Fix an infinite loop, caused by unintended syntax bug (the 'break;' after 'default...
[clang.git] / lib / Sema / SemaChecking.cpp
blobae2fef21c4e5c0a842f01487b73f9ff99622821e
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Sema/Sema.h"
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Analysis/Analyses/FormatString.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "clang/Basic/TargetBuiltins.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Basic/ConvertUTF.h"
37 #include <limits>
38 using namespace clang;
39 using namespace sema;
41 /// getLocationOfStringLiteralByte - Return a source location that points to the
42 /// specified byte of the specified string literal.
43 ///
44 /// Strings are amazingly complex. They can be formed from multiple tokens and
45 /// can have escape sequences in them in addition to the usual trigraph and
46 /// escaped newline business. This routine handles this complexity.
47 ///
48 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49 unsigned ByteNo) const {
50 assert(!SL->isWide() && "This doesn't work for wide strings yet");
52 // Loop over all of the tokens in this string until we find the one that
53 // contains the byte we're looking for.
54 unsigned TokNo = 0;
55 while (1) {
56 assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57 SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
59 // Get the spelling of the string so that we can get the data that makes up
60 // the string literal, not the identifier for the macro it is potentially
61 // expanded through.
62 SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
64 // Re-lex the token to get its length and original spelling.
65 std::pair<FileID, unsigned> LocInfo =
66 SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67 bool Invalid = false;
68 llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69 if (Invalid)
70 return StrTokSpellingLoc;
72 const char *StrData = Buffer.data()+LocInfo.second;
74 // Create a langops struct and enable trigraphs. This is sufficient for
75 // relexing tokens.
76 LangOptions LangOpts;
77 LangOpts.Trigraphs = true;
79 // Create a lexer starting at the beginning of this token.
80 Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81 Buffer.end());
82 Token TheTok;
83 TheLexer.LexFromRawLexer(TheTok);
85 // Use the StringLiteralParser to compute the length of the string in bytes.
86 StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87 unsigned TokNumBytes = SLP.GetStringLength();
89 // If the byte is in this token, return the location of the byte.
90 if (ByteNo < TokNumBytes ||
91 (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92 unsigned Offset =
93 StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94 /*Complain=*/false);
96 // Now that we know the offset of the token in the spelling, use the
97 // preprocessor to get the offset in the original source.
98 return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
101 // Move to the next string token.
102 ++TokNo;
103 ByteNo -= TokNumBytes;
107 /// CheckablePrintfAttr - does a function call have a "printf" attribute
108 /// and arguments that merit checking?
109 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110 if (Format->getType() == "printf") return true;
111 if (Format->getType() == "printf0") {
112 // printf0 allows null "format" string; if so don't check format/args
113 unsigned format_idx = Format->getFormatIdx() - 1;
114 // Does the index refer to the implicit object argument?
115 if (isa<CXXMemberCallExpr>(TheCall)) {
116 if (format_idx == 0)
117 return false;
118 --format_idx;
120 if (format_idx < TheCall->getNumArgs()) {
121 Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122 if (!Format->isNullPointerConstant(Context,
123 Expr::NPC_ValueDependentIsNull))
124 return true;
127 return false;
130 ExprResult
131 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132 ExprResult TheCallResult(Owned(TheCall));
134 // Find out if any arguments are required to be integer constant expressions.
135 unsigned ICEArguments = 0;
136 ASTContext::GetBuiltinTypeError Error;
137 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
138 if (Error != ASTContext::GE_None)
139 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
141 // If any arguments are required to be ICE's, check and diagnose.
142 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
143 // Skip arguments not required to be ICE's.
144 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
146 llvm::APSInt Result;
147 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
148 return true;
149 ICEArguments &= ~(1 << ArgNo);
152 switch (BuiltinID) {
153 case Builtin::BI__builtin___CFStringMakeConstantString:
154 assert(TheCall->getNumArgs() == 1 &&
155 "Wrong # arguments to builtin CFStringMakeConstantString");
156 if (CheckObjCString(TheCall->getArg(0)))
157 return ExprError();
158 break;
159 case Builtin::BI__builtin_stdarg_start:
160 case Builtin::BI__builtin_va_start:
161 if (SemaBuiltinVAStart(TheCall))
162 return ExprError();
163 break;
164 case Builtin::BI__builtin_isgreater:
165 case Builtin::BI__builtin_isgreaterequal:
166 case Builtin::BI__builtin_isless:
167 case Builtin::BI__builtin_islessequal:
168 case Builtin::BI__builtin_islessgreater:
169 case Builtin::BI__builtin_isunordered:
170 if (SemaBuiltinUnorderedCompare(TheCall))
171 return ExprError();
172 break;
173 case Builtin::BI__builtin_fpclassify:
174 if (SemaBuiltinFPClassification(TheCall, 6))
175 return ExprError();
176 break;
177 case Builtin::BI__builtin_isfinite:
178 case Builtin::BI__builtin_isinf:
179 case Builtin::BI__builtin_isinf_sign:
180 case Builtin::BI__builtin_isnan:
181 case Builtin::BI__builtin_isnormal:
182 if (SemaBuiltinFPClassification(TheCall, 1))
183 return ExprError();
184 break;
185 case Builtin::BI__builtin_shufflevector:
186 return SemaBuiltinShuffleVector(TheCall);
187 // TheCall will be freed by the smart pointer here, but that's fine, since
188 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
189 case Builtin::BI__builtin_prefetch:
190 if (SemaBuiltinPrefetch(TheCall))
191 return ExprError();
192 break;
193 case Builtin::BI__builtin_object_size:
194 if (SemaBuiltinObjectSize(TheCall))
195 return ExprError();
196 break;
197 case Builtin::BI__builtin_longjmp:
198 if (SemaBuiltinLongjmp(TheCall))
199 return ExprError();
200 break;
201 case Builtin::BI__sync_fetch_and_add:
202 case Builtin::BI__sync_fetch_and_sub:
203 case Builtin::BI__sync_fetch_and_or:
204 case Builtin::BI__sync_fetch_and_and:
205 case Builtin::BI__sync_fetch_and_xor:
206 case Builtin::BI__sync_add_and_fetch:
207 case Builtin::BI__sync_sub_and_fetch:
208 case Builtin::BI__sync_and_and_fetch:
209 case Builtin::BI__sync_or_and_fetch:
210 case Builtin::BI__sync_xor_and_fetch:
211 case Builtin::BI__sync_val_compare_and_swap:
212 case Builtin::BI__sync_bool_compare_and_swap:
213 case Builtin::BI__sync_lock_test_and_set:
214 case Builtin::BI__sync_lock_release:
215 return SemaBuiltinAtomicOverloaded(move(TheCallResult));
218 // Since the target specific builtins for each arch overlap, only check those
219 // of the arch we are compiling for.
220 if (BuiltinID >= Builtin::FirstTSBuiltin) {
221 switch (Context.Target.getTriple().getArch()) {
222 case llvm::Triple::arm:
223 case llvm::Triple::thumb:
224 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
225 return ExprError();
226 break;
227 default:
228 break;
232 return move(TheCallResult);
235 // Get the valid immediate range for the specified NEON type code.
236 static unsigned RFT(unsigned t, bool shift = false) {
237 bool quad = t & 0x10;
239 switch (t & 0x7) {
240 case 0: // i8
241 return shift ? 7 : (8 << (int)quad) - 1;
242 case 1: // i16
243 return shift ? 15 : (4 << (int)quad) - 1;
244 case 2: // i32
245 return shift ? 31 : (2 << (int)quad) - 1;
246 case 3: // i64
247 return shift ? 63 : (1 << (int)quad) - 1;
248 case 4: // f32
249 assert(!shift && "cannot shift float types!");
250 return (2 << (int)quad) - 1;
251 case 5: // poly8
252 assert(!shift && "cannot shift polynomial types!");
253 return (8 << (int)quad) - 1;
254 case 6: // poly16
255 assert(!shift && "cannot shift polynomial types!");
256 return (4 << (int)quad) - 1;
257 case 7: // float16
258 assert(!shift && "cannot shift float types!");
259 return (4 << (int)quad) - 1;
261 return 0;
264 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
265 llvm::APSInt Result;
267 unsigned mask = 0;
268 unsigned TV = 0;
269 switch (BuiltinID) {
270 #define GET_NEON_OVERLOAD_CHECK
271 #include "clang/Basic/arm_neon.inc"
272 #undef GET_NEON_OVERLOAD_CHECK
275 // For NEON intrinsics which are overloaded on vector element type, validate
276 // the immediate which specifies which variant to emit.
277 if (mask) {
278 unsigned ArgNo = TheCall->getNumArgs()-1;
279 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
280 return true;
282 TV = Result.getLimitedValue(32);
283 if ((TV > 31) || (mask & (1 << TV)) == 0)
284 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
285 << TheCall->getArg(ArgNo)->getSourceRange();
288 // For NEON intrinsics which take an immediate value as part of the
289 // instruction, range check them here.
290 unsigned i = 0, l = 0, u = 0;
291 switch (BuiltinID) {
292 default: return false;
293 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
294 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
295 case ARM::BI__builtin_arm_vcvtr_f:
296 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
297 #define GET_NEON_IMMEDIATE_CHECK
298 #include "clang/Basic/arm_neon.inc"
299 #undef GET_NEON_IMMEDIATE_CHECK
302 // Check that the immediate argument is actually a constant.
303 if (SemaBuiltinConstantArg(TheCall, i, Result))
304 return true;
306 // Range check against the upper/lower values for this isntruction.
307 unsigned Val = Result.getZExtValue();
308 if (Val < l || Val > (u + l))
309 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
310 << l << u+l << TheCall->getArg(i)->getSourceRange();
312 // FIXME: VFP Intrinsics should error if VFP not present.
313 return false;
316 /// CheckFunctionCall - Check a direct function call for various correctness
317 /// and safety properties not strictly enforced by the C type system.
318 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
319 // Get the IdentifierInfo* for the called function.
320 IdentifierInfo *FnInfo = FDecl->getIdentifier();
322 // None of the checks below are needed for functions that don't have
323 // simple names (e.g., C++ conversion functions).
324 if (!FnInfo)
325 return false;
327 // FIXME: This mechanism should be abstracted to be less fragile and
328 // more efficient. For example, just map function ids to custom
329 // handlers.
331 // Printf and scanf checking.
332 for (specific_attr_iterator<FormatAttr>
333 i = FDecl->specific_attr_begin<FormatAttr>(),
334 e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
336 const FormatAttr *Format = *i;
337 const bool b = Format->getType() == "scanf";
338 if (b || CheckablePrintfAttr(Format, TheCall)) {
339 bool HasVAListArg = Format->getFirstArg() == 0;
340 CheckPrintfScanfArguments(TheCall, HasVAListArg,
341 Format->getFormatIdx() - 1,
342 HasVAListArg ? 0 : Format->getFirstArg() - 1,
343 !b);
347 for (specific_attr_iterator<NonNullAttr>
348 i = FDecl->specific_attr_begin<NonNullAttr>(),
349 e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
350 CheckNonNullArguments(*i, TheCall);
353 return false;
356 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
357 // Printf checking.
