Don't emit warn_logical_and_in_logical_or for macros. Fixes rdar://8678458
[clang.git] / lib / Sema / SemaExpr.cpp
blob7a73ad633f4ab5bd538778291fd4f49831142473
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/AnalysisBasedWarnings.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Designator.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/Template.h"
39 using namespace clang;
40 using namespace sema;
43 /// \brief Determine whether the use of this declaration is valid, and
44 /// emit any corresponding diagnostics.
45 ///
46 /// This routine diagnoses various problems with referencing
47 /// declarations that can occur when using a declaration. For example,
48 /// it might warn if a deprecated or unavailable declaration is being
49 /// used, or produce an error (and return true) if a C++0x deleted
50 /// function is being used.
51 ///
52 /// If IgnoreDeprecated is set to true, this should not want about deprecated
53 /// decls.
54 ///
55 /// \returns true if there was an error (this declaration cannot be
56 /// referenced), false otherwise.
57 ///
58 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
59 if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
60 // If there were any diagnostics suppressed by template argument deduction,
61 // emit them now.
62 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
63 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
64 if (Pos != SuppressedDiagnostics.end()) {
65 llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
66 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
67 Diag(Suppressed[I].first, Suppressed[I].second);
69 // Clear out the list of suppressed diagnostics, so that we don't emit
70 // them again for this specialization. However, we don't remove this
71 // entry from the table, because we want to avoid ever emitting these
72 // diagnostics again.
73 Suppressed.clear();
77 // See if the decl is deprecated.
78 if (const DeprecatedAttr *DA = D->getAttr<DeprecatedAttr>())
79 EmitDeprecationWarning(D, DA->getMessage(), Loc);
81 // See if the decl is unavailable
82 if (const UnavailableAttr *UA = D->getAttr<UnavailableAttr>()) {
83 if (UA->getMessage().empty())
84 Diag(Loc, diag::err_unavailable) << D->getDeclName();
85 else
86 Diag(Loc, diag::err_unavailable_message)
87 << D->getDeclName() << UA->getMessage();
88 Diag(D->getLocation(), diag::note_unavailable_here) << 0;
91 // See if this is a deleted function.
92 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
93 if (FD->isDeleted()) {
94 Diag(Loc, diag::err_deleted_function_use);
95 Diag(D->getLocation(), diag::note_unavailable_here) << true;
96 return true;
100 // Warn if this is used but marked unused.
101 if (D->hasAttr<UnusedAttr>())
102 Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
104 return false;
107 /// DiagnoseSentinelCalls - This routine checks on method dispatch calls
108 /// (and other functions in future), which have been declared with sentinel
109 /// attribute. It warns if call does not have the sentinel argument.
111 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
112 Expr **Args, unsigned NumArgs) {
113 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
114 if (!attr)
115 return;
117 // FIXME: In C++0x, if any of the arguments are parameter pack
118 // expansions, we can't check for the sentinel now.
119 int sentinelPos = attr->getSentinel();
120 int nullPos = attr->getNullPos();
122 // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
123 // base class. Then we won't be needing two versions of the same code.
124 unsigned int i = 0;
125 bool warnNotEnoughArgs = false;
126 int isMethod = 0;
127 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
128 // skip over named parameters.
129 ObjCMethodDecl::param_iterator P, E = MD->param_end();
130 for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
131 if (nullPos)
132 --nullPos;
133 else
134 ++i;
136 warnNotEnoughArgs = (P != E || i >= NumArgs);
137 isMethod = 1;
138 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
139 // skip over named parameters.
140 ObjCMethodDecl::param_iterator P, E = FD->param_end();
141 for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
142 if (nullPos)
143 --nullPos;
144 else
145 ++i;
147 warnNotEnoughArgs = (P != E || i >= NumArgs);
148 } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
149 // block or function pointer call.
150 QualType Ty = V->getType();
151 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
152 const FunctionType *FT = Ty->isFunctionPointerType()
153 ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
154 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
155 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
156 unsigned NumArgsInProto = Proto->getNumArgs();
157 unsigned k;
158 for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
159 if (nullPos)
160 --nullPos;
161 else
162 ++i;
164 warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
166 if (Ty->isBlockPointerType())
167 isMethod = 2;
168 } else
169 return;
170 } else
171 return;
173 if (warnNotEnoughArgs) {
174 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
175 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
176 return;
178 int sentinel = i;
179 while (sentinelPos > 0 && i < NumArgs-1) {
180 --sentinelPos;
181 ++i;
183 if (sentinelPos > 0) {
184 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
185 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
186 return;
188 while (i < NumArgs-1) {
189 ++i;
190 ++sentinel;
192 Expr *sentinelExpr = Args[sentinel];
193 if (!sentinelExpr) return;
194 if (sentinelExpr->isTypeDependent()) return;
195 if (sentinelExpr->isValueDependent()) return;
197 // nullptr_t is always treated as null.
198 if (sentinelExpr->getType()->isNullPtrType()) return;
200 if (sentinelExpr->getType()->isAnyPointerType() &&
201 sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
202 Expr::NPC_ValueDependentIsNull))
203 return;
205 // Unfortunately, __null has type 'int'.
206 if (isa<GNUNullExpr>(sentinelExpr)) return;
208 Diag(Loc, diag::warn_missing_sentinel) << isMethod;
209 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
212 SourceRange Sema::getExprRange(ExprTy *E) const {
213 Expr *Ex = (Expr *)E;
214 return Ex? Ex->getSourceRange() : SourceRange();
217 //===----------------------------------------------------------------------===//
218 // Standard Promotions and Conversions
219 //===----------------------------------------------------------------------===//
221 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
222 void Sema::DefaultFunctionArrayConversion(Expr *&E) {
223 QualType Ty = E->getType();
224 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
226 if (Ty->isFunctionType())
227 ImpCastExprToType(E, Context.getPointerType(Ty),
228 CK_FunctionToPointerDecay);
229 else if (Ty->isArrayType()) {
230 // In C90 mode, arrays only promote to pointers if the array expression is
231 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
232 // type 'array of type' is converted to an expression that has type 'pointer
233 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
234 // that has type 'array of type' ...". The relevant change is "an lvalue"
235 // (C90) to "an expression" (C99).
237 // C++ 4.2p1:
238 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
239 // T" can be converted to an rvalue of type "pointer to T".
241 if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
242 E->isLvalue(Context) == Expr::LV_Valid)
243 ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
244 CK_ArrayToPointerDecay);
248 void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
249 DefaultFunctionArrayConversion(E);
251 QualType Ty = E->getType();
252 assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
253 if (!Ty->isDependentType() && Ty.hasQualifiers() &&
254 (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
255 E->isLvalue(Context) == Expr::LV_Valid) {
256 // C++ [conv.lval]p1:
257 // [...] If T is a non-class type, the type of the rvalue is the
258 // cv-unqualified version of T. Otherwise, the type of the
259 // rvalue is T
261 // C99 6.3.2.1p2:
262 // If the lvalue has qualified type, the value has the unqualified
263 // version of the type of the lvalue; otherwise, the value has the
264 // type of the lvalue.
265 ImpCastExprToType(E, Ty.getUnqualifiedType(), CK_NoOp);
270 /// UsualUnaryConversions - Performs various conversions that are common to most
271 /// operators (C99 6.3). The conversions of array and function types are
272 /// sometimes surpressed. For example, the array->pointer conversion doesn't
273 /// apply if the array is an argument to the sizeof or address (&) operators.
274 /// In these instances, this routine should *not* be called.
275 Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
276 QualType Ty = Expr->getType();
277 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
279 // C99 6.3.1.1p2:
281 // The following may be used in an expression wherever an int or
282 // unsigned int may be used:
283 // - an object or expression with an integer type whose integer
284 // conversion rank is less than or equal to the rank of int
285 // and unsigned int.
286 // - A bit-field of type _Bool, int, signed int, or unsigned int.
288 // If an int can represent all values of the original type, the
289 // value is converted to an int; otherwise, it is converted to an
290 // unsigned int. These are called the integer promotions. All
291 // other types are unchanged by the integer promotions.
292 QualType PTy = Context.isPromotableBitField(Expr);
293 if (!PTy.isNull()) {
294 ImpCastExprToType(Expr, PTy, CK_IntegralCast);
295 return Expr;
297 if (Ty->isPromotableIntegerType()) {
298 QualType PT = Context.getPromotedIntegerType(Ty);
299 ImpCastExprToType(Expr, PT, CK_IntegralCast);
300 return Expr;
303 DefaultFunctionArrayLvalueConversion(Expr);
304 return Expr;
307 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
308 /// do not have a prototype. Arguments that have type float are promoted to
309 /// double. All other argument types are converted by UsualUnaryConversions().
310 void Sema::DefaultArgumentPromotion(Expr *&Expr) {
311 QualType Ty = Expr->getType();
312 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
314 // If this is a 'float' (CVR qualified or typedef) promote to double.
315 if (Ty->isSpecificBuiltinType(BuiltinType::Float))
316 return ImpCastExprToType(Expr, Context.DoubleTy,
317 CK_FloatingCast);
319 UsualUnaryConversions(Expr);
322 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
323 /// will warn if the resulting type is not a POD type, and rejects ObjC
324 /// interfaces passed by value. This returns true if the argument type is
325 /// completely illegal.
326 bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
327 FunctionDecl *FDecl) {
328 DefaultArgumentPromotion(Expr);
330 // __builtin_va_start takes the second argument as a "varargs" argument, but
331 // it doesn't actually do anything with it. It doesn't need to be non-pod
332 // etc.
333 if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
334 return false;
336 if (Expr->getType()->isObjCObjectType() &&
337 DiagRuntimeBehavior(Expr->getLocStart(),
338 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
339 << Expr->getType() << CT))
340 return true;
342 if (!Expr->getType()->isPODType() &&
343 DiagRuntimeBehavior(Expr->getLocStart(),
344 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
345 << Expr->getType() << CT))
346 return true;
348 return false;
351 /// UsualArithmeticConversions - Performs various conversions that are common to
352 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
353 /// routine returns the first non-arithmetic type found. The client is
354 /// responsible for emitting appropriate error diagnostics.
355 /// FIXME: verify the conversion rules for "complex int" are consistent with
356 /// GCC.
357 QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
358 bool isCompAssign) {
359 if (!isCompAssign)
360 UsualUnaryConversions(lhsExpr);
362 UsualUnaryConversions(rhsExpr);
364 // For conversion purposes, we ignore any qualifiers.
365 // For example, "const float" and "float" are equivalent.
366 QualType lhs =
367 Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
368 QualType rhs =
369 Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
371 // If both types are identical, no conversion is needed.
372 if (lhs == rhs)
373 return lhs;
375 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
376 // The caller can deal with this (e.g. pointer + int).
377 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
378 return lhs;
380 // Apply unary and bitfield promotions to the LHS's type.
381 QualType lhs_unpromoted = lhs;
382 if (lhs->isPromotableIntegerType())
383 lhs = Context.getPromotedIntegerType(lhs);
384 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
385 if (!LHSBitfieldPromoteTy.isNull())
386 lhs = LHSBitfieldPromoteTy;
387 if (lhs != lhs_unpromoted && !isCompAssign)
388 ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast);
390 // If both types are identical, no conversion is needed.
391 if (lhs == rhs)
392 return lhs;
394 // At this point, we have two different arithmetic types.
396 // Handle complex types first (C99 6.3.1.8p1).
397 bool LHSComplexFloat = lhs->isComplexType();
398 bool RHSComplexFloat = rhs->isComplexType();
399 if (LHSComplexFloat || RHSComplexFloat) {
400 // if we have an integer operand, the result is the complex type.
402 if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
403 if (rhs->isIntegerType()) {
404 QualType fp = cast<ComplexType>(lhs)->getElementType();
405 ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating);
406 ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
407 } else {
408 assert(rhs->isComplexIntegerType());
409 ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex);
411 return lhs;
414 if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
415 if (!isCompAssign) {
416 // int -> float -> _Complex float
417 if (lhs->isIntegerType()) {
418 QualType fp = cast<ComplexType>(rhs)->getElementType();
419 ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating);
420 ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
421 } else {
422 assert(lhs->isComplexIntegerType());
423 ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex);
426 return rhs;
429 // This handles complex/complex, complex/float, or float/complex.
430 // When both operands are complex, the shorter operand is converted to the
431 // type of the longer, and that is the type of the result. This corresponds
432 // to what is done when combining two real floating-point operands.
433 // The fun begins when size promotion occur across type domains.
434 // From H&S 6.3.4: When one operand is complex and the other is a real
435 // floating-point type, the less precise type is converted, within it's
436 // real or complex domain, to the precision of the other type. For example,
437 // when combining a "long double" with a "double _Complex", the
438 // "double _Complex" is promoted to "long double _Complex".
439 int order = Context.getFloatingTypeOrder(lhs, rhs);
441 // If both are complex, just cast to the more precise type.
442 if (LHSComplexFloat && RHSComplexFloat) {
443 if (order > 0) {
444 // _Complex float -> _Complex double
445 ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast);
446 return lhs;
448 } else if (order < 0) {
449 // _Complex float -> _Complex double
450 if (!isCompAssign)
451 ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast);
452 return rhs;
454 return lhs;
457 // If just the LHS is complex, the RHS needs to be converted,
458 // and the LHS might need to be promoted.
459 if (LHSComplexFloat) {
460 if (order > 0) { // LHS is wider
461 // float -> _Complex double
462 QualType fp = cast<ComplexType>(lhs)->getElementType();
463 ImpCastExprToType(rhsExpr, fp, CK_FloatingCast);
464 ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
465 return lhs;
468 // RHS is at least as wide. Find its corresponding complex type.
469 QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
471 // double -> _Complex double
472 ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
474 // _Complex float -> _Complex double
475 if (!isCompAssign && order < 0)
476 ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast);
478 return result;
481 // Just the RHS is complex, so the LHS needs to be converted
482 // and the RHS might need to be promoted.
483 assert(RHSComplexFloat);
485 if (order < 0) { // RHS is wider
486 // float -> _Complex double
487 if (!isCompAssign) {
488 ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
489 ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
491 return rhs;
494 // LHS is at least as wide. Find its corresponding complex type.
495 QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
497 // double -> _Complex double
498 if (!isCompAssign)
499 ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
501 // _Complex float -> _Complex double
502 if (order > 0)
503 ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast);
505 return result;
508 // Now handle "real" floating types (i.e. float, double, long double).
509 bool LHSFloat = lhs->isRealFloatingType();
510 bool RHSFloat = rhs->isRealFloatingType();
511 if (LHSFloat || RHSFloat) {
512 // If we have two real floating types, convert the smaller operand
513 // to the bigger result.
514 if (LHSFloat && RHSFloat) {
515 int order = Context.getFloatingTypeOrder(lhs, rhs);
516 if (order > 0) {
517 ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast);
518 return lhs;
521 assert(order < 0 && "illegal float comparison");
522 if (!isCompAssign)
523 ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
524 return rhs;
527 // If we have an integer operand, the result is the real floating type.
528 if (LHSFloat) {
529 if (rhs->isIntegerType()) {
530 // Convert rhs to the lhs floating point type.
531 ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating);
532 return lhs;
535 // Convert both sides to the appropriate complex float.
536 assert(rhs->isComplexIntegerType());
537 QualType result = Context.getComplexType(lhs);
539 // _Complex int -> _Complex float
540 ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex);
542 // float -> _Complex float
543 if (!isCompAssign)
544 ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
546 return result;
549 assert(RHSFloat);
550 if (lhs->isIntegerType()) {
551 // Convert lhs to the rhs floating point type.
552 if (!isCompAssign)
553 ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating);
554 return rhs;
557 // Convert both sides to the appropriate complex float.
558 assert(lhs->isComplexIntegerType());
559 QualType result = Context.getComplexType(rhs);
561 // _Complex int -> _Complex float
562 if (!isCompAssign)
563 ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex);
565 // float -> _Complex float
566 ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
568 return result;
571 // Handle GCC complex int extension.
572 // FIXME: if the operands are (int, _Complex long), we currently
573 // don't promote the complex. Also, signedness?
574 const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
575 const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
576 if (lhsComplexInt && rhsComplexInt) {
577 int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
578 rhsComplexInt->getElementType());
579 assert(order && "inequal types with equal element ordering");
580 if (order > 0) {
581 // _Complex int -> _Complex long
582 ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast);
583 return lhs;
586 if (!isCompAssign)
587 ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast);
588 return rhs;
589 } else if (lhsComplexInt) {
590 // int -> _Complex int
591 ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex);
592 return lhs;
593 } else if (rhsComplexInt) {
594 // int -> _Complex int
595 if (!isCompAssign)
596 ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex);
597 return rhs;
600 // Finally, we have two differing integer types.
601 // The rules for this case are in C99 6.3.1.8
602 int compare = Context.getIntegerTypeOrder(lhs, rhs);
603 bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
604 rhsSigned = rhs->hasSignedIntegerRepresentation();
605 if (lhsSigned == rhsSigned) {
606 // Same signedness; use the higher-ranked type
607 if (compare >= 0) {
608 ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
609 return lhs;
610 } else if (!isCompAssign)
611 ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
612 return rhs;
613 } else if (compare != (lhsSigned ? 1 : -1)) {
614 // The unsigned type has greater than or equal rank to the
615 // signed type, so use the unsigned type
616 if (rhsSigned) {
617 ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
618 return lhs;
619 } else if (!isCompAssign)
620 ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
621 return rhs;
622 } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
623 // The two types are different widths; if we are here, that
624 // means the signed type is larger than the unsigned type, so
625 // use the signed type.
626 if (lhsSigned) {
627 ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
628 return lhs;
629 } else if (!isCompAssign)
630 ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
631 return rhs;
632 } else {
633 // The signed type is higher-ranked than the unsigned type,
634 // but isn't actually any bigger (like unsigned int and long
635 // on most 32-bit systems). Use the unsigned type corresponding
636 // to the signed type.
637 QualType result =
638 Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
639 ImpCastExprToType(rhsExpr, result, CK_IntegralCast);
640 if (!isCompAssign)
641 ImpCastExprToType(lhsExpr, result, CK_IntegralCast);
642 return result;
646 //===----------------------------------------------------------------------===//
647 // Semantic Analysis for various Expression Types
648 //===----------------------------------------------------------------------===//
651 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
652 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
653 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
654 /// multiple tokens. However, the common case is that StringToks points to one
655 /// string.
657 ExprResult
658 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
659 assert(NumStringToks && "Must have at least one string!");
661 StringLiteralParser Literal(StringToks, NumStringToks, PP);
662 if (Literal.hadError)
663 return ExprError();
665 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
666 for (unsigned i = 0; i != NumStringToks; ++i)
667 StringTokLocs.push_back(StringToks[i].getLocation());
669 QualType StrTy = Context.CharTy;
670 if (Literal.AnyWide) StrTy = Context.getWCharType();
671 if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
673 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
674 if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
675 StrTy.addConst();
677 // Get an array type for the string, according to C99 6.4.5. This includes
678 // the nul terminator character as well as the string length for pascal
679 // strings.
680 StrTy = Context.getConstantArrayType(StrTy,
681 llvm::APInt(32, Literal.GetNumStringChars()+1),
682 ArrayType::Normal, 0);
684 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
685 return Owned(StringLiteral::Create(Context, Literal.GetString(),
686 Literal.GetStringLength(),
687 Literal.AnyWide, StrTy,
688 &StringTokLocs[0],
689 StringTokLocs.size()));
692 /// ShouldSnapshotBlockValueReference - Return true if a reference inside of
693 /// CurBlock to VD should cause it to be snapshotted (as we do for auto
694 /// variables defined outside the block) or false if this is not needed (e.g.
695 /// for values inside the block or for globals).
697 /// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
698 /// up-to-date.
700 static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
701 ValueDecl *VD) {
702 // If the value is defined inside the block, we couldn't snapshot it even if
703 // we wanted to.
704 if (CurBlock->TheDecl == VD->getDeclContext())
705 return false;
707 // If this is an enum constant or function, it is constant, don't snapshot.
708 if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
709 return false;
711 // If this is a reference to an extern, static, or global variable, no need to
712 // snapshot it.
713 // FIXME: What about 'const' variables in C++?
714 if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
715 if (!Var->hasLocalStorage())
716 return false;
718 // Blocks that have these can't be constant.
719 CurBlock->hasBlockDeclRefExprs = true;
721 // If we have nested blocks, the decl may be declared in an outer block (in
722 // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
723 // be defined outside all of the current blocks (in which case the blocks do
724 // all get the bit). Walk the nesting chain.
725 for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
726 BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
728 if (!NextBlock)
729 continue;
731 // If we found the defining block for the variable, don't mark the block as
732 // having a reference outside it.
733 if (NextBlock->TheDecl == VD->getDeclContext())
734 break;
736 // Otherwise, the DeclRef from the inner block causes the outer one to need
737 // a snapshot as well.
738 NextBlock->hasBlockDeclRefExprs = true;
741 return true;
745 ExprResult
746 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
747 const CXXScopeSpec *SS) {
748 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
749 return BuildDeclRefExpr(D, Ty, NameInfo, SS);
752 /// BuildDeclRefExpr - Build a DeclRefExpr.
753 ExprResult
754 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
755 const DeclarationNameInfo &NameInfo,
756 const CXXScopeSpec *SS) {
757 if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
758 Diag(NameInfo.getLoc(),
759 diag::err_auto_variable_cannot_appear_in_own_initializer)
760 << D->getDeclName();
761 return ExprError();
764 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
765 if (isa<NonTypeTemplateParmDecl>(VD)) {
766 // Non-type template parameters can be referenced anywhere they are
767 // visible.
768 Ty = Ty.getNonLValueExprType(Context);
769 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
770 if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
771 if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
772 Diag(NameInfo.getLoc(),
773 diag::err_reference_to_local_var_in_enclosing_function)
774 << D->getIdentifier() << FD->getDeclName();
775 Diag(D->getLocation(), diag::note_local_variable_declared_here)
776 << D->getIdentifier();
777 return ExprError();
783 MarkDeclarationReferenced(NameInfo.getLoc(), D);
785 return Owned(DeclRefExpr::Create(Context,
786 SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
787 SS? SS->getRange() : SourceRange(),
788 D, NameInfo, Ty));
791 /// \brief Given a field that represents a member of an anonymous
792 /// struct/union, build the path from that field's context to the
793 /// actual member.
795 /// Construct the sequence of field member references we'll have to
796 /// perform to get to the field in the anonymous union/struct. The
797 /// list of members is built from the field outward, so traverse it
798 /// backwards to go from an object in the current context to the field
799 /// we found.
801 /// \returns The variable from which the field access should begin,
802 /// for an anonymous struct/union that is not a member of another
803 /// class. Otherwise, returns NULL.
804 VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
805 llvm::SmallVectorImpl<FieldDecl *> &Path) {
806 assert(Field->getDeclContext()->isRecord() &&
807 cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
808 && "Field must be stored inside an anonymous struct or union");
810 Path.push_back(Field);
811 VarDecl *BaseObject = 0;
812 DeclContext *Ctx = Field->getDeclContext();
813 do {
814 RecordDecl *Record = cast<RecordDecl>(Ctx);
815 ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
816 if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
817 Path.push_back(AnonField);
818 else {
819 BaseObject = cast<VarDecl>(AnonObject);
820 break;
822 Ctx = Ctx->getParent();
823 } while (Ctx->isRecord() &&
824 cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
826 return BaseObject;
829 ExprResult
830 Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
831 FieldDecl *Field,
832 Expr *BaseObjectExpr,
833 SourceLocation OpLoc) {
834 llvm::SmallVector<FieldDecl *, 4> AnonFields;
835 VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
836 AnonFields);
838 // Build the expression that refers to the base object, from
839 // which we will build a sequence of member references to each
840 // of the anonymous union objects and, eventually, the field we
841 // found via name lookup.
842 bool BaseObjectIsPointer = false;
843 Qualifiers BaseQuals;
844 if (BaseObject) {
845 // BaseObject is an anonymous struct/union variable (and is,
846 // therefore, not part of another non-anonymous record).
847 MarkDeclarationReferenced(Loc, BaseObject);
848 BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
849 Loc);
850 BaseQuals
851 = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
852 } else if (BaseObjectExpr) {
853 // The caller provided the base object expression. Determine
854 // whether its a pointer and whether it adds any qualifiers to the
855 // anonymous struct/union fields we're looking into.
856 QualType ObjectType = BaseObjectExpr->getType();
857 if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
858 BaseObjectIsPointer = true;
859 ObjectType = ObjectPtr->getPointeeType();
861 BaseQuals
862 = Context.getCanonicalType(ObjectType).getQualifiers();
863 } else {
864 // We've found a member of an anonymous struct/union that is
865 // inside a non-anonymous struct/union, so in a well-formed
866 // program our base object expression is "this".
867 DeclContext *DC = getFunctionLevelDeclContext();
868 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
869 if (!MD->isStatic()) {
870 QualType AnonFieldType
871 = Context.getTagDeclType(
872 cast<RecordDecl>(AnonFields.back()->getDeclContext()));
873 QualType ThisType = Context.getTagDeclType(MD->getParent());
874 if ((Context.getCanonicalType(AnonFieldType)
875 == Context.getCanonicalType(ThisType)) ||
876 IsDerivedFrom(ThisType, AnonFieldType)) {
877 // Our base object expression is "this".
878 BaseObjectExpr = new (Context) CXXThisExpr(Loc,
879 MD->getThisType(Context),
880 /*isImplicit=*/true);
881 BaseObjectIsPointer = true;
883 } else {
884 return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
885 << Field->getDeclName());
887 BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
890 if (!BaseObjectExpr)
891 return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
892 << Field->getDeclName());
895 // Build the implicit member references to the field of the
896 // anonymous struct/union.
897 Expr *Result = BaseObjectExpr;
898 Qualifiers ResultQuals = BaseQuals;
899 for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
900 FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
901 FI != FIEnd; ++FI) {
902 QualType MemberType = (*FI)->getType();
903 Qualifiers MemberTypeQuals =
904 Context.getCanonicalType(MemberType).getQualifiers();
906 // CVR attributes from the base are picked up by members,
907 // except that 'mutable' members don't pick up 'const'.
908 if ((*FI)->isMutable())
909 ResultQuals.removeConst();
911 // GC attributes are never picked up by members.
912 ResultQuals.removeObjCGCAttr();
914 // TR 18037 does not allow fields to be declared with address spaces.
915 assert(!MemberTypeQuals.hasAddressSpace());
917 Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
918 if (NewQuals != MemberTypeQuals)
919 MemberType = Context.getQualifiedType(MemberType, NewQuals);
921 MarkDeclarationReferenced(Loc, *FI);
922 PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
923 // FIXME: Might this end up being a qualified name?
924 Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
925 OpLoc, MemberType);
926 BaseObjectIsPointer = false;
927 ResultQuals = NewQuals;
930 return Owned(Result);
933 /// Decomposes the given name into a DeclarationNameInfo, its location, and
934 /// possibly a list of template arguments.
936 /// If this produces template arguments, it is permitted to call
937 /// DecomposeTemplateName.
939 /// This actually loses a lot of source location information for
940 /// non-standard name kinds; we should consider preserving that in
941 /// some way.
942 static void DecomposeUnqualifiedId(Sema &SemaRef,
943 const UnqualifiedId &Id,
944 TemplateArgumentListInfo &Buffer,
945 DeclarationNameInfo &NameInfo,
946 const TemplateArgumentListInfo *&TemplateArgs) {
947 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
948 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
949 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
951 ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
952 Id.TemplateId->getTemplateArgs(),
953 Id.TemplateId->NumArgs);
954 SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
955 TemplateArgsPtr.release();
957 TemplateName TName = Id.TemplateId->Template.get();
958 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
959 NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
960 TemplateArgs = &Buffer;
961 } else {
962 NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
963 TemplateArgs = 0;
967 /// Determines whether the given record is "fully-formed" at the given
968 /// location, i.e. whether a qualified lookup into it is assured of
969 /// getting consistent results already.
970 static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
971 if (!Record->hasDefinition())
972 return false;
974 for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
975 E = Record->bases_end(); I != E; ++I) {
976 CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
977 CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
978 if (!BaseRT) return false;
980 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
981 if (!BaseRecord->hasDefinition() ||
982 !IsFullyFormedScope(SemaRef, BaseRecord))
983 return false;
986 return true;
989 /// Determines if the given class is provably not derived from all of
990 /// the prospective base classes.
991 static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
992 CXXRecordDecl *Record,
993 const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
994 if (Bases.count(Record->getCanonicalDecl()))
995 return false;
997 RecordDecl *RD = Record->getDefinition();
998 if (!RD) return false;
999 Record = cast<CXXRecordDecl>(RD);
1001 for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
1002 E = Record->bases_end(); I != E; ++I) {
1003 CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
1004 CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
1005 if (!BaseRT) return false;
1007 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
1008 if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
1009 return false;
1012 return true;
1015 enum IMAKind {
1016 /// The reference is definitely not an instance member access.
1017 IMA_Static,
1019 /// The reference may be an implicit instance member access.
1020 IMA_Mixed,
1022 /// The reference may be to an instance member, but it is invalid if
1023 /// so, because the context is not an instance method.
1024 IMA_Mixed_StaticContext,
1026 /// The reference may be to an instance member, but it is invalid if
1027 /// so, because the context is from an unrelated class.
1028 IMA_Mixed_Unrelated,
1030 /// The reference is definitely an implicit instance member access.
1031 IMA_Instance,
1033 /// The reference may be to an unresolved using declaration.
1034 IMA_Unresolved,
1036 /// The reference may be to an unresolved using declaration and the
1037 /// context is not an instance method.
1038 IMA_Unresolved_StaticContext,
1040 /// The reference is to a member of an anonymous structure in a
1041 /// non-class context.
1042 IMA_AnonymousMember,
1044 /// All possible referrents are instance members and the current
1045 /// context is not an instance method.
1046 IMA_Error_StaticContext,
1048 /// All possible referrents are instance members of an unrelated
1049 /// class.
1050 IMA_Error_Unrelated
1053 /// The given lookup names class member(s) and is not being used for
1054 /// an address-of-member expression. Classify the type of access
1055 /// according to whether it's possible that this reference names an
1056 /// instance member. This is best-effort; it is okay to
1057 /// conservatively answer "yes", in which case some errors will simply
1058 /// not be caught until template-instantiation.
1059 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
1060 const LookupResult &R) {
1061 assert(!R.empty() && (*R.begin())->isCXXClassMember());
1063 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
1064 bool isStaticContext =
1065 (!isa<CXXMethodDecl>(DC) ||
1066 cast<CXXMethodDecl>(DC)->isStatic());
1068 if (R.isUnresolvableResult())
1069 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
1071 // Collect all the declaring classes of instance members we find.
1072 bool hasNonInstance = false;
1073 llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
1074 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1075 NamedDecl *D = *I;
1076 if (D->isCXXInstanceMember()) {
1077 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
1079 // If this is a member of an anonymous record, move out to the
1080 // innermost non-anonymous struct or union. If there isn't one,
1081 // that's a special case.
1082 while (R->isAnonymousStructOrUnion()) {
1083 R = dyn_cast<CXXRecordDecl>(R->getParent());
1084 if (!R) return IMA_AnonymousMember;
1086 Classes.insert(R->getCanonicalDecl());
1088 else
1089 hasNonInstance = true;
1092 // If we didn't find any instance members, it can't be an implicit
1093 // member reference.
1094 if (Classes.empty())
1095 return IMA_Static;
1097 // If the current context is not an instance method, it can't be
1098 // an implicit member reference.
1099 if (isStaticContext)
1100 return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
1102 // If we can prove that the current context is unrelated to all the
1103 // declaring classes, it can't be an implicit member reference (in
1104 // which case it's an error if any of those members are selected).
1105 if (IsProvablyNotDerivedFrom(SemaRef,
1106 cast<CXXMethodDecl>(DC)->getParent(),
1107 Classes))
1108 return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
1110 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
1113 /// Diagnose a reference to a field with no object available.
1114 static void DiagnoseInstanceReference(Sema &SemaRef,
1115 const CXXScopeSpec &SS,
1116 const LookupResult &R) {
1117 SourceLocation Loc = R.getNameLoc();
1118 SourceRange Range(Loc);
1119 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
1121 if (R.getAsSingle<FieldDecl>()) {
1122 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
1123 if (MD->isStatic()) {
1124 // "invalid use of member 'x' in static member function"
1125 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
1126 << Range << R.getLookupName();
1127 return;
1131 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
1132 << R.getLookupName() << Range;
1133 return;
1136 SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
1139 /// Diagnose an empty lookup.
1141 /// \return false if new lookup candidates were found
1142 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1143 CorrectTypoContext CTC) {
1144 DeclarationName Name = R.getLookupName();
1146 unsigned diagnostic = diag::err_undeclared_var_use;
1147 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1148 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1149 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1150 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1151 diagnostic = diag::err_undeclared_use;
1152 diagnostic_suggest = diag::err_undeclared_use_suggest;
1155 // If the original lookup was an unqualified lookup, fake an
1156 // unqualified lookup. This is useful when (for example) the
1157 // original lookup would not have found something because it was a
1158 // dependent name.
1159 for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1160 DC; DC = DC->getParent()) {
1161 if (isa<CXXRecordDecl>(DC)) {
1162 LookupQualifiedName(R, DC);
1164 if (!R.empty()) {
1165 // Don't give errors about ambiguities in this lookup.
1166 R.suppressDiagnostics();
1168 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1169 bool isInstance = CurMethod &&
1170 CurMethod->isInstance() &&
1171 DC == CurMethod->getParent();
1173 // Give a code modification hint to insert 'this->'.
1174 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1175 // Actually quite difficult!
1176 if (isInstance) {
1177 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1178 CallsUndergoingInstantiation.back()->getCallee());
1179 CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1180 CurMethod->getInstantiatedFromMemberFunction());
1181 if (DepMethod) {
1182 Diag(R.getNameLoc(), diagnostic) << Name
1183 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1184 QualType DepThisType = DepMethod->getThisType(Context);
1185 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1186 R.getNameLoc(), DepThisType, false);
1187 TemplateArgumentListInfo TList;
1188 if (ULE->hasExplicitTemplateArgs())
1189 ULE->copyTemplateArgumentsInto(TList);
1190 CXXDependentScopeMemberExpr *DepExpr =
1191 CXXDependentScopeMemberExpr::Create(
1192 Context, DepThis, DepThisType, true, SourceLocation(),
1193 ULE->getQualifier(), ULE->getQualifierRange(), NULL,
1194 R.getLookupNameInfo(), &TList);
1195 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1196 } else {
1197 // FIXME: we should be able to handle this case too. It is correct
1198 // to add this-> here. This is a workaround for PR7947.
1199 Diag(R.getNameLoc(), diagnostic) << Name;
1201 } else {
1202 Diag(R.getNameLoc(), diagnostic) << Name;
1205 // Do we really want to note all of these?
1206 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1207 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1209 // Tell the callee to try to recover.
1210 return false;
1213 R.clear();
1217 // We didn't find anything, so try to correct for a typo.
1218 DeclarationName Corrected;
1219 if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
1220 if (!R.empty()) {
1221 if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
1222 if (SS.isEmpty())
1223 Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
1224 << FixItHint::CreateReplacement(R.getNameLoc(),
1225 R.getLookupName().getAsString());
1226 else
1227 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1228 << Name << computeDeclContext(SS, false) << R.getLookupName()
1229 << SS.getRange()
1230 << FixItHint::CreateReplacement(R.getNameLoc(),
1231 R.getLookupName().getAsString());
1232 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
1233 Diag(ND->getLocation(), diag::note_previous_decl)
1234 << ND->getDeclName();
1236 // Tell the callee to try to recover.
1237 return false;
1240 if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
1241 // FIXME: If we ended up with a typo for a type name or
1242 // Objective-C class name, we're in trouble because the parser
1243 // is in the wrong place to recover. Suggest the typo
1244 // correction, but don't make it a fix-it since we're not going
1245 // to recover well anyway.
1246 if (SS.isEmpty())
1247 Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
1248 else
1249 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1250 << Name << computeDeclContext(SS, false) << R.getLookupName()
1251 << SS.getRange();
1253 // Don't try to recover; it won't work.
1254 return true;
1256 } else {
1257 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1258 // because we aren't able to recover.
1259 if (SS.isEmpty())
1260 Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
1261 else
1262 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1263 << Name << computeDeclContext(SS, false) << Corrected
1264 << SS.getRange();
1265 return true;
1267 R.clear();
1270 // Emit a special diagnostic for failed member lookups.
1271 // FIXME: computing the declaration context might fail here (?)
1272 if (!SS.isEmpty()) {
1273 Diag(R.getNameLoc(), diag::err_no_member)
1274 << Name << computeDeclContext(SS, false)
1275 << SS.getRange();
1276 return true;
1279 // Give up, we can't recover.
1280 Diag(R.getNameLoc(), diagnostic) << Name;
1281 return true;
1284 ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
1285 ObjCMethodDecl *CurMeth = getCurMethodDecl();
1286 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1287 if (!IDecl)
1288 return 0;
1289 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1290 if (!ClassImpDecl)
1291 return 0;
1292 ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1293 if (!property)
1294 return 0;
1295 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1296 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1297 PIDecl->getPropertyIvarDecl())
1298 return 0;
1299 return property;
1302 bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
1303 ObjCMethodDecl *CurMeth = getCurMethodDecl();
1304 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1305 if (!IDecl)
1306 return false;
1307 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1308 if (!ClassImpDecl)
1309 return false;
1310 if (ObjCPropertyImplDecl *PIDecl
1311 = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
1312 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1313 PIDecl->getPropertyIvarDecl())
1314 return false;
1316 return true;
1319 static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1320 LookupResult &Lookup,
1321 IdentifierInfo *II,
1322 SourceLocation NameLoc) {
1323 ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1324 bool LookForIvars;
1325 if (Lookup.empty())
1326 LookForIvars = true;
1327 else if (CurMeth->isClassMethod())
1328 LookForIvars = false;
1329 else
1330 LookForIvars = (Lookup.isSingleResult() &&
1331 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1332 if (!LookForIvars)
1333 return 0;
1335 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1336 if (!IDecl)
1337 return 0;
1338 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1339 if (!ClassImpDecl)
1340 return 0;
1341 bool DynamicImplSeen = false;
1342 ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1343 if (!property)
1344 return 0;
1345 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
1346 DynamicImplSeen =
1347 (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1348 // property implementation has a designated ivar. No need to assume a new
1349 // one.
1350 if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
1351 return 0;
1353 if (!DynamicImplSeen) {
1354 QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1355 ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1356 NameLoc,
1357 II, PropType, /*Dinfo=*/0,
1358 ObjCIvarDecl::Protected,
1359 (Expr *)0, true);
1360 ClassImpDecl->addDecl(Ivar);
1361 IDecl->makeDeclVisibleInContext(Ivar, false);
1362 property->setPropertyIvarDecl(Ivar);
1363 return Ivar;
1365 return 0;
1368 ExprResult Sema::ActOnIdExpression(Scope *S,
1369 CXXScopeSpec &SS,
1370 UnqualifiedId &Id,
1371 bool HasTrailingLParen,
1372 bool isAddressOfOperand) {
1373 assert(!(isAddressOfOperand && HasTrailingLParen) &&
1374 "cannot be direct & operand and have a trailing lparen");
1376 if (SS.isInvalid())
1377 return ExprError();
1379 TemplateArgumentListInfo TemplateArgsBuffer;
1381 // Decompose the UnqualifiedId into the following data.
1382 DeclarationNameInfo NameInfo;
1383 const TemplateArgumentListInfo *TemplateArgs;
1384 DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1386 DeclarationName Name = NameInfo.getName();
1387 IdentifierInfo *II = Name.getAsIdentifierInfo();
1388 SourceLocation NameLoc = NameInfo.getLoc();
1390 // C++ [temp.dep.expr]p3:
1391 // An id-expression is type-dependent if it contains:
1392 // -- an identifier that was declared with a dependent type,
1393 // (note: handled after lookup)
1394 // -- a template-id that is dependent,
1395 // (note: handled in BuildTemplateIdExpr)
1396 // -- a conversion-function-id that specifies a dependent type,
1397 // -- a nested-name-specifier that contains a class-name that
1398 // names a dependent type.
1399 // Determine whether this is a member of an unknown specialization;
1400 // we need to handle these differently.
1401 bool DependentID = false;
1402 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1403 Name.getCXXNameType()->isDependentType()) {
1404 DependentID = true;
1405 } else if (SS.isSet()) {
1406 DeclContext *DC = computeDeclContext(SS, false);
1407 if (DC) {
1408 if (RequireCompleteDeclContext(SS, DC))
1409 return ExprError();
1410 // FIXME: We should be checking whether DC is the current instantiation.
1411 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1412 DependentID = !IsFullyFormedScope(*this, RD);
1413 } else {
1414 DependentID = true;
1418 if (DependentID) {
1419 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1420 TemplateArgs);
1422 bool IvarLookupFollowUp = false;
1423 // Perform the required lookup.
1424 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1425 if (TemplateArgs) {
1426 // Lookup the template name again to correctly establish the context in
1427 // which it was found. This is really unfortunate as we already did the
1428 // lookup to determine that it was a template name in the first place. If
1429 // this becomes a performance hit, we can work harder to preserve those
1430 // results until we get here but it's likely not worth it.
1431 bool MemberOfUnknownSpecialization;
1432 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1433 MemberOfUnknownSpecialization);
1434 } else {
1435 IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1436 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1438 // If this reference is in an Objective-C method, then we need to do
1439 // some special Objective-C lookup, too.
1440 if (IvarLookupFollowUp) {
1441 ExprResult E(LookupInObjCMethod(R, S, II, true));
1442 if (E.isInvalid())
1443 return ExprError();
1445 Expr *Ex = E.takeAs<Expr>();
1446 if (Ex) return Owned(Ex);
1447 // Synthesize ivars lazily
1448 if (getLangOptions().ObjCNonFragileABI2) {
1449 if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
1450 return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1451 isAddressOfOperand);
1453 // for further use, this must be set to false if in class method.
1454 IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1458 if (R.isAmbiguous())
1459 return ExprError();
1461 // Determine whether this name might be a candidate for
1462 // argument-dependent lookup.
1463 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1465 if (R.empty() && !ADL) {
1466 // Otherwise, this could be an implicitly declared function reference (legal
1467 // in C90, extension in C99, forbidden in C++).
1468 if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1469 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1470 if (D) R.addDecl(D);
1473 // If this name wasn't predeclared and if this is not a function
1474 // call, diagnose the problem.
1475 if (R.empty()) {
1476 if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1477 return ExprError();
1479 assert(!R.empty() &&
1480 "DiagnoseEmptyLookup returned false but added no results");
1482 // If we found an Objective-C instance variable, let
1483 // LookupInObjCMethod build the appropriate expression to
1484 // reference the ivar.
1485 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1486 R.clear();
1487 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1488 assert(E.isInvalid() || E.get());
1489 return move(E);
1494 // This is guaranteed from this point on.
1495 assert(!R.empty() || ADL);
1497 if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1498 if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1499 !getLangOptions().ObjCNonFragileABI2 &&
1500 Var->isFileVarDecl()) {
1501 ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II);
1502 if (Property) {
1503 Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1504 Diag(Property->getLocation(), diag::note_property_declare);
1505 Diag(Var->getLocation(), diag::note_global_declared_at);
1508 } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1509 if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1510 // C99 DR 316 says that, if a function type comes from a
1511 // function definition (without a prototype), that type is only
1512 // used for checking compatibility. Therefore, when referencing
1513 // the function, we pretend that we don't have the full function
1514 // type.
1515 if (DiagnoseUseOfDecl(Func, NameLoc))
1516 return ExprError();
1518 QualType T = Func->getType();
1519 QualType NoProtoType = T;
1520 if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1521 NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1522 Proto->getExtInfo());
1523 return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1527 // Check whether this might be a C++ implicit instance member access.
1528 // C++ [class.mfct.non-static]p3:
1529 // When an id-expression that is not part of a class member access
1530 // syntax and not used to form a pointer to member is used in the
1531 // body of a non-static member function of class X, if name lookup
1532 // resolves the name in the id-expression to a non-static non-type
1533 // member of some class C, the id-expression is transformed into a
1534 // class member access expression using (*this) as the
1535 // postfix-expression to the left of the . operator.
1537 // But we don't actually need to do this for '&' operands if R
1538 // resolved to a function or overloaded function set, because the
1539 // expression is ill-formed if it actually works out to be a
1540 // non-static member function:
1542 // C++ [expr.ref]p4:
1543 // Otherwise, if E1.E2 refers to a non-static member function. . .
1544 // [t]he expression can be used only as the left-hand operand of a
1545 // member function call.
1547 // There are other safeguards against such uses, but it's important
1548 // to get this right here so that we don't end up making a
1549 // spuriously dependent expression if we're inside a dependent
1550 // instance method.
1551 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1552 bool MightBeImplicitMember;
1553 if (!isAddressOfOperand)
1554 MightBeImplicitMember = true;
1555 else if (!SS.isEmpty())
1556 MightBeImplicitMember = false;
1557 else if (R.isOverloadedResult())
1558 MightBeImplicitMember = false;
1559 else if (R.isUnresolvableResult())
1560 MightBeImplicitMember = true;
1561 else
1562 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl());
1564 if (MightBeImplicitMember)
1565 return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1568 if (TemplateArgs)
1569 return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1571 return BuildDeclarationNameExpr(SS, R, ADL);
1574 /// Builds an expression which might be an implicit member expression.
1575 ExprResult
1576 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1577 LookupResult &R,
1578 const TemplateArgumentListInfo *TemplateArgs) {
1579 switch (ClassifyImplicitMemberAccess(*this, R)) {
1580 case IMA_Instance:
1581 return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1583 case IMA_AnonymousMember:
1584 assert(R.isSingleResult());
1585 return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1586 R.getAsSingle<FieldDecl>());
1588 case IMA_Mixed:
1589 case IMA_Mixed_Unrelated:
1590 case IMA_Unresolved:
1591 return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1593 case IMA_Static:
1594 case IMA_Mixed_StaticContext:
1595 case IMA_Unresolved_StaticContext:
1596 if (TemplateArgs)
1597 return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1598 return BuildDeclarationNameExpr(SS, R, false);
1600 case IMA_Error_StaticContext:
1601 case IMA_Error_Unrelated:
1602 DiagnoseInstanceReference(*this, SS, R);
1603 return ExprError();
1606 llvm_unreachable("unexpected instance member access kind");
1607 return ExprError();
1610 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1611 /// declaration name, generally during template instantiation.
1612 /// There's a large number of things which don't need to be done along
1613 /// this path.
1614 ExprResult
1615 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1616 const DeclarationNameInfo &NameInfo) {
1617 DeclContext *DC;
1618 if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1619 return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1621 if (RequireCompleteDeclContext(SS, DC))
1622 return ExprError();
1624 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1625 LookupQualifiedName(R, DC);
1627 if (R.isAmbiguous())
1628 return ExprError();
1630 if (R.empty()) {
1631 Diag(NameInfo.getLoc(), diag::err_no_member)
1632 << NameInfo.getName() << DC << SS.getRange();
1633 return ExprError();
1636 return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1639 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1640 /// detected that we're currently inside an ObjC method. Perform some
1641 /// additional lookup.
1643 /// Ideally, most of this would be done by lookup, but there's
1644 /// actually quite a lot of extra work involved.
1646 /// Returns a null sentinel to indicate trivial success.
1647 ExprResult
1648 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1649 IdentifierInfo *II, bool AllowBuiltinCreation) {
1650 SourceLocation Loc = Lookup.getNameLoc();
1651 ObjCMethodDecl *CurMethod = getCurMethodDecl();
1653 // There are two cases to handle here. 1) scoped lookup could have failed,
1654 // in which case we should look for an ivar. 2) scoped lookup could have
1655 // found a decl, but that decl is outside the current instance method (i.e.
1656 // a global variable). In these two cases, we do a lookup for an ivar with
1657 // this name, if the lookup sucedes, we replace it our current decl.
1659 // If we're in a class method, we don't normally want to look for
1660 // ivars. But if we don't find anything else, and there's an
1661 // ivar, that's an error.
1662 bool IsClassMethod = CurMethod->isClassMethod();
1664 bool LookForIvars;
1665 if (Lookup.empty())
1666 LookForIvars = true;
1667 else if (IsClassMethod)
1668 LookForIvars = false;
1669 else
1670 LookForIvars = (Lookup.isSingleResult() &&
1671 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1672 ObjCInterfaceDecl *IFace = 0;
1673 if (LookForIvars) {
1674 IFace = CurMethod->getClassInterface();
1675 ObjCInterfaceDecl *ClassDeclared;
1676 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1677 // Diagnose using an ivar in a class method.
1678 if (IsClassMethod)
1679 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1680 << IV->getDeclName());
1682 // If we're referencing an invalid decl, just return this as a silent
1683 // error node. The error diagnostic was already emitted on the decl.
1684 if (IV->isInvalidDecl())
1685 return ExprError();
1687 // Check if referencing a field with __attribute__((deprecated)).
1688 if (DiagnoseUseOfDecl(IV, Loc))
1689 return ExprError();
1691 // Diagnose the use of an ivar outside of the declaring class.
1692 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1693 ClassDeclared != IFace)
1694 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1696 // FIXME: This should use a new expr for a direct reference, don't
1697 // turn this into Self->ivar, just return a BareIVarExpr or something.
1698 IdentifierInfo &II = Context.Idents.get("self");
1699 UnqualifiedId SelfName;
1700 SelfName.setIdentifier(&II, SourceLocation());
1701 CXXScopeSpec SelfScopeSpec;
1702 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1703 SelfName, false, false);
1704 if (SelfExpr.isInvalid())
1705 return ExprError();
1707 MarkDeclarationReferenced(Loc, IV);
1708 return Owned(new (Context)
1709 ObjCIvarRefExpr(IV, IV->getType(), Loc,
1710 SelfExpr.takeAs<Expr>(), true, true));
1712 } else if (CurMethod->isInstanceMethod()) {
1713 // We should warn if a local variable hides an ivar.
1714 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1715 ObjCInterfaceDecl *ClassDeclared;
1716 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1717 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1718 IFace == ClassDeclared)
1719 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1723 if (Lookup.empty() && II && AllowBuiltinCreation) {
1724 // FIXME. Consolidate this with similar code in LookupName.
1725 if (unsigned BuiltinID = II->getBuiltinID()) {
1726 if (!(getLangOptions().CPlusPlus &&
1727 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1728 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1729 S, Lookup.isForRedeclaration(),
1730 Lookup.getNameLoc());
1731 if (D) Lookup.addDecl(D);
1735 // Sentinel value saying that we didn't do anything special.
1736 return Owned((Expr*) 0);
1739 /// \brief Cast a base object to a member's actual type.
1741 /// Logically this happens in three phases:
1743 /// * First we cast from the base type to the naming class.
1744 /// The naming class is the class into which we were looking
1745 /// when we found the member; it's the qualifier type if a
1746 /// qualifier was provided, and otherwise it's the base type.
1748 /// * Next we cast from the naming class to the declaring class.
1749 /// If the member we found was brought into a class's scope by
1750 /// a using declaration, this is that class; otherwise it's
1751 /// the class declaring the member.
1753 /// * Finally we cast from the declaring class to the "true"
1754 /// declaring class of the member. This conversion does not
1755 /// obey access control.
1756 bool
1757 Sema::PerformObjectMemberConversion(Expr *&From,
1758 NestedNameSpecifier *Qualifier,
1759 NamedDecl *FoundDecl,
1760 NamedDecl *Member) {
1761 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1762 if (!RD)
1763 return false;
1765 QualType DestRecordType;
1766 QualType DestType;
1767 QualType FromRecordType;
1768 QualType FromType = From->getType();
1769 bool PointerConversions = false;
1770 if (isa<FieldDecl>(Member)) {
1771 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1773 if (FromType->getAs<PointerType>()) {
1774 DestType = Context.getPointerType(DestRecordType);
1775 FromRecordType = FromType->getPointeeType();
1776 PointerConversions = true;
1777 } else {
1778 DestType = DestRecordType;
1779 FromRecordType = FromType;
1781 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1782 if (Method->isStatic())
1783 return false;
1785 DestType = Method->getThisType(Context);
1786 DestRecordType = DestType->getPointeeType();
1788 if (FromType->getAs<PointerType>()) {
1789 FromRecordType = FromType->getPointeeType();
1790 PointerConversions = true;
1791 } else {
1792 FromRecordType = FromType;
1793 DestType = DestRecordType;
1795 } else {
1796 // No conversion necessary.
1797 return false;
1800 if (DestType->isDependentType() || FromType->isDependentType())
1801 return false;
1803 // If the unqualified types are the same, no conversion is necessary.
1804 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1805 return false;
1807 SourceRange FromRange = From->getSourceRange();
1808 SourceLocation FromLoc = FromRange.getBegin();
1810 ExprValueKind VK = CastCategory(From);
1812 // C++ [class.member.lookup]p8:
1813 // [...] Ambiguities can often be resolved by qualifying a name with its
1814 // class name.
1816 // If the member was a qualified name and the qualified referred to a
1817 // specific base subobject type, we'll cast to that intermediate type
1818 // first and then to the object in which the member is declared. That allows
1819 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1821 // class Base { public: int x; };
1822 // class Derived1 : public Base { };
1823 // class Derived2 : public Base { };
1824 // class VeryDerived : public Derived1, public Derived2 { void f(); };
1826 // void VeryDerived::f() {
1827 // x = 17; // error: ambiguous base subobjects
1828 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
1829 // }
1830 if (Qualifier) {
1831 QualType QType = QualType(Qualifier->getAsType(), 0);
1832 assert(!QType.isNull() && "lookup done with dependent qualifier?");
1833 assert(QType->isRecordType() && "lookup done with non-record type");
1835 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1837 // In C++98, the qualifier type doesn't actually have to be a base
1838 // type of the object type, in which case we just ignore it.
1839 // Otherwise build the appropriate casts.
1840 if (IsDerivedFrom(FromRecordType, QRecordType)) {
1841 CXXCastPath BasePath;
1842 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1843 FromLoc, FromRange, &BasePath))
1844 return true;
1846 if (PointerConversions)
1847 QType = Context.getPointerType(QType);
1848 ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1849 VK, &BasePath);
1851 FromType = QType;
1852 FromRecordType = QRecordType;
1854 // If the qualifier type was the same as the destination type,
1855 // we're done.
1856 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1857 return false;
1861 bool IgnoreAccess = false;
1863 // If we actually found the member through a using declaration, cast
1864 // down to the using declaration's type.
1866 // Pointer equality is fine here because only one declaration of a
1867 // class ever has member declarations.
1868 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1869 assert(isa<UsingShadowDecl>(FoundDecl));
1870 QualType URecordType = Context.getTypeDeclType(
1871 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1873 // We only need to do this if the naming-class to declaring-class
1874 // conversion is non-trivial.
1875 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1876 assert(IsDerivedFrom(FromRecordType, URecordType));
1877 CXXCastPath BasePath;
1878 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1879 FromLoc, FromRange, &BasePath))
1880 return true;
1882 QualType UType = URecordType;
1883 if (PointerConversions)
1884 UType = Context.getPointerType(UType);
1885 ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
1886 VK, &BasePath);
1887 FromType = UType;
1888 FromRecordType = URecordType;
1891 // We don't do access control for the conversion from the
1892 // declaring class to the true declaring class.
1893 IgnoreAccess = true;
1896 CXXCastPath BasePath;
1897 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1898 FromLoc, FromRange, &BasePath,
1899 IgnoreAccess))
1900 return true;
1902 ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
1903 VK, &BasePath);
1904 return false;
1907 /// \brief Build a MemberExpr AST node.
1908 static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1909 const CXXScopeSpec &SS, ValueDecl *Member,
1910 DeclAccessPair FoundDecl,
1911 const DeclarationNameInfo &MemberNameInfo,
1912 QualType Ty,
1913 const TemplateArgumentListInfo *TemplateArgs = 0) {
1914 NestedNameSpecifier *Qualifier = 0;
1915 SourceRange QualifierRange;
1916 if (SS.isSet()) {
1917 Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1918 QualifierRange = SS.getRange();
1921 return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1922 Member, FoundDecl, MemberNameInfo,
1923 TemplateArgs, Ty);
1926 /// Builds an implicit member access expression. The current context
1927 /// is known to be an instance method, and the given unqualified lookup
1928 /// set is known to contain only instance members, at least one of which
1929 /// is from an appropriate type.
1930 ExprResult
1931 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1932 LookupResult &R,
1933 const TemplateArgumentListInfo *TemplateArgs,
1934 bool IsKnownInstance) {
1935 assert(!R.empty() && !R.isAmbiguous());
1937 SourceLocation Loc = R.getNameLoc();
1939 // We may have found a field within an anonymous union or struct
1940 // (C++ [class.union]).
1941 // FIXME: This needs to happen post-isImplicitMemberReference?
1942 // FIXME: template-ids inside anonymous structs?
1943 if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1944 if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1945 return BuildAnonymousStructUnionMemberReference(Loc, FD);
1947 // If this is known to be an instance access, go ahead and build a
1948 // 'this' expression now.
1949 DeclContext *DC = getFunctionLevelDeclContext();
1950 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1951 Expr *This = 0; // null signifies implicit access
1952 if (IsKnownInstance) {
1953 SourceLocation Loc = R.getNameLoc();
1954 if (SS.getRange().isValid())
1955 Loc = SS.getRange().getBegin();
1956 This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1959 return BuildMemberReferenceExpr(This, ThisType,
1960 /*OpLoc*/ SourceLocation(),
1961 /*IsArrow*/ true,
1963 /*FirstQualifierInScope*/ 0,
1964 R, TemplateArgs);
1967 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1968 const LookupResult &R,
1969 bool HasTrailingLParen) {
1970 // Only when used directly as the postfix-expression of a call.
1971 if (!HasTrailingLParen)
1972 return false;
1974 // Never if a scope specifier was provided.
1975 if (SS.isSet())
1976 return false;
1978 // Only in C++ or ObjC++.
1979 if (!getLangOptions().CPlusPlus)
1980 return false;
1982 // Turn off ADL when we find certain kinds of declarations during
1983 // normal lookup:
1984 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1985 NamedDecl *D = *I;
1987 // C++0x [basic.lookup.argdep]p3:
1988 // -- a declaration of a class member
1989 // Since using decls preserve this property, we check this on the
1990 // original decl.
1991 if (D->isCXXClassMember())
1992 return false;
1994 // C++0x [basic.lookup.argdep]p3:
1995 // -- a block-scope function declaration that is not a
1996 // using-declaration
1997 // NOTE: we also trigger this for function templates (in fact, we
1998 // don't check the decl type at all, since all other decl types
1999 // turn off ADL anyway).
2000 if (isa<UsingShadowDecl>(D))
2001 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2002 else if (D->getDeclContext()->isFunctionOrMethod())
2003 return false;
2005 // C++0x [basic.lookup.argdep]p3:
2006 // -- a declaration that is neither a function or a function
2007 // template
2008 // And also for builtin functions.
2009 if (isa<FunctionDecl>(D)) {
2010 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2012 // But also builtin functions.
2013 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2014 return false;
2015 } else if (!isa<FunctionTemplateDecl>(D))
2016 return false;
2019 return true;
2023 /// Diagnoses obvious problems with the use of the given declaration
2024 /// as an expression. This is only actually called for lookups that
2025 /// were not overloaded, and it doesn't promise that the declaration
2026 /// will in fact be used.
2027 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2028 if (isa<TypedefDecl>(D)) {
2029 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2030 return true;
2033 if (isa<ObjCInterfaceDecl>(D)) {
2034 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2035 return true;
2038 if (isa<NamespaceDecl>(D)) {
2039 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2040 return true;
2043 return false;
2046 ExprResult
2047 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2048 LookupResult &R,
2049 bool NeedsADL) {
2050 // If this is a single, fully-resolved result and we don't need ADL,
2051 // just build an ordinary singleton decl ref.
2052 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2053 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2054 R.getFoundDecl());
2056 // We only need to check the declaration if there's exactly one
2057 // result, because in the overloaded case the results can only be
2058 // functions and function templates.
2059 if (R.isSingleResult() &&
2060 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2061 return ExprError();
2063 // Otherwise, just build an unresolved lookup expression. Suppress
2064 // any lookup-related diagnostics; we'll hash these out later, when
2065 // we've picked a target.
2066 R.suppressDiagnostics();
2068 bool Dependent
2069 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
2070 UnresolvedLookupExpr *ULE
2071 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
2072 (NestedNameSpecifier*) SS.getScopeRep(),
2073 SS.getRange(), R.getLookupNameInfo(),
2074 NeedsADL, R.isOverloadedResult(),
2075 R.begin(), R.end());
2077 return Owned(ULE);
2081 /// \brief Complete semantic analysis for a reference to the given declaration.
2082 ExprResult
2083 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2084 const DeclarationNameInfo &NameInfo,
2085 NamedDecl *D) {
2086 assert(D && "Cannot refer to a NULL declaration");
2087 assert(!isa<FunctionTemplateDecl>(D) &&
2088 "Cannot refer unambiguously to a function template");
2090 SourceLocation Loc = NameInfo.getLoc();
2091 if (CheckDeclInExpr(*this, Loc, D))
2092 return ExprError();
2094 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2095 // Specifically diagnose references to class templates that are missing
2096 // a template argument list.
2097 Diag(Loc, diag::err_template_decl_ref)
2098 << Template << SS.getRange();
2099 Diag(Template->getLocation(), diag::note_template_decl_here);
2100 return ExprError();
2103 // Make sure that we're referring to a value.
2104 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2105 if (!VD) {
2106 Diag(Loc, diag::err_ref_non_value)
2107 << D << SS.getRange();
2108 Diag(D->getLocation(), diag::note_declared_at);
2109 return ExprError();
2112 // Check whether this declaration can be used. Note that we suppress
2113 // this check when we're going to perform argument-dependent lookup
2114 // on this function name, because this might not be the function
2115 // that overload resolution actually selects.
2116 if (DiagnoseUseOfDecl(VD, Loc))
2117 return ExprError();
2119 // Only create DeclRefExpr's for valid Decl's.
2120 if (VD->isInvalidDecl())
2121 return ExprError();
2123 // If the identifier reference is inside a block, and it refers to a value
2124 // that is outside the block, create a BlockDeclRefExpr instead of a
2125 // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
2126 // the block is formed.
2128 // We do not do this for things like enum constants, global variables, etc,
2129 // as they do not get snapshotted.
2131 if (getCurBlock() &&
2132 ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
2133 if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
2134 Diag(Loc, diag::err_ref_vm_type);
2135 Diag(D->getLocation(), diag::note_declared_at);
2136 return ExprError();
2139 if (VD->getType()->isArrayType()) {
2140 Diag(Loc, diag::err_ref_array_type);
2141 Diag(D->getLocation(), diag::note_declared_at);
2142 return ExprError();
2145 MarkDeclarationReferenced(Loc, VD);
2146 QualType ExprTy = VD->getType().getNonReferenceType();
2147 // The BlocksAttr indicates the variable is bound by-reference.
2148 bool byrefVar = (VD->getAttr<BlocksAttr>() != 0);
2149 QualType T = VD->getType();
2150 BlockDeclRefExpr *BDRE;
2152 if (!byrefVar) {
2153 // This is to record that a 'const' was actually synthesize and added.
2154 bool constAdded = !ExprTy.isConstQualified();
2155 // Variable will be bound by-copy, make it const within the closure.
2156 ExprTy.addConst();
2157 BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
2158 constAdded);
2160 else
2161 BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true);
2163 if (getLangOptions().CPlusPlus) {
2164 if (!T->isDependentType() && !T->isReferenceType()) {
2165 Expr *E = new (Context)
2166 DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
2167 SourceLocation());
2168 if (T->getAs<RecordType>())
2169 if (!T->isUnionType()) {
2170 ExprResult Res = PerformCopyInitialization(
2171 InitializedEntity::InitializeBlock(VD->getLocation(),
2172 T, false),
2173 SourceLocation(),
2174 Owned(E));
2175 if (!Res.isInvalid()) {
2176 Res = MaybeCreateCXXExprWithTemporaries(Res.get());
2177 Expr *Init = Res.takeAs<Expr>();
2178 BDRE->setCopyConstructorExpr(Init);
2183 return Owned(BDRE);
2185 // If this reference is not in a block or if the referenced variable is
2186 // within the block, create a normal DeclRefExpr.
2188 return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
2189 NameInfo, &SS);
2192 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
2193 tok::TokenKind Kind) {
2194 PredefinedExpr::IdentType IT;
2196 switch (Kind) {
2197 default: assert(0 && "Unknown simple primary expr!");
2198 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2199 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2200 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2203 // Pre-defined identifiers are of type char[x], where x is the length of the
2204 // string.
2206 Decl *currentDecl = getCurFunctionOrMethodDecl();
2207 if (!currentDecl && getCurBlock())
2208 currentDecl = getCurBlock()->TheDecl;
2209 if (!currentDecl) {
2210 Diag(Loc, diag::ext_predef_outside_function);
2211 currentDecl = Context.getTranslationUnitDecl();
2214 QualType ResTy;
2215 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2216 ResTy = Context.DependentTy;
2217 } else {
2218 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2220 llvm::APInt LengthI(32, Length + 1);
2221 ResTy = Context.CharTy.withConst();
2222 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2224 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2227 ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2228 llvm::SmallString<16> CharBuffer;
2229 bool Invalid = false;
2230 llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2231 if (Invalid)
2232 return ExprError();
2234 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2235 PP);
2236 if (Literal.hadError())
2237 return ExprError();
2239 QualType Ty;
2240 if (!getLangOptions().CPlusPlus)
2241 Ty = Context.IntTy; // 'x' and L'x' -> int in C.
2242 else if (Literal.isWide())
2243 Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2244 else if (Literal.isMultiChar())
2245 Ty = Context.IntTy; // 'wxyz' -> int in C++.
2246 else
2247 Ty = Context.CharTy; // 'x' -> char in C++
2249 return Owned(new (Context) CharacterLiteral(Literal.getValue(),
2250 Literal.isWide(),
2251 Ty, Tok.getLocation()));
2254 ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2255 // Fast path for a single digit (which is quite common). A single digit
2256 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2257 if (Tok.getLength() == 1) {
2258 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2259 unsigned IntSize = Context.Target.getIntWidth();
2260 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2261 Context.IntTy, Tok.getLocation()));
2264 llvm::SmallString<512> IntegerBuffer;
2265 // Add padding so that NumericLiteralParser can overread by one character.
2266 IntegerBuffer.resize(Tok.getLength()+1);
2267 const char *ThisTokBegin = &IntegerBuffer[0];
2269 // Get the spelling of the token, which eliminates trigraphs, etc.
2270 bool Invalid = false;
2271 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2272 if (Invalid)
2273 return ExprError();
2275 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2276 Tok.getLocation(), PP);
2277 if (Literal.hadError)
2278 return ExprError();
2280 Expr *Res;
2282 if (Literal.isFloatingLiteral()) {
2283 QualType Ty;
2284 if (Literal.isFloat)
2285 Ty = Context.FloatTy;
2286 else if (!Literal.isLong)
2287 Ty = Context.DoubleTy;
2288 else
2289 Ty = Context.LongDoubleTy;
2291 const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2293 using llvm::APFloat;
2294 APFloat Val(Format);
2296 APFloat::opStatus result = Literal.GetFloatValue(Val);
2298 // Overflow is always an error, but underflow is only an error if
2299 // we underflowed to zero (APFloat reports denormals as underflow).
2300 if ((result & APFloat::opOverflow) ||
2301 ((result & APFloat::opUnderflow) && Val.isZero())) {
2302 unsigned diagnostic;
2303 llvm::SmallString<20> buffer;
2304 if (result & APFloat::opOverflow) {
2305 diagnostic = diag::warn_float_overflow;
2306 APFloat::getLargest(Format).toString(buffer);
2307 } else {
2308 diagnostic = diag::warn_float_underflow;
2309 APFloat::getSmallest(Format).toString(buffer);
2312 Diag(Tok.getLocation(), diagnostic)
2313 << Ty
2314 << llvm::StringRef(buffer.data(), buffer.size());
2317 bool isExact = (result == APFloat::opOK);
2318 Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2320 } else if (!Literal.isIntegerLiteral()) {
2321 return ExprError();
2322 } else {
2323 QualType Ty;
2325 // long long is a C99 feature.
2326 if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2327 Literal.isLongLong)
2328 Diag(Tok.getLocation(), diag::ext_longlong);
2330 // Get the value in the widest-possible width.
2331 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2333 if (Literal.GetIntegerValue(ResultVal)) {
2334 // If this value didn't fit into uintmax_t, warn and force to ull.
2335 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2336 Ty = Context.UnsignedLongLongTy;
2337 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2338 "long long is not intmax_t?");
2339 } else {
2340 // If this value fits into a ULL, try to figure out what else it fits into
2341 // according to the rules of C99 6.4.4.1p5.
2343 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2344 // be an unsigned int.
2345 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2347 // Check from smallest to largest, picking the smallest type we can.
2348 unsigned Width = 0;
2349 if (!Literal.isLong && !Literal.isLongLong) {
2350 // Are int/unsigned possibilities?
2351 unsigned IntSize = Context.Target.getIntWidth();
2353 // Does it fit in a unsigned int?
2354 if (ResultVal.isIntN(IntSize)) {
2355 // Does it fit in a signed int?
2356 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2357 Ty = Context.IntTy;
2358 else if (AllowUnsigned)
2359 Ty = Context.UnsignedIntTy;
2360 Width = IntSize;
2364 // Are long/unsigned long possibilities?
2365 if (Ty.isNull() && !Literal.isLongLong) {
2366 unsigned LongSize = Context.Target.getLongWidth();
2368 // Does it fit in a unsigned long?
2369 if (ResultVal.isIntN(LongSize)) {
2370 // Does it fit in a signed long?
2371 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2372 Ty = Context.LongTy;
2373 else if (AllowUnsigned)
2374 Ty = Context.UnsignedLongTy;
2375 Width = LongSize;
2379 // Finally, check long long if needed.
2380 if (Ty.isNull()) {
2381 unsigned LongLongSize = Context.Target.getLongLongWidth();
2383 // Does it fit in a unsigned long long?
2384 if (ResultVal.isIntN(LongLongSize)) {
2385 // Does it fit in a signed long long?
2386 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
2387 Ty = Context.LongLongTy;
2388 else if (AllowUnsigned)
2389 Ty = Context.UnsignedLongLongTy;
2390 Width = LongLongSize;
2394 // If we still couldn't decide a type, we probably have something that
2395 // does not fit in a signed long long, but has no U suffix.
2396 if (Ty.isNull()) {
2397 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2398 Ty = Context.UnsignedLongLongTy;
2399 Width = Context.Target.getLongLongWidth();
2402 if (ResultVal.getBitWidth() != Width)
2403 ResultVal.trunc(Width);
2405 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2408 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2409 if (Literal.isImaginary)
2410 Res = new (Context) ImaginaryLiteral(Res,
2411 Context.getComplexType(Res->getType()));
2413 return Owned(Res);
2416 ExprResult Sema::ActOnParenExpr(SourceLocation L,
2417 SourceLocation R, Expr *E) {
2418 assert((E != 0) && "ActOnParenExpr() missing expr");
2419 return Owned(new (Context) ParenExpr(L, R, E));
2422 /// The UsualUnaryConversions() function is *not* called by this routine.
2423 /// See C99 6.3.2.1p[2-4] for more details.
2424 bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2425 SourceLocation OpLoc,
2426 SourceRange ExprRange,
2427 bool isSizeof) {
2428 if (exprType->isDependentType())
2429 return false;
2431 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2432 // the result is the size of the referenced type."
2433 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2434 // result shall be the alignment of the referenced type."
2435 if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2436 exprType = Ref->getPointeeType();
2438 // C99 6.5.3.4p1:
2439 if (exprType->isFunctionType()) {
2440 // alignof(function) is allowed as an extension.
2441 if (isSizeof)
2442 Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2443 return false;
2446 // Allow sizeof(void)/alignof(void) as an extension.
2447 if (exprType->isVoidType()) {
2448 Diag(OpLoc, diag::ext_sizeof_void_type)
2449 << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2450 return false;
2453 if (RequireCompleteType(OpLoc, exprType,
2454 PDiag(diag::err_sizeof_alignof_incomplete_type)
2455 << int(!isSizeof) << ExprRange))
2456 return true;
2458 // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2459 if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2460 Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2461 << exprType << isSizeof << ExprRange;
2462 return true;
2465 return false;
2468 static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
2469 SourceRange ExprRange) {
2470 E = E->IgnoreParens();
2472 // alignof decl is always ok.
2473 if (isa<DeclRefExpr>(E))
2474 return false;
2476 // Cannot know anything else if the expression is dependent.
2477 if (E->isTypeDependent())
2478 return false;
2480 if (E->getBitField()) {
2481 S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2482 return true;
2485 // Alignment of a field access is always okay, so long as it isn't a
2486 // bit-field.
2487 if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2488 if (isa<FieldDecl>(ME->getMemberDecl()))
2489 return false;
2491 return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2494 /// \brief Build a sizeof or alignof expression given a type operand.
2495 ExprResult
2496 Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2497 SourceLocation OpLoc,
2498 bool isSizeOf, SourceRange R) {
2499 if (!TInfo)
2500 return ExprError();
2502 QualType T = TInfo->getType();
2504 if (!T->isDependentType() &&
2505 CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2506 return ExprError();
2508 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2509 return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2510 Context.getSizeType(), OpLoc,
2511 R.getEnd()));
2514 /// \brief Build a sizeof or alignof expression given an expression
2515 /// operand.
2516 ExprResult
2517 Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2518 bool isSizeOf, SourceRange R) {
2519 // Verify that the operand is valid.
2520 bool isInvalid = false;
2521 if (E->isTypeDependent()) {
2522 // Delay type-checking for type-dependent expressions.
2523 } else if (!isSizeOf) {
2524 isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
2525 } else if (E->getBitField()) { // C99 6.5.3.4p1.
2526 Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2527 isInvalid = true;
2528 } else if (E->getType()->isPlaceholderType()) {
2529 ExprResult PE = CheckPlaceholderExpr(E, OpLoc);
2530 if (PE.isInvalid()) return ExprError();
2531 return CreateSizeOfAlignOfExpr(PE.take(), OpLoc, isSizeOf, R);
2532 } else {
2533 isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2536 if (isInvalid)
2537 return ExprError();
2539 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2540 return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2541 Context.getSizeType(), OpLoc,
2542 R.getEnd()));
2545 /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2546 /// the same for @c alignof and @c __alignof
2547 /// Note that the ArgRange is invalid if isType is false.
2548 ExprResult
2549 Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2550 void *TyOrEx, const SourceRange &ArgRange) {
2551 // If error parsing type, ignore.
2552 if (TyOrEx == 0) return ExprError();
2554 if (isType) {
2555 TypeSourceInfo *TInfo;
2556 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2557 return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2560 Expr *ArgEx = (Expr *)TyOrEx;
2561 ExprResult Result
2562 = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2564 return move(Result);
2567 QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2568 if (V->isTypeDependent())
2569 return Context.DependentTy;
2571 // These operators return the element type of a complex type.
2572 if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2573 return CT->getElementType();
2575 // Otherwise they pass through real integer and floating point types here.
2576 if (V->getType()->isArithmeticType())
2577 return V->getType();
2579 // Test for placeholders.
2580 ExprResult PR = CheckPlaceholderExpr(V, Loc);
2581 if (PR.isInvalid()) return QualType();
2582 if (PR.take() != V) {
2583 V = PR.take();
2584 return CheckRealImagOperand(V, Loc, isReal);
2587 // Reject anything else.
2588 Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2589 << (isReal ? "__real" : "__imag");
2590 return QualType();
2595 ExprResult
2596 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2597 tok::TokenKind Kind, Expr *Input) {
2598 UnaryOperatorKind Opc;
2599 switch (Kind) {
2600 default: assert(0 && "Unknown unary op!");
2601 case tok::plusplus: Opc = UO_PostInc; break;
2602 case tok::minusminus: Opc = UO_PostDec; break;
2605 return BuildUnaryOp(S, OpLoc, Opc, Input);
2608 ExprResult
2609 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2610 Expr *Idx, SourceLocation RLoc) {
2611 // Since this might be a postfix expression, get rid of ParenListExprs.
2612 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2613 if (Result.isInvalid()) return ExprError();
2614 Base = Result.take();
2616 Expr *LHSExp = Base, *RHSExp = Idx;
2618 if (getLangOptions().CPlusPlus &&
2619 (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2620 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2621 Context.DependentTy, RLoc));
2624 if (getLangOptions().CPlusPlus &&
2625 (LHSExp->getType()->isRecordType() ||
2626 LHSExp->getType()->isEnumeralType() ||
2627 RHSExp->getType()->isRecordType() ||
2628 RHSExp->getType()->isEnumeralType())) {
2629 return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2632 return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2636 ExprResult
2637 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2638 Expr *Idx, SourceLocation RLoc) {
2639 Expr *LHSExp = Base;
2640 Expr *RHSExp = Idx;
2642 // Perform default conversions.
2643 if (!LHSExp->getType()->getAs<VectorType>())
2644 DefaultFunctionArrayLvalueConversion(LHSExp);
2645 DefaultFunctionArrayLvalueConversion(RHSExp);
2647 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2649 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2650 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2651 // in the subscript position. As a result, we need to derive the array base
2652 // and index from the expression types.
2653 Expr *BaseExpr, *IndexExpr;
2654 QualType ResultType;
2655 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2656 BaseExpr = LHSExp;
2657 IndexExpr = RHSExp;
2658 ResultType = Context.DependentTy;
2659 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2660 BaseExpr = LHSExp;
2661 IndexExpr = RHSExp;
2662 ResultType = PTy->getPointeeType();
2663 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2664 // Handle the uncommon case of "123[Ptr]".
2665 BaseExpr = RHSExp;
2666 IndexExpr = LHSExp;
2667 ResultType = PTy->getPointeeType();
2668 } else if (const ObjCObjectPointerType *PTy =
2669 LHSTy->getAs<ObjCObjectPointerType>()) {
2670 BaseExpr = LHSExp;
2671 IndexExpr = RHSExp;
2672 ResultType = PTy->getPointeeType();
2673 } else if (const ObjCObjectPointerType *PTy =
2674 RHSTy->getAs<ObjCObjectPointerType>()) {
2675 // Handle the uncommon case of "123[Ptr]".
2676 BaseExpr = RHSExp;
2677 IndexExpr = LHSExp;
2678 ResultType = PTy->getPointeeType();
2679 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2680 BaseExpr = LHSExp; // vectors: V[123]
2681 IndexExpr = RHSExp;
2683 // FIXME: need to deal with const...
2684 ResultType = VTy->getElementType();
2685 } else if (LHSTy->isArrayType()) {
2686 // If we see an array that wasn't promoted by
2687 // DefaultFunctionArrayLvalueConversion, it must be an array that
2688 // wasn't promoted because of the C90 rule that doesn't
2689 // allow promoting non-lvalue arrays. Warn, then
2690 // force the promotion here.
2691 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2692 LHSExp->getSourceRange();
2693 ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2694 CK_ArrayToPointerDecay);
2695 LHSTy = LHSExp->getType();
2697 BaseExpr = LHSExp;
2698 IndexExpr = RHSExp;
2699 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2700 } else if (RHSTy->isArrayType()) {
2701 // Same as previous, except for 123[f().a] case
2702 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2703 RHSExp->getSourceRange();
2704 ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2705 CK_ArrayToPointerDecay);
2706 RHSTy = RHSExp->getType();
2708 BaseExpr = RHSExp;
2709 IndexExpr = LHSExp;
2710 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2711 } else {
2712 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2713 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2715 // C99 6.5.2.1p1
2716 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2717 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2718 << IndexExpr->getSourceRange());
2720 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2721 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2722 && !IndexExpr->isTypeDependent())
2723 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2725 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2726 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2727 // type. Note that Functions are not objects, and that (in C99 parlance)
2728 // incomplete types are not object types.
2729 if (ResultType->isFunctionType()) {
2730 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2731 << ResultType << BaseExpr->getSourceRange();
2732 return ExprError();
2735 if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
2736 // GNU extension: subscripting on pointer to void
2737 Diag(LLoc, diag::ext_gnu_void_ptr)
2738 << BaseExpr->getSourceRange();
2739 } else if (!ResultType->isDependentType() &&
2740 RequireCompleteType(LLoc, ResultType,
2741 PDiag(diag::err_subscript_incomplete_type)
2742 << BaseExpr->getSourceRange()))
2743 return ExprError();
2745 // Diagnose bad cases where we step over interface counts.
2746 if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2747 Diag(LLoc, diag::err_subscript_nonfragile_interface)
2748 << ResultType << BaseExpr->getSourceRange();
2749 return ExprError();
2752 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2753 ResultType, RLoc));
2756 QualType Sema::
2757 CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2758 const IdentifierInfo *CompName,
2759 SourceLocation CompLoc) {
2760 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2761 // see FIXME there.
2763 // FIXME: This logic can be greatly simplified by splitting it along
2764 // halving/not halving and reworking the component checking.
2765 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2767 // The vector accessor can't exceed the number of elements.
2768 const char *compStr = CompName->getNameStart();
2770 // This flag determines whether or not the component is one of the four
2771 // special names that indicate a subset of exactly half the elements are
2772 // to be selected.
2773 bool HalvingSwizzle = false;
2775 // This flag determines whether or not CompName has an 's' char prefix,
2776 // indicating that it is a string of hex values to be used as vector indices.
2777 bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2779 // Check that we've found one of the special components, or that the component
2780 // names must come from the same set.
2781 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2782 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2783 HalvingSwizzle = true;
2784 } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2786 compStr++;
2787 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2788 } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2790 compStr++;
2791 while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2794 if (!HalvingSwizzle && *compStr) {
2795 // We didn't get to the end of the string. This means the component names
2796 // didn't come from the same set *or* we encountered an illegal name.
2797 Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2798 << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2799 return QualType();
2802 // Ensure no component accessor exceeds the width of the vector type it
2803 // operates on.
2804 if (!HalvingSwizzle) {
2805 compStr = CompName->getNameStart();
2807 if (HexSwizzle)
2808 compStr++;
2810 while (*compStr) {
2811 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2812 Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2813 << baseType << SourceRange(CompLoc);
2814 return QualType();
2819 // The component accessor looks fine - now we need to compute the actual type.
2820 // The vector type is implied by the component accessor. For example,
2821 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2822 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2823 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2824 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2825 : CompName->getLength();
2826 if (HexSwizzle)
2827 CompSize--;
2829 if (CompSize == 1)
2830 return vecType->getElementType();
2832 QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2833 // Now look up the TypeDefDecl from the vector type. Without this,
2834 // diagostics look bad. We want extended vector types to appear built-in.
2835 for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2836 if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2837 return Context.getTypedefType(ExtVectorDecls[i]);
2839 return VT; // should never get here (a typedef type should always be found).
2842 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2843 IdentifierInfo *Member,
2844 const Selector &Sel,
2845 ASTContext &Context) {
2846 if (Member)
2847 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2848 return PD;
2849 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2850 return OMD;
2852 for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2853 E = PDecl->protocol_end(); I != E; ++I) {
2854 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
2855 Context))
2856 return D;
2858 return 0;
2861 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
2862 IdentifierInfo *Member,
2863 const Selector &Sel,
2864 ASTContext &Context) {
2865 // Check protocols on qualified interfaces.
2866 Decl *GDecl = 0;
2867 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2868 E = QIdTy->qual_end(); I != E; ++I) {
2869 if (Member)
2870 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2871 GDecl = PD;
2872 break;
2874 // Also must look for a getter or setter name which uses property syntax.
2875 if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2876 GDecl = OMD;
2877 break;
2880 if (!GDecl) {
2881 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2882 E = QIdTy->qual_end(); I != E; ++I) {
2883 // Search in the protocol-qualifier list of current protocol.
2884 GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
2885 Context);
2886 if (GDecl)
2887 return GDecl;
2890 return GDecl;
2893 ExprResult
2894 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
2895 bool IsArrow, SourceLocation OpLoc,
2896 const CXXScopeSpec &SS,
2897 NamedDecl *FirstQualifierInScope,
2898 const DeclarationNameInfo &NameInfo,
2899 const TemplateArgumentListInfo *TemplateArgs) {
2900 // Even in dependent contexts, try to diagnose base expressions with
2901 // obviously wrong types, e.g.:
2903 // T* t;
2904 // t.f;
2906 // In Obj-C++, however, the above expression is valid, since it could be
2907 // accessing the 'f' property if T is an Obj-C interface. The extra check
2908 // allows this, while still reporting an error if T is a struct pointer.
2909 if (!IsArrow) {
2910 const PointerType *PT = BaseType->getAs<PointerType>();
2911 if (PT && (!getLangOptions().ObjC1 ||
2912 PT->getPointeeType()->isRecordType())) {
2913 assert(BaseExpr && "cannot happen with implicit member accesses");
2914 Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
2915 << BaseType << BaseExpr->getSourceRange();
2916 return ExprError();
2920 assert(BaseType->isDependentType() ||
2921 NameInfo.getName().isDependentName() ||
2922 isDependentScopeSpecifier(SS));
2924 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
2925 // must have pointer type, and the accessed type is the pointee.
2926 return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2927 IsArrow, OpLoc,
2928 SS.getScopeRep(),
2929 SS.getRange(),
2930 FirstQualifierInScope,
2931 NameInfo, TemplateArgs));
2934 /// We know that the given qualified member reference points only to
2935 /// declarations which do not belong to the static type of the base
2936 /// expression. Diagnose the problem.
2937 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2938 Expr *BaseExpr,
2939 QualType BaseType,
2940 const CXXScopeSpec &SS,
2941 const LookupResult &R) {
2942 // If this is an implicit member access, use a different set of
2943 // diagnostics.
2944 if (!BaseExpr)
2945 return DiagnoseInstanceReference(SemaRef, SS, R);
2947 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2948 << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2951 // Check whether the declarations we found through a nested-name
2952 // specifier in a member expression are actually members of the base
2953 // type. The restriction here is:
2955 // C++ [expr.ref]p2:
2956 // ... In these cases, the id-expression shall name a
2957 // member of the class or of one of its base classes.
2959 // So it's perfectly legitimate for the nested-name specifier to name
2960 // an unrelated class, and for us to find an overload set including
2961 // decls from classes which are not superclasses, as long as the decl
2962 // we actually pick through overload resolution is from a superclass.
2963 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2964 QualType BaseType,
2965 const CXXScopeSpec &SS,
2966 const LookupResult &R) {
2967 const RecordType *BaseRT = BaseType->getAs<RecordType>();
2968 if (!BaseRT) {
2969 // We can't check this yet because the base type is still
2970 // dependent.
2971 assert(BaseType->isDependentType());
2972 return false;
2974 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2976 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2977 // If this is an implicit member reference and we find a
2978 // non-instance member, it's not an error.
2979 if (!BaseExpr && !(*I)->isCXXInstanceMember())
2980 return false;
2982 // Note that we use the DC of the decl, not the underlying decl.
2983 DeclContext *DC = (*I)->getDeclContext();
2984 while (DC->isTransparentContext())
2985 DC = DC->getParent();
2987 if (!DC->isRecord())
2988 continue;
2990 llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2991 MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
2993 if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2994 return false;
2997 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2998 return true;
3001 static bool
3002 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
3003 SourceRange BaseRange, const RecordType *RTy,
3004 SourceLocation OpLoc, CXXScopeSpec &SS,
3005 bool HasTemplateArgs) {
3006 RecordDecl *RDecl = RTy->getDecl();
3007 if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
3008 SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
3009 << BaseRange))
3010 return true;
3012 if (HasTemplateArgs) {
3013 // LookupTemplateName doesn't expect these both to exist simultaneously.
3014 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
3016 bool MOUS;
3017 SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
3018 return false;
3021 DeclContext *DC = RDecl;
3022 if (SS.isSet()) {
3023 // If the member name was a qualified-id, look into the
3024 // nested-name-specifier.
3025 DC = SemaRef.computeDeclContext(SS, false);
3027 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
3028 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
3029 << SS.getRange() << DC;
3030 return true;
3033 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
3035 if (!isa<TypeDecl>(DC)) {
3036 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
3037 << DC << SS.getRange();
3038 return true;
3042 // The record definition is complete, now look up the member.
3043 SemaRef.LookupQualifiedName(R, DC);
3045 if (!R.empty())
3046 return false;
3048 // We didn't find anything with the given name, so try to correct
3049 // for typos.
3050 DeclarationName Name = R.getLookupName();
3051 if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
3052 !R.empty() &&
3053 (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
3054 SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
3055 << Name << DC << R.getLookupName() << SS.getRange()
3056 << FixItHint::CreateReplacement(R.getNameLoc(),
3057 R.getLookupName().getAsString());
3058 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
3059 SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
3060 << ND->getDeclName();
3061 return false;
3062 } else {
3063 R.clear();
3064 R.setLookupName(Name);
3067 return false;
3070 ExprResult
3071 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
3072 SourceLocation OpLoc, bool IsArrow,
3073 CXXScopeSpec &SS,
3074 NamedDecl *FirstQualifierInScope,
3075 const DeclarationNameInfo &NameInfo,
3076 const TemplateArgumentListInfo *TemplateArgs) {
3077 if (BaseType->isDependentType() ||
3078 (SS.isSet() && isDependentScopeSpecifier(SS)))
3079 return ActOnDependentMemberExpr(Base, BaseType,
3080 IsArrow, OpLoc,
3081 SS, FirstQualifierInScope,
3082 NameInfo, TemplateArgs);
3084 LookupResult R(*this, NameInfo, LookupMemberName);
3086 // Implicit member accesses.
3087 if (!Base) {
3088 QualType RecordTy = BaseType;
3089 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
3090 if (LookupMemberExprInRecord(*this, R, SourceRange(),
3091 RecordTy->getAs<RecordType>(),
3092 OpLoc, SS, TemplateArgs != 0))
3093 return ExprError();
3095 // Explicit member accesses.
3096 } else {
3097 ExprResult Result =
3098 LookupMemberExpr(R, Base, IsArrow, OpLoc,
3099 SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
3101 if (Result.isInvalid()) {
3102 Owned(Base);
3103 return ExprError();
3106 if (Result.get())
3107 return move(Result);
3109 // LookupMemberExpr can modify Base, and thus change BaseType
3110 BaseType = Base->getType();
3113 return BuildMemberReferenceExpr(Base, BaseType,
3114 OpLoc, IsArrow, SS, FirstQualifierInScope,
3115 R, TemplateArgs);
3118 ExprResult
3119 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
3120 SourceLocation OpLoc, bool IsArrow,
3121 const CXXScopeSpec &SS,
3122 NamedDecl *FirstQualifierInScope,
3123 LookupResult &R,
3124 const TemplateArgumentListInfo *TemplateArgs,
3125 bool SuppressQualifierCheck) {
3126 QualType BaseType = BaseExprType;
3127 if (IsArrow) {
3128 assert(BaseType->isPointerType());
3129 BaseType = BaseType->getAs<PointerType>()->getPointeeType();
3131 R.setBaseObjectType(BaseType);
3133 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3134 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
3135 DeclarationName MemberName = MemberNameInfo.getName();
3136 SourceLocation MemberLoc = MemberNameInfo.getLoc();
3138 if (R.isAmbiguous())
3139 return ExprError();
3141 if (R.empty()) {
3142 // Rederive where we looked up.
3143 DeclContext *DC = (SS.isSet()
3144 ? computeDeclContext(SS, false)
3145 : BaseType->getAs<RecordType>()->getDecl());
3147 Diag(R.getNameLoc(), diag::err_no_member)
3148 << MemberName << DC
3149 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
3150 return ExprError();
3153 // Diagnose lookups that find only declarations from a non-base
3154 // type. This is possible for either qualified lookups (which may
3155 // have been qualified with an unrelated type) or implicit member
3156 // expressions (which were found with unqualified lookup and thus
3157 // may have come from an enclosing scope). Note that it's okay for
3158 // lookup to find declarations from a non-base type as long as those
3159 // aren't the ones picked by overload resolution.
3160 if ((SS.isSet() || !BaseExpr ||
3161 (isa<CXXThisExpr>(BaseExpr) &&
3162 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
3163 !SuppressQualifierCheck &&
3164 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
3165 return ExprError();
3167 // Construct an unresolved result if we in fact got an unresolved
3168 // result.
3169 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
3170 bool Dependent =
3171 BaseExprType->isDependentType() ||
3172 R.isUnresolvableResult() ||
3173 OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
3175 // Suppress any lookup-related diagnostics; we'll do these when we
3176 // pick a member.
3177 R.suppressDiagnostics();
3179 UnresolvedMemberExpr *MemExpr
3180 = UnresolvedMemberExpr::Create(Context, Dependent,
3181 R.isUnresolvableResult(),
3182 BaseExpr, BaseExprType,
3183 IsArrow, OpLoc,
3184 Qualifier, SS.getRange(),
3185 MemberNameInfo,
3186 TemplateArgs, R.begin(), R.end());
3188 return Owned(MemExpr);
3191 assert(R.isSingleResult());
3192 DeclAccessPair FoundDecl = R.begin().getPair();
3193 NamedDecl *MemberDecl = R.getFoundDecl();
3195 // FIXME: diagnose the presence of template arguments now.
3197 // If the decl being referenced had an error, return an error for this
3198 // sub-expr without emitting another error, in order to avoid cascading
3199 // error cases.
3200 if (MemberDecl->isInvalidDecl())
3201 return ExprError();
3203 // Handle the implicit-member-access case.
3204 if (!BaseExpr) {
3205 // If this is not an instance member, convert to a non-member access.
3206 if (!MemberDecl->isCXXInstanceMember())
3207 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
3209 SourceLocation Loc = R.getNameLoc();
3210 if (SS.getRange().isValid())
3211 Loc = SS.getRange().getBegin();
3212 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
3215 bool ShouldCheckUse = true;
3216 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
3217 // Don't diagnose the use of a virtual member function unless it's
3218 // explicitly qualified.
3219 if (MD->isVirtual() && !SS.isSet())
3220 ShouldCheckUse = false;
3223 // Check the use of this member.
3224 if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
3225 Owned(BaseExpr);
3226 return ExprError();
3229 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
3230 // We may have found a field within an anonymous union or struct
3231 // (C++ [class.union]).
3232 if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
3233 !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
3234 return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
3235 BaseExpr, OpLoc);
3237 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
3238 QualType MemberType = FD->getType();
3239 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
3240 MemberType = Ref->getPointeeType();
3241 else {
3242 Qualifiers BaseQuals = BaseType.getQualifiers();
3243 BaseQuals.removeObjCGCAttr();
3244 if (FD->isMutable()) BaseQuals.removeConst();
3246 Qualifiers MemberQuals
3247 = Context.getCanonicalType(MemberType).getQualifiers();
3249 Qualifiers Combined = BaseQuals + MemberQuals;
3250 if (Combined != MemberQuals)
3251 MemberType = Context.getQualifiedType(MemberType, Combined);
3254 MarkDeclarationReferenced(MemberLoc, FD);
3255 if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
3256 return ExprError();
3257 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3258 FD, FoundDecl, MemberNameInfo,
3259 MemberType));
3262 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
3263 MarkDeclarationReferenced(MemberLoc, Var);
3264 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3265 Var, FoundDecl, MemberNameInfo,
3266 Var->getType().getNonReferenceType()));
3269 if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
3270 MarkDeclarationReferenced(MemberLoc, MemberDecl);
3271 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3272 MemberFn, FoundDecl, MemberNameInfo,
3273 MemberFn->getType()));
3276 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
3277 MarkDeclarationReferenced(MemberLoc, MemberDecl);
3278 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3279 Enum, FoundDecl, MemberNameInfo,
3280 Enum->getType()));
3283 Owned(BaseExpr);
3285 // We found something that we didn't expect. Complain.
3286 if (isa<TypeDecl>(MemberDecl))
3287 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
3288 << MemberName << BaseType << int(IsArrow);
3289 else
3290 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
3291 << MemberName << BaseType << int(IsArrow);
3293 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
3294 << MemberName;
3295 R.suppressDiagnostics();
3296 return ExprError();
3299 /// Look up the given member of the given non-type-dependent
3300 /// expression. This can return in one of two ways:
3301 /// * If it returns a sentinel null-but-valid result, the caller will
3302 /// assume that lookup was performed and the results written into
3303 /// the provided structure. It will take over from there.
3304 /// * Otherwise, the returned expression will be produced in place of
3305 /// an ordinary member expression.
3307 /// The ObjCImpDecl bit is a gross hack that will need to be properly
3308 /// fixed for ObjC++.
3309 ExprResult
3310 Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
3311 bool &IsArrow, SourceLocation OpLoc,
3312 CXXScopeSpec &SS,
3313 Decl *ObjCImpDecl, bool HasTemplateArgs) {
3314 assert(BaseExpr && "no base expression");
3316 // Perform default conversions.
3317 DefaultFunctionArrayConversion(BaseExpr);
3319 QualType BaseType = BaseExpr->getType();
3320 assert(!BaseType->isDependentType());
3322 DeclarationName MemberName = R.getLookupName();
3323 SourceLocation MemberLoc = R.getNameLoc();
3325 // If the user is trying to apply -> or . to a function pointer
3326 // type, it's probably because they forgot parentheses to call that
3327 // function. Suggest the addition of those parentheses, build the
3328 // call, and continue on.
3329 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3330 if (const FunctionProtoType *Fun
3331 = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
3332 QualType ResultTy = Fun->getResultType();
3333 if (Fun->getNumArgs() == 0 &&
3334 ((!IsArrow && ResultTy->isRecordType()) ||
3335 (IsArrow && ResultTy->isPointerType() &&
3336 ResultTy->getAs<PointerType>()->getPointeeType()
3337 ->isRecordType()))) {
3338 SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
3339 Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
3340 << QualType(Fun, 0)
3341 << FixItHint::CreateInsertion(Loc, "()");
3343 ExprResult NewBase
3344 = ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
3345 BaseExpr = 0;
3346 if (NewBase.isInvalid())
3347 return ExprError();
3349 BaseExpr = NewBase.takeAs<Expr>();
3350 DefaultFunctionArrayConversion(BaseExpr);
3351 BaseType = BaseExpr->getType();
3356 // If this is an Objective-C pseudo-builtin and a definition is provided then
3357 // use that.
3358 if (BaseType->isObjCIdType()) {
3359 if (IsArrow) {
3360 // Handle the following exceptional case PObj->isa.
3361 if (const ObjCObjectPointerType *OPT =
3362 BaseType->getAs<ObjCObjectPointerType>()) {
3363 if (OPT->getObjectType()->isObjCId() &&
3364 MemberName.getAsIdentifierInfo()->isStr("isa"))
3365 return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
3366 Context.getObjCClassType()));
3369 // We have an 'id' type. Rather than fall through, we check if this
3370 // is a reference to 'isa'.
3371 if (BaseType != Context.ObjCIdRedefinitionType) {
3372 BaseType = Context.ObjCIdRedefinitionType;
3373 ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3377 // If this is an Objective-C pseudo-builtin and a definition is provided then
3378 // use that.
3379 if (Context.isObjCSelType(BaseType)) {
3380 // We have an 'SEL' type. Rather than fall through, we check if this
3381 // is a reference to 'sel_id'.
3382 if (BaseType != Context.ObjCSelRedefinitionType) {
3383 BaseType = Context.ObjCSelRedefinitionType;
3384 ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3388 assert(!BaseType.isNull() && "no type for member expression");
3390 // Handle properties on ObjC 'Class' types.
3391 if (!IsArrow && BaseType->isObjCClassType()) {
3392 // Also must look for a getter name which uses property syntax.
3393 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3394 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3395 if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3396 ObjCInterfaceDecl *IFace = MD->getClassInterface();
3397 ObjCMethodDecl *Getter;
3398 // FIXME: need to also look locally in the implementation.
3399 if ((Getter = IFace->lookupClassMethod(Sel))) {
3400 // Check the use of this method.
3401 if (DiagnoseUseOfDecl(Getter, MemberLoc))
3402 return ExprError();
3404 // If we found a getter then this may be a valid dot-reference, we
3405 // will look for the matching setter, in case it is needed.
3406 Selector SetterSel =
3407 SelectorTable::constructSetterName(PP.getIdentifierTable(),
3408 PP.getSelectorTable(), Member);
3409 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3410 if (!Setter) {
3411 // If this reference is in an @implementation, also check for 'private'
3412 // methods.
3413 Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3415 // Look through local category implementations associated with the class.
3416 if (!Setter)
3417 Setter = IFace->getCategoryClassMethod(SetterSel);
3419 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3420 return ExprError();
3422 if (Getter || Setter) {
3423 QualType PType;
3425 if (Getter)
3426 PType = Getter->getSendResultType();
3427 else
3428 // Get the expression type from Setter's incoming parameter.
3429 PType = (*(Setter->param_end() -1))->getType();
3430 // FIXME: we must check that the setter has property type.
3431 return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3432 PType,
3433 Setter, MemberLoc, BaseExpr));
3435 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3436 << MemberName << BaseType);
3440 if (BaseType->isObjCClassType() &&
3441 BaseType != Context.ObjCClassRedefinitionType) {
3442 BaseType = Context.ObjCClassRedefinitionType;
3443 ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3446 if (IsArrow) {
3447 if (const PointerType *PT = BaseType->getAs<PointerType>())
3448 BaseType = PT->getPointeeType();
3449 else if (BaseType->isObjCObjectPointerType())
3451 else if (BaseType->isRecordType()) {
3452 // Recover from arrow accesses to records, e.g.:
3453 // struct MyRecord foo;
3454 // foo->bar
3455 // This is actually well-formed in C++ if MyRecord has an
3456 // overloaded operator->, but that should have been dealt with
3457 // by now.
3458 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3459 << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3460 << FixItHint::CreateReplacement(OpLoc, ".");
3461 IsArrow = false;
3462 } else {
3463 Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3464 << BaseType << BaseExpr->getSourceRange();
3465 return ExprError();
3467 } else {
3468 // Recover from dot accesses to pointers, e.g.:
3469 // type *foo;
3470 // foo.bar
3471 // This is actually well-formed in two cases:
3472 // - 'type' is an Objective C type
3473 // - 'bar' is a pseudo-destructor name which happens to refer to
3474 // the appropriate pointer type
3475 if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3476 const PointerType *PT = BaseType->getAs<PointerType>();
3477 if (PT && PT->getPointeeType()->isRecordType()) {
3478 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3479 << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3480 << FixItHint::CreateReplacement(OpLoc, "->");
3481 BaseType = PT->getPointeeType();
3482 IsArrow = true;
3487 // Handle field access to simple records.
3488 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3489 if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3490 RTy, OpLoc, SS, HasTemplateArgs))
3491 return ExprError();
3492 return Owned((Expr*) 0);
3495 // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3496 // (*Obj).ivar.
3497 if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3498 (!IsArrow && BaseType->isObjCObjectType())) {
3499 const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3500 ObjCInterfaceDecl *IDecl =
3501 OPT ? OPT->getInterfaceDecl()
3502 : BaseType->getAs<ObjCObjectType>()->getInterface();
3503 if (IDecl) {
3504 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3506 ObjCInterfaceDecl *ClassDeclared;
3507 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3509 if (!IV) {
3510 // Attempt to correct for typos in ivar names.
3511 LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3512 LookupMemberName);
3513 if (CorrectTypo(Res, 0, 0, IDecl, false,
3514 IsArrow? CTC_ObjCIvarLookup
3515 : CTC_ObjCPropertyLookup) &&
3516 (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3517 Diag(R.getNameLoc(),
3518 diag::err_typecheck_member_reference_ivar_suggest)
3519 << IDecl->getDeclName() << MemberName << IV->getDeclName()
3520 << FixItHint::CreateReplacement(R.getNameLoc(),
3521 IV->getNameAsString());
3522 Diag(IV->getLocation(), diag::note_previous_decl)
3523 << IV->getDeclName();
3524 } else {
3525 Res.clear();
3526 Res.setLookupName(Member);
3530 if (IV) {
3531 // If the decl being referenced had an error, return an error for this
3532 // sub-expr without emitting another error, in order to avoid cascading
3533 // error cases.
3534 if (IV->isInvalidDecl())
3535 return ExprError();
3537 // Check whether we can reference this field.
3538 if (DiagnoseUseOfDecl(IV, MemberLoc))
3539 return ExprError();
3540 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3541 IV->getAccessControl() != ObjCIvarDecl::Package) {
3542 ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3543 if (ObjCMethodDecl *MD = getCurMethodDecl())
3544 ClassOfMethodDecl = MD->getClassInterface();
3545 else if (ObjCImpDecl && getCurFunctionDecl()) {
3546 // Case of a c-function declared inside an objc implementation.
3547 // FIXME: For a c-style function nested inside an objc implementation
3548 // class, there is no implementation context available, so we pass
3549 // down the context as argument to this routine. Ideally, this context
3550 // need be passed down in the AST node and somehow calculated from the
3551 // AST for a function decl.
3552 if (ObjCImplementationDecl *IMPD =
3553 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3554 ClassOfMethodDecl = IMPD->getClassInterface();
3555 else if (ObjCCategoryImplDecl* CatImplClass =
3556 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3557 ClassOfMethodDecl = CatImplClass->getClassInterface();
3560 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3561 if (ClassDeclared != IDecl ||
3562 ClassOfMethodDecl != ClassDeclared)
3563 Diag(MemberLoc, diag::error_private_ivar_access)
3564 << IV->getDeclName();
3565 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3566 // @protected
3567 Diag(MemberLoc, diag::error_protected_ivar_access)
3568 << IV->getDeclName();
3571 return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3572 MemberLoc, BaseExpr,
3573 IsArrow));
3575 return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3576 << IDecl->getDeclName() << MemberName
3577 << BaseExpr->getSourceRange());
3580 // Handle properties on 'id' and qualified "id".
3581 if (!IsArrow && (BaseType->isObjCIdType() ||
3582 BaseType->isObjCQualifiedIdType())) {
3583 const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3584 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3586 // Check protocols on qualified interfaces.
3587 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3588 if (Decl *PMDecl = FindGetterSetterNameDecl(QIdTy, Member, Sel,
3589 Context)) {
3590 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3591 // Check the use of this declaration
3592 if (DiagnoseUseOfDecl(PD, MemberLoc))
3593 return ExprError();
3595 return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3596 MemberLoc,
3597 BaseExpr));
3599 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3600 // Check the use of this method.
3601 if (DiagnoseUseOfDecl(OMD, MemberLoc))
3602 return ExprError();
3603 Selector SetterSel =
3604 SelectorTable::constructSetterName(PP.getIdentifierTable(),
3605 PP.getSelectorTable(), Member);
3606 ObjCMethodDecl *SMD = 0;
3607 if (Decl *SDecl = FindGetterSetterNameDecl(QIdTy, /*Property id*/0,
3608 SetterSel, Context))
3609 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
3610 QualType PType = OMD->getSendResultType();
3611 return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(OMD, PType,
3612 SMD,
3613 MemberLoc,
3614 BaseExpr));
3618 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3619 << MemberName << BaseType);
3622 // Handle Objective-C property access, which is "Obj.property" where Obj is a
3623 // pointer to a (potentially qualified) interface type.
3624 if (!IsArrow)
3625 if (const ObjCObjectPointerType *OPT =
3626 BaseType->getAsObjCInterfacePointerType())
3627 return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc,
3628 SourceLocation(), QualType(), false);
3630 // Handle the following exceptional case (*Obj).isa.
3631 if (!IsArrow &&
3632 BaseType->isObjCObjectType() &&
3633 BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3634 MemberName.getAsIdentifierInfo()->isStr("isa"))
3635 return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3636 Context.getObjCClassType()));
3638 // Handle 'field access' to vectors, such as 'V.xx'.
3639 if (BaseType->isExtVectorType()) {
3640 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3641 QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3642 if (ret.isNull())
3643 return ExprError();
3644 return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3645 MemberLoc));
3648 Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3649 << BaseType << BaseExpr->getSourceRange();
3651 return ExprError();
3654 /// The main callback when the parser finds something like
3655 /// expression . [nested-name-specifier] identifier
3656 /// expression -> [nested-name-specifier] identifier
3657 /// where 'identifier' encompasses a fairly broad spectrum of
3658 /// possibilities, including destructor and operator references.
3660 /// \param OpKind either tok::arrow or tok::period
3661 /// \param HasTrailingLParen whether the next token is '(', which
3662 /// is used to diagnose mis-uses of special members that can
3663 /// only be called
3664 /// \param ObjCImpDecl the current ObjC @implementation decl;
3665 /// this is an ugly hack around the fact that ObjC @implementations
3666 /// aren't properly put in the context chain
3667 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3668 SourceLocation OpLoc,
3669 tok::TokenKind OpKind,
3670 CXXScopeSpec &SS,
3671 UnqualifiedId &Id,
3672 Decl *ObjCImpDecl,
3673 bool HasTrailingLParen) {
3674 if (SS.isSet() && SS.isInvalid())
3675 return ExprError();
3677 TemplateArgumentListInfo TemplateArgsBuffer;
3679 // Decompose the name into its component parts.
3680 DeclarationNameInfo NameInfo;
3681 const TemplateArgumentListInfo *TemplateArgs;
3682 DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3683 NameInfo, TemplateArgs);
3685 DeclarationName Name = NameInfo.getName();
3686 bool IsArrow = (OpKind == tok::arrow);
3688 NamedDecl *FirstQualifierInScope
3689 = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3690 static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3692 // This is a postfix expression, so get rid of ParenListExprs.
3693 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3694 if (Result.isInvalid()) return ExprError();
3695 Base = Result.take();
3697 if (Base->getType()->isDependentType() || Name.isDependentName() ||
3698 isDependentScopeSpecifier(SS)) {
3699 Result = ActOnDependentMemberExpr(Base, Base->getType(),
3700 IsArrow, OpLoc,
3701 SS, FirstQualifierInScope,
3702 NameInfo, TemplateArgs);
3703 } else {
3704 LookupResult R(*this, NameInfo, LookupMemberName);
3705 Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3706 SS, ObjCImpDecl, TemplateArgs != 0);
3708 if (Result.isInvalid()) {
3709 Owned(Base);
3710 return ExprError();
3713 if (Result.get()) {
3714 // The only way a reference to a destructor can be used is to
3715 // immediately call it, which falls into this case. If the
3716 // next token is not a '(', produce a diagnostic and build the
3717 // call now.
3718 if (!HasTrailingLParen &&
3719 Id.getKind() == UnqualifiedId::IK_DestructorName)
3720 return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3722 return move(Result);
3725 Result = BuildMemberReferenceExpr(Base, Base->getType(),
3726 OpLoc, IsArrow, SS, FirstQualifierInScope,
3727 R, TemplateArgs);
3730 return move(Result);
3733 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3734 FunctionDecl *FD,
3735 ParmVarDecl *Param) {
3736 if (Param->hasUnparsedDefaultArg()) {
3737 Diag(CallLoc,
3738 diag::err_use_of_default_argument_to_function_declared_later) <<
3739 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3740 Diag(UnparsedDefaultArgLocs[Param],
3741 diag::note_default_argument_declared_here);
3742 return ExprError();
3745 if (Param->hasUninstantiatedDefaultArg()) {
3746 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3748 // Instantiate the expression.
3749 MultiLevelTemplateArgumentList ArgList
3750 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3752 std::pair<const TemplateArgument *, unsigned> Innermost
3753 = ArgList.getInnermost();
3754 InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3755 Innermost.second);
3757 ExprResult Result = SubstExpr(UninstExpr, ArgList);
3758 if (Result.isInvalid())
3759 return ExprError();
3761 // Check the expression as an initializer for the parameter.
3762 InitializedEntity Entity
3763 = InitializedEntity::InitializeParameter(Context, Param);
3764 InitializationKind Kind
3765 = InitializationKind::CreateCopy(Param->getLocation(),
3766 /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3767 Expr *ResultE = Result.takeAs<Expr>();
3769 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3770 Result = InitSeq.Perform(*this, Entity, Kind,
3771 MultiExprArg(*this, &ResultE, 1));
3772 if (Result.isInvalid())
3773 return ExprError();
3775 // Build the default argument expression.
3776 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3777 Result.takeAs<Expr>()));
3780 // If the default expression creates temporaries, we need to
3781 // push them to the current stack of expression temporaries so they'll
3782 // be properly destroyed.
3783 // FIXME: We should really be rebuilding the default argument with new
3784 // bound temporaries; see the comment in PR5810.
3785 for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3786 CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3787 MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3788 const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3789 ExprTemporaries.push_back(Temporary);
3792 // We already type-checked the argument, so we know it works.
3793 // Just mark all of the declarations in this potentially-evaluated expression
3794 // as being "referenced".
3795 MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3796 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3799 /// ConvertArgumentsForCall - Converts the arguments specified in
3800 /// Args/NumArgs to the parameter types of the function FDecl with
3801 /// function prototype Proto. Call is the call expression itself, and
3802 /// Fn is the function expression. For a C++ member function, this
3803 /// routine does not attempt to convert the object argument. Returns
3804 /// true if the call is ill-formed.
3805 bool
3806 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3807 FunctionDecl *FDecl,
3808 const FunctionProtoType *Proto,
3809 Expr **Args, unsigned NumArgs,
3810 SourceLocation RParenLoc) {
3811 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3812 // assignment, to the types of the corresponding parameter, ...
3813 unsigned NumArgsInProto = Proto->getNumArgs();
3814 bool Invalid = false;
3816 // If too few arguments are available (and we don't have default
3817 // arguments for the remaining parameters), don't make the call.
3818 if (NumArgs < NumArgsInProto) {
3819 if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3820 return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3821 << Fn->getType()->isBlockPointerType()
3822 << NumArgsInProto << NumArgs << Fn->getSourceRange();
3823 Call->setNumArgs(Context, NumArgsInProto);
3826 // If too many are passed and not variadic, error on the extras and drop
3827 // them.
3828 if (NumArgs > NumArgsInProto) {
3829 if (!Proto->isVariadic()) {
3830 Diag(Args[NumArgsInProto]->getLocStart(),
3831 diag::err_typecheck_call_too_many_args)
3832 << Fn->getType()->isBlockPointerType()
3833 << NumArgsInProto << NumArgs << Fn->getSourceRange()
3834 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3835 Args[NumArgs-1]->getLocEnd());
3836 // This deletes the extra arguments.
3837 Call->setNumArgs(Context, NumArgsInProto);
3838 return true;
3841 llvm::SmallVector<Expr *, 8> AllArgs;
3842 VariadicCallType CallType =
3843 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3844 if (Fn->getType()->isBlockPointerType())
3845 CallType = VariadicBlock; // Block
3846 else if (isa<MemberExpr>(Fn))
3847 CallType = VariadicMethod;
3848 Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3849 Proto, 0, Args, NumArgs, AllArgs, CallType);
3850 if (Invalid)
3851 return true;
3852 unsigned TotalNumArgs = AllArgs.size();
3853 for (unsigned i = 0; i < TotalNumArgs; ++i)
3854 Call->setArg(i, AllArgs[i]);
3856 return false;
3859 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3860 FunctionDecl *FDecl,
3861 const FunctionProtoType *Proto,
3862 unsigned FirstProtoArg,
3863 Expr **Args, unsigned NumArgs,
3864 llvm::SmallVector<Expr *, 8> &AllArgs,
3865 VariadicCallType CallType) {
3866 unsigned NumArgsInProto = Proto->getNumArgs();
3867 unsigned NumArgsToCheck = NumArgs;
3868 bool Invalid = false;
3869 if (NumArgs != NumArgsInProto)
3870 // Use default arguments for missing arguments
3871 NumArgsToCheck = NumArgsInProto;
3872 unsigned ArgIx = 0;
3873 // Continue to check argument types (even if we have too few/many args).
3874 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3875 QualType ProtoArgType = Proto->getArgType(i);
3877 Expr *Arg;
3878 if (ArgIx < NumArgs) {
3879 Arg = Args[ArgIx++];
3881 if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3882 ProtoArgType,
3883 PDiag(diag::err_call_incomplete_argument)
3884 << Arg->getSourceRange()))
3885 return true;
3887 // Pass the argument
3888 ParmVarDecl *Param = 0;
3889 if (FDecl && i < FDecl->getNumParams())
3890 Param = FDecl->getParamDecl(i);
3892 InitializedEntity Entity =
3893 Param? InitializedEntity::InitializeParameter(Context, Param)
3894 : InitializedEntity::InitializeParameter(Context, ProtoArgType);
3895 ExprResult ArgE = PerformCopyInitialization(Entity,
3896 SourceLocation(),
3897 Owned(Arg));
3898 if (ArgE.isInvalid())
3899 return true;
3901 Arg = ArgE.takeAs<Expr>();
3902 } else {
3903 ParmVarDecl *Param = FDecl->getParamDecl(i);
3905 ExprResult ArgExpr =
3906 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3907 if (ArgExpr.isInvalid())
3908 return true;
3910 Arg = ArgExpr.takeAs<Expr>();
3912 AllArgs.push_back(Arg);
3915 // If this is a variadic call, handle args passed through "...".
3916 if (CallType != VariadicDoesNotApply) {
3917 // Promote the arguments (C99 6.5.2.2p7).
3918 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3919 Expr *Arg = Args[i];
3920 Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3921 AllArgs.push_back(Arg);
3924 return Invalid;
3927 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3928 /// This provides the location of the left/right parens and a list of comma
3929 /// locations.
3930 ExprResult
3931 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3932 MultiExprArg args, SourceLocation RParenLoc) {
3933 unsigned NumArgs = args.size();
3935 // Since this might be a postfix expression, get rid of ParenListExprs.
3936 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3937 if (Result.isInvalid()) return ExprError();
3938 Fn = Result.take();
3940 Expr **Args = args.release();
3942 if (getLangOptions().CPlusPlus) {
3943 // If this is a pseudo-destructor expression, build the call immediately.
3944 if (isa<CXXPseudoDestructorExpr>(Fn)) {
3945 if (NumArgs > 0) {
3946 // Pseudo-destructor calls should not have any arguments.
3947 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3948 << FixItHint::CreateRemoval(
3949 SourceRange(Args[0]->getLocStart(),
3950 Args[NumArgs-1]->getLocEnd()));
3952 NumArgs = 0;
3955 return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3956 RParenLoc));
3959 // Determine whether this is a dependent call inside a C++ template,
3960 // in which case we won't do any semantic analysis now.
3961 // FIXME: Will need to cache the results of name lookup (including ADL) in
3962 // Fn.
3963 bool Dependent = false;
3964 if (Fn->isTypeDependent())
3965 Dependent = true;
3966 else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3967 Dependent = true;
3969 if (Dependent)
3970 return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3971 Context.DependentTy, RParenLoc));
3973 // Determine whether this is a call to an object (C++ [over.call.object]).
3974 if (Fn->getType()->isRecordType())
3975 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3976 RParenLoc));
3978 Expr *NakedFn = Fn->IgnoreParens();
3980 // Determine whether this is a call to an unresolved member function.
3981 if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3982 // If lookup was unresolved but not dependent (i.e. didn't find
3983 // an unresolved using declaration), it has to be an overloaded
3984 // function set, which means it must contain either multiple
3985 // declarations (all methods or method templates) or a single
3986 // method template.
3987 assert((MemE->getNumDecls() > 1) ||
3988 isa<FunctionTemplateDecl>(
3989 (*MemE->decls_begin())->getUnderlyingDecl()));
3990 (void)MemE;
3992 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3993 RParenLoc);
3996 // Determine whether this is a call to a member function.
3997 if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3998 NamedDecl *MemDecl = MemExpr->getMemberDecl();
3999 if (isa<CXXMethodDecl>(MemDecl))
4000 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
4001 RParenLoc);
4004 // Determine whether this is a call to a pointer-to-member function.
4005 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
4006 if (BO->getOpcode() == BO_PtrMemD ||
4007 BO->getOpcode() == BO_PtrMemI) {
4008 if (const FunctionProtoType *FPT
4009 = BO->getType()->getAs<FunctionProtoType>()) {
4010 QualType ResultTy = FPT->getCallResultType(Context);
4012 CXXMemberCallExpr *TheCall
4013 = new (Context) CXXMemberCallExpr(Context, BO, Args,
4014 NumArgs, ResultTy,
4015 RParenLoc);
4017 if (CheckCallReturnType(FPT->getResultType(),
4018 BO->getRHS()->getSourceRange().getBegin(),
4019 TheCall, 0))
4020 return ExprError();
4022 if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
4023 RParenLoc))
4024 return ExprError();
4026 return MaybeBindToTemporary(TheCall);
4028 return ExprError(Diag(Fn->getLocStart(),
4029 diag::err_typecheck_call_not_function)
4030 << Fn->getType() << Fn->getSourceRange());
4035 // If we're directly calling a function, get the appropriate declaration.
4036 // Also, in C++, keep track of whether we should perform argument-dependent
4037 // lookup and whether there were any explicitly-specified template arguments.
4039 Expr *NakedFn = Fn->IgnoreParens();
4040 if (isa<UnresolvedLookupExpr>(NakedFn)) {
4041 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
4042 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
4043 RParenLoc);
4046 NamedDecl *NDecl = 0;
4047 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4048 if (UnOp->getOpcode() == UO_AddrOf)
4049 NakedFn = UnOp->getSubExpr()->IgnoreParens();
4051 if (isa<DeclRefExpr>(NakedFn))
4052 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4054 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
4057 /// BuildResolvedCallExpr - Build a call to a resolved expression,
4058 /// i.e. an expression not of \p OverloadTy. The expression should
4059 /// unary-convert to an expression of function-pointer or
4060 /// block-pointer type.
4062 /// \param NDecl the declaration being called, if available
4063 ExprResult
4064 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4065 SourceLocation LParenLoc,
4066 Expr **Args, unsigned NumArgs,
4067 SourceLocation RParenLoc) {
4068 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4070 // Promote the function operand.
4071 UsualUnaryConversions(Fn);
4073 // Make the call expr early, before semantic checks. This guarantees cleanup
4074 // of arguments and function on error.
4075 CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
4076 Args, NumArgs,
4077 Context.BoolTy,
4078 RParenLoc);
4080 const FunctionType *FuncT;
4081 if (!Fn->getType()->isBlockPointerType()) {
4082 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4083 // have type pointer to function".
4084 const PointerType *PT = Fn->getType()->getAs<PointerType>();
4085 if (PT == 0)
4086 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4087 << Fn->getType() << Fn->getSourceRange());
4088 FuncT = PT->getPointeeType()->getAs<FunctionType>();
4089 } else { // This is a block call.
4090 FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
4091 getAs<FunctionType>();
4093 if (FuncT == 0)
4094 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4095 << Fn->getType() << Fn->getSourceRange());
4097 // Check for a valid return type
4098 if (CheckCallReturnType(FuncT->getResultType(),
4099 Fn->getSourceRange().getBegin(), TheCall,
4100 FDecl))
4101 return ExprError();
4103 // We know the result type of the call, set it.
4104 TheCall->setType(FuncT->getCallResultType(Context));
4106 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
4107 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4108 RParenLoc))
4109 return ExprError();
4110 } else {
4111 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4113 if (FDecl) {
4114 // Check if we have too few/too many template arguments, based
4115 // on our knowledge of the function definition.
4116 const FunctionDecl *Def = 0;
4117 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4118 const FunctionProtoType *Proto
4119 = Def->getType()->getAs<FunctionProtoType>();
4120 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4121 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4122 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4125 // If the function we're calling isn't a function prototype, but we have
4126 // a function prototype from a prior declaratiom, use that prototype.
4127 if (!FDecl->hasPrototype())
4128 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4131 // Promote the arguments (C99 6.5.2.2p6).
4132 for (unsigned i = 0; i != NumArgs; i++) {
4133 Expr *Arg = Args[i];
4135 if (Proto && i < Proto->getNumArgs()) {
4136 InitializedEntity Entity
4137 = InitializedEntity::InitializeParameter(Context,
4138 Proto->getArgType(i));
4139 ExprResult ArgE = PerformCopyInitialization(Entity,
4140 SourceLocation(),
4141 Owned(Arg));
4142 if (ArgE.isInvalid())
4143 return true;
4145 Arg = ArgE.takeAs<Expr>();
4147 } else {
4148 DefaultArgumentPromotion(Arg);
4151 if (RequireCompleteType(Arg->getSourceRange().getBegin(),
4152 Arg->getType(),
4153 PDiag(diag::err_call_incomplete_argument)
4154 << Arg->getSourceRange()))
4155 return ExprError();
4157 TheCall->setArg(i, Arg);
4161 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4162 if (!Method->isStatic())
4163 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4164 << Fn->getSourceRange());
4166 // Check for sentinels
4167 if (NDecl)
4168 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4170 // Do special checking on direct calls to functions.
4171 if (FDecl) {
4172 if (CheckFunctionCall(FDecl, TheCall))
4173 return ExprError();
4175 if (unsigned BuiltinID = FDecl->getBuiltinID())
4176 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4177 } else if (NDecl) {
4178 if (CheckBlockCall(NDecl, TheCall))
4179 return ExprError();
4182 return MaybeBindToTemporary(TheCall);
4185 ExprResult
4186 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4187 SourceLocation RParenLoc, Expr *InitExpr) {
4188 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4189 // FIXME: put back this assert when initializers are worked out.
4190 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4192 TypeSourceInfo *TInfo;
4193 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4194 if (!TInfo)
4195 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4197 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4200 ExprResult
4201 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4202 SourceLocation RParenLoc, Expr *literalExpr) {
4203 QualType literalType = TInfo->getType();
4205 if (literalType->isArrayType()) {
4206 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4207 PDiag(diag::err_illegal_decl_array_incomplete_type)
4208 << SourceRange(LParenLoc,
4209 literalExpr->getSourceRange().getEnd())))
4210 return ExprError();
4211 if (literalType->isVariableArrayType())
4212 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4213 << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
4214 } else if (!literalType->isDependentType() &&
4215 RequireCompleteType(LParenLoc, literalType,
4216 PDiag(diag::err_typecheck_decl_incomplete_type)
4217 << SourceRange(LParenLoc,
4218 literalExpr->getSourceRange().getEnd())))
4219 return ExprError();
4221 InitializedEntity Entity
4222 = InitializedEntity::InitializeTemporary(literalType);
4223 InitializationKind Kind
4224 = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
4225 /*IsCStyleCast=*/true);
4226 InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
4227 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4228 MultiExprArg(*this, &literalExpr, 1),
4229 &literalType);
4230 if (Result.isInvalid())
4231 return ExprError();
4232 literalExpr = Result.get();
4234 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4235 if (isFileScope) { // 6.5.2.5p3
4236 if (CheckForConstantInitializer(literalExpr, literalType))
4237 return ExprError();
4240 return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4241 literalExpr, isFileScope));
4244 ExprResult
4245 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
4246 SourceLocation RBraceLoc) {
4247 unsigned NumInit = initlist.size();
4248 Expr **InitList = initlist.release();
4250 // Semantic analysis for initializers is done by ActOnDeclarator() and
4251 // CheckInitializer() - it requires knowledge of the object being intialized.
4253 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4254 NumInit, RBraceLoc);
4255 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4256 return Owned(E);
4259 /// Prepares for a scalar cast, performing all the necessary stages
4260 /// except the final cast and returning the kind required.
4261 static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) {
4262 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4263 // Also, callers should have filtered out the invalid cases with
4264 // pointers. Everything else should be possible.
4266 QualType SrcTy = Src->getType();
4267 if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
4268 return CK_NoOp;
4270 switch (SrcTy->getScalarTypeKind()) {
4271 case Type::STK_MemberPointer:
4272 llvm_unreachable("member pointer type in C");
4274 case Type::STK_Pointer:
4275 switch (DestTy->getScalarTypeKind()) {
4276 case Type::STK_Pointer:
4277 return DestTy->isObjCObjectPointerType() ?
4278 CK_AnyPointerToObjCPointerCast :
4279 CK_BitCast;
4280 case Type::STK_Bool:
4281 return CK_PointerToBoolean;
4282 case Type::STK_Integral:
4283 return CK_PointerToIntegral;
4284 case Type::STK_Floating:
4285 case Type::STK_FloatingComplex:
4286 case Type::STK_IntegralComplex:
4287 case Type::STK_MemberPointer:
4288 llvm_unreachable("illegal cast from pointer");
4290 break;
4292 case Type::STK_Bool: // casting from bool is like casting from an integer
4293 case Type::STK_Integral:
4294 switch (DestTy->getScalarTypeKind()) {
4295 case Type::STK_Pointer:
4296 if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
4297 return CK_NullToPointer;
4298 return CK_IntegralToPointer;
4299 case Type::STK_Bool:
4300 return CK_IntegralToBoolean;
4301 case Type::STK_Integral:
4302 return CK_IntegralCast;
4303 case Type::STK_Floating:
4304 return CK_IntegralToFloating;
4305 case Type::STK_IntegralComplex:
4306 return CK_IntegralRealToComplex;
4307 case Type::STK_FloatingComplex:
4308 S.ImpCastExprToType(Src, cast<ComplexType>(DestTy)->getElementType(),
4309 CK_IntegralToFloating);
4310 return CK_FloatingRealToComplex;
4311 case Type::STK_MemberPointer:
4312 llvm_unreachable("member pointer type in C");
4314 break;
4316 case Type::STK_Floating:
4317 switch (DestTy->getScalarTypeKind()) {
4318 case Type::STK_Floating:
4319 return CK_FloatingCast;
4320 case Type::STK_Bool:
4321 return CK_FloatingToBoolean;
4322 case Type::STK_Integral:
4323 return CK_FloatingToIntegral;
4324 case Type::STK_FloatingComplex:
4325 return CK_FloatingRealToComplex;
4326 case Type::STK_IntegralComplex:
4327 S.ImpCastExprToType(Src, cast<ComplexType>(DestTy)->getElementType(),
4328 CK_FloatingToIntegral);
4329 return CK_IntegralRealToComplex;
4330 case Type::STK_Pointer:
4331 llvm_unreachable("valid float->pointer cast?");
4332 case Type::STK_MemberPointer:
4333 llvm_unreachable("member pointer type in C");
4335 break;
4337 case Type::STK_FloatingComplex:
4338 switch (DestTy->getScalarTypeKind()) {
4339 case Type::STK_FloatingComplex:
4340 return CK_FloatingComplexCast;
4341 case Type::STK_IntegralComplex:
4342 return CK_FloatingComplexToIntegralComplex;
4343 case Type::STK_Floating:
4344 return CK_FloatingComplexToReal;
4345 case Type::STK_Bool:
4346 return CK_FloatingComplexToBoolean;
4347 case Type::STK_Integral:
4348 S.ImpCastExprToType(Src, cast<ComplexType>(SrcTy)->getElementType(),
4349 CK_FloatingComplexToReal);
4350 return CK_FloatingToIntegral;
4351 case Type::STK_Pointer:
4352 llvm_unreachable("valid complex float->pointer cast?");
4353 case Type::STK_MemberPointer:
4354 llvm_unreachable("member pointer type in C");
4356 break;
4358 case Type::STK_IntegralComplex:
4359 switch (DestTy->getScalarTypeKind()) {
4360 case Type::STK_FloatingComplex:
4361 return CK_IntegralComplexToFloatingComplex;
4362 case Type::STK_IntegralComplex:
4363 return CK_IntegralComplexCast;
4364 case Type::STK_Integral:
4365 return CK_IntegralComplexToReal;
4366 case Type::STK_Bool:
4367 return CK_IntegralComplexToBoolean;
4368 case Type::STK_Floating:
4369 S.ImpCastExprToType(Src, cast<ComplexType>(SrcTy)->getElementType(),
4370 CK_IntegralComplexToReal);
4371 return CK_IntegralToFloating;
4372 case Type::STK_Pointer:
4373 llvm_unreachable("valid complex int->pointer cast?");
4374 case Type::STK_MemberPointer:
4375 llvm_unreachable("member pointer type in C");
4377 break;
4380 llvm_unreachable("Unhandled scalar cast");
4381 return CK_BitCast;
4384 /// CheckCastTypes - Check type constraints for casting between types.
4385 bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
4386 CastKind& Kind,
4387 CXXCastPath &BasePath,
4388 bool FunctionalStyle) {
4389 if (getLangOptions().CPlusPlus)
4390 return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
4391 castExpr->getLocEnd()),
4392 castType, castExpr, Kind, BasePath,
4393 FunctionalStyle);
4395 DefaultFunctionArrayLvalueConversion(castExpr);
4397 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
4398 // type needs to be scalar.
4399 if (castType->isVoidType()) {
4400 // Cast to void allows any expr type.
4401 Kind = CK_ToVoid;
4402 return false;
4405 if (RequireCompleteType(TyR.getBegin(), castType,
4406 diag::err_typecheck_cast_to_incomplete))
4407 return true;
4409 if (!castType->isScalarType() && !castType->isVectorType()) {
4410 if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
4411 (castType->isStructureType() || castType->isUnionType())) {
4412 // GCC struct/union extension: allow cast to self.
4413 // FIXME: Check that the cast destination type is complete.
4414 Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
4415 << castType << castExpr->getSourceRange();
4416 Kind = CK_NoOp;
4417 return false;
4420 if (castType->isUnionType()) {
4421 // GCC cast to union extension
4422 RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
4423 RecordDecl::field_iterator Field, FieldEnd;
4424 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
4425 Field != FieldEnd; ++Field) {
4426 if (Context.hasSameUnqualifiedType(Field->getType(),
4427 castExpr->getType()) &&
4428 !Field->isUnnamedBitfield()) {
4429 Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
4430 << castExpr->getSourceRange();
4431 break;
4434 if (Field == FieldEnd)
4435 return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
4436 << castExpr->getType() << castExpr->getSourceRange();
4437 Kind = CK_ToUnion;
4438 return false;
4441 // Reject any other conversions to non-scalar types.
4442 return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
4443 << castType << castExpr->getSourceRange();
4446 // The type we're casting to is known to be a scalar or vector.
4448 // Require the operand to be a scalar or vector.
4449 if (!castExpr->getType()->isScalarType() &&
4450 !castExpr->getType()->isVectorType()) {
4451 return Diag(castExpr->getLocStart(),
4452 diag::err_typecheck_expect_scalar_operand)
4453 << castExpr->getType() << castExpr->getSourceRange();
4456 if (castType->isExtVectorType())
4457 return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4459 if (castType->isVectorType())
4460 return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
4461 if (castExpr->getType()->isVectorType())
4462 return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
4464 // The source and target types are both scalars, i.e.
4465 // - arithmetic types (fundamental, enum, and complex)
4466 // - all kinds of pointers
4467 // Note that member pointers were filtered out with C++, above.
4469 if (isa<ObjCSelectorExpr>(castExpr))
4470 return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4472 // If either type is a pointer, the other type has to be either an
4473 // integer or a pointer.
4474 if (!castType->isArithmeticType()) {
4475 QualType castExprType = castExpr->getType();
4476 if (!castExprType->isIntegralType(Context) &&
4477 castExprType->isArithmeticType())
4478 return Diag(castExpr->getLocStart(),
4479 diag::err_cast_pointer_from_non_pointer_int)
4480 << castExprType << castExpr->getSourceRange();
4481 } else if (!castExpr->getType()->isArithmeticType()) {
4482 if (!castType->isIntegralType(Context) && castType->isArithmeticType())
4483 return Diag(castExpr->getLocStart(),
4484 diag::err_cast_pointer_to_non_pointer_int)
4485 << castType << castExpr->getSourceRange();
4488 Kind = PrepareScalarCast(*this, castExpr, castType);
4490 if (Kind == CK_BitCast)
4491 CheckCastAlign(castExpr, castType, TyR);
4493 return false;
4496 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4497 CastKind &Kind) {
4498 assert(VectorTy->isVectorType() && "Not a vector type!");
4500 if (Ty->isVectorType() || Ty->isIntegerType()) {
4501 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4502 return Diag(R.getBegin(),
4503 Ty->isVectorType() ?
4504 diag::err_invalid_conversion_between_vectors :
4505 diag::err_invalid_conversion_between_vector_and_integer)
4506 << VectorTy << Ty << R;
4507 } else
4508 return Diag(R.getBegin(),
4509 diag::err_invalid_conversion_between_vector_and_scalar)
4510 << VectorTy << Ty << R;
4512 Kind = CK_BitCast;
4513 return false;
4516 bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4517 CastKind &Kind) {
4518 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4520 QualType SrcTy = CastExpr->getType();
4522 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4523 // an ExtVectorType.
4524 if (SrcTy->isVectorType()) {
4525 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4526 return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4527 << DestTy << SrcTy << R;
4528 Kind = CK_BitCast;
4529 return false;
4532 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4533 // conversion will take place first from scalar to elt type, and then
4534 // splat from elt type to vector.
4535 if (SrcTy->isPointerType())
4536 return Diag(R.getBegin(),
4537 diag::err_invalid_conversion_between_vector_and_scalar)
4538 << DestTy << SrcTy << R;
4540 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4541 ImpCastExprToType(CastExpr, DestElemTy,
4542 PrepareScalarCast(*this, CastExpr, DestElemTy));
4544 Kind = CK_VectorSplat;
4545 return false;
4548 ExprResult
4549 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4550 SourceLocation RParenLoc, Expr *castExpr) {
4551 assert((Ty != 0) && (castExpr != 0) &&
4552 "ActOnCastExpr(): missing type or expr");
4554 TypeSourceInfo *castTInfo;
4555 QualType castType = GetTypeFromParser(Ty, &castTInfo);
4556 if (!castTInfo)
4557 castTInfo = Context.getTrivialTypeSourceInfo(castType);
4559 // If the Expr being casted is a ParenListExpr, handle it specially.
4560 if (isa<ParenListExpr>(castExpr))
4561 return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4562 castTInfo);
4564 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4567 ExprResult
4568 Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4569 SourceLocation RParenLoc, Expr *castExpr) {
4570 CastKind Kind = CK_Invalid;
4571 CXXCastPath BasePath;
4572 if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4573 Kind, BasePath))
4574 return ExprError();
4576 return Owned(CStyleCastExpr::Create(Context,
4577 Ty->getType().getNonLValueExprType(Context),
4578 Kind, castExpr, &BasePath, Ty,
4579 LParenLoc, RParenLoc));
4582 /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4583 /// of comma binary operators.
4584 ExprResult
4585 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4586 ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4587 if (!E)
4588 return Owned(expr);
4590 ExprResult Result(E->getExpr(0));
4592 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4593 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4594 E->getExpr(i));
4596 if (Result.isInvalid()) return ExprError();
4598 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4601 ExprResult
4602 Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4603 SourceLocation RParenLoc, Expr *Op,
4604 TypeSourceInfo *TInfo) {
4605 ParenListExpr *PE = cast<ParenListExpr>(Op);
4606 QualType Ty = TInfo->getType();
4607 bool isAltiVecLiteral = false;
4609 // Check for an altivec literal,
4610 // i.e. all the elements are integer constants.
4611 if (getLangOptions().AltiVec && Ty->isVectorType()) {
4612 if (PE->getNumExprs() == 0) {
4613 Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4614 return ExprError();
4616 if (PE->getNumExprs() == 1) {
4617 if (!PE->getExpr(0)->getType()->isVectorType())
4618 isAltiVecLiteral = true;
4620 else
4621 isAltiVecLiteral = true;
4624 // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4625 // then handle it as such.
4626 if (isAltiVecLiteral) {
4627 llvm::SmallVector<Expr *, 8> initExprs;
4628 for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4629 initExprs.push_back(PE->getExpr(i));
4631 // FIXME: This means that pretty-printing the final AST will produce curly
4632 // braces instead of the original commas.
4633 InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4634 &initExprs[0],
4635 initExprs.size(), RParenLoc);
4636 E->setType(Ty);
4637 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4638 } else {
4639 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4640 // sequence of BinOp comma operators.
4641 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4642 if (Result.isInvalid()) return ExprError();
4643 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4647 ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4648 SourceLocation R,
4649 MultiExprArg Val,
4650 ParsedType TypeOfCast) {
4651 unsigned nexprs = Val.size();
4652 Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4653 assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4654 Expr *expr;
4655 if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4656 expr = new (Context) ParenExpr(L, R, exprs[0]);
4657 else
4658 expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4659 return Owned(expr);
4662 /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4663 /// In that case, lhs = cond.
4664 /// C99 6.5.15
4665 QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4666 Expr *&SAVE,
4667 SourceLocation QuestionLoc) {
4668 // If both LHS and RHS are overloaded functions, try to resolve them.
4669 if (Context.hasSameType(LHS->getType(), RHS->getType()) &&
4670 LHS->getType()->isSpecificBuiltinType(BuiltinType::Overload)) {
4671 ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc);
4672 if (LHSResult.isInvalid())
4673 return QualType();
4675 ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc);
4676 if (RHSResult.isInvalid())
4677 return QualType();
4679 LHS = LHSResult.take();
4680 RHS = RHSResult.take();
4683 // C++ is sufficiently different to merit its own checker.
4684 if (getLangOptions().CPlusPlus)
4685 return CXXCheckConditionalOperands(Cond, LHS, RHS, SAVE, QuestionLoc);
4687 UsualUnaryConversions(Cond);
4688 if (SAVE) {
4689 SAVE = LHS = Cond;
4691 else
4692 UsualUnaryConversions(LHS);
4693 UsualUnaryConversions(RHS);
4694 QualType CondTy = Cond->getType();
4695 QualType LHSTy = LHS->getType();
4696 QualType RHSTy = RHS->getType();
4698 // first, check the condition.
4699 if (!CondTy->isScalarType()) { // C99 6.5.15p2
4700 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4701 // Throw an error if its not either.
4702 if (getLangOptions().OpenCL) {
4703 if (!CondTy->isVectorType()) {
4704 Diag(Cond->getLocStart(),
4705 diag::err_typecheck_cond_expect_scalar_or_vector)
4706 << CondTy;
4707 return QualType();
4710 else {
4711 Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4712 << CondTy;
4713 return QualType();
4717 // Now check the two expressions.
4718 if (LHSTy->isVectorType() || RHSTy->isVectorType())
4719 return CheckVectorOperands(QuestionLoc, LHS, RHS);
4721 // OpenCL: If the condition is a vector, and both operands are scalar,
4722 // attempt to implicity convert them to the vector type to act like the
4723 // built in select.
4724 if (getLangOptions().OpenCL && CondTy->isVectorType()) {
4725 // Both operands should be of scalar type.
4726 if (!LHSTy->isScalarType()) {
4727 Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4728 << CondTy;
4729 return QualType();
4731 if (!RHSTy->isScalarType()) {
4732 Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4733 << CondTy;
4734 return QualType();
4736 // Implicity convert these scalars to the type of the condition.
4737 ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
4738 ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
4741 // If both operands have arithmetic type, do the usual arithmetic conversions
4742 // to find a common type: C99 6.5.15p3,5.
4743 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4744 UsualArithmeticConversions(LHS, RHS);
4745 return LHS->getType();
4748 // If both operands are the same structure or union type, the result is that
4749 // type.
4750 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
4751 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4752 if (LHSRT->getDecl() == RHSRT->getDecl())
4753 // "If both the operands have structure or union type, the result has
4754 // that type." This implies that CV qualifiers are dropped.
4755 return LHSTy.getUnqualifiedType();
4756 // FIXME: Type of conditional expression must be complete in C mode.
4759 // C99 6.5.15p5: "If both operands have void type, the result has void type."
4760 // The following || allows only one side to be void (a GCC-ism).
4761 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4762 if (!LHSTy->isVoidType())
4763 Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4764 << RHS->getSourceRange();
4765 if (!RHSTy->isVoidType())
4766 Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4767 << LHS->getSourceRange();
4768 ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
4769 ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
4770 return Context.VoidTy;
4772 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4773 // the type of the other operand."
4774 if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4775 RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4776 // promote the null to a pointer.
4777 ImpCastExprToType(RHS, LHSTy, CK_NullToPointer);
4778 return LHSTy;
4780 if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4781 LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4782 ImpCastExprToType(LHS, RHSTy, CK_NullToPointer);
4783 return RHSTy;
4786 // All objective-c pointer type analysis is done here.
4787 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4788 QuestionLoc);
4789 if (!compositeType.isNull())
4790 return compositeType;
4793 // Handle block pointer types.
4794 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4795 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4796 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4797 QualType destType = Context.getPointerType(Context.VoidTy);
4798 ImpCastExprToType(LHS, destType, CK_BitCast);
4799 ImpCastExprToType(RHS, destType, CK_BitCast);
4800 return destType;
4802 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4803 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4804 return QualType();
4806 // We have 2 block pointer types.
4807 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4808 // Two identical block pointer types are always compatible.
4809 return LHSTy;
4811 // The block pointer types aren't identical, continue checking.
4812 QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4813 QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4815 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4816 rhptee.getUnqualifiedType())) {
4817 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4818 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4819 // In this situation, we assume void* type. No especially good
4820 // reason, but this is what gcc does, and we do have to pick
4821 // to get a consistent AST.
4822 QualType incompatTy = Context.getPointerType(Context.VoidTy);
4823 ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4824 ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4825 return incompatTy;
4827 // The block pointer types are compatible.
4828 ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4829 ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4830 return LHSTy;
4833 // Check constraints for C object pointers types (C99 6.5.15p3,6).
4834 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4835 // get the "pointed to" types
4836 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4837 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4839 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4840 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4841 // Figure out necessary qualifiers (C99 6.5.15p6)
4842 QualType destPointee
4843 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4844 QualType destType = Context.getPointerType(destPointee);
4845 // Add qualifiers if necessary.
4846 ImpCastExprToType(LHS, destType, CK_NoOp);
4847 // Promote to void*.
4848 ImpCastExprToType(RHS, destType, CK_BitCast);
4849 return destType;
4851 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4852 QualType destPointee
4853 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4854 QualType destType = Context.getPointerType(destPointee);
4855 // Add qualifiers if necessary.
4856 ImpCastExprToType(RHS, destType, CK_NoOp);
4857 // Promote to void*.
4858 ImpCastExprToType(LHS, destType, CK_BitCast);
4859 return destType;
4862 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4863 // Two identical pointer types are always compatible.
4864 return LHSTy;
4866 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4867 rhptee.getUnqualifiedType())) {
4868 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4869 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4870 // In this situation, we assume void* type. No especially good
4871 // reason, but this is what gcc does, and we do have to pick
4872 // to get a consistent AST.
4873 QualType incompatTy = Context.getPointerType(Context.VoidTy);
4874 ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4875 ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4876 return incompatTy;
4878 // The pointer types are compatible.
4879 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4880 // differently qualified versions of compatible types, the result type is
4881 // a pointer to an appropriately qualified version of the *composite*
4882 // type.
4883 // FIXME: Need to calculate the composite type.
4884 // FIXME: Need to add qualifiers
4885 ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4886 ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4887 return LHSTy;
4890 // GCC compatibility: soften pointer/integer mismatch. Note that
4891 // null pointers have been filtered out by this point.
4892 if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4893 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4894 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4895 ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
4896 return RHSTy;
4898 if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4899 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4900 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4901 ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
4902 return LHSTy;
4905 // Otherwise, the operands are not compatible.
4906 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4907 << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4908 return QualType();
4911 /// FindCompositeObjCPointerType - Helper method to find composite type of
4912 /// two objective-c pointer types of the two input expressions.
4913 QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4914 SourceLocation QuestionLoc) {
4915 QualType LHSTy = LHS->getType();
4916 QualType RHSTy = RHS->getType();
4918 // Handle things like Class and struct objc_class*. Here we case the result
4919 // to the pseudo-builtin, because that will be implicitly cast back to the
4920 // redefinition type if an attempt is made to access its fields.
4921 if (LHSTy->isObjCClassType() &&
4922 (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4923 ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4924 return LHSTy;
4926 if (RHSTy->isObjCClassType() &&
4927 (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4928 ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4929 return RHSTy;
4931 // And the same for struct objc_object* / id
4932 if (LHSTy->isObjCIdType() &&
4933 (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4934 ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4935 return LHSTy;
4937 if (RHSTy->isObjCIdType() &&
4938 (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4939 ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4940 return RHSTy;
4942 // And the same for struct objc_selector* / SEL
4943 if (Context.isObjCSelType(LHSTy) &&
4944 (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4945 ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4946 return LHSTy;
4948 if (Context.isObjCSelType(RHSTy) &&
4949 (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4950 ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4951 return RHSTy;
4953 // Check constraints for Objective-C object pointers types.
4954 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4956 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4957 // Two identical object pointer types are always compatible.
4958 return LHSTy;
4960 const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4961 const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4962 QualType compositeType = LHSTy;
4964 // If both operands are interfaces and either operand can be
4965 // assigned to the other, use that type as the composite
4966 // type. This allows
4967 // xxx ? (A*) a : (B*) b
4968 // where B is a subclass of A.
4970 // Additionally, as for assignment, if either type is 'id'
4971 // allow silent coercion. Finally, if the types are
4972 // incompatible then make sure to use 'id' as the composite
4973 // type so the result is acceptable for sending messages to.
4975 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4976 // It could return the composite type.
4977 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4978 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4979 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4980 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4981 } else if ((LHSTy->isObjCQualifiedIdType() ||
4982 RHSTy->isObjCQualifiedIdType()) &&
4983 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4984 // Need to handle "id<xx>" explicitly.
4985 // GCC allows qualified id and any Objective-C type to devolve to
4986 // id. Currently localizing to here until clear this should be
4987 // part of ObjCQualifiedIdTypesAreCompatible.
4988 compositeType = Context.getObjCIdType();
4989 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4990 compositeType = Context.getObjCIdType();
4991 } else if (!(compositeType =
4992 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4994 else {
4995 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4996 << LHSTy << RHSTy
4997 << LHS->getSourceRange() << RHS->getSourceRange();
4998 QualType incompatTy = Context.getObjCIdType();
4999 ImpCastExprToType(LHS, incompatTy, CK_BitCast);
5000 ImpCastExprToType(RHS, incompatTy, CK_BitCast);
5001 return incompatTy;
5003 // The object pointer types are compatible.
5004 ImpCastExprToType(LHS, compositeType, CK_BitCast);
5005 ImpCastExprToType(RHS, compositeType, CK_BitCast);
5006 return compositeType;
5008 // Check Objective-C object pointer types and 'void *'
5009 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5010 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5011 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5012 QualType destPointee
5013 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5014 QualType destType = Context.getPointerType(destPointee);
5015 // Add qualifiers if necessary.
5016 ImpCastExprToType(LHS, destType, CK_NoOp);
5017 // Promote to void*.
5018 ImpCastExprToType(RHS, destType, CK_BitCast);
5019 return destType;
5021 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5022 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5023 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5024 QualType destPointee
5025 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5026 QualType destType = Context.getPointerType(destPointee);
5027 // Add qualifiers if necessary.
5028 ImpCastExprToType(RHS, destType, CK_NoOp);
5029 // Promote to void*.
5030 ImpCastExprToType(LHS, destType, CK_BitCast);
5031 return destType;
5033 return QualType();
5036 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5037 /// in the case of a the GNU conditional expr extension.
5038 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5039 SourceLocation ColonLoc,
5040 Expr *CondExpr, Expr *LHSExpr,
5041 Expr *RHSExpr) {
5042 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5043 // was the condition.
5044 bool isLHSNull = LHSExpr == 0;
5045 Expr *SAVEExpr = 0;
5046 if (isLHSNull) {
5047 LHSExpr = SAVEExpr = CondExpr;
5050 QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
5051 SAVEExpr, QuestionLoc);
5052 if (result.isNull())
5053 return ExprError();
5055 return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
5056 LHSExpr, ColonLoc,
5057 RHSExpr, SAVEExpr,
5058 result));
5061 // CheckPointerTypesForAssignment - This is a very tricky routine (despite
5062 // being closely modeled after the C99 spec:-). The odd characteristic of this
5063 // routine is it effectively iqnores the qualifiers on the top level pointee.
5064 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5065 // FIXME: add a couple examples in this comment.
5066 Sema::AssignConvertType
5067 Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
5068 QualType lhptee, rhptee;
5070 if ((lhsType->isObjCClassType() &&
5071 (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
5072 (rhsType->isObjCClassType() &&
5073 (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
5074 return Compatible;
5077 // get the "pointed to" type (ignoring qualifiers at the top level)
5078 lhptee = lhsType->getAs<PointerType>()->getPointeeType();
5079 rhptee = rhsType->getAs<PointerType>()->getPointeeType();
5081 // make sure we operate on the canonical type
5082 lhptee = Context.getCanonicalType(lhptee);
5083 rhptee = Context.getCanonicalType(rhptee);
5085 AssignConvertType ConvTy = Compatible;
5087 // C99 6.5.16.1p1: This following citation is common to constraints
5088 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5089 // qualifiers of the type *pointed to* by the right;
5090 // FIXME: Handle ExtQualType
5091 if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5092 ConvTy = CompatiblePointerDiscardsQualifiers;
5094 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5095 // incomplete type and the other is a pointer to a qualified or unqualified
5096 // version of void...
5097 if (lhptee->isVoidType()) {
5098 if (rhptee->isIncompleteOrObjectType())
5099 return ConvTy;
5101 // As an extension, we allow cast to/from void* to function pointer.
5102 assert(rhptee->isFunctionType());
5103 return FunctionVoidPointer;
5106 if (rhptee->isVoidType()) {
5107 if (lhptee->isIncompleteOrObjectType())
5108 return ConvTy;
5110 // As an extension, we allow cast to/from void* to function pointer.
5111 assert(lhptee->isFunctionType());
5112 return FunctionVoidPointer;
5114 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5115 // unqualified versions of compatible types, ...
5116 lhptee = lhptee.getUnqualifiedType();
5117 rhptee = rhptee.getUnqualifiedType();
5118 if (!Context.typesAreCompatible(lhptee, rhptee)) {
5119 // Check if the pointee types are compatible ignoring the sign.
5120 // We explicitly check for char so that we catch "char" vs
5121 // "unsigned char" on systems where "char" is unsigned.
5122 if (lhptee->isCharType())
5123 lhptee = Context.UnsignedCharTy;
5124 else if (lhptee->hasSignedIntegerRepresentation())
5125 lhptee = Context.getCorrespondingUnsignedType(lhptee);
5127 if (rhptee->isCharType())
5128 rhptee = Context.UnsignedCharTy;
5129 else if (rhptee->hasSignedIntegerRepresentation())
5130 rhptee = Context.getCorrespondingUnsignedType(rhptee);
5132 if (lhptee == rhptee) {
5133 // Types are compatible ignoring the sign. Qualifier incompatibility
5134 // takes priority over sign incompatibility because the sign
5135 // warning can be disabled.
5136 if (ConvTy != Compatible)
5137 return ConvTy;
5138 return IncompatiblePointerSign;
5141 // If we are a multi-level pointer, it's possible that our issue is simply
5142 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5143 // the eventual target type is the same and the pointers have the same
5144 // level of indirection, this must be the issue.
5145 if (lhptee->isPointerType() && rhptee->isPointerType()) {
5146 do {
5147 lhptee = lhptee->getAs<PointerType>()->getPointeeType();
5148 rhptee = rhptee->getAs<PointerType>()->getPointeeType();
5150 lhptee = Context.getCanonicalType(lhptee);
5151 rhptee = Context.getCanonicalType(rhptee);
5152 } while (lhptee->isPointerType() && rhptee->isPointerType());
5154 if (Context.hasSameUnqualifiedType(lhptee, rhptee))
5155 return IncompatibleNestedPointerQualifiers;
5158 // General pointer incompatibility takes priority over qualifiers.
5159 return IncompatiblePointer;
5161 return ConvTy;
5164 /// CheckBlockPointerTypesForAssignment - This routine determines whether two
5165 /// block pointer types are compatible or whether a block and normal pointer
5166 /// are compatible. It is more restrict than comparing two function pointer
5167 // types.
5168 Sema::AssignConvertType
5169 Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
5170 QualType rhsType) {
5171 QualType lhptee, rhptee;
5173 // get the "pointed to" type (ignoring qualifiers at the top level)
5174 lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
5175 rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
5177 // make sure we operate on the canonical type
5178 lhptee = Context.getCanonicalType(lhptee);
5179 rhptee = Context.getCanonicalType(rhptee);
5181 AssignConvertType ConvTy = Compatible;
5183 // For blocks we enforce that qualifiers are identical.
5184 if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
5185 ConvTy = CompatiblePointerDiscardsQualifiers;
5187 if (!getLangOptions().CPlusPlus) {
5188 if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
5189 return IncompatibleBlockPointer;
5191 else if (!Context.typesAreCompatible(lhptee, rhptee))
5192 return IncompatibleBlockPointer;
5193 return ConvTy;
5196 /// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
5197 /// for assignment compatibility.
5198 Sema::AssignConvertType
5199 Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
5200 if (lhsType->isObjCBuiltinType()) {
5201 // Class is not compatible with ObjC object pointers.
5202 if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
5203 !rhsType->isObjCQualifiedClassType())
5204 return IncompatiblePointer;
5205 return Compatible;
5207 if (rhsType->isObjCBuiltinType()) {
5208 // Class is not compatible with ObjC object pointers.
5209 if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
5210 !lhsType->isObjCQualifiedClassType())
5211 return IncompatiblePointer;
5212 return Compatible;
5214 QualType lhptee =
5215 lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5216 QualType rhptee =
5217 rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5218 // make sure we operate on the canonical type
5219 lhptee = Context.getCanonicalType(lhptee);
5220 rhptee = Context.getCanonicalType(rhptee);
5221 if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5222 return CompatiblePointerDiscardsQualifiers;
5224 if (Context.typesAreCompatible(lhsType, rhsType))
5225 return Compatible;
5226 if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
5227 return IncompatibleObjCQualifiedId;
5228 return IncompatiblePointer;
5231 Sema::AssignConvertType
5232 Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
5233 // Fake up an opaque expression. We don't actually care about what
5234 // cast operations are required, so if CheckAssignmentConstraints
5235 // adds casts to this they'll be wasted, but fortunately that doesn't
5236 // usually happen on valid code.
5237 OpaqueValueExpr rhs(rhsType, VK_RValue);
5238 Expr *rhsPtr = &rhs;
5239 CastKind K = CK_Invalid;
5241 return CheckAssignmentConstraints(lhsType, rhsPtr, K);
5244 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5245 /// has code to accommodate several GCC extensions when type checking
5246 /// pointers. Here are some objectionable examples that GCC considers warnings:
5248 /// int a, *pint;
5249 /// short *pshort;
5250 /// struct foo *pfoo;
5252 /// pint = pshort; // warning: assignment from incompatible pointer type
5253 /// a = pint; // warning: assignment makes integer from pointer without a cast
5254 /// pint = a; // warning: assignment makes pointer from integer without a cast
5255 /// pint = pfoo; // warning: assignment from incompatible pointer type
5257 /// As a result, the code for dealing with pointers is more complex than the
5258 /// C99 spec dictates.
5260 /// Sets 'Kind' for any result kind except Incompatible.
5261 Sema::AssignConvertType
5262 Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs,
5263 CastKind &Kind) {
5264 QualType rhsType = rhs->getType();
5266 // Get canonical types. We're not formatting these types, just comparing
5267 // them.
5268 lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
5269 rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
5271 if (lhsType == rhsType) {
5272 Kind = CK_NoOp;
5273 return Compatible; // Common case: fast path an exact match.
5276 if ((lhsType->isObjCClassType() &&
5277 (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
5278 (rhsType->isObjCClassType() &&
5279 (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
5280 Kind = CK_BitCast;
5281 return Compatible;
5284 // If the left-hand side is a reference type, then we are in a
5285 // (rare!) case where we've allowed the use of references in C,
5286 // e.g., as a parameter type in a built-in function. In this case,
5287 // just make sure that the type referenced is compatible with the
5288 // right-hand side type. The caller is responsible for adjusting
5289 // lhsType so that the resulting expression does not have reference
5290 // type.
5291 if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
5292 if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
5293 Kind = CK_LValueBitCast;
5294 return Compatible;
5296 return Incompatible;
5298 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5299 // to the same ExtVector type.
5300 if (lhsType->isExtVectorType()) {
5301 if (rhsType->isExtVectorType())
5302 return Incompatible;
5303 if (rhsType->isArithmeticType()) {
5304 // CK_VectorSplat does T -> vector T, so first cast to the
5305 // element type.
5306 QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
5307 if (elType != rhsType) {
5308 Kind = PrepareScalarCast(*this, rhs, elType);
5309 ImpCastExprToType(rhs, elType, Kind);
5311 Kind = CK_VectorSplat;
5312 return Compatible;
5316 if (lhsType->isVectorType() || rhsType->isVectorType()) {
5317 if (lhsType->isVectorType() && rhsType->isVectorType()) {
5318 // If we are allowing lax vector conversions, and LHS and RHS are both
5319 // vectors, the total size only needs to be the same. This is a bitcast;
5320 // no bits are changed but the result type is different.
5321 if (getLangOptions().LaxVectorConversions &&
5322 (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
5323 Kind = CK_BitCast;
5324 return IncompatibleVectors;
5327 // Allow assignments of an AltiVec vector type to an equivalent GCC
5328 // vector type and vice versa
5329 if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5330 Kind = CK_BitCast;
5331 return Compatible;
5334 return Incompatible;
5337 if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
5338 !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
5339 Kind = PrepareScalarCast(*this, rhs, lhsType);
5340 return Compatible;
5343 if (isa<PointerType>(lhsType)) {
5344 if (rhsType->isIntegerType()) {
5345 Kind = CK_IntegralToPointer; // FIXME: null?
5346 return IntToPointer;
5349 if (isa<PointerType>(rhsType)) {
5350 Kind = CK_BitCast;
5351 return CheckPointerTypesForAssignment(lhsType, rhsType);
5354 // In general, C pointers are not compatible with ObjC object pointers.
5355 if (isa<ObjCObjectPointerType>(rhsType)) {
5356 Kind = CK_AnyPointerToObjCPointerCast;
5357 if (lhsType->isVoidPointerType()) // an exception to the rule.
5358 return Compatible;
5359 return IncompatiblePointer;
5361 if (rhsType->getAs<BlockPointerType>()) {
5362 if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5363 Kind = CK_BitCast;
5364 return Compatible;
5367 // Treat block pointers as objects.
5368 if (getLangOptions().ObjC1 && lhsType->isObjCIdType()) {
5369 Kind = CK_AnyPointerToObjCPointerCast;
5370 return Compatible;
5373 return Incompatible;
5376 if (isa<BlockPointerType>(lhsType)) {
5377 if (rhsType->isIntegerType()) {
5378 Kind = CK_IntegralToPointer; // FIXME: null
5379 return IntToBlockPointer;
5382 Kind = CK_AnyPointerToObjCPointerCast;
5384 // Treat block pointers as objects.
5385 if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
5386 return Compatible;
5388 if (rhsType->isBlockPointerType())
5389 return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
5391 if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
5392 if (RHSPT->getPointeeType()->isVoidType())
5393 return Compatible;
5395 return Incompatible;
5398 if (isa<ObjCObjectPointerType>(lhsType)) {
5399 if (rhsType->isIntegerType()) {
5400 Kind = CK_IntegralToPointer; // FIXME: null
5401 return IntToPointer;
5404 Kind = CK_BitCast;
5406 // In general, C pointers are not compatible with ObjC object pointers.
5407 if (isa<PointerType>(rhsType)) {
5408 if (rhsType->isVoidPointerType()) // an exception to the rule.
5409 return Compatible;
5410 return IncompatiblePointer;
5412 if (rhsType->isObjCObjectPointerType()) {
5413 return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
5415 if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
5416 if (RHSPT->getPointeeType()->isVoidType())
5417 return Compatible;
5419 // Treat block pointers as objects.
5420 if (rhsType->isBlockPointerType())
5421 return Compatible;
5422 return Incompatible;
5424 if (isa<PointerType>(rhsType)) {
5425 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
5426 if (lhsType == Context.BoolTy) {
5427 Kind = CK_PointerToBoolean;
5428 return Compatible;
5431 if (lhsType->isIntegerType()) {
5432 Kind = CK_PointerToIntegral;
5433 return PointerToInt;
5436 if (isa<BlockPointerType>(lhsType) &&
5437 rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5438 Kind = CK_AnyPointerToBlockPointerCast;
5439 return Compatible;
5441 return Incompatible;
5443 if (isa<ObjCObjectPointerType>(rhsType)) {
5444 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
5445 if (lhsType == Context.BoolTy) {
5446 Kind = CK_PointerToBoolean;
5447 return Compatible;
5450 if (lhsType->isIntegerType()) {
5451 Kind = CK_PointerToIntegral;
5452 return PointerToInt;
5455 Kind = CK_BitCast;
5457 // In general, C pointers are not compatible with ObjC object pointers.
5458 if (isa<PointerType>(lhsType)) {
5459 if (lhsType->isVoidPointerType()) // an exception to the rule.
5460 return Compatible;
5461 return IncompatiblePointer;
5463 if (isa<BlockPointerType>(lhsType) &&
5464 rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5465 Kind = CK_AnyPointerToBlockPointerCast;
5466 return Compatible;
5468 return Incompatible;
5471 if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
5472 if (Context.typesAreCompatible(lhsType, rhsType)) {
5473 Kind = CK_NoOp;
5474 return Compatible;
5477 return Incompatible;
5480 /// \brief Constructs a transparent union from an expression that is
5481 /// used to initialize the transparent union.
5482 static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
5483 QualType UnionType, FieldDecl *Field) {
5484 // Build an initializer list that designates the appropriate member
5485 // of the transparent union.
5486 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5487 &E, 1,
5488 SourceLocation());
5489 Initializer->setType(UnionType);
5490 Initializer->setInitializedFieldInUnion(Field);
5492 // Build a compound literal constructing a value of the transparent
5493 // union type from this initializer list.
5494 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5495 E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5496 Initializer, false);
5499 Sema::AssignConvertType
5500 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
5501 QualType FromType = rExpr->getType();
5503 // If the ArgType is a Union type, we want to handle a potential
5504 // transparent_union GCC extension.
5505 const RecordType *UT = ArgType->getAsUnionType();
5506 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5507 return Incompatible;
5509 // The field to initialize within the transparent union.
5510 RecordDecl *UD = UT->getDecl();
5511 FieldDecl *InitField = 0;
5512 // It's compatible if the expression matches any of the fields.
5513 for (RecordDecl::field_iterator it = UD->field_begin(),
5514 itend = UD->field_end();
5515 it != itend; ++it) {
5516 if (it->getType()->isPointerType()) {
5517 // If the transparent union contains a pointer type, we allow:
5518 // 1) void pointer
5519 // 2) null pointer constant
5520 if (FromType->isPointerType())
5521 if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5522 ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
5523 InitField = *it;
5524 break;
5527 if (rExpr->isNullPointerConstant(Context,
5528 Expr::NPC_ValueDependentIsNull)) {
5529 ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer);
5530 InitField = *it;
5531 break;
5535 Expr *rhs = rExpr;
5536 CastKind Kind = CK_Invalid;
5537 if (CheckAssignmentConstraints(it->getType(), rhs, Kind)
5538 == Compatible) {
5539 ImpCastExprToType(rhs, it->getType(), Kind);
5540 rExpr = rhs;
5541 InitField = *it;
5542 break;
5546 if (!InitField)
5547 return Incompatible;
5549 ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
5550 return Compatible;
5553 Sema::AssignConvertType
5554 Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
5555 if (getLangOptions().CPlusPlus) {
5556 if (!lhsType->isRecordType()) {
5557 // C++ 5.17p3: If the left operand is not of class type, the
5558 // expression is implicitly converted (C++ 4) to the
5559 // cv-unqualified type of the left operand.
5560 if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
5561 AA_Assigning))
5562 return Incompatible;
5563 return Compatible;
5566 // FIXME: Currently, we fall through and treat C++ classes like C
5567 // structures.
5570 // C99 6.5.16.1p1: the left operand is a pointer and the right is
5571 // a null pointer constant.
5572 if ((lhsType->isPointerType() ||
5573 lhsType->isObjCObjectPointerType() ||
5574 lhsType->isBlockPointerType())
5575 && rExpr->isNullPointerConstant(Context,
5576 Expr::NPC_ValueDependentIsNull)) {
5577 ImpCastExprToType(rExpr, lhsType, CK_NullToPointer);
5578 return Compatible;
5581 // This check seems unnatural, however it is necessary to ensure the proper
5582 // conversion of functions/arrays. If the conversion were done for all
5583 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5584 // expressions that suppress this implicit conversion (&, sizeof).
5586 // Suppress this for references: C++ 8.5.3p5.
5587 if (!lhsType->isReferenceType())
5588 DefaultFunctionArrayLvalueConversion(rExpr);
5590 CastKind Kind = CK_Invalid;
5591 Sema::AssignConvertType result =
5592 CheckAssignmentConstraints(lhsType, rExpr, Kind);
5594 // C99 6.5.16.1p2: The value of the right operand is converted to the
5595 // type of the assignment expression.
5596 // CheckAssignmentConstraints allows the left-hand side to be a reference,
5597 // so that we can use references in built-in functions even in C.
5598 // The getNonReferenceType() call makes sure that the resulting expression
5599 // does not have reference type.
5600 if (result != Incompatible && rExpr->getType() != lhsType)
5601 ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind);
5602 return result;
5605 QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5606 Diag(Loc, diag::err_typecheck_invalid_operands)
5607 << lex->getType() << rex->getType()
5608 << lex->getSourceRange() << rex->getSourceRange();
5609 return QualType();
5612 QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5613 // For conversion purposes, we ignore any qualifiers.
5614 // For example, "const float" and "float" are equivalent.
5615 QualType lhsType =
5616 Context.getCanonicalType(lex->getType()).getUnqualifiedType();
5617 QualType rhsType =
5618 Context.getCanonicalType(rex->getType()).getUnqualifiedType();
5620 // If the vector types are identical, return.
5621 if (lhsType == rhsType)
5622 return lhsType;
5624 // Handle the case of a vector & extvector type of the same size and element
5625 // type. It would be nice if we only had one vector type someday.
5626 if (getLangOptions().LaxVectorConversions) {
5627 if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5628 if (const VectorType *RV = rhsType->getAs<VectorType>()) {
5629 if (LV->getElementType() == RV->getElementType() &&
5630 LV->getNumElements() == RV->getNumElements()) {
5631 if (lhsType->isExtVectorType()) {
5632 ImpCastExprToType(rex, lhsType, CK_BitCast);
5633 return lhsType;
5636 ImpCastExprToType(lex, rhsType, CK_BitCast);
5637 return rhsType;
5638 } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
5639 // If we are allowing lax vector conversions, and LHS and RHS are both
5640 // vectors, the total size only needs to be the same. This is a
5641 // bitcast; no bits are changed but the result type is different.
5642 ImpCastExprToType(rex, lhsType, CK_BitCast);
5643 return lhsType;
5649 // Handle the case of equivalent AltiVec and GCC vector types
5650 if (lhsType->isVectorType() && rhsType->isVectorType() &&
5651 Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5652 ImpCastExprToType(lex, rhsType, CK_BitCast);
5653 return rhsType;
5656 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5657 // swap back (so that we don't reverse the inputs to a subtract, for instance.
5658 bool swapped = false;
5659 if (rhsType->isExtVectorType()) {
5660 swapped = true;
5661 std::swap(rex, lex);
5662 std::swap(rhsType, lhsType);
5665 // Handle the case of an ext vector and scalar.
5666 if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5667 QualType EltTy = LV->getElementType();
5668 if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5669 int order = Context.getIntegerTypeOrder(EltTy, rhsType);
5670 if (order > 0)
5671 ImpCastExprToType(rex, EltTy, CK_IntegralCast);
5672 if (order >= 0) {
5673 ImpCastExprToType(rex, lhsType, CK_VectorSplat);
5674 if (swapped) std::swap(rex, lex);
5675 return lhsType;
5678 if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5679 rhsType->isRealFloatingType()) {
5680 int order = Context.getFloatingTypeOrder(EltTy, rhsType);
5681 if (order > 0)
5682 ImpCastExprToType(rex, EltTy, CK_FloatingCast);
5683 if (order >= 0) {
5684 ImpCastExprToType(rex, lhsType, CK_VectorSplat);
5685 if (swapped) std::swap(rex, lex);
5686 return lhsType;
5691 // Vectors of different size or scalar and non-ext-vector are errors.
5692 Diag(Loc, diag::err_typecheck_vector_not_convertable)
5693 << lex->getType() << rex->getType()
5694 << lex->getSourceRange() << rex->getSourceRange();
5695 return QualType();
5698 QualType Sema::CheckMultiplyDivideOperands(
5699 Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5700 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5701 return CheckVectorOperands(Loc, lex, rex);
5703 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5705 if (!lex->getType()->isArithmeticType() ||
5706 !rex->getType()->isArithmeticType())
5707 return InvalidOperands(Loc, lex, rex);
5709 // Check for division by zero.
5710 if (isDiv &&
5711 rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5712 DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5713 << rex->getSourceRange());
5715 return compType;
5718 QualType Sema::CheckRemainderOperands(
5719 Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5720 if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5721 if (lex->getType()->hasIntegerRepresentation() &&
5722 rex->getType()->hasIntegerRepresentation())
5723 return CheckVectorOperands(Loc, lex, rex);
5724 return InvalidOperands(Loc, lex, rex);
5727 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5729 if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5730 return InvalidOperands(Loc, lex, rex);
5732 // Check for remainder by zero.
5733 if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5734 DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5735 << rex->getSourceRange());
5737 return compType;
5740 QualType Sema::CheckAdditionOperands( // C99 6.5.6
5741 Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5742 if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5743 QualType compType = CheckVectorOperands(Loc, lex, rex);
5744 if (CompLHSTy) *CompLHSTy = compType;
5745 return compType;
5748 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5750 // handle the common case first (both operands are arithmetic).
5751 if (lex->getType()->isArithmeticType() &&
5752 rex->getType()->isArithmeticType()) {
5753 if (CompLHSTy) *CompLHSTy = compType;
5754 return compType;
5757 // Put any potential pointer into PExp
5758 Expr* PExp = lex, *IExp = rex;
5759 if (IExp->getType()->isAnyPointerType())
5760 std::swap(PExp, IExp);
5762 if (PExp->getType()->isAnyPointerType()) {
5764 if (IExp->getType()->isIntegerType()) {
5765 QualType PointeeTy = PExp->getType()->getPointeeType();
5767 // Check for arithmetic on pointers to incomplete types.
5768 if (PointeeTy->isVoidType()) {
5769 if (getLangOptions().CPlusPlus) {
5770 Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5771 << lex->getSourceRange() << rex->getSourceRange();
5772 return QualType();
5775 // GNU extension: arithmetic on pointer to void
5776 Diag(Loc, diag::ext_gnu_void_ptr)
5777 << lex->getSourceRange() << rex->getSourceRange();
5778 } else if (PointeeTy->isFunctionType()) {
5779 if (getLangOptions().CPlusPlus) {
5780 Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5781 << lex->getType() << lex->getSourceRange();
5782 return QualType();
5785 // GNU extension: arithmetic on pointer to function
5786 Diag(Loc, diag::ext_gnu_ptr_func_arith)
5787 << lex->getType() << lex->getSourceRange();
5788 } else {
5789 // Check if we require a complete type.
5790 if (((PExp->getType()->isPointerType() &&
5791 !PExp->getType()->isDependentType()) ||
5792 PExp->getType()->isObjCObjectPointerType()) &&
5793 RequireCompleteType(Loc, PointeeTy,
5794 PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5795 << PExp->getSourceRange()
5796 << PExp->getType()))
5797 return QualType();
5799 // Diagnose bad cases where we step over interface counts.
5800 if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5801 Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5802 << PointeeTy << PExp->getSourceRange();
5803 return QualType();
5806 if (CompLHSTy) {
5807 QualType LHSTy = Context.isPromotableBitField(lex);
5808 if (LHSTy.isNull()) {
5809 LHSTy = lex->getType();
5810 if (LHSTy->isPromotableIntegerType())
5811 LHSTy = Context.getPromotedIntegerType(LHSTy);
5813 *CompLHSTy = LHSTy;
5815 return PExp->getType();
5819 return InvalidOperands(Loc, lex, rex);
5822 // C99 6.5.6
5823 QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5824 SourceLocation Loc, QualType* CompLHSTy) {
5825 if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5826 QualType compType = CheckVectorOperands(Loc, lex, rex);
5827 if (CompLHSTy) *CompLHSTy = compType;
5828 return compType;
5831 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5833 // Enforce type constraints: C99 6.5.6p3.
5835 // Handle the common case first (both operands are arithmetic).
5836 if (lex->getType()->isArithmeticType()
5837 && rex->getType()->isArithmeticType()) {
5838 if (CompLHSTy) *CompLHSTy = compType;
5839 return compType;
5842 // Either ptr - int or ptr - ptr.
5843 if (lex->getType()->isAnyPointerType()) {
5844 QualType lpointee = lex->getType()->getPointeeType();
5846 // The LHS must be an completely-defined object type.
5848 bool ComplainAboutVoid = false;
5849 Expr *ComplainAboutFunc = 0;
5850 if (lpointee->isVoidType()) {
5851 if (getLangOptions().CPlusPlus) {
5852 Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5853 << lex->getSourceRange() << rex->getSourceRange();
5854 return QualType();
5857 // GNU C extension: arithmetic on pointer to void
5858 ComplainAboutVoid = true;
5859 } else if (lpointee->isFunctionType()) {
5860 if (getLangOptions().CPlusPlus) {
5861 Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5862 << lex->getType() << lex->getSourceRange();
5863 return QualType();
5866 // GNU C extension: arithmetic on pointer to function
5867 ComplainAboutFunc = lex;
5868 } else if (!lpointee->isDependentType() &&
5869 RequireCompleteType(Loc, lpointee,
5870 PDiag(diag::err_typecheck_sub_ptr_object)
5871 << lex->getSourceRange()
5872 << lex->getType()))
5873 return QualType();
5875 // Diagnose bad cases where we step over interface counts.
5876 if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5877 Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5878 << lpointee << lex->getSourceRange();
5879 return QualType();
5882 // The result type of a pointer-int computation is the pointer type.
5883 if (rex->getType()->isIntegerType()) {
5884 if (ComplainAboutVoid)
5885 Diag(Loc, diag::ext_gnu_void_ptr)
5886 << lex->getSourceRange() << rex->getSourceRange();
5887 if (ComplainAboutFunc)
5888 Diag(Loc, diag::ext_gnu_ptr_func_arith)
5889 << ComplainAboutFunc->getType()
5890 << ComplainAboutFunc->getSourceRange();
5892 if (CompLHSTy) *CompLHSTy = lex->getType();
5893 return lex->getType();
5896 // Handle pointer-pointer subtractions.
5897 if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5898 QualType rpointee = RHSPTy->getPointeeType();
5900 // RHS must be a completely-type object type.
5901 // Handle the GNU void* extension.
5902 if (rpointee->isVoidType()) {
5903 if (getLangOptions().CPlusPlus) {
5904 Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5905 << lex->getSourceRange() << rex->getSourceRange();
5906 return QualType();
5909 ComplainAboutVoid = true;
5910 } else if (rpointee->isFunctionType()) {
5911 if (getLangOptions().CPlusPlus) {
5912 Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5913 << rex->getType() << rex->getSourceRange();
5914 return QualType();
5917 // GNU extension: arithmetic on pointer to function
5918 if (!ComplainAboutFunc)
5919 ComplainAboutFunc = rex;
5920 } else if (!rpointee->isDependentType() &&
5921 RequireCompleteType(Loc, rpointee,
5922 PDiag(diag::err_typecheck_sub_ptr_object)
5923 << rex->getSourceRange()
5924 << rex->getType()))
5925 return QualType();
5927 if (getLangOptions().CPlusPlus) {
5928 // Pointee types must be the same: C++ [expr.add]
5929 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5930 Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5931 << lex->getType() << rex->getType()
5932 << lex->getSourceRange() << rex->getSourceRange();
5933 return QualType();
5935 } else {
5936 // Pointee types must be compatible C99 6.5.6p3
5937 if (!Context.typesAreCompatible(
5938 Context.getCanonicalType(lpointee).getUnqualifiedType(),
5939 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5940 Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5941 << lex->getType() << rex->getType()
5942 << lex->getSourceRange() << rex->getSourceRange();
5943 return QualType();
5947 if (ComplainAboutVoid)
5948 Diag(Loc, diag::ext_gnu_void_ptr)
5949 << lex->getSourceRange() << rex->getSourceRange();
5950 if (ComplainAboutFunc)
5951 Diag(Loc, diag::ext_gnu_ptr_func_arith)
5952 << ComplainAboutFunc->getType()
5953 << ComplainAboutFunc->getSourceRange();
5955 if (CompLHSTy) *CompLHSTy = lex->getType();
5956 return Context.getPointerDiffType();
5960 return InvalidOperands(Loc, lex, rex);
5963 static bool isScopedEnumerationType(QualType T) {
5964 if (const EnumType *ET = dyn_cast<EnumType>(T))
5965 return ET->getDecl()->isScoped();
5966 return false;
5969 // C99 6.5.7
5970 QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5971 bool isCompAssign) {
5972 // C99 6.5.7p2: Each of the operands shall have integer type.
5973 if (!lex->getType()->hasIntegerRepresentation() ||
5974 !rex->getType()->hasIntegerRepresentation())
5975 return InvalidOperands(Loc, lex, rex);
5977 // C++0x: Don't allow scoped enums. FIXME: Use something better than
5978 // hasIntegerRepresentation() above instead of this.
5979 if (isScopedEnumerationType(lex->getType()) ||
5980 isScopedEnumerationType(rex->getType())) {
5981 return InvalidOperands(Loc, lex, rex);
5984 // Vector shifts promote their scalar inputs to vector type.
5985 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5986 return CheckVectorOperands(Loc, lex, rex);
5988 // Shifts don't perform usual arithmetic conversions, they just do integer
5989 // promotions on each operand. C99 6.5.7p3
5990 QualType LHSTy = Context.isPromotableBitField(lex);
5991 if (LHSTy.isNull()) {
5992 LHSTy = lex->getType();
5993 if (LHSTy->isPromotableIntegerType())
5994 LHSTy = Context.getPromotedIntegerType(LHSTy);
5996 if (!isCompAssign)
5997 ImpCastExprToType(lex, LHSTy, CK_IntegralCast);
5999 UsualUnaryConversions(rex);
6001 // Sanity-check shift operands
6002 llvm::APSInt Right;
6003 // Check right/shifter operand
6004 if (!rex->isValueDependent() &&
6005 rex->isIntegerConstantExpr(Right, Context)) {
6006 if (Right.isNegative())
6007 Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
6008 else {
6009 llvm::APInt LeftBits(Right.getBitWidth(),
6010 Context.getTypeSize(lex->getType()));
6011 if (Right.uge(LeftBits))
6012 Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
6016 // "The type of the result is that of the promoted left operand."
6017 return LHSTy;
6020 static bool IsWithinTemplateSpecialization(Decl *D) {
6021 if (DeclContext *DC = D->getDeclContext()) {
6022 if (isa<ClassTemplateSpecializationDecl>(DC))
6023 return true;
6024 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6025 return FD->isFunctionTemplateSpecialization();
6027 return false;
6030 // C99 6.5.8, C++ [expr.rel]
6031 QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
6032 unsigned OpaqueOpc, bool isRelational) {
6033 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6035 // Handle vector comparisons separately.
6036 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
6037 return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
6039 QualType lType = lex->getType();
6040 QualType rType = rex->getType();
6042 if (!lType->hasFloatingRepresentation() &&
6043 !(lType->isBlockPointerType() && isRelational) &&
6044 !lex->getLocStart().isMacroID() &&
6045 !rex->getLocStart().isMacroID()) {
6046 // For non-floating point types, check for self-comparisons of the form
6047 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6048 // often indicate logic errors in the program.
6050 // NOTE: Don't warn about comparison expressions resulting from macro
6051 // expansion. Also don't warn about comparisons which are only self
6052 // comparisons within a template specialization. The warnings should catch
6053 // obvious cases in the definition of the template anyways. The idea is to
6054 // warn when the typed comparison operator will always evaluate to the same
6055 // result.
6056 Expr *LHSStripped = lex->IgnoreParens();
6057 Expr *RHSStripped = rex->IgnoreParens();
6058 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6059 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6060 if (DRL->getDecl() == DRR->getDecl() &&
6061 !IsWithinTemplateSpecialization(DRL->getDecl())) {
6062 DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
6063 << 0 // self-
6064 << (Opc == BO_EQ
6065 || Opc == BO_LE
6066 || Opc == BO_GE));
6067 } else if (lType->isArrayType() && rType->isArrayType() &&
6068 !DRL->getDecl()->getType()->isReferenceType() &&
6069 !DRR->getDecl()->getType()->isReferenceType()) {
6070 // what is it always going to eval to?
6071 char always_evals_to;
6072 switch(Opc) {
6073 case BO_EQ: // e.g. array1 == array2
6074 always_evals_to = 0; // false
6075 break;
6076 case BO_NE: // e.g. array1 != array2
6077 always_evals_to = 1; // true
6078 break;
6079 default:
6080 // best we can say is 'a constant'
6081 always_evals_to = 2; // e.g. array1 <= array2
6082 break;
6084 DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
6085 << 1 // array
6086 << always_evals_to);
6091 if (isa<CastExpr>(LHSStripped))
6092 LHSStripped = LHSStripped->IgnoreParenCasts();
6093 if (isa<CastExpr>(RHSStripped))
6094 RHSStripped = RHSStripped->IgnoreParenCasts();
6096 // Warn about comparisons against a string constant (unless the other
6097 // operand is null), the user probably wants strcmp.
6098 Expr *literalString = 0;
6099 Expr *literalStringStripped = 0;
6100 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6101 !RHSStripped->isNullPointerConstant(Context,
6102 Expr::NPC_ValueDependentIsNull)) {
6103 literalString = lex;
6104 literalStringStripped = LHSStripped;
6105 } else if ((isa<StringLiteral>(RHSStripped) ||
6106 isa<ObjCEncodeExpr>(RHSStripped)) &&
6107 !LHSStripped->isNullPointerConstant(Context,
6108 Expr::NPC_ValueDependentIsNull)) {
6109 literalString = rex;
6110 literalStringStripped = RHSStripped;
6113 if (literalString) {
6114 std::string resultComparison;
6115 switch (Opc) {
6116 case BO_LT: resultComparison = ") < 0"; break;
6117 case BO_GT: resultComparison = ") > 0"; break;
6118 case BO_LE: resultComparison = ") <= 0"; break;
6119 case BO_GE: resultComparison = ") >= 0"; break;
6120 case BO_EQ: resultComparison = ") == 0"; break;
6121 case BO_NE: resultComparison = ") != 0"; break;
6122 default: assert(false && "Invalid comparison operator");
6125 DiagRuntimeBehavior(Loc,
6126 PDiag(diag::warn_stringcompare)
6127 << isa<ObjCEncodeExpr>(literalStringStripped)
6128 << literalString->getSourceRange());
6132 // C99 6.5.8p3 / C99 6.5.9p4
6133 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
6134 UsualArithmeticConversions(lex, rex);
6135 else {
6136 UsualUnaryConversions(lex);
6137 UsualUnaryConversions(rex);
6140 lType = lex->getType();
6141 rType = rex->getType();
6143 // The result of comparisons is 'bool' in C++, 'int' in C.
6144 QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
6146 if (isRelational) {
6147 if (lType->isRealType() && rType->isRealType())
6148 return ResultTy;
6149 } else {
6150 // Check for comparisons of floating point operands using != and ==.
6151 if (lType->hasFloatingRepresentation())
6152 CheckFloatComparison(Loc,lex,rex);
6154 if (lType->isArithmeticType() && rType->isArithmeticType())
6155 return ResultTy;
6158 bool LHSIsNull = lex->isNullPointerConstant(Context,
6159 Expr::NPC_ValueDependentIsNull);
6160 bool RHSIsNull = rex->isNullPointerConstant(Context,
6161 Expr::NPC_ValueDependentIsNull);
6163 // All of the following pointer-related warnings are GCC extensions, except
6164 // when handling null pointer constants.
6165 if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
6166 QualType LCanPointeeTy =
6167 Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
6168 QualType RCanPointeeTy =
6169 Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
6171 if (getLangOptions().CPlusPlus) {
6172 if (LCanPointeeTy == RCanPointeeTy)
6173 return ResultTy;
6174 if (!isRelational &&
6175 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6176 // Valid unless comparison between non-null pointer and function pointer
6177 // This is a gcc extension compatibility comparison.
6178 // In a SFINAE context, we treat this as a hard error to maintain
6179 // conformance with the C++ standard.
6180 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6181 && !LHSIsNull && !RHSIsNull) {
6182 Diag(Loc,
6183 isSFINAEContext()?
6184 diag::err_typecheck_comparison_of_fptr_to_void
6185 : diag::ext_typecheck_comparison_of_fptr_to_void)
6186 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6188 if (isSFINAEContext())
6189 return QualType();
6191 ImpCastExprToType(rex, lType, CK_BitCast);
6192 return ResultTy;
6196 // C++ [expr.rel]p2:
6197 // [...] Pointer conversions (4.10) and qualification
6198 // conversions (4.4) are performed on pointer operands (or on
6199 // a pointer operand and a null pointer constant) to bring
6200 // them to their composite pointer type. [...]
6202 // C++ [expr.eq]p1 uses the same notion for (in)equality
6203 // comparisons of pointers.
6204 bool NonStandardCompositeType = false;
6205 QualType T = FindCompositePointerType(Loc, lex, rex,
6206 isSFINAEContext()? 0 : &NonStandardCompositeType);
6207 if (T.isNull()) {
6208 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6209 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6210 return QualType();
6211 } else if (NonStandardCompositeType) {
6212 Diag(Loc,
6213 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6214 << lType << rType << T
6215 << lex->getSourceRange() << rex->getSourceRange();
6218 ImpCastExprToType(lex, T, CK_BitCast);
6219 ImpCastExprToType(rex, T, CK_BitCast);
6220 return ResultTy;
6222 // C99 6.5.9p2 and C99 6.5.8p2
6223 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6224 RCanPointeeTy.getUnqualifiedType())) {
6225 // Valid unless a relational comparison of function pointers
6226 if (isRelational && LCanPointeeTy->isFunctionType()) {
6227 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6228 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6230 } else if (!isRelational &&
6231 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6232 // Valid unless comparison between non-null pointer and function pointer
6233 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6234 && !LHSIsNull && !RHSIsNull) {
6235 Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
6236 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6238 } else {
6239 // Invalid
6240 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6241 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6243 if (LCanPointeeTy != RCanPointeeTy)
6244 ImpCastExprToType(rex, lType, CK_BitCast);
6245 return ResultTy;
6248 if (getLangOptions().CPlusPlus) {
6249 // Comparison of nullptr_t with itself.
6250 if (lType->isNullPtrType() && rType->isNullPtrType())
6251 return ResultTy;
6253 // Comparison of pointers with null pointer constants and equality
6254 // comparisons of member pointers to null pointer constants.
6255 if (RHSIsNull &&
6256 ((lType->isPointerType() || lType->isNullPtrType()) ||
6257 (!isRelational && lType->isMemberPointerType()))) {
6258 ImpCastExprToType(rex, lType,
6259 lType->isMemberPointerType()
6260 ? CK_NullToMemberPointer
6261 : CK_NullToPointer);
6262 return ResultTy;
6264 if (LHSIsNull &&
6265 ((rType->isPointerType() || rType->isNullPtrType()) ||
6266 (!isRelational && rType->isMemberPointerType()))) {
6267 ImpCastExprToType(lex, rType,
6268 rType->isMemberPointerType()
6269 ? CK_NullToMemberPointer
6270 : CK_NullToPointer);
6271 return ResultTy;
6274 // Comparison of member pointers.
6275 if (!isRelational &&
6276 lType->isMemberPointerType() && rType->isMemberPointerType()) {
6277 // C++ [expr.eq]p2:
6278 // In addition, pointers to members can be compared, or a pointer to
6279 // member and a null pointer constant. Pointer to member conversions
6280 // (4.11) and qualification conversions (4.4) are performed to bring
6281 // them to a common type. If one operand is a null pointer constant,
6282 // the common type is the type of the other operand. Otherwise, the
6283 // common type is a pointer to member type similar (4.4) to the type
6284 // of one of the operands, with a cv-qualification signature (4.4)
6285 // that is the union of the cv-qualification signatures of the operand
6286 // types.
6287 bool NonStandardCompositeType = false;
6288 QualType T = FindCompositePointerType(Loc, lex, rex,
6289 isSFINAEContext()? 0 : &NonStandardCompositeType);
6290 if (T.isNull()) {
6291 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6292 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6293 return QualType();
6294 } else if (NonStandardCompositeType) {
6295 Diag(Loc,
6296 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6297 << lType << rType << T
6298 << lex->getSourceRange() << rex->getSourceRange();
6301 ImpCastExprToType(lex, T, CK_BitCast);
6302 ImpCastExprToType(rex, T, CK_BitCast);
6303 return ResultTy;
6307 // Handle block pointer types.
6308 if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
6309 QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
6310 QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
6312 if (!LHSIsNull && !RHSIsNull &&
6313 !Context.typesAreCompatible(lpointee, rpointee)) {
6314 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6315 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6317 ImpCastExprToType(rex, lType, CK_BitCast);
6318 return ResultTy;
6320 // Allow block pointers to be compared with null pointer constants.
6321 if (!isRelational
6322 && ((lType->isBlockPointerType() && rType->isPointerType())
6323 || (lType->isPointerType() && rType->isBlockPointerType()))) {
6324 if (!LHSIsNull && !RHSIsNull) {
6325 if (!((rType->isPointerType() && rType->getAs<PointerType>()
6326 ->getPointeeType()->isVoidType())
6327 || (lType->isPointerType() && lType->getAs<PointerType>()
6328 ->getPointeeType()->isVoidType())))
6329 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6330 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6332 ImpCastExprToType(rex, lType, CK_BitCast);
6333 return ResultTy;
6336 if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
6337 if (lType->isPointerType() || rType->isPointerType()) {
6338 const PointerType *LPT = lType->getAs<PointerType>();
6339 const PointerType *RPT = rType->getAs<PointerType>();
6340 bool LPtrToVoid = LPT ?
6341 Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
6342 bool RPtrToVoid = RPT ?
6343 Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
6345 if (!LPtrToVoid && !RPtrToVoid &&
6346 !Context.typesAreCompatible(lType, rType)) {
6347 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6348 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6350 ImpCastExprToType(rex, lType, CK_BitCast);
6351 return ResultTy;
6353 if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
6354 if (!Context.areComparableObjCPointerTypes(lType, rType))
6355 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6356 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6357 ImpCastExprToType(rex, lType, CK_BitCast);
6358 return ResultTy;
6361 if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
6362 (lType->isIntegerType() && rType->isAnyPointerType())) {
6363 unsigned DiagID = 0;
6364 bool isError = false;
6365 if ((LHSIsNull && lType->isIntegerType()) ||
6366 (RHSIsNull && rType->isIntegerType())) {
6367 if (isRelational && !getLangOptions().CPlusPlus)
6368 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6369 } else if (isRelational && !getLangOptions().CPlusPlus)
6370 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6371 else if (getLangOptions().CPlusPlus) {
6372 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6373 isError = true;
6374 } else
6375 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6377 if (DiagID) {
6378 Diag(Loc, DiagID)
6379 << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6380 if (isError)
6381 return QualType();
6384 if (lType->isIntegerType())
6385 ImpCastExprToType(lex, rType,
6386 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6387 else
6388 ImpCastExprToType(rex, lType,
6389 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6390 return ResultTy;
6393 // Handle block pointers.
6394 if (!isRelational && RHSIsNull
6395 && lType->isBlockPointerType() && rType->isIntegerType()) {
6396 ImpCastExprToType(rex, lType, CK_NullToPointer);
6397 return ResultTy;
6399 if (!isRelational && LHSIsNull
6400 && lType->isIntegerType() && rType->isBlockPointerType()) {
6401 ImpCastExprToType(lex, rType, CK_NullToPointer);
6402 return ResultTy;
6404 return InvalidOperands(Loc, lex, rex);
6407 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
6408 /// operates on extended vector types. Instead of producing an IntTy result,
6409 /// like a scalar comparison, a vector comparison produces a vector of integer
6410 /// types.
6411 QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
6412 SourceLocation Loc,
6413 bool isRelational) {
6414 // Check to make sure we're operating on vectors of the same type and width,
6415 // Allowing one side to be a scalar of element type.
6416 QualType vType = CheckVectorOperands(Loc, lex, rex);
6417 if (vType.isNull())
6418 return vType;
6420 QualType lType = lex->getType();
6421 QualType rType = rex->getType();
6423 // For non-floating point types, check for self-comparisons of the form
6424 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6425 // often indicate logic errors in the program.
6426 if (!lType->hasFloatingRepresentation()) {
6427 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
6428 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
6429 if (DRL->getDecl() == DRR->getDecl())
6430 DiagRuntimeBehavior(Loc,
6431 PDiag(diag::warn_comparison_always)
6432 << 0 // self-
6433 << 2 // "a constant"
6437 // Check for comparisons of floating point operands using != and ==.
6438 if (!isRelational && lType->hasFloatingRepresentation()) {
6439 assert (rType->hasFloatingRepresentation());
6440 CheckFloatComparison(Loc,lex,rex);
6443 // Return the type for the comparison, which is the same as vector type for
6444 // integer vectors, or an integer type of identical size and number of
6445 // elements for floating point vectors.
6446 if (lType->hasIntegerRepresentation())
6447 return lType;
6449 const VectorType *VTy = lType->getAs<VectorType>();
6450 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6451 if (TypeSize == Context.getTypeSize(Context.IntTy))
6452 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6453 if (TypeSize == Context.getTypeSize(Context.LongTy))
6454 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6456 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6457 "Unhandled vector element size in vector compare");
6458 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6461 inline QualType Sema::CheckBitwiseOperands(
6462 Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
6463 if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
6464 if (lex->getType()->hasIntegerRepresentation() &&
6465 rex->getType()->hasIntegerRepresentation())
6466 return CheckVectorOperands(Loc, lex, rex);
6468 return InvalidOperands(Loc, lex, rex);
6471 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
6473 if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
6474 rex->getType()->isIntegralOrUnscopedEnumerationType())
6475 return compType;
6476 return InvalidOperands(Loc, lex, rex);
6479 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
6480 Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
6482 // Diagnose cases where the user write a logical and/or but probably meant a
6483 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
6484 // is a constant.
6485 if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
6486 rex->getType()->isIntegerType() && !rex->isValueDependent() &&
6487 // Don't warn in macros.
6488 !Loc.isMacroID()) {
6489 // If the RHS can be constant folded, and if it constant folds to something
6490 // that isn't 0 or 1 (which indicate a potential logical operation that
6491 // happened to fold to true/false) then warn.
6492 Expr::EvalResult Result;
6493 if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
6494 Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
6495 Diag(Loc, diag::warn_logical_instead_of_bitwise)
6496 << rex->getSourceRange()
6497 << (Opc == BO_LAnd ? "&&" : "||")
6498 << (Opc == BO_LAnd ? "&" : "|");
6502 if (!Context.getLangOptions().CPlusPlus) {
6503 UsualUnaryConversions(lex);
6504 UsualUnaryConversions(rex);
6506 if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
6507 return InvalidOperands(Loc, lex, rex);
6509 return Context.IntTy;
6512 // The following is safe because we only use this method for
6513 // non-overloadable operands.
6515 // C++ [expr.log.and]p1
6516 // C++ [expr.log.or]p1
6517 // The operands are both contextually converted to type bool.
6518 if (PerformContextuallyConvertToBool(lex) ||
6519 PerformContextuallyConvertToBool(rex))
6520 return InvalidOperands(Loc, lex, rex);
6522 // C++ [expr.log.and]p2
6523 // C++ [expr.log.or]p2
6524 // The result is a bool.
6525 return Context.BoolTy;
6528 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
6529 /// is a read-only property; return true if so. A readonly property expression
6530 /// depends on various declarations and thus must be treated specially.
6532 static bool IsReadonlyProperty(Expr *E, Sema &S) {
6533 if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6534 const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6535 if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
6536 QualType BaseType = PropExpr->isSuperReceiver() ?
6537 PropExpr->getSuperType() :
6538 PropExpr->getBase()->getType();
6540 if (const ObjCObjectPointerType *OPT =
6541 BaseType->getAsObjCInterfacePointerType())
6542 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
6543 if (S.isPropertyReadonly(PDecl, IFace))
6544 return true;
6547 return false;
6550 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
6551 /// emit an error and return true. If so, return false.
6552 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
6553 SourceLocation OrigLoc = Loc;
6554 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
6555 &Loc);
6556 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
6557 IsLV = Expr::MLV_ReadonlyProperty;
6558 if (IsLV == Expr::MLV_Valid)
6559 return false;
6561 unsigned Diag = 0;
6562 bool NeedType = false;
6563 switch (IsLV) { // C99 6.5.16p2
6564 case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
6565 case Expr::MLV_ArrayType:
6566 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
6567 NeedType = true;
6568 break;
6569 case Expr::MLV_NotObjectType:
6570 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6571 NeedType = true;
6572 break;
6573 case Expr::MLV_LValueCast:
6574 Diag = diag::err_typecheck_lvalue_casts_not_supported;
6575 break;
6576 case Expr::MLV_Valid:
6577 llvm_unreachable("did not take early return for MLV_Valid");
6578 case Expr::MLV_InvalidExpression:
6579 case Expr::MLV_MemberFunction:
6580 case Expr::MLV_ClassTemporary:
6581 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6582 break;
6583 case Expr::MLV_IncompleteType:
6584 case Expr::MLV_IncompleteVoidType:
6585 return S.RequireCompleteType(Loc, E->getType(),
6586 S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6587 << E->getSourceRange());
6588 case Expr::MLV_DuplicateVectorComponents:
6589 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6590 break;
6591 case Expr::MLV_NotBlockQualified:
6592 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6593 break;
6594 case Expr::MLV_ReadonlyProperty:
6595 Diag = diag::error_readonly_property_assignment;
6596 break;
6597 case Expr::MLV_NoSetterProperty:
6598 Diag = diag::error_nosetter_property_assignment;
6599 break;
6600 case Expr::MLV_SubObjCPropertySetting:
6601 Diag = diag::error_no_subobject_property_setting;
6602 break;
6605 SourceRange Assign;
6606 if (Loc != OrigLoc)
6607 Assign = SourceRange(OrigLoc, OrigLoc);
6608 if (NeedType)
6609 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6610 else
6611 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6612 return true;
6617 // C99 6.5.16.1
6618 QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
6619 SourceLocation Loc,
6620 QualType CompoundType) {
6621 // Verify that LHS is a modifiable lvalue, and emit error if not.
6622 if (CheckForModifiableLvalue(LHS, Loc, *this))
6623 return QualType();
6625 QualType LHSType = LHS->getType();
6626 QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
6627 AssignConvertType ConvTy;
6628 if (CompoundType.isNull()) {
6629 QualType LHSTy(LHSType);
6630 // Simple assignment "x = y".
6631 ConvertPropertyAssignment(LHS, RHS, LHSTy);
6632 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6633 // Special case of NSObject attributes on c-style pointer types.
6634 if (ConvTy == IncompatiblePointer &&
6635 ((Context.isObjCNSObjectType(LHSType) &&
6636 RHSType->isObjCObjectPointerType()) ||
6637 (Context.isObjCNSObjectType(RHSType) &&
6638 LHSType->isObjCObjectPointerType())))
6639 ConvTy = Compatible;
6641 // If the RHS is a unary plus or minus, check to see if they = and + are
6642 // right next to each other. If so, the user may have typo'd "x =+ 4"
6643 // instead of "x += 4".
6644 Expr *RHSCheck = RHS;
6645 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6646 RHSCheck = ICE->getSubExpr();
6647 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6648 if ((UO->getOpcode() == UO_Plus ||
6649 UO->getOpcode() == UO_Minus) &&
6650 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6651 // Only if the two operators are exactly adjacent.
6652 Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6653 // And there is a space or other character before the subexpr of the
6654 // unary +/-. We don't want to warn on "x=-1".
6655 Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6656 UO->getSubExpr()->getLocStart().isFileID()) {
6657 Diag(Loc, diag::warn_not_compound_assign)
6658 << (UO->getOpcode() == UO_Plus ? "+" : "-")
6659 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6662 } else {
6663 // Compound assignment "x += y"
6664 ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
6667 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6668 RHS, AA_Assigning))
6669 return QualType();
6672 // Check to see if the destination operand is a dereferenced null pointer. If
6673 // so, and if not volatile-qualified, this is undefined behavior that the
6674 // optimizer will delete, so warn about it. People sometimes try to use this
6675 // to get a deterministic trap and are surprised by clang's behavior. This
6676 // only handles the pattern "*null = whatever", which is a very syntactic
6677 // check.
6678 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6679 if (UO->getOpcode() == UO_Deref &&
6680 UO->getSubExpr()->IgnoreParenCasts()->
6681 isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6682 !UO->getType().isVolatileQualified()) {
6683 Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6684 << UO->getSubExpr()->getSourceRange();
6685 Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6688 // C99 6.5.16p3: The type of an assignment expression is the type of the
6689 // left operand unless the left operand has qualified type, in which case
6690 // it is the unqualified version of the type of the left operand.
6691 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6692 // is converted to the type of the assignment expression (above).
6693 // C++ 5.17p1: the type of the assignment expression is that of its left
6694 // operand.
6695 return (getLangOptions().CPlusPlus
6696 ? LHSType : LHSType.getUnqualifiedType());
6699 // C99 6.5.17
6700 QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
6701 DiagnoseUnusedExprResult(LHS);
6703 ExprResult LHSResult = CheckPlaceholderExpr(LHS, Loc);
6704 if (LHSResult.isInvalid())
6705 return QualType();
6707 ExprResult RHSResult = CheckPlaceholderExpr(RHS, Loc);
6708 if (RHSResult.isInvalid())
6709 return QualType();
6710 RHS = RHSResult.take();
6712 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
6713 // operands, but not unary promotions.
6714 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
6715 if (!getLangOptions().CPlusPlus) {
6716 DefaultFunctionArrayLvalueConversion(LHS);
6717 if (!LHS->getType()->isVoidType())
6718 RequireCompleteType(Loc, LHS->getType(), diag::err_incomplete_type);
6720 DefaultFunctionArrayLvalueConversion(RHS);
6721 if (!RHS->getType()->isVoidType())
6722 RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type);
6725 return RHS->getType();
6728 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6729 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
6730 QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
6731 bool isInc, bool isPrefix) {
6732 if (Op->isTypeDependent())
6733 return Context.DependentTy;
6735 QualType ResType = Op->getType();
6736 assert(!ResType.isNull() && "no type for increment/decrement expression");
6738 if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6739 // Decrement of bool is not allowed.
6740 if (!isInc) {
6741 Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6742 return QualType();
6744 // Increment of bool sets it to true, but is deprecated.
6745 Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6746 } else if (ResType->isRealType()) {
6747 // OK!
6748 } else if (ResType->isAnyPointerType()) {
6749 QualType PointeeTy = ResType->getPointeeType();
6751 // C99 6.5.2.4p2, 6.5.6p2
6752 if (PointeeTy->isVoidType()) {
6753 if (getLangOptions().CPlusPlus) {
6754 Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
6755 << Op->getSourceRange();
6756 return QualType();
6759 // Pointer to void is a GNU extension in C.
6760 Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
6761 } else if (PointeeTy->isFunctionType()) {
6762 if (getLangOptions().CPlusPlus) {
6763 Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
6764 << Op->getType() << Op->getSourceRange();
6765 return QualType();
6768 Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
6769 << ResType << Op->getSourceRange();
6770 } else if (RequireCompleteType(OpLoc, PointeeTy,
6771 PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6772 << Op->getSourceRange()
6773 << ResType))
6774 return QualType();
6775 // Diagnose bad cases where we step over interface counts.
6776 else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6777 Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6778 << PointeeTy << Op->getSourceRange();
6779 return QualType();
6781 } else if (ResType->isAnyComplexType()) {
6782 // C99 does not support ++/-- on complex types, we allow as an extension.
6783 Diag(OpLoc, diag::ext_integer_increment_complex)
6784 << ResType << Op->getSourceRange();
6785 } else if (ResType->isPlaceholderType()) {
6786 ExprResult PR = CheckPlaceholderExpr(Op, OpLoc);
6787 if (PR.isInvalid()) return QualType();
6788 return CheckIncrementDecrementOperand(PR.take(), OpLoc, isInc, isPrefix);
6789 } else {
6790 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6791 << ResType << int(isInc) << Op->getSourceRange();
6792 return QualType();
6794 // At this point, we know we have a real, complex or pointer type.
6795 // Now make sure the operand is a modifiable lvalue.
6796 if (CheckForModifiableLvalue(Op, OpLoc, *this))
6797 return QualType();
6798 // In C++, a prefix increment is the same type as the operand. Otherwise
6799 // (in C or with postfix), the increment is the unqualified type of the
6800 // operand.
6801 return isPrefix && getLangOptions().CPlusPlus
6802 ? ResType : ResType.getUnqualifiedType();
6805 void Sema::ConvertPropertyAssignment(Expr *LHS, Expr *&RHS, QualType& LHSTy) {
6806 bool copyInit = false;
6807 if (const ObjCImplicitSetterGetterRefExpr *OISGE =
6808 dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
6809 // If using property-dot syntax notation for assignment, and there is a
6810 // setter, RHS expression is being passed to the setter argument. So,
6811 // type conversion (and comparison) is RHS to setter's argument type.
6812 if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
6813 ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
6814 LHSTy = (*P)->getType();
6816 copyInit = (getLangOptions().CPlusPlus && LHSTy->isRecordType());
6818 else
6819 copyInit = (getLangOptions().CPlusPlus && isa<ObjCPropertyRefExpr>(LHS) &&
6820 LHSTy->isRecordType());
6821 if (copyInit) {
6822 InitializedEntity Entity =
6823 InitializedEntity::InitializeParameter(Context, LHSTy);
6824 Expr *Arg = RHS;
6825 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
6826 Owned(Arg));
6827 if (!ArgE.isInvalid())
6828 RHS = ArgE.takeAs<Expr>();
6833 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6834 /// This routine allows us to typecheck complex/recursive expressions
6835 /// where the declaration is needed for type checking. We only need to
6836 /// handle cases when the expression references a function designator
6837 /// or is an lvalue. Here are some examples:
6838 /// - &(x) => x
6839 /// - &*****f => f for f a function designator.
6840 /// - &s.xx => s
6841 /// - &s.zz[1].yy -> s, if zz is an array
6842 /// - *(x + 1) -> x, if x is an array
6843 /// - &"123"[2] -> 0
6844 /// - & __real__ x -> x
6845 static NamedDecl *getPrimaryDecl(Expr *E) {
6846 switch (E->getStmtClass()) {
6847 case Stmt::DeclRefExprClass:
6848 return cast<DeclRefExpr>(E)->getDecl();
6849 case Stmt::MemberExprClass:
6850 // If this is an arrow operator, the address is an offset from
6851 // the base's value, so the object the base refers to is
6852 // irrelevant.
6853 if (cast<MemberExpr>(E)->isArrow())
6854 return 0;
6855 // Otherwise, the expression refers to a part of the base
6856 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6857 case Stmt::ArraySubscriptExprClass: {
6858 // FIXME: This code shouldn't be necessary! We should catch the implicit
6859 // promotion of register arrays earlier.
6860 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6861 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6862 if (ICE->getSubExpr()->getType()->isArrayType())
6863 return getPrimaryDecl(ICE->getSubExpr());
6865 return 0;
6867 case Stmt::UnaryOperatorClass: {
6868 UnaryOperator *UO = cast<UnaryOperator>(E);
6870 switch(UO->getOpcode()) {
6871 case UO_Real:
6872 case UO_Imag:
6873 case UO_Extension:
6874 return getPrimaryDecl(UO->getSubExpr());
6875 default:
6876 return 0;
6879 case Stmt::ParenExprClass:
6880 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6881 case Stmt::ImplicitCastExprClass:
6882 // If the result of an implicit cast is an l-value, we care about
6883 // the sub-expression; otherwise, the result here doesn't matter.
6884 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6885 default:
6886 return 0;
6890 /// CheckAddressOfOperand - The operand of & must be either a function
6891 /// designator or an lvalue designating an object. If it is an lvalue, the
6892 /// object cannot be declared with storage class register or be a bit field.
6893 /// Note: The usual conversions are *not* applied to the operand of the &
6894 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6895 /// In C++, the operand might be an overloaded function name, in which case
6896 /// we allow the '&' but retain the overloaded-function type.
6897 QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
6898 if (OrigOp->isTypeDependent())
6899 return Context.DependentTy;
6900 if (OrigOp->getType() == Context.OverloadTy)
6901 return Context.OverloadTy;
6903 ExprResult PR = CheckPlaceholderExpr(OrigOp, OpLoc);
6904 if (PR.isInvalid()) return QualType();
6905 OrigOp = PR.take();
6907 // Make sure to ignore parentheses in subsequent checks
6908 Expr *op = OrigOp->IgnoreParens();
6910 if (getLangOptions().C99) {
6911 // Implement C99-only parts of addressof rules.
6912 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6913 if (uOp->getOpcode() == UO_Deref)
6914 // Per C99 6.5.3.2, the address of a deref always returns a valid result
6915 // (assuming the deref expression is valid).
6916 return uOp->getSubExpr()->getType();
6918 // Technically, there should be a check for array subscript
6919 // expressions here, but the result of one is always an lvalue anyway.
6921 NamedDecl *dcl = getPrimaryDecl(op);
6922 Expr::isLvalueResult lval = op->isLvalue(Context);
6924 if (lval == Expr::LV_ClassTemporary) {
6925 Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6926 : diag::ext_typecheck_addrof_class_temporary)
6927 << op->getType() << op->getSourceRange();
6928 if (isSFINAEContext())
6929 return QualType();
6930 } else if (isa<ObjCSelectorExpr>(op)) {
6931 return Context.getPointerType(op->getType());
6932 } else if (lval == Expr::LV_MemberFunction) {
6933 // If it's an instance method, make a member pointer.
6934 // The expression must have exactly the form &A::foo.
6936 // If the underlying expression isn't a decl ref, give up.
6937 if (!isa<DeclRefExpr>(op)) {
6938 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
6939 << OrigOp->getSourceRange();
6940 return QualType();
6942 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
6943 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
6945 // The id-expression was parenthesized.
6946 if (OrigOp != DRE) {
6947 Diag(OpLoc, diag::err_parens_pointer_member_function)
6948 << OrigOp->getSourceRange();
6950 // The method was named without a qualifier.
6951 } else if (!DRE->getQualifier()) {
6952 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6953 << op->getSourceRange();
6956 return Context.getMemberPointerType(op->getType(),
6957 Context.getTypeDeclType(MD->getParent()).getTypePtr());
6958 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6959 // C99 6.5.3.2p1
6960 // The operand must be either an l-value or a function designator
6961 if (!op->getType()->isFunctionType()) {
6962 // FIXME: emit more specific diag...
6963 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6964 << op->getSourceRange();
6965 return QualType();
6967 } else if (op->getBitField()) { // C99 6.5.3.2p1
6968 // The operand cannot be a bit-field
6969 Diag(OpLoc, diag::err_typecheck_address_of)
6970 << "bit-field" << op->getSourceRange();
6971 return QualType();
6972 } else if (op->refersToVectorElement()) {
6973 // The operand cannot be an element of a vector
6974 Diag(OpLoc, diag::err_typecheck_address_of)
6975 << "vector element" << op->getSourceRange();
6976 return QualType();
6977 } else if (isa<ObjCPropertyRefExpr>(op)) {
6978 // cannot take address of a property expression.
6979 Diag(OpLoc, diag::err_typecheck_address_of)
6980 << "property expression" << op->getSourceRange();
6981 return QualType();
6982 } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6983 // FIXME: Can LHS ever be null here?
6984 if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6985 return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6986 } else if (dcl) { // C99 6.5.3.2p1
6987 // We have an lvalue with a decl. Make sure the decl is not declared
6988 // with the register storage-class specifier.
6989 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6990 // in C++ it is not error to take address of a register
6991 // variable (c++03 7.1.1P3)
6992 if (vd->getStorageClass() == SC_Register &&
6993 !getLangOptions().CPlusPlus) {
6994 Diag(OpLoc, diag::err_typecheck_address_of)
6995 << "register variable" << op->getSourceRange();
6996 return QualType();
6998 } else if (isa<FunctionTemplateDecl>(dcl)) {
6999 return Context.OverloadTy;
7000 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
7001 // Okay: we can take the address of a field.
7002 // Could be a pointer to member, though, if there is an explicit
7003 // scope qualifier for the class.
7004 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7005 DeclContext *Ctx = dcl->getDeclContext();
7006 if (Ctx && Ctx->isRecord()) {
7007 if (FD->getType()->isReferenceType()) {
7008 Diag(OpLoc,
7009 diag::err_cannot_form_pointer_to_member_of_reference_type)
7010 << FD->getDeclName() << FD->getType();
7011 return QualType();
7014 return Context.getMemberPointerType(op->getType(),
7015 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7018 } else if (!isa<FunctionDecl>(dcl))
7019 assert(0 && "Unknown/unexpected decl type");
7022 if (lval == Expr::LV_IncompleteVoidType) {
7023 // Taking the address of a void variable is technically illegal, but we
7024 // allow it in cases which are otherwise valid.
7025 // Example: "extern void x; void* y = &x;".
7026 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7029 // If the operand has type "type", the result has type "pointer to type".
7030 if (op->getType()->isObjCObjectType())
7031 return Context.getObjCObjectPointerType(op->getType());
7032 return Context.getPointerType(op->getType());
7035 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7036 QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
7037 if (Op->isTypeDependent())
7038 return Context.DependentTy;
7040 UsualUnaryConversions(Op);
7041 QualType OpTy = Op->getType();
7042 QualType Result;
7044 // Note that per both C89 and C99, indirection is always legal, even if OpTy
7045 // is an incomplete type or void. It would be possible to warn about
7046 // dereferencing a void pointer, but it's completely well-defined, and such a
7047 // warning is unlikely to catch any mistakes.
7048 if (const PointerType *PT = OpTy->getAs<PointerType>())
7049 Result = PT->getPointeeType();
7050 else if (const ObjCObjectPointerType *OPT =
7051 OpTy->getAs<ObjCObjectPointerType>())
7052 Result = OPT->getPointeeType();
7053 else {
7054 ExprResult PR = CheckPlaceholderExpr(Op, OpLoc);
7055 if (PR.isInvalid()) return QualType();
7056 if (PR.take() != Op) return CheckIndirectionOperand(PR.take(), OpLoc);
7059 if (Result.isNull()) {
7060 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7061 << OpTy << Op->getSourceRange();
7062 return QualType();
7065 return Result;
7068 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7069 tok::TokenKind Kind) {
7070 BinaryOperatorKind Opc;
7071 switch (Kind) {
7072 default: assert(0 && "Unknown binop!");
7073 case tok::periodstar: Opc = BO_PtrMemD; break;
7074 case tok::arrowstar: Opc = BO_PtrMemI; break;
7075 case tok::star: Opc = BO_Mul; break;
7076 case tok::slash: Opc = BO_Div; break;
7077 case tok::percent: Opc = BO_Rem; break;
7078 case tok::plus: Opc = BO_Add; break;
7079 case tok::minus: Opc = BO_Sub; break;
7080 case tok::lessless: Opc = BO_Shl; break;
7081 case tok::greatergreater: Opc = BO_Shr; break;
7082 case tok::lessequal: Opc = BO_LE; break;
7083 case tok::less: Opc = BO_LT; break;
7084 case tok::greaterequal: Opc = BO_GE; break;
7085 case tok::greater: Opc = BO_GT; break;
7086 case tok::exclaimequal: Opc = BO_NE; break;
7087 case tok::equalequal: Opc = BO_EQ; break;
7088 case tok::amp: Opc = BO_And; break;
7089 case tok::caret: Opc = BO_Xor; break;
7090 case tok::pipe: Opc = BO_Or; break;
7091 case tok::ampamp: Opc = BO_LAnd; break;
7092 case tok::pipepipe: Opc = BO_LOr; break;
7093 case tok::equal: Opc = BO_Assign; break;
7094 case tok::starequal: Opc = BO_MulAssign; break;
7095 case tok::slashequal: Opc = BO_DivAssign; break;
7096 case tok::percentequal: Opc = BO_RemAssign; break;
7097 case tok::plusequal: Opc = BO_AddAssign; break;
7098 case tok::minusequal: Opc = BO_SubAssign; break;
7099 case tok::lesslessequal: Opc = BO_ShlAssign; break;
7100 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
7101 case tok::ampequal: Opc = BO_AndAssign; break;
7102 case tok::caretequal: Opc = BO_XorAssign; break;
7103 case tok::pipeequal: Opc = BO_OrAssign; break;
7104 case tok::comma: Opc = BO_Comma; break;
7106 return Opc;
7109 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7110 tok::TokenKind Kind) {
7111 UnaryOperatorKind Opc;
7112 switch (Kind) {
7113 default: assert(0 && "Unknown unary op!");
7114 case tok::plusplus: Opc = UO_PreInc; break;
7115 case tok::minusminus: Opc = UO_PreDec; break;
7116 case tok::amp: Opc = UO_AddrOf; break;
7117 case tok::star: Opc = UO_Deref; break;
7118 case tok::plus: Opc = UO_Plus; break;
7119 case tok::minus: Opc = UO_Minus; break;
7120 case tok::tilde: Opc = UO_Not; break;
7121 case tok::exclaim: Opc = UO_LNot; break;
7122 case tok::kw___real: Opc = UO_Real; break;
7123 case tok::kw___imag: Opc = UO_Imag; break;
7124 case tok::kw___extension__: Opc = UO_Extension; break;
7126 return Opc;
7129 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
7130 /// operator @p Opc at location @c TokLoc. This routine only supports
7131 /// built-in operations; ActOnBinOp handles overloaded operators.
7132 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7133 unsigned Op,
7134 Expr *lhs, Expr *rhs) {
7135 QualType ResultTy; // Result type of the binary operator.
7136 BinaryOperatorKind Opc = (BinaryOperatorKind) Op;
7137 // The following two variables are used for compound assignment operators
7138 QualType CompLHSTy; // Type of LHS after promotions for computation
7139 QualType CompResultTy; // Type of computation result
7141 switch (Opc) {
7142 case BO_Assign:
7143 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
7144 break;
7145 case BO_PtrMemD:
7146 case BO_PtrMemI:
7147 ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
7148 Opc == BO_PtrMemI);
7149 break;
7150 case BO_Mul:
7151 case BO_Div:
7152 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
7153 Opc == BO_Div);
7154 break;
7155 case BO_Rem:
7156 ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
7157 break;
7158 case BO_Add:
7159 ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
7160 break;
7161 case BO_Sub:
7162 ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
7163 break;
7164 case BO_Shl:
7165 case BO_Shr:
7166 ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
7167 break;
7168 case BO_LE:
7169 case BO_LT:
7170 case BO_GE:
7171 case BO_GT:
7172 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
7173 break;
7174 case BO_EQ:
7175 case BO_NE:
7176 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
7177 break;
7178 case BO_And:
7179 case BO_Xor:
7180 case BO_Or:
7181 ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
7182 break;
7183 case BO_LAnd:
7184 case BO_LOr:
7185 ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
7186 break;
7187 case BO_MulAssign:
7188 case BO_DivAssign:
7189 CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
7190 Opc == BO_DivAssign);
7191 CompLHSTy = CompResultTy;
7192 if (!CompResultTy.isNull())
7193 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7194 break;
7195 case BO_RemAssign:
7196 CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
7197 CompLHSTy = CompResultTy;
7198 if (!CompResultTy.isNull())
7199 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7200 break;
7201 case BO_AddAssign:
7202 CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7203 if (!CompResultTy.isNull())
7204 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7205 break;
7206 case BO_SubAssign:
7207 CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7208 if (!CompResultTy.isNull())
7209 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7210 break;
7211 case BO_ShlAssign:
7212 case BO_ShrAssign:
7213 CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
7214 CompLHSTy = CompResultTy;
7215 if (!CompResultTy.isNull())
7216 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7217 break;
7218 case BO_AndAssign:
7219 case BO_XorAssign:
7220 case BO_OrAssign:
7221 CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
7222 CompLHSTy = CompResultTy;
7223 if (!CompResultTy.isNull())
7224 ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7225 break;
7226 case BO_Comma:
7227 ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
7228 break;
7230 if (ResultTy.isNull())
7231 return ExprError();
7232 if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
7233 if (Opc >= BO_Assign && Opc <= BO_OrAssign)
7234 Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
7235 << ResultTy;
7237 if (CompResultTy.isNull())
7238 return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
7239 else
7240 return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
7241 CompLHSTy, CompResultTy,
7242 OpLoc));
7245 /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
7246 /// ParenRange in parentheses.
7247 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
7248 const PartialDiagnostic &PD,
7249 const PartialDiagnostic &FirstNote,
7250 SourceRange FirstParenRange,
7251 const PartialDiagnostic &SecondNote,
7252 SourceRange SecondParenRange) {
7253 Self.Diag(Loc, PD);
7255 if (!FirstNote.getDiagID())
7256 return;
7258 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
7259 if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
7260 // We can't display the parentheses, so just return.
7261 return;
7264 Self.Diag(Loc, FirstNote)
7265 << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
7266 << FixItHint::CreateInsertion(EndLoc, ")");
7268 if (!SecondNote.getDiagID())
7269 return;
7271 EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
7272 if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
7273 // We can't display the parentheses, so just dig the
7274 // warning/error and return.
7275 Self.Diag(Loc, SecondNote);
7276 return;
7279 Self.Diag(Loc, SecondNote)
7280 << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
7281 << FixItHint::CreateInsertion(EndLoc, ")");
7284 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7285 /// operators are mixed in a way that suggests that the programmer forgot that
7286 /// comparison operators have higher precedence. The most typical example of
7287 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
7288 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
7289 SourceLocation OpLoc,Expr *lhs,Expr *rhs){
7290 typedef BinaryOperator BinOp;
7291 BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
7292 rhsopc = static_cast<BinOp::Opcode>(-1);
7293 if (BinOp *BO = dyn_cast<BinOp>(lhs))
7294 lhsopc = BO->getOpcode();
7295 if (BinOp *BO = dyn_cast<BinOp>(rhs))
7296 rhsopc = BO->getOpcode();
7298 // Subs are not binary operators.
7299 if (lhsopc == -1 && rhsopc == -1)
7300 return;
7302 // Bitwise operations are sometimes used as eager logical ops.
7303 // Don't diagnose this.
7304 if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
7305 (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
7306 return;
7308 if (BinOp::isComparisonOp(lhsopc))
7309 SuggestParentheses(Self, OpLoc,
7310 Self.PDiag(diag::warn_precedence_bitwise_rel)
7311 << SourceRange(lhs->getLocStart(), OpLoc)
7312 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
7313 Self.PDiag(diag::note_precedence_bitwise_first)
7314 << BinOp::getOpcodeStr(Opc),
7315 SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
7316 Self.PDiag(diag::note_precedence_bitwise_silence)
7317 << BinOp::getOpcodeStr(lhsopc),
7318 lhs->getSourceRange());
7319 else if (BinOp::isComparisonOp(rhsopc))
7320 SuggestParentheses(Self, OpLoc,
7321 Self.PDiag(diag::warn_precedence_bitwise_rel)
7322 << SourceRange(OpLoc, rhs->getLocEnd())
7323 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
7324 Self.PDiag(diag::note_precedence_bitwise_first)
7325 << BinOp::getOpcodeStr(Opc),
7326 SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
7327 Self.PDiag