1395 Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1397 // ObjCSelectorExpr
1398 Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1399 return child_iterator();
1401 Stmt::child_iterator ObjCSelectorExpr::child_end() {
1402 return child_iterator();
1405 // ObjCProtocolExpr
1406 Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1407 return child_iterator();
1409 Stmt::child_iterator ObjCProtocolExpr::child_end() {
1410 return child_iterator();
1413 // ObjCMessageExpr
1414 Stmt::child_iterator ObjCMessageExpr::child_begin() {
1415 return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1417 Stmt::child_iterator ObjCMessageExpr::child_end() {
1418 return &SubExprs[0]+ARGS_START+getNumArgs();