358 const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
359 if (!Format)
360 return false;
362 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
363 if (!V)
364 return false;
366 QualType Ty = V->getType();
367 if (!Ty->isBlockPointerType())
368 return false;
370 const bool b = Format->getType() == "scanf";
371 if (!b && !CheckablePrintfAttr(Format, TheCall))
372 return false;
374 bool HasVAListArg = Format->getFirstArg() == 0;
375 CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
376 HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
378 return false;
381 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
382 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
383 /// type of its first argument. The main ActOnCallExpr routines have already
384 /// promoted the types of arguments because all of these calls are prototyped as
385 /// void(...).
387 /// This function goes through and does final semantic checking for these
388 /// builtins,
389 ExprResult
390 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
391 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
392 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
393 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
395 // Ensure that we have at least one argument to do type inference from.
396 if (TheCall->getNumArgs() < 1) {
397 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
398 << 0 << 1 << TheCall->getNumArgs()
399 << TheCall->getCallee()->getSourceRange();
400 return ExprError();
403 // Inspect the first argument of the atomic builtin. This should always be
404 // a pointer type, whose element is an integral scalar or pointer type.
405 // Because it is a pointer type, we don't have to worry about any implicit
406 // casts here.
407 // FIXME: We don't allow floating point scalars as input.
408 Expr *FirstArg = TheCall->getArg(0);
409 if (!FirstArg->getType()->isPointerType()) {
410 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
411 << FirstArg->getType() << FirstArg->getSourceRange();
412 return ExprError();
415 QualType ValType =
416 FirstArg->getType()->getAs<PointerType>()->getPointeeType();
417 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
418 !ValType->isBlockPointerType()) {
419 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
420 << FirstArg->getType() << FirstArg->getSourceRange();
421 return ExprError();
424 // The majority of builtins return a value, but a few have special return
425 // types, so allow them to override appropriately below.
426 QualType ResultType = ValType;
428 // We need to figure out which concrete builtin this maps onto. For example,
429 // __sync_fetch_and_add with a 2 byte object turns into
430 // __sync_fetch_and_add_2.
431 #define BUILTIN_ROW(x) \
432 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
433 Builtin::BI##x##_8, Builtin::BI##x##_16 }
435 static const unsigned BuiltinIndices[][5] = {
436 BUILTIN_ROW(__sync_fetch_and_add),
437 BUILTIN_ROW(__sync_fetch_and_sub),
438 BUILTIN_ROW(__sync_fetch_and_or),
439 BUILTIN_ROW(__sync_fetch_and_and),
440 BUILTIN_ROW(__sync_fetch_and_xor),
442 BUILTIN_ROW(__sync_add_and_fetch),
443 BUILTIN_ROW(__sync_sub_and_fetch),
444 BUILTIN_ROW(__sync_and_and_fetch),
445 BUILTIN_ROW(__sync_or_and_fetch),
446 BUILTIN_ROW(__sync_xor_and_fetch),
448 BUILTIN_ROW(__sync_val_compare_and_swap),
449 BUILTIN_ROW(__sync_bool_compare_and_swap),
450 BUILTIN_ROW(__sync_lock_test_and_set),
451 BUILTIN_ROW(__sync_lock_release)
453 #undef BUILTIN_ROW
455 // Determine the index of the size.
456 unsigned SizeIndex;
457 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
458 case 1: SizeIndex = 0; break;
459 case 2: SizeIndex = 1; break;
460 case 4: SizeIndex = 2; break;
461 case 8: SizeIndex = 3; break;
462 case 16: SizeIndex = 4; break;
463 default:
464 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
465 << FirstArg->getType() << FirstArg->getSourceRange();
466 return ExprError();
469 // Each of these builtins has one pointer argument, followed by some number of
470 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
471 // that we ignore. Find out which row of BuiltinIndices to read from as well
472 // as the number of fixed args.
473 unsigned BuiltinID = FDecl->getBuiltinID();
474 unsigned BuiltinIndex, NumFixed = 1;
475 switch (BuiltinID) {
476 default: assert(0 && "Unknown overloaded atomic builtin!");
477 case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
478 case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
479 case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
480 case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
481 case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
483 case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
484 case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
485 case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
486 case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
487 case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
489 case Builtin::BI__sync_val_compare_and_swap:
490 BuiltinIndex = 10;
491 NumFixed = 2;
492 break;
493 case Builtin::BI__sync_bool_compare_and_swap:
494 BuiltinIndex = 11;
495 NumFixed = 2;
496 ResultType = Context.BoolTy;
497 break;
498 case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
499 case Builtin::BI__sync_lock_release:
500 BuiltinIndex = 13;
501 NumFixed = 0;
502 ResultType = Context.VoidTy;
503 break;
506 // Now that we know how many fixed arguments we expect, first check that we
507 // have at least that many.
508 if (TheCall->getNumArgs() < 1+NumFixed) {
509 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
510 << 0 << 1+NumFixed << TheCall->getNumArgs()
511 << TheCall->getCallee()->getSourceRange();
512 return ExprError();
515 // Get the decl for the concrete builtin from this, we can tell what the
516 // concrete integer type we should convert to is.
517 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
518 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
519 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
520 FunctionDecl *NewBuiltinDecl =
521 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
522 TUScope, false, DRE->getLocStart()));
524 // The first argument --- the pointer --- has a fixed type; we
525 // deduce the types of the rest of the arguments accordingly. Walk
526 // the remaining arguments, converting them to the deduced value type.
527 for (unsigned i = 0; i != NumFixed; ++i) {
528 Expr *Arg = TheCall->getArg(i+1);
530 // If the argument is an implicit cast, then there was a promotion due to
531 // "...", just remove it now.
532 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
533 Arg = ICE->getSubExpr();
534 ICE->setSubExpr(0);
535 TheCall->setArg(i+1, Arg);
538 // GCC does an implicit conversion to the pointer or integer ValType. This
539 // can fail in some cases (1i -> int**), check for this error case now.
540 CastKind Kind = CK_Unknown;
541 CXXCastPath BasePath;
542 if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
543 return ExprError();
545 // Okay, we have something that *can* be converted to the right type. Check
546 // to see if there is a potentially weird extension going on here. This can
547 // happen when you do an atomic operation on something like an char* and
548 // pass in 42. The 42 gets converted to char. This is even more strange
549 // for things like 45.123 -> char, etc.
550 // FIXME: Do this check.
551 ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
552 TheCall->setArg(i+1, Arg);
555 // Switch the DeclRefExpr to refer to the new decl.
556 DRE->setDecl(NewBuiltinDecl);
557 DRE->setType(NewBuiltinDecl->getType());
559 // Set the callee in the CallExpr.
560 // FIXME: This leaks the original parens and implicit casts.
561 Expr *PromotedCall = DRE;
562 UsualUnaryConversions(PromotedCall);
563 TheCall->setCallee(PromotedCall);
565 // Change the result type of the call to match the original value type. This
566 // is arbitrary, but the codegen for these builtins ins design to handle it
567 // gracefully.
568 TheCall->setType(ResultType);
570 return move(TheCallResult);
574 /// CheckObjCString - Checks that the argument to the builtin
575 /// CFString constructor is correct
576 /// Note: It might also make sense to do the UTF-16 conversion here (would
577 /// simplify the backend).
578 bool Sema::CheckObjCString(Expr *Arg) {
579 Arg = Arg->IgnoreParenCasts();
580 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
582 if (!Literal || Literal->isWide()) {
583 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
584 << Arg->getSourceRange();
585 return true;
588 size_t NulPos = Literal->getString().find('\0');
589 if (NulPos != llvm::StringRef::npos) {
590 Diag(getLocationOfStringLiteralByte(Literal, NulPos),
591 diag::warn_cfstring_literal_contains_nul_character)
592 << Arg->getSourceRange();
594 if (Literal->containsNonAsciiOrNull()) {
595 llvm::StringRef String = Literal->getString();
596 unsigned NumBytes = String.size();
597 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
598 const UTF8 *FromPtr = (UTF8 *)String.data();
599 UTF16 *ToPtr = &ToBuf[0];
601 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
602 &ToPtr, ToPtr + NumBytes,
603 strictConversion);
604 // Check for conversion failure.
605 if (Result != conversionOK)
606 Diag(Arg->getLocStart(),
607 diag::warn_cfstring_truncated) << Arg->getSourceRange();
609 return false;
612 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
613 /// Emit an error and return true on failure, return false on success.
614 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
615 Expr *Fn = TheCall->getCallee();
616 if (TheCall->getNumArgs() > 2) {
617 Diag(TheCall->getArg(2)->getLocStart(),
618 diag::err_typecheck_call_too_many_args)
619 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
620 << Fn->getSourceRange()
621 << SourceRange(TheCall->getArg(2)->getLocStart(),
622 (*(TheCall->arg_end()-1))->getLocEnd());
623 return true;
626 if (TheCall->getNumArgs() < 2) {
627 return Diag(TheCall->getLocEnd(),
628 diag::err_typecheck_call_too_few_args_at_least)
629 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
632 // Determine whether the current function is variadic or not.
633 BlockScopeInfo *CurBlock = getCurBlock();
634 bool isVariadic;
635 if (CurBlock)
636 isVariadic = CurBlock->TheDecl->isVariadic();
637 else if (FunctionDecl *FD = getCurFunctionDecl())
638 isVariadic = FD->isVariadic();
639 else
640 isVariadic = getCurMethodDecl()->isVariadic();
642 if (!isVariadic) {
643 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
644 return true;
647 // Verify that the second argument to the builtin is the last argument of the
648 // current function or method.
649 bool SecondArgIsLastNamedArgument = false;
650 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
652 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
653 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
654 // FIXME: This isn't correct for methods (results in bogus warning).
655 // Get the last formal in the current function.
656 const ParmVarDecl *LastArg;
657 if (CurBlock)
658 LastArg = *(CurBlock->TheDecl->param_end()-1);
659 else if (FunctionDecl *FD = getCurFunctionDecl())
660 LastArg = *(FD->param_end()-1);
661 else
662 LastArg = *(getCurMethodDecl()->param_end()-1);
663 SecondArgIsLastNamedArgument = PV == LastArg;
667 if (!SecondArgIsLastNamedArgument)
668 Diag(TheCall->getArg(1)->getLocStart(),
669 diag::warn_second_parameter_of_va_start_not_last_named_argument);
670 return false;
673 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
674 /// friends. This is declared to take (...), so we have to check everything.
675 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
676 if (TheCall->getNumArgs() < 2)
677 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
678 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
679 if (TheCall->getNumArgs() > 2)
680 return Diag(TheCall->getArg(2)->getLocStart(),
681 diag::err_typecheck_call_too_many_args)
682 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
683 << SourceRange(TheCall->getArg(2)->getLocStart(),
684 (*(TheCall->arg_end()-1))->getLocEnd());
686 Expr *OrigArg0 = TheCall->getArg(0);
687 Expr *OrigArg1 = TheCall->getArg(1);
689 // Do standard promotions between the two arguments, returning their common
690 // type.
691 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
693 // Make sure any conversions are pushed back into the call; this is
694 // type safe since unordered compare builtins are declared as "_Bool
695 // foo(...)".
696 TheCall->setArg(0, OrigArg0);
697 TheCall->setArg(1, OrigArg1);
699 if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
700 return false;
702 // If the common type isn't a real floating type, then the arguments were
703 // invalid for this operation.
704 if (!Res->isRealFloatingType())
705 return Diag(OrigArg0->getLocStart(),
706 diag::err_typecheck_call_invalid_ordered_compare)
707 << OrigArg0->getType() << OrigArg1->getType()
708 << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
710 return false;
713 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
714 /// __builtin_isnan and friends. This is declared to take (...), so we have
715 /// to check everything. We expect the last argument to be a floating point
716 /// value.
717 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
718 if (TheCall->getNumArgs() < NumArgs)
719 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
720 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
721 if (TheCall->getNumArgs() > NumArgs)
722 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
723 diag::err_typecheck_call_too_many_args)
724 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
725 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
726 (*(TheCall->arg_end()-1))->getLocEnd());
728 Expr *OrigArg = TheCall->getArg(NumArgs-1);
730 if (OrigArg->isTypeDependent())
731 return false;
733 // This operation requires a non-_Complex floating-point number.
734 if (!OrigArg->getType()->isRealFloatingType())
735 return Diag(OrigArg->getLocStart(),
736 diag::err_typecheck_call_invalid_unary_fp)
737 << OrigArg->getType() << OrigArg->getSourceRange();
739 // If this is an implicit conversion from float -> double, remove it.
740 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
741 Expr *CastArg = Cast->getSubExpr();
742 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
743 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
744 "promotion from float to double is the only expected cast here");
745 Cast->setSubExpr(0);
746 TheCall->setArg(NumArgs-1, CastArg);
747 OrigArg = CastArg;
751 return false;
754 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
755 // This is declared to take (...), so we have to check everything.
756 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
757 if (TheCall->getNumArgs() < 2)
758 return ExprError(Diag(TheCall->getLocEnd(),
759 diag::err_typecheck_call_too_few_args_at_least)
760 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
761 << TheCall->getSourceRange());
763 // Determine which of the following types of shufflevector we're checking:
764 // 1) unary, vector mask: (lhs, mask)
765 // 2) binary, vector mask: (lhs, rhs, mask)
766 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
767 QualType resType = TheCall->getArg(0)->getType();
768 unsigned numElements = 0;
770 if (!TheCall->getArg(0)->isTypeDependent() &&
771 !TheCall->getArg(1)->isTypeDependent()) {
772 QualType LHSType = TheCall->getArg(0)->getType();
773 QualType RHSType = TheCall->getArg(1)->getType();
775 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
776 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
777 << SourceRange(TheCall->getArg(0)->getLocStart(),
778 TheCall->getArg(1)->getLocEnd());
779 return ExprError();
782 numElements = LHSType->getAs<VectorType>()->getNumElements();
783 unsigned numResElements = TheCall->getNumArgs() - 2;
785 // Check to see if we have a call with 2 vector arguments, the unary shuffle
786 // with mask. If so, verify that RHS is an integer vector type with the
787 // same number of elts as lhs.
788 if (TheCall->getNumArgs() == 2) {
789 if (!RHSType->hasIntegerRepresentation() ||
790 RHSType->getAs<VectorType>()->getNumElements() != numElements)
791 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
792 << SourceRange(TheCall->getArg(1)->getLocStart(),
793 TheCall->getArg(1)->getLocEnd());
794 numResElements = numElements;
796 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
797 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
798 << SourceRange(TheCall->getArg(0)->getLocStart(),
799 TheCall->getArg(1)->getLocEnd());
800 return ExprError();
801 } else if (numElements != numResElements) {
802 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
803 resType = Context.getVectorType(eltType, numResElements,
804 VectorType::NotAltiVec);
808 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
809 if (TheCall->getArg(i)->isTypeDependent() ||
810 TheCall->getArg(i)->isValueDependent())
811 continue;
813 llvm::APSInt Result(32);
814 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
815 return ExprError(Diag(TheCall->getLocStart(),
816 diag::err_shufflevector_nonconstant_argument)
817 << TheCall->getArg(i)->getSourceRange());
819 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
820 return ExprError(Diag(TheCall->getLocStart(),
821 diag::err_shufflevector_argument_too_large)
822 << TheCall->getArg(i)->getSourceRange());
825 llvm::SmallVector<Expr*, 32> exprs;
827 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
828 exprs.push_back(TheCall->getArg(i));
829 TheCall->setArg(i, 0);
832 return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
833 exprs.size(), resType,
834 TheCall->getCallee()->getLocStart(),
835 TheCall->getRParenLoc()));
838 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
839 // This is declared to take (const void*, ...) and can take two
840 // optional constant int args.
841 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
842 unsigned NumArgs = TheCall->getNumArgs();
844 if (NumArgs > 3)
845 return Diag(TheCall->getLocEnd(),
846 diag::err_typecheck_call_too_many_args_at_most)
847 << 0 /*function call*/ << 3 << NumArgs
848 << TheCall->getSourceRange();
850 // Argument 0 is checked for us and the remaining arguments must be
851 // constant integers.
852 for (unsigned i = 1; i != NumArgs; ++i) {
853 Expr *Arg = TheCall->getArg(i);
855 llvm::APSInt Result;
856 if (SemaBuiltinConstantArg(TheCall, i, Result))
857 return true;
859 // FIXME: gcc issues a warning and rewrites these to 0. These
860 // seems especially odd for the third argument since the default
861 // is 3.
862 if (i == 1) {
863 if (Result.getLimitedValue() > 1)
864 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
865 << "0" << "1" << Arg->getSourceRange();
866 } else {
867 if (Result.getLimitedValue() > 3)
868 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
869 << "0" << "3" << Arg->getSourceRange();
873 return false;
876 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
877 /// TheCall is a constant expression.
878 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
879 llvm::APSInt &Result) {
880 Expr *Arg = TheCall->getArg(ArgNum);
881 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
882 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
884 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
886 if (!Arg->isIntegerConstantExpr(Result, Context))
887 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
888 << FDecl->getDeclName() << Arg->getSourceRange();
890 return false;
893 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
894 /// int type). This simply type checks that type is one of the defined
895 /// constants (0-3).
896 // For compatability check 0-3, llvm only handles 0 and 2.
897 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
898 llvm::APSInt Result;
900 // Check constant-ness first.
901 if (SemaBuiltinConstantArg(TheCall, 1, Result))
902 return true;
904 Expr *Arg = TheCall->getArg(1);
905 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
906 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
907 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
910 return false;
913 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
914 /// This checks that val is a constant 1.
915 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
916 Expr *Arg = TheCall->getArg(1);
917 llvm::APSInt Result;
919 // TODO: This is less than ideal. Overload this to take a value.
920 if (SemaBuiltinConstantArg(TheCall, 1, Result))
921 return true;
923 if (Result != 1)
924 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
925 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
927 return false;
930 // Handle i > 1 ? "x" : "y", recursivelly
931 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
932 bool HasVAListArg,
933 unsigned format_idx, unsigned firstDataArg,
934 bool isPrintf) {
935 tryAgain:
936 if (E->isTypeDependent() || E->isValueDependent())
937 return false;
939 switch (E->getStmtClass()) {
940 case Stmt::ConditionalOperatorClass: {
941 const ConditionalOperator *C = cast<ConditionalOperator>(E);
942 return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
943 format_idx, firstDataArg, isPrintf)
944 && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
945 format_idx, firstDataArg, isPrintf);
948 case Stmt::IntegerLiteralClass:
949 // Technically -Wformat-nonliteral does not warn about this case.
950 // The behavior of printf and friends in this case is implementation
951 // dependent. Ideally if the format string cannot be null then
952 // it should have a 'nonnull' attribute in the function prototype.
953 return true;
955 case Stmt::ImplicitCastExprClass: {
956 E = cast<ImplicitCastExpr>(E)->getSubExpr();
957 goto tryAgain;
960 case Stmt::ParenExprClass: {
961 E = cast<ParenExpr>(E)->getSubExpr();
962 goto tryAgain;
965 case Stmt::DeclRefExprClass: {
966 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
968 // As an exception, do not flag errors for variables binding to
969 // const string literals.
970 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
971 bool isConstant = false;
972 QualType T = DR->getType();
974 if (const ArrayType *AT = Context.getAsArrayType(T)) {
975 isConstant = AT->getElementType().isConstant(Context);
976 } else if (const PointerType *PT = T->getAs<PointerType>()) {
977 isConstant = T.isConstant(Context) &&
978 PT->getPointeeType().isConstant(Context);
981 if (isConstant) {
982 if (const Expr *Init = VD->getAnyInitializer())
983 return SemaCheckStringLiteral(Init, TheCall,
984 HasVAListArg, format_idx, firstDataArg,
985 isPrintf);
988 // For vprintf* functions (i.e., HasVAListArg==true), we add a
989 // special check to see if the format string is a function parameter
990 // of the function calling the printf function. If the function
991 // has an attribute indicating it is a printf-like function, then we
992 // should suppress warnings concerning non-literals being used in a call
993 // to a vprintf function. For example:
995 // void
996 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
997 // va_list ap;
998 // va_start(ap, fmt);
999 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
1000 // ...
1003 // FIXME: We don't have full attribute support yet, so just check to see
1004 // if the argument is a DeclRefExpr that references a parameter. We'll
1005 // add proper support for checking the attribute later.
1006 if (HasVAListArg)
1007 if (isa<ParmVarDecl>(VD))
1008 return true;
1011 return false;
1014 case Stmt::CallExprClass: {
1015 const CallExpr *CE = cast<CallExpr>(E);
1016 if (const ImplicitCastExpr *ICE
1017 = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1018 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1019 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1020 if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1021 unsigned ArgIndex = FA->getFormatIdx();
1022 const Expr *Arg = CE->getArg(ArgIndex - 1);
1024 return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1025 format_idx, firstDataArg, isPrintf);
1031 return false;
1033 case Stmt::ObjCStringLiteralClass:
1034 case Stmt::StringLiteralClass: {
1035 const StringLiteral *StrE = NULL;
1037 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1038 StrE = ObjCFExpr->getString();
1039 else
1040 StrE = cast<StringLiteral>(E);
1042 if (StrE) {
1043 CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1044 firstDataArg, isPrintf);
1045 return true;
1048 return false;
1051 default:
1052 return false;
1056 void
1057 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1058 const CallExpr *TheCall) {
1059 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1060 e = NonNull->args_end();
1061 i != e; ++i) {
1062 const Expr *ArgExpr = TheCall->getArg(*i);
1063 if (ArgExpr->isNullPointerConstant(Context,
1064 Expr::NPC_ValueDependentIsNotNull))
1065 Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1066 << ArgExpr->getSourceRange();
1070 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1071 /// functions) for correct use of format strings.
1072 void
1073 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1074 unsigned format_idx, unsigned firstDataArg,
1075 bool isPrintf) {
1077 const Expr *Fn = TheCall->getCallee();
1079 // The way the format attribute works in GCC, the implicit this argument
1080 // of member functions is counted. However, it doesn't appear in our own
1081 // lists, so decrement format_idx in that case.
1082 if (isa<CXXMemberCallExpr>(TheCall)) {
1083 // Catch a format attribute mistakenly referring to the object argument.
1084 if (format_idx == 0)
1085 return;
1086 --format_idx;
1087 if(firstDataArg != 0)
1088 --firstDataArg;
1091 // CHECK: printf/scanf-like function is called with no format string.
1092 if (format_idx >= TheCall->getNumArgs()) {
1093 Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1094 << Fn->getSourceRange();
1095 return;
1098 const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1100 // CHECK: format string is not a string literal.
1102 // Dynamically generated format strings are difficult to
1103 // automatically vet at compile time. Requiring that format strings
1104 // are string literals: (1) permits the checking of format strings by
1105 // the compiler and thereby (2) can practically remove the source of
1106 // many format string exploits.
1108 // Format string can be either ObjC string (e.g. @"%d") or
1109 // C string (e.g. "%d")
1110 // ObjC string uses the same format specifiers as C string, so we can use
1111 // the same format string checking logic for both ObjC and C strings.
1112 if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1113 firstDataArg, isPrintf))
1114 return; // Literal format string found, check done!
1116 // If there are no arguments specified, warn with -Wformat-security, otherwise
1117 // warn only with -Wformat-nonliteral.
1118 if (TheCall->getNumArgs() == format_idx+1)
1119 Diag(TheCall->getArg(format_idx)->getLocStart(),
1120 diag::warn_format_nonliteral_noargs)
1121 << OrigFormatExpr->getSourceRange();
1122 else
1123 Diag(TheCall->getArg(format_idx)->getLocStart(),
1124 diag::warn_format_nonliteral)
1125 << OrigFormatExpr->getSourceRange();
1128 namespace {
1129 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1130 protected:
1131 Sema &S;
1132 const StringLiteral *FExpr;
1133 const Expr *OrigFormatExpr;
1134 const unsigned FirstDataArg;
1135 const unsigned NumDataArgs;
1136 const bool IsObjCLiteral;
1137 const char *Beg; // Start of format string.
1138 const bool HasVAListArg;
1139 const CallExpr *TheCall;
1140 unsigned FormatIdx;
1141 llvm::BitVector CoveredArgs;
1142 bool usesPositionalArgs;
1143 bool atFirstArg;
1144 public:
1145 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1146 const Expr *origFormatExpr, unsigned firstDataArg,
1147 unsigned numDataArgs, bool isObjCLiteral,
1148 const char *beg, bool hasVAListArg,
1149 const CallExpr *theCall, unsigned formatIdx)
1150 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1151 FirstDataArg(firstDataArg),
1152 NumDataArgs(numDataArgs),
1153 IsObjCLiteral(isObjCLiteral), Beg(beg),
1154 HasVAListArg(hasVAListArg),
1155 TheCall(theCall), FormatIdx(formatIdx),
1156 usesPositionalArgs(false), atFirstArg(true) {
1157 CoveredArgs.resize(numDataArgs);
1158 CoveredArgs.reset();
1161 void DoneProcessing();
1163 void HandleIncompleteSpecifier(const char *startSpecifier,
1164 unsigned specifierLen);
1166 virtual void HandleInvalidPosition(const char *startSpecifier,
1167 unsigned specifierLen,
1168 analyze_format_string::PositionContext p);
1170 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1172 void HandleNullChar(const char *nullCharacter);
1174 protected:
1175 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1176 const char *startSpec,
1177 unsigned specifierLen,
1178 const char *csStart, unsigned csLen);
1180 SourceRange getFormatStringRange();
1181 CharSourceRange getSpecifierRange(const char *startSpecifier,
1182 unsigned specifierLen);
1183 SourceLocation getLocationOfByte(const char *x);
1185 const Expr *getDataArg(unsigned i) const;
1187 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1188 const analyze_format_string::ConversionSpecifier &CS,
1189 const char *startSpecifier, unsigned specifierLen,
1190 unsigned argIndex);
1194 SourceRange CheckFormatHandler::getFormatStringRange() {
1195 return OrigFormatExpr->getSourceRange();
1198 CharSourceRange CheckFormatHandler::
1199 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1200 SourceLocation Start = getLocationOfByte(startSpecifier);
1201 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
1203 // Advance the end SourceLocation by one due to half-open ranges.
1204 End = End.getFileLocWithOffset(1);
1206 return CharSourceRange::getCharRange(Start, End);
1209 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1210 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1213 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1214 unsigned specifierLen){
1215 SourceLocation Loc = getLocationOfByte(startSpecifier);
1216 S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1217 << getSpecifierRange(startSpecifier, specifierLen);
1220 void
1221 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1222 analyze_format_string::PositionContext p) {
1223 SourceLocation Loc = getLocationOfByte(startPos);
1224 S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1225 << (unsigned) p << getSpecifierRange(startPos, posLen);
1228 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1229 unsigned posLen) {
1230 SourceLocation Loc = getLocationOfByte(startPos);
1231 S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1232 << getSpecifierRange(startPos, posLen);
1235 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1236 // The presence of a null character is likely an error.
1237 S.Diag(getLocationOfByte(nullCharacter),
1238 diag::warn_printf_format_string_contains_null_char)
1239 << getFormatStringRange();
1242 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1243 return TheCall->getArg(FirstDataArg + i);
1246 void CheckFormatHandler::DoneProcessing() {
1247 // Does the number of data arguments exceed the number of
1248 // format conversions in the format string?
1249 if (!HasVAListArg) {
1250 // Find any arguments that weren't covered.
1251 CoveredArgs.flip();
1252 signed notCoveredArg = CoveredArgs.find_first();
1253 if (notCoveredArg >= 0) {
1254 assert((unsigned)notCoveredArg < NumDataArgs);
1255 S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1256 diag::warn_printf_data_arg_not_used)
1257 << getFormatStringRange();
1262 bool
1263 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1264 SourceLocation Loc,
1265 const char *startSpec,
1266 unsigned specifierLen,
1267 const char *csStart,
1268 unsigned csLen) {
1270 bool keepGoing = true;
1271 if (argIndex < NumDataArgs) {
1272 // Consider the argument coverered, even though the specifier doesn't
1273 // make sense.
1274 CoveredArgs.set(argIndex);
1276 else {
1277 // If argIndex exceeds the number of data arguments we
1278 // don't issue a warning because that is just a cascade of warnings (and
1279 // they may have intended '%%' anyway). We don't want to continue processing
1280 // the format string after this point, however, as we will like just get
1281 // gibberish when trying to match arguments.
1282 keepGoing = false;
1285 S.Diag(Loc, diag::warn_format_invalid_conversion)
1286 << llvm::StringRef(csStart, csLen)
1287 << getSpecifierRange(startSpec, specifierLen);
1289 return keepGoing;
1292 bool
1293 CheckFormatHandler::CheckNumArgs(
1294 const analyze_format_string::FormatSpecifier &FS,
1295 const analyze_format_string::ConversionSpecifier &CS,
1296 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1298 if (argIndex >= NumDataArgs) {
1299 if (FS.usesPositionalArg()) {
1300 S.Diag(getLocationOfByte(CS.getStart()),
1301 diag::warn_printf_positional_arg_exceeds_data_args)
1302 << (argIndex+1) << NumDataArgs
1303 << getSpecifierRange(startSpecifier, specifierLen);
1305 else {
1306 S.Diag(getLocationOfByte(CS.getStart()),
1307 diag::warn_printf_insufficient_data_args)
1308 << getSpecifierRange(startSpecifier, specifierLen);
1311 return false;
1313 return true;
1316 //===--- CHECK: Printf format string checking ------------------------------===//
1318 namespace {
1319 class CheckPrintfHandler : public CheckFormatHandler {
1320 public:
1321 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1322 const Expr *origFormatExpr, unsigned firstDataArg,
1323 unsigned numDataArgs, bool isObjCLiteral,
1324 const char *beg, bool hasVAListArg,
1325 const CallExpr *theCall, unsigned formatIdx)
1326 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1327 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1328 theCall, formatIdx) {}
1331 bool HandleInvalidPrintfConversionSpecifier(
1332 const analyze_printf::PrintfSpecifier &FS,
1333 const char *startSpecifier,
1334 unsigned specifierLen);
1336 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1337 const char *startSpecifier,
1338 unsigned specifierLen);
1340 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1341 const char *startSpecifier, unsigned specifierLen);
1342 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1343 const analyze_printf::OptionalAmount &Amt,
1344 unsigned type,
1345 const char *startSpecifier, unsigned specifierLen);
1346 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1347 const analyze_printf::OptionalFlag &flag,
1348 const char *startSpecifier, unsigned specifierLen);
1349 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1350 const analyze_printf::OptionalFlag &ignoredFlag,
1351 const analyze_printf::OptionalFlag &flag,
1352 const char *startSpecifier, unsigned specifierLen);
1356 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1357 const analyze_printf::PrintfSpecifier &FS,
1358 const char *startSpecifier,
1359 unsigned specifierLen) {
1360 const analyze_printf::PrintfConversionSpecifier &CS =
1361 FS.getConversionSpecifier();
1363 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1364 getLocationOfByte(CS.getStart()),
1365 startSpecifier, specifierLen,
1366 CS.getStart(), CS.getLength());
1369 bool CheckPrintfHandler::HandleAmount(
1370 const analyze_format_string::OptionalAmount &Amt,
1371 unsigned k, const char *startSpecifier,
1372 unsigned specifierLen) {
1374 if (Amt.hasDataArgument()) {
1375 if (!HasVAListArg) {
1376 unsigned argIndex = Amt.getArgIndex();
1377 if (argIndex >= NumDataArgs) {
1378 S.Diag(getLocationOfByte(Amt.getStart()),
1379 diag::warn_printf_asterisk_missing_arg)
1380 << k << getSpecifierRange(startSpecifier, specifierLen);
1381 // Don't do any more checking. We will just emit
1382 // spurious errors.
1383 return false;
1386 // Type check the data argument. It should be an 'int'.
1387 // Although not in conformance with C99, we also allow the argument to be
1388 // an 'unsigned int' as that is a reasonably safe case. GCC also
1389 // doesn't emit a warning for that case.
1390 CoveredArgs.set(argIndex);
1391 const Expr *Arg = getDataArg(argIndex);
1392 QualType T = Arg->getType();
1394 const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1395 assert(ATR.isValid());
1397 if (!ATR.matchesType(S.Context, T)) {
1398 S.Diag(getLocationOfByte(Amt.getStart()),
1399 diag::warn_printf_asterisk_wrong_type)
1400 << k
1401 << ATR.getRepresentativeType(S.Context) << T
1402 << getSpecifierRange(startSpecifier, specifierLen)
1403 << Arg->getSourceRange();
1404 // Don't do any more checking. We will just emit
1405 // spurious errors.
1406 return false;
1410 return true;
1413 void CheckPrintfHandler::HandleInvalidAmount(
1414 const analyze_printf::PrintfSpecifier &FS,
1415 const analyze_printf::OptionalAmount &Amt,
1416 unsigned type,
1417 const char *startSpecifier,
1418 unsigned specifierLen) {
1419 const analyze_printf::PrintfConversionSpecifier &CS =
1420 FS.getConversionSpecifier();
1421 switch (Amt.getHowSpecified()) {
1422 case analyze_printf::OptionalAmount::Constant:
1423 S.Diag(getLocationOfByte(Amt.getStart()),
1424 diag::warn_printf_nonsensical_optional_amount)
1425 << type
1426 << CS.toString()
1427 << getSpecifierRange(startSpecifier, specifierLen)
1428 << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1429 Amt.getConstantLength()));
1430 break;
1432 default:
1433 S.Diag(getLocationOfByte(Amt.getStart()),
1434 diag::warn_printf_nonsensical_optional_amount)
1435 << type
1436 << CS.toString()
1437 << getSpecifierRange(startSpecifier, specifierLen);
1438 break;
1442 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1443 const analyze_printf::OptionalFlag &flag,
1444 const char *startSpecifier,
1445 unsigned specifierLen) {
1446 // Warn about pointless flag with a fixit removal.
1447 const analyze_printf::PrintfConversionSpecifier &CS =
1448 FS.getConversionSpecifier();
1449 S.Diag(getLocationOfByte(flag.getPosition()),
1450 diag::warn_printf_nonsensical_flag)
1451 << flag.toString() << CS.toString()
1452 << getSpecifierRange(startSpecifier, specifierLen)
1453 << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1456 void CheckPrintfHandler::HandleIgnoredFlag(
1457 const analyze_printf::PrintfSpecifier &FS,
1458 const analyze_printf::OptionalFlag &ignoredFlag,
1459 const analyze_printf::OptionalFlag &flag,
1460 const char *startSpecifier,
1461 unsigned specifierLen) {
1462 // Warn about ignored flag with a fixit removal.
1463 S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1464 diag::warn_printf_ignored_flag)
1465 << ignoredFlag.toString() << flag.toString()
1466 << getSpecifierRange(startSpecifier, specifierLen)
1467 << FixItHint::CreateRemoval(getSpecifierRange(
1468 ignoredFlag.getPosition(), 1));
1471 bool
1472 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1473 &FS,
1474 const char *startSpecifier,
1475 unsigned specifierLen) {
1477 using namespace analyze_format_string;
1478 using namespace analyze_printf;
1479 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1481 if (FS.consumesDataArgument()) {
1482 if (atFirstArg) {
1483 atFirstArg = false;
1484 usesPositionalArgs = FS.usesPositionalArg();
1486 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1487 // Cannot mix-and-match positional and non-positional arguments.
1488 S.Diag(getLocationOfByte(CS.getStart()),
1489 diag::warn_format_mix_positional_nonpositional_args)
1490 << getSpecifierRange(startSpecifier, specifierLen);
1491 return false;
1495 // First check if the field width, precision, and conversion specifier
1496 // have matching data arguments.
1497 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1498 startSpecifier, specifierLen)) {
1499 return false;
1502 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1503 startSpecifier, specifierLen)) {
1504 return false;
1507 if (!CS.consumesDataArgument()) {
1508 // FIXME: Technically specifying a precision or field width here
1509 // makes no sense. Worth issuing a warning at some point.
1510 return true;
1513 // Consume the argument.
1514 unsigned argIndex = FS.getArgIndex();
1515 if (argIndex < NumDataArgs) {
1516 // The check to see if the argIndex is valid will come later.
1517 // We set the bit here because we may exit early from this
1518 // function if we encounter some other error.
1519 CoveredArgs.set(argIndex);
1522 // Check for using an Objective-C specific conversion specifier
1523 // in a non-ObjC literal.
1524 if (!IsObjCLiteral && CS.isObjCArg()) {
1525 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1526 specifierLen);
1529 // Check for invalid use of field width
1530 if (!FS.hasValidFieldWidth()) {
1531 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1532 startSpecifier, specifierLen);
1535 // Check for invalid use of precision
1536 if (!FS.hasValidPrecision()) {
1537 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1538 startSpecifier, specifierLen);
1541 // Check each flag does not conflict with any other component.
1542 if (!FS.hasValidLeadingZeros())
1543 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1544 if (!FS.hasValidPlusPrefix())
1545 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1546 if (!FS.hasValidSpacePrefix())
1547 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1548 if (!FS.hasValidAlternativeForm())
1549 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1550 if (!FS.hasValidLeftJustified())
1551 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1553 // Check that flags are not ignored by another flag
1554 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1555 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1556 startSpecifier, specifierLen);
1557 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1558 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1559 startSpecifier, specifierLen);
1561 // Check the length modifier is valid with the given conversion specifier.
1562 const LengthModifier &LM = FS.getLengthModifier();
1563 if (!FS.hasValidLengthModifier())
1564 S.Diag(getLocationOfByte(LM.getStart()),
1565 diag::warn_format_nonsensical_length)
1566 << LM.toString() << CS.toString()
1567 << getSpecifierRange(startSpecifier, specifierLen)
1568 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1569 LM.getLength()));
1571 // Are we using '%n'?
1572 if (CS.getKind() == ConversionSpecifier::nArg) {
1573 // Issue a warning about this being a possible security issue.
1574 S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1575 << getSpecifierRange(startSpecifier, specifierLen);
1576 // Continue checking the other format specifiers.
1577 return true;
1580 // The remaining checks depend on the data arguments.
1581 if (HasVAListArg)
1582 return true;
1584 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1585 return false;
1587 // Now type check the data expression that matches the
1588 // format specifier.
1589 const Expr *Ex = getDataArg(argIndex);
1590 const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1591 if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1592 // Check if we didn't match because of an implicit cast from a 'char'
1593 // or 'short' to an 'int'. This is done because printf is a varargs
1594 // function.
1595 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1596 if (ICE->getType() == S.Context.IntTy)
1597 if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1598 return true;
1600 // We may be able to offer a FixItHint if it is a supported type.
1601 PrintfSpecifier fixedFS = FS;
1602 bool success = fixedFS.fixType(Ex->getType());
1604 if (success) {
1605 // Get the fix string from the fixed format specifier
1606 llvm::SmallString<128> buf;
1607 llvm::raw_svector_ostream os(buf);
1608 fixedFS.toString(os);
1610 // FIXME: getRepresentativeType() perhaps should return a string
1611 // instead of a QualType to better handle when the representative
1612 // type is 'wint_t' (which is defined in the system headers).
1613 S.Diag(getLocationOfByte(CS.getStart()),
1614 diag::warn_printf_conversion_argument_type_mismatch)
1615 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1616 << getSpecifierRange(startSpecifier, specifierLen)
1617 << Ex->getSourceRange()
1618 << FixItHint::CreateReplacement(
1619 getSpecifierRange(startSpecifier, specifierLen),
1620 os.str());
1622 else {
1623 S.Diag(getLocationOfByte(CS.getStart()),
1624 diag::warn_printf_conversion_argument_type_mismatch)
1625 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1626 << getSpecifierRange(startSpecifier, specifierLen)
1627 << Ex->getSourceRange();
1631 return true;
1634 //===--- CHECK: Scanf format string checking ------------------------------===//
1636 namespace {
1637 class CheckScanfHandler : public CheckFormatHandler {
1638 public:
1639 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1640 const Expr *origFormatExpr, unsigned firstDataArg,
1641 unsigned numDataArgs, bool isObjCLiteral,
1642 const char *beg, bool hasVAListArg,
1643 const CallExpr *theCall, unsigned formatIdx)
1644 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1645 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1646 theCall, formatIdx) {}
1648 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1649 const char *startSpecifier,
1650 unsigned specifierLen);
1652 bool HandleInvalidScanfConversionSpecifier(
1653 const analyze_scanf::ScanfSpecifier &FS,
1654 const char *startSpecifier,
1655 unsigned specifierLen);
1657 void HandleIncompleteScanList(const char *start, const char *end);
1661 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1662 const char *end) {
1663 S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1664 << getSpecifierRange(start, end - start);
1667 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1668 const analyze_scanf::ScanfSpecifier &FS,
1669 const char *startSpecifier,
1670 unsigned specifierLen) {
1672 const analyze_scanf::ScanfConversionSpecifier &CS =
1673 FS.getConversionSpecifier();
1675 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1676 getLocationOfByte(CS.getStart()),
1677 startSpecifier, specifierLen,
1678 CS.getStart(), CS.getLength());
1681 bool CheckScanfHandler::HandleScanfSpecifier(
1682 const analyze_scanf::ScanfSpecifier &FS,
1683 const char *startSpecifier,
1684 unsigned specifierLen) {
1686 using namespace analyze_scanf;
1687 using namespace analyze_format_string;
1689 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1691 // Handle case where '%' and '*' don't consume an argument. These shouldn't
1692 // be used to decide if we are using positional arguments consistently.
1693 if (FS.consumesDataArgument()) {
1694 if (atFirstArg) {
1695 atFirstArg = false;
1696 usesPositionalArgs = FS.usesPositionalArg();
1698 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1699 // Cannot mix-and-match positional and non-positional arguments.
1700 S.Diag(getLocationOfByte(CS.getStart()),
1701 diag::warn_format_mix_positional_nonpositional_args)
1702 << getSpecifierRange(startSpecifier, specifierLen);
1703 return false;
1707 // Check if the field with is non-zero.
1708 const OptionalAmount &Amt = FS.getFieldWidth();
1709 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1710 if (Amt.getConstantAmount() == 0) {
1711 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1712 Amt.getConstantLength());
1713 S.Diag(getLocationOfByte(Amt.getStart()),
1714 diag::warn_scanf_nonzero_width)
1715 << R << FixItHint::CreateRemoval(R);
1719 if (!FS.consumesDataArgument()) {
1720 // FIXME: Technically specifying a precision or field width here
1721 // makes no sense. Worth issuing a warning at some point.
1722 return true;
1725 // Consume the argument.
1726 unsigned argIndex = FS.getArgIndex();
1727 if (argIndex < NumDataArgs) {
1728 // The check to see if the argIndex is valid will come later.
1729 // We set the bit here because we may exit early from this
1730 // function if we encounter some other error.
1731 CoveredArgs.set(argIndex);
1734 // Check the length modifier is valid with the given conversion specifier.
1735 const LengthModifier &LM = FS.getLengthModifier();
1736 if (!FS.hasValidLengthModifier()) {
1737 S.Diag(getLocationOfByte(LM.getStart()),
1738 diag::warn_format_nonsensical_length)
1739 << LM.toString() << CS.toString()
1740 << getSpecifierRange(startSpecifier, specifierLen)
1741 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1742 LM.getLength()));
1745 // The remaining checks depend on the data arguments.
1746 if (HasVAListArg)
1747 return true;
1749 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1750 return false;
1752 // FIXME: Check that the argument type matches the format specifier.
1754 return true;
1757 void Sema::CheckFormatString(const StringLiteral *FExpr,
1758 const Expr *OrigFormatExpr,
1759 const CallExpr *TheCall, bool HasVAListArg,
1760 unsigned format_idx, unsigned firstDataArg,
1761 bool isPrintf) {
1763 // CHECK: is the format string a wide literal?
1764 if (FExpr->isWide()) {
1765 Diag(FExpr->getLocStart(),
1766 diag::warn_format_string_is_wide_literal)
1767 << OrigFormatExpr->getSourceRange();
1768 return;
1771 // Str - The format string. NOTE: this is NOT null-terminated!
1772 llvm::StringRef StrRef = FExpr->getString();
1773 const char *Str = StrRef.data();
1774 unsigned StrLen = StrRef.size();
1776 // CHECK: empty format string?
1777 if (StrLen == 0) {
1778 Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1779 << OrigFormatExpr->getSourceRange();
1780 return;
1783 if (isPrintf) {
1784 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1785 TheCall->getNumArgs() - firstDataArg,
1786 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1787 HasVAListArg, TheCall, format_idx);
1789 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1790 H.DoneProcessing();
1792 else {
1793 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1794 TheCall->getNumArgs() - firstDataArg,
1795 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1796 HasVAListArg, TheCall, format_idx);
1798 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1799 H.DoneProcessing();
1803 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1805 static DeclRefExpr* EvalVal(Expr *E);
1806 static DeclRefExpr* EvalAddr(Expr* E);
1808 /// CheckReturnStackAddr - Check if a return statement returns the address
1809 /// of a stack variable.
1810 void
1811 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1812 SourceLocation ReturnLoc) {
1814 // Perform checking for returned stack addresses.
1815 if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1816 if (DeclRefExpr *DR = EvalAddr(RetValExp))
1817 Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1818 << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1820 // Skip over implicit cast expressions when checking for block expressions.
1821 RetValExp = RetValExp->IgnoreParenCasts();
1823 if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1824 if (C->hasBlockDeclRefExprs())
1825 Diag(C->getLocStart(), diag::err_ret_local_block)
1826 << C->getSourceRange();
1828 if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1829 Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1830 << ALE->getSourceRange();
1832 } else if (lhsType->isReferenceType()) {
1833 // Perform checking for stack values returned by reference.
1834 // Check for a reference to the stack
1835 if (DeclRefExpr *DR = EvalVal(RetValExp))
1836 Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1837 << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1841 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1842 /// check if the expression in a return statement evaluates to an address
1843 /// to a location on the stack. The recursion is used to traverse the
1844 /// AST of the return expression, with recursion backtracking when we
1845 /// encounter a subexpression that (1) clearly does not lead to the address
1846 /// of a stack variable or (2) is something we cannot determine leads to
1847 /// the address of a stack variable based on such local checking.
1849 /// EvalAddr processes expressions that are pointers that are used as
1850 /// references (and not L-values). EvalVal handles all other values.
1851 /// At the base case of the recursion is a check for a DeclRefExpr* in
1852 /// the refers to a stack variable.
1854 /// This implementation handles:
1856 /// * pointer-to-pointer casts
1857 /// * implicit conversions from array references to pointers
1858 /// * taking the address of fields
1859 /// * arbitrary interplay between "&" and "*" operators
1860 /// * pointer arithmetic from an address of a stack variable
1861 /// * taking the address of an array element where the array is on the stack
1862 static DeclRefExpr* EvalAddr(Expr *E) {
1863 // We should only be called for evaluating pointer expressions.
1864 assert((E->getType()->isAnyPointerType() ||
1865 E->getType()->isBlockPointerType() ||
1866 E->getType()->isObjCQualifiedIdType()) &&
1867 "EvalAddr only works on pointers");
1869 // Our "symbolic interpreter" is just a dispatch off the currently
1870 // viewed AST node. We then recursively traverse the AST by calling
1871 // EvalAddr and EvalVal appropriately.
1872 switch (E->getStmtClass()) {
1873 case Stmt::ParenExprClass:
1874 // Ignore parentheses.
1875 return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1877 case Stmt::UnaryOperatorClass: {
1878 // The only unary operator that make sense to handle here
1879 // is AddrOf. All others don't make sense as pointers.
1880 UnaryOperator *U = cast<UnaryOperator>(E);
1882 if (U->getOpcode() == UO_AddrOf)
1883 return EvalVal(U->getSubExpr());
1884 else
1885 return NULL;
1888 case Stmt::BinaryOperatorClass: {
1889 // Handle pointer arithmetic. All other binary operators are not valid
1890 // in this context.
1891 BinaryOperator *B = cast<BinaryOperator>(E);
1892 BinaryOperatorKind op = B->getOpcode();
1894 if (op != BO_Add && op != BO_Sub)
1895 return NULL;
1897 Expr *Base = B->getLHS();
1899 // Determine which argument is the real pointer base. It could be
1900 // the RHS argument instead of the LHS.
1901 if (!Base->getType()->isPointerType()) Base = B->getRHS();
1903 assert (Base->getType()->isPointerType());
1904 return EvalAddr(Base);
1907 // For conditional operators we need to see if either the LHS or RHS are
1908 // valid DeclRefExpr*s. If one of them is valid, we return it.
1909 case Stmt::ConditionalOperatorClass: {
1910 ConditionalOperator *C = cast<ConditionalOperator>(E);
1912 // Handle the GNU extension for missing LHS.
1913 if (Expr *lhsExpr = C->getLHS())
1914 if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1915 return LHS;
1917 return EvalAddr(C->getRHS());
1920 // For casts, we need to handle conversions from arrays to
1921 // pointer values, and pointer-to-pointer conversions.
1922 case Stmt::ImplicitCastExprClass:
1923 case Stmt::CStyleCastExprClass:
1924 case Stmt::CXXFunctionalCastExprClass: {
1925 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1926 QualType T = SubExpr->getType();
1928 if (SubExpr->getType()->isPointerType() ||
1929 SubExpr->getType()->isBlockPointerType() ||
1930 SubExpr->getType()->isObjCQualifiedIdType())
1931 return EvalAddr(SubExpr);
1932 else if (T->isArrayType())
1933 return EvalVal(SubExpr);
1934 else
1935 return 0;
1938 // C++ casts. For dynamic casts, static casts, and const casts, we
1939 // are always converting from a pointer-to-pointer, so we just blow
1940 // through the cast. In the case the dynamic cast doesn't fail (and
1941 // return NULL), we take the conservative route and report cases
1942 // where we return the address of a stack variable. For Reinterpre
1943 // FIXME: The comment about is wrong; we're not always converting
1944 // from pointer to pointer. I'm guessing that this code should also
1945 // handle references to objects.
1946 case Stmt::CXXStaticCastExprClass:
1947 case Stmt::CXXDynamicCastExprClass:
1948 case Stmt::CXXConstCastExprClass:
1949 case Stmt::CXXReinterpretCastExprClass: {
1950 Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1951 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1952 return EvalAddr(S);
1953 else
1954 return NULL;
1957 // Everything else: we simply don't reason about them.
1958 default:
1959 return NULL;
1964 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
1965 /// See the comments for EvalAddr for more details.
1966 static DeclRefExpr* EvalVal(Expr *E) {
1967 do {
1968 // We should only be called for evaluating non-pointer expressions, or
1969 // expressions with a pointer type that are not used as references but instead
1970 // are l-values (e.g., DeclRefExpr with a pointer type).
1972 // Our "symbolic interpreter" is just a dispatch off the currently
1973 // viewed AST node. We then recursively traverse the AST by calling
1974 // EvalAddr and EvalVal appropriately.
1975 switch (E->getStmtClass()) {
1976 case Stmt::ImplicitCastExprClass: {
1977 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1978 if (IE->getValueKind() == VK_LValue) {
1979 E = IE->getSubExpr();
1980 continue;
1982 return NULL;
1985 case Stmt::DeclRefExprClass: {
1986 // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
1987 // at code that refers to a variable's name. We check if it has local
1988 // storage within the function, and if so, return the expression.
1989 DeclRefExpr *DR = cast<DeclRefExpr>(E);
1991 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1992 if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1994 return NULL;
1997 case Stmt::ParenExprClass: {
1998 // Ignore parentheses.
1999 E = cast<ParenExpr>(E)->getSubExpr();
2000 continue;
2003 case Stmt::UnaryOperatorClass: {
2004 // The only unary operator that make sense to handle here
2005 // is Deref. All others don't resolve to a "name." This includes
2006 // handling all sorts of rvalues passed to a unary operator.
2007 UnaryOperator *U = cast<UnaryOperator>(E);
2009 if (U->getOpcode() == UO_Deref)
2010 return EvalAddr(U->getSubExpr());
2012 return NULL;
2015 case Stmt::ArraySubscriptExprClass: {
2016 // Array subscripts are potential references to data on the stack. We
2017 // retrieve the DeclRefExpr* for the array variable if it indeed
2018 // has local storage.
2019 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2022 case Stmt::ConditionalOperatorClass: {
2023 // For conditional operators we need to see if either the LHS or RHS are
2024 // non-NULL DeclRefExpr's. If one is non-NULL, we return it.
2025 ConditionalOperator *C = cast<ConditionalOperator>(E);
2027 // Handle the GNU extension for missing LHS.
2028 if (Expr *lhsExpr = C->getLHS())
2029 if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2030 return LHS;
2032 return EvalVal(C->getRHS());
2035 // Accesses to members are potential references to data on the stack.
2036 case Stmt::MemberExprClass: {
2037 MemberExpr *M = cast<MemberExpr>(E);
2039 // Check for indirect access. We only want direct field accesses.
2040 if (M->isArrow())
2041 return NULL;
2043 // Check whether the member type is itself a reference, in which case
2044 // we're not going to refer to the member, but to what the member refers to.
2045 if (M->getMemberDecl()->getType()->isReferenceType())
2046 return NULL;
2048 return EvalVal(M->getBase());
2051 // Everything else: we simply don't reason about them.
2052 default:
2053 return NULL;
2055 } while (true);
2058 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2060 /// Check for comparisons of floating point operands using != and ==.
2061 /// Issue a warning if these are no self-comparisons, as they are not likely
2062 /// to do what the programmer intended.
2063 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2064 bool EmitWarning = true;
2066 Expr* LeftExprSansParen = lex->IgnoreParens();
2067 Expr* RightExprSansParen = rex->IgnoreParens();
2069 // Special case: check for x == x (which is OK).
2070 // Do not emit warnings for such cases.
2071 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2072 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2073 if (DRL->getDecl() == DRR->getDecl())
2074 EmitWarning = false;
2077 // Special case: check for comparisons against literals that can be exactly
2078 // represented by APFloat. In such cases, do not emit a warning. This
2079 // is a heuristic: often comparison against such literals are used to
2080 // detect if a value in a variable has not changed. This clearly can
2081 // lead to false negatives.
2082 if (EmitWarning) {
2083 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2084 if (FLL->isExact())
2085 EmitWarning = false;
2086 } else
2087 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2088 if (FLR->isExact())
2089 EmitWarning = false;
2093 // Check for comparisons with builtin types.
2094 if (EmitWarning)
2095 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2096 if (CL->isBuiltinCall(Context))
2097 EmitWarning = false;
2099 if (EmitWarning)
2100 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2101 if (CR->isBuiltinCall(Context))
2102 EmitWarning = false;
2104 // Emit the diagnostic.
2105 if (EmitWarning)
2106 Diag(loc, diag::warn_floatingpoint_eq)
2107 << lex->getSourceRange() << rex->getSourceRange();
2110 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2111 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2113 namespace {
2115 /// Structure recording the 'active' range of an integer-valued
2116 /// expression.
2117 struct IntRange {
2118 /// The number of bits active in the int.
2119 unsigned Width;
2121 /// True if the int is known not to have negative values.
2122 bool NonNegative;
2124 IntRange(unsigned Width, bool NonNegative)
2125 : Width(Width), NonNegative(NonNegative)
2128 // Returns the range of the bool type.
2129 static IntRange forBoolType() {
2130 return IntRange(1, true);
2133 // Returns the range of an integral type.
2134 static IntRange forType(ASTContext &C, QualType T) {
2135 return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2138 // Returns the range of an integeral type based on its canonical
2139 // representation.
2140 static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2141 assert(T->isCanonicalUnqualified());
2143 if (const VectorType *VT = dyn_cast<VectorType>(T))
2144 T = VT->getElementType().getTypePtr();
2145 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2146 T = CT->getElementType().getTypePtr();
2148 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2149 EnumDecl *Enum = ET->getDecl();
2150 unsigned NumPositive = Enum->getNumPositiveBits();
2151 unsigned NumNegative = Enum->getNumNegativeBits();
2153 return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2156 const BuiltinType *BT = cast<BuiltinType>(T);
2157 assert(BT->isInteger());
2159 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2162 // Returns the supremum of two ranges: i.e. their conservative merge.
2163 static IntRange join(IntRange L, IntRange R) {
2164 return IntRange(std::max(L.Width, R.Width),
2165 L.NonNegative && R.NonNegative);
2168 // Returns the infinum of two ranges: i.e. their aggressive merge.
2169 static IntRange meet(IntRange L, IntRange R) {
2170 return IntRange(std::min(L.Width, R.Width),
2171 L.NonNegative || R.NonNegative);
2175 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2176 if (value.isSigned() && value.isNegative())
2177 return IntRange(value.getMinSignedBits(), false);
2179 if (value.getBitWidth() > MaxWidth)
2180 value.trunc(MaxWidth);
2182 // isNonNegative() just checks the sign bit without considering
2183 // signedness.
2184 return IntRange(value.getActiveBits(), true);
2187 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2188 unsigned MaxWidth) {
2189 if (result.isInt())
2190 return GetValueRange(C, result.getInt(), MaxWidth);
2192 if (result.isVector()) {
2193 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2194 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2195 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2196 R = IntRange::join(R, El);
2198 return R;
2201 if (result.isComplexInt()) {
2202 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2203 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2204 return IntRange::join(R, I);
2207 // This can happen with lossless casts to intptr_t of "based" lvalues.
2208 // Assume it might use arbitrary bits.
2209 // FIXME: The only reason we need to pass the type in here is to get
2210 // the sign right on this one case. It would be nice if APValue
2211 // preserved this.
2212 assert(result.isLValue());
2213 return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2216 /// Pseudo-evaluate the given integer expression, estimating the
2217 /// range of values it might take.
2219 /// \param MaxWidth - the width to which the value will be truncated
2220 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2221 E = E->IgnoreParens();
2223 // Try a full evaluation first.
2224 Expr::EvalResult result;
2225 if (E->Evaluate(result, C))
2226 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2228 // I think we only want to look through implicit casts here; if the
2229 // user has an explicit widening cast, we should treat the value as
2230 // being of the new, wider type.
2231 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2232 if (CE->getCastKind() == CK_NoOp)
2233 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2235 IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2237 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2238 if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2239 isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2241 // Assume that non-integer casts can span the full range of the type.
2242 if (!isIntegerCast)
2243 return OutputTypeRange;
2245 IntRange SubRange
2246 = GetExprRange(C, CE->getSubExpr(),
2247 std::min(MaxWidth, OutputTypeRange.Width));
2249 // Bail out if the subexpr's range is as wide as the cast type.
2250 if (SubRange.Width >= OutputTypeRange.Width)
2251 return OutputTypeRange;
2253 // Otherwise, we take the smaller width, and we're non-negative if
2254 // either the output type or the subexpr is.
2255 return IntRange(SubRange.Width,
2256 SubRange.NonNegative || OutputTypeRange.NonNegative);
2259 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2260 // If we can fold the condition, just take that operand.
2261 bool CondResult;
2262 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2263 return GetExprRange(C, CondResult ? CO->getTrueExpr()
2264 : CO->getFalseExpr(),
2265 MaxWidth);
2267 // Otherwise, conservatively merge.
2268 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2269 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2270 return IntRange::join(L, R);
2273 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2274 switch (BO->getOpcode()) {
2276 // Boolean-valued operations are single-bit and positive.
2277 case BO_LAnd:
2278 case BO_LOr:
2279 case BO_LT:
2280 case BO_GT:
2281 case BO_LE:
2282 case BO_GE:
2283 case BO_EQ:
2284 case BO_NE:
2285 return IntRange::forBoolType();
2287 // The type of these compound assignments is the type of the LHS,
2288 // so the RHS is not necessarily an integer.
2289 case BO_MulAssign:
2290 case BO_DivAssign:
2291 case BO_RemAssign:
2292 case BO_AddAssign:
2293 case BO_SubAssign:
2294 return IntRange::forType(C, E->getType());
2296 // Operations with opaque sources are black-listed.
2297 case BO_PtrMemD:
2298 case BO_PtrMemI:
2299 return IntRange::forType(C, E->getType());
2301 // Bitwise-and uses the *infinum* of the two source ranges.
2302 case BO_And:
2303 case BO_AndAssign:
2304 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2305 GetExprRange(C, BO->getRHS(), MaxWidth));
2307 // Left shift gets black-listed based on a judgement call.
2308 case BO_Shl:
2309 // ...except that we want to treat '1 << (blah)' as logically
2310 // positive. It's an important idiom.
2311 if (IntegerLiteral *I
2312 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2313 if (I->getValue() == 1) {
2314 IntRange R = IntRange::forType(C, E->getType());
2315 return IntRange(R.Width, /*NonNegative*/ true);
2318 // fallthrough
2320 case BO_ShlAssign:
2321 return IntRange::forType(C, E->getType());
2323 // Right shift by a constant can narrow its left argument.
2324 case BO_Shr:
2325 case BO_ShrAssign: {
2326 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2328 // If the shift amount is a positive constant, drop the width by
2329 // that much.
2330 llvm::APSInt shift;
2331 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2332 shift.isNonNegative()) {
2333 unsigned zext = shift.getZExtValue();
2334 if (zext >= L.Width)
2335 L.Width = (L.NonNegative ? 0 : 1);
2336 else
2337 L.Width -= zext;
2340 return L;
2343 // Comma acts as its right operand.
2344 case BO_Comma:
2345 return GetExprRange(C, BO->getRHS(), MaxWidth);
2347 // Black-list pointer subtractions.
2348 case BO_Sub:
2349 if (BO->getLHS()->getType()->isPointerType())
2350 return IntRange::forType(C, E->getType());
2351 // fallthrough
2353 default:
2354 break;
2357 // Treat every other operator as if it were closed on the
2358 // narrowest type that encompasses both operands.
2359 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2360 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2361 return IntRange::join(L, R);
2364 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2365 switch (UO->getOpcode()) {
2366 // Boolean-valued operations are white-listed.
2367 case UO_LNot:
2368 return IntRange::forBoolType();
2370 // Operations with opaque sources are black-listed.
2371 case UO_Deref:
2372 case UO_AddrOf: // should be impossible
2373 return IntRange::forType(C, E->getType());
2375 default:
2376 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2380 if (dyn_cast<OffsetOfExpr>(E)) {
2381 IntRange::forType(C, E->getType());
2384 FieldDecl *BitField = E->getBitField();
2385 if (BitField) {
2386 llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2387 unsigned BitWidth = BitWidthAP.getZExtValue();
2389 return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2392 return IntRange::forType(C, E->getType());
2395 IntRange GetExprRange(ASTContext &C, Expr *E) {
2396 return GetExprRange(C, E, C.getIntWidth(E->getType()));
2399 /// Checks whether the given value, which currently has the given
2400 /// source semantics, has the same value when coerced through the
2401 /// target semantics.
2402 bool IsSameFloatAfterCast(const llvm::APFloat &value,
2403 const llvm::fltSemantics &Src,
2404 const llvm::fltSemantics &Tgt) {
2405 llvm::APFloat truncated = value;
2407 bool ignored;
2408 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2409 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2411 return truncated.bitwiseIsEqual(value);
2414 /// Checks whether the given value, which currently has the given
2415 /// source semantics, has the same value when coerced through the
2416 /// target semantics.
2418 /// The value might be a vector of floats (or a complex number).
2419 bool IsSameFloatAfterCast(const APValue &value,
2420 const llvm::fltSemantics &Src,
2421 const llvm::fltSemantics &Tgt) {
2422 if (value.isFloat())
2423 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2425 if (value.isVector()) {
2426 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2427 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2428 return false;
2429 return true;
2432 assert(value.isComplexFloat());
2433 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2434 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2437 void AnalyzeImplicitConversions(Sema &S, Expr *E);
2439 static bool IsZero(Sema &S, Expr *E) {
2440 // Suppress cases where we are comparing against an enum constant.
2441 if (const DeclRefExpr *DR =
2442 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2443 if (isa<EnumConstantDecl>(DR->getDecl()))
2444 return false;
2446 // Suppress cases where the '0' value is expanded from a macro.
2447 if (E->getLocStart().isMacroID())
2448 return false;
2450 llvm::APSInt Value;
2451 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2454 static bool HasEnumType(Expr *E) {
2455 // Strip off implicit integral promotions.
2456 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2457 if (ICE->getCastKind() != CK_IntegralCast &&
2458 ICE->getCastKind() != CK_NoOp)
2459 break;
2460 E = ICE->getSubExpr();
2463 return E->getType()->isEnumeralType();
2466 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2467 BinaryOperatorKind op = E->getOpcode();
2468 if (op == BO_LT && IsZero(S, E->getRHS())) {
2469 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2470 << "< 0" << "false" << HasEnumType(E->getLHS())
2471 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2472 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2473 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2474 << ">= 0" << "true" << HasEnumType(E->getLHS())
2475 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2476 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2477 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2478 << "0 >" << "false" << HasEnumType(E->getRHS())
2479 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2480 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2481 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2482 << "0 <=" << "true" << HasEnumType(E->getRHS())
2483 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2487 /// Analyze the operands of the given comparison. Implements the
2488 /// fallback case from AnalyzeComparison.
2489 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2490 AnalyzeImplicitConversions(S, E->getLHS());
2491 AnalyzeImplicitConversions(S, E->getRHS());
2494 /// \brief Implements -Wsign-compare.
2496 /// \param lex the left-hand expression
2497 /// \param rex the right-hand expression
2498 /// \param OpLoc the location of the joining operator
2499 /// \param BinOpc binary opcode or 0
2500 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2501 // The type the comparison is being performed in.
2502 QualType T = E->getLHS()->getType();
2503 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2504 && "comparison with mismatched types");
2506 // We don't do anything special if this isn't an unsigned integral
2507 // comparison: we're only interested in integral comparisons, and
2508 // signed comparisons only happen in cases we don't care to warn about.
2509 if (!T->hasUnsignedIntegerRepresentation())
2510 return AnalyzeImpConvsInComparison(S, E);
2512 Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2513 Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2515 // Check to see if one of the (unmodified) operands is of different
2516 // signedness.
2517 Expr *signedOperand, *unsignedOperand;
2518 if (lex->getType()->hasSignedIntegerRepresentation()) {
2519 assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2520 "unsigned comparison between two signed integer expressions?");
2521 signedOperand = lex;
2522 unsignedOperand = rex;
2523 } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2524 signedOperand = rex;
2525 unsignedOperand = lex;
2526 } else {
2527 CheckTrivialUnsignedComparison(S, E);
2528 return AnalyzeImpConvsInComparison(S, E);
2531 // Otherwise, calculate the effective range of the signed operand.
2532 IntRange signedRange = GetExprRange(S.Context, signedOperand);
2534 // Go ahead and analyze implicit conversions in the operands. Note
2535 // that we skip the implicit conversions on both sides.
2536 AnalyzeImplicitConversions(S, lex);
2537 AnalyzeImplicitConversions(S, rex);
2539 // If the signed range is non-negative, -Wsign-compare won't fire,
2540 // but we should still check for comparisons which are always true
2541 // or false.
2542 if (signedRange.NonNegative)
2543 return CheckTrivialUnsignedComparison(S, E);
2545 // For (in)equality comparisons, if the unsigned operand is a
2546 // constant which cannot collide with a overflowed signed operand,
2547 // then reinterpreting the signed operand as unsigned will not
2548 // change the result of the comparison.
2549 if (E->isEqualityOp()) {
2550 unsigned comparisonWidth = S.Context.getIntWidth(T);
2551 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2553 // We should never be unable to prove that the unsigned operand is
2554 // non-negative.
2555 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2557 if (unsignedRange.Width < comparisonWidth)
2558 return;
2561 S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2562 << lex->getType() << rex->getType()
2563 << lex->getSourceRange() << rex->getSourceRange();
2566 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
2567 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2568 S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2571 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2572 bool *ICContext = 0) {
2573 if (E->isTypeDependent() || E->isValueDependent()) return;
2575 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2576 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2577 if (Source == Target) return;
2578 if (Target->isDependentType()) return;
2580 // Never diagnose implicit casts to bool.
2581 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2582 return;
2584 // Strip vector types.
2585 if (isa<VectorType>(Source)) {
2586 if (!isa<VectorType>(Target))
2587 return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2589 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2590 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2593 // Strip complex types.
2594 if (isa<ComplexType>(Source)) {
2595 if (!isa<ComplexType>(Target))
2596 return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2598 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2599 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2602 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2603 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2605 // If the source is floating point...
2606 if (SourceBT && SourceBT->isFloatingPoint()) {
2607 // ...and the target is floating point...
2608 if (TargetBT && TargetBT->isFloatingPoint()) {
2609 // ...then warn if we're dropping FP rank.
2611 // Builtin FP kinds are ordered by increasing FP rank.
2612 if (SourceBT->getKind() > TargetBT->getKind()) {
2613 // Don't warn about float constants that are precisely
2614 // representable in the target type.
2615 Expr::EvalResult result;
2616 if (E->Evaluate(result, S.Context)) {
2617 // Value might be a float, a float vector, or a float complex.
2618 if (IsSameFloatAfterCast(result.Val,
2619 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2620 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2621 return;
2624 DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2626 return;
2629 // If the target is integral, always warn.
2630 if ((TargetBT && TargetBT->isInteger()))
2631 // TODO: don't warn for integer values?
2632 DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2634 return;
2637 if (!Source->isIntegerType() || !Target->isIntegerType())
2638 return;
2640 IntRange SourceRange = GetExprRange(S.Context, E);
2641 IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2643 if (SourceRange.Width > TargetRange.Width) {
2644 // People want to build with -Wshorten-64-to-32 and not -Wconversion
2645 // and by god we'll let them.
2646 if (SourceRange.Width == 64 && TargetRange.Width == 32)
2647 return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2648 return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2651 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2652 (!TargetRange.NonNegative && SourceRange.NonNegative &&
2653 SourceRange.Width == TargetRange.Width)) {
2654 unsigned DiagID = diag::warn_impcast_integer_sign;
2656 // Traditionally, gcc has warned about this under -Wsign-compare.
2657 // We also want to warn about it in -Wconversion.
2658 // So if -Wconversion is off, use a completely identical diagnostic
2659 // in the sign-compare group.
2660 // The conditional-checking code will
2661 if (ICContext) {
2662 DiagID = diag::warn_impcast_integer_sign_conditional;
2663 *ICContext = true;
2666 return DiagnoseImpCast(S, E, T, DiagID);
2669 return;
2672 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2674 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2675 bool &ICContext) {
2676 E = E->IgnoreParenImpCasts();
2678 if (isa<ConditionalOperator>(E))
2679 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2681 AnalyzeImplicitConversions(S, E);
2682 if (E->getType() != T)
2683 return CheckImplicitConversion(S, E, T, &ICContext);
2684 return;
2687 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2688 AnalyzeImplicitConversions(S, E->getCond());
2690 bool Suspicious = false;
2691 CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2692 CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2694 // If -Wconversion would have warned about either of the candidates
2695 // for a signedness conversion to the context type...
2696 if (!Suspicious) return;
2698 // ...but it's currently ignored...
2699 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2700 return;
2702 // ...and -Wsign-compare isn't...
2703 if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2704 return;
2706 // ...then check whether it would have warned about either of the
2707 // candidates for a signedness conversion to the condition type.
2708 if (E->getType() != T) {
2709 Suspicious = false;
2710 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2711 E->getType(), &Suspicious);
2712 if (!Suspicious)
2713 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2714 E->getType(), &Suspicious);
2715 if (!Suspicious)
2716 return;
2719 // If so, emit a diagnostic under -Wsign-compare.
2720 Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2721 Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2722 S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2723 << lex->getType() << rex->getType()
2724 << lex->getSourceRange() << rex->getSourceRange();
2727 /// AnalyzeImplicitConversions - Find and report any interesting
2728 /// implicit conversions in the given expression. There are a couple
2729 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
2730 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2731 QualType T = OrigE->getType();
2732 Expr *E = OrigE->IgnoreParenImpCasts();
2734 // For conditional operators, we analyze the arguments as if they
2735 // were being fed directly into the output.
2736 if (isa<ConditionalOperator>(E)) {
2737 ConditionalOperator *CO = cast<ConditionalOperator>(E);
2738 CheckConditionalOperator(S, CO, T);
2739 return;
2742 // Go ahead and check any implicit conversions we might have skipped.
2743 // The non-canonical typecheck is just an optimization;
2744 // CheckImplicitConversion will filter out dead implicit conversions.
2745 if (E->getType() != T)
2746 CheckImplicitConversion(S, E, T);
2748 // Now continue drilling into this expression.
2750 // Skip past explicit casts.
2751 if (isa<ExplicitCastExpr>(E)) {
2752 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2753 return AnalyzeImplicitConversions(S, E);
2756 // Do a somewhat different check with comparison operators.
2757 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2758 return AnalyzeComparison(S, cast<BinaryOperator>(E));
2760 // These break the otherwise-useful invariant below. Fortunately,
2761 // we don't really need to recurse into them, because any internal
2762 // expressions should have been analyzed already when they were
2763 // built into statements.
2764 if (isa<StmtExpr>(E)) return;
2766 // Don't descend into unevaluated contexts.
2767 if (isa<SizeOfAlignOfExpr>(E)) return;
2769 // Now just recurse over the expression's children.
2770 for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2771 I != IE; ++I)
2772 AnalyzeImplicitConversions(S, cast<Expr>(*I));
2775 } // end anonymous namespace
2777 /// Diagnoses "dangerous" implicit conversions within the given
2778 /// expression (which is a full expression). Implements -Wconversion
2779 /// and -Wsign-compare.
2780 void Sema::CheckImplicitConversions(Expr *E) {
2781 // Don't diagnose in unevaluated contexts.
2782 if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2783 return;
2785 // Don't diagnose for value- or type-dependent expressions.
2786 if (E->isTypeDependent() || E->isValueDependent())
2787 return;
2789 AnalyzeImplicitConversions(*this, E);
2792 /// CheckParmsForFunctionDef - Check that the parameters of the given
2793 /// function are appropriate for the definition of a function. This
2794 /// takes care of any checks that cannot be performed on the
2795 /// declaration itself, e.g., that the types of each of the function
2796 /// parameters are complete.
2797 bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2798 bool HasInvalidParm = false;
2799 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2800 ParmVarDecl *Param = FD->getParamDecl(p);
2802 // C99 6.7.5.3p4: the parameters in a parameter type list in a
2803 // function declarator that is part of a function definition of
2804 // that function shall not have incomplete type.
2806 // This is also C++ [dcl.fct]p6.
2807 if (!Param->isInvalidDecl() &&
2808 RequireCompleteType(Param->getLocation(), Param->getType(),
2809 diag::err_typecheck_decl_incomplete_type)) {
2810 Param->setInvalidDecl();
2811 HasInvalidParm = true;
2814 // C99 6.9.1p5: If the declarator includes a parameter type list, the
2815 // declaration of each parameter shall include an identifier.
2816 if (Param->getIdentifier() == 0 &&
2817 !Param->isImplicit() &&
2818 !getLangOptions().CPlusPlus)
2819 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2821 // C99 6.7.5.3p12:
2822 // If the function declarator is not part of a definition of that
2823 // function, parameters may have incomplete type and may use the [*]
2824 // notation in their sequences of declarator specifiers to specify
2825 // variable length array types.
2826 QualType PType = Param->getOriginalType();
2827 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2828 if (AT->getSizeModifier() == ArrayType::Star) {
2829 // FIXME: This diagnosic should point the the '[*]' if source-location
2830 // information is added for it.
2831 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2836 return HasInvalidParm;
2839 /// CheckCastAlign - Implements -Wcast-align, which warns when a
2840 /// pointer cast increases the alignment requirements.
2841 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2842 // This is actually a lot of work to potentially be doing on every
2843 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2844 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2845 == Diagnostic::Ignored)
2846 return;
2848 // Ignore dependent types.
2849 if (T->isDependentType() || Op->getType()->isDependentType())
2850 return;
2852 // Require that the destination be a pointer type.
2853 const PointerType *DestPtr = T->getAs<PointerType>();
2854 if (!DestPtr) return;
2856 // If the destination has alignment 1, we're done.
2857 QualType DestPointee = DestPtr->getPointeeType();
2858 if (DestPointee->isIncompleteType()) return;
2859 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2860 if (DestAlign.isOne()) return;
2862 // Require that the source be a pointer type.
2863 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2864 if (!SrcPtr) return;
2865 QualType SrcPointee = SrcPtr->getPointeeType();
2867 // Whitelist casts from cv void*. We already implicitly
2868 // whitelisted casts to cv void*, since they have alignment 1.
2869 // Also whitelist casts involving incomplete types, which implicitly
2870 // includes 'void'.
2871 if (SrcPointee->isIncompleteType()) return;
2873 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2874 if (SrcAlign >= DestAlign) return;
2876 Diag(TRange.getBegin(), diag::warn_cast_align)
2877 << Op->getType() << T
2878 << static_cast<unsigned>(SrcAlign.getQuantity())
2879 << static_cast<unsigned>(DestAlign.getQuantity())
2880 << TRange << Op->getSourceRange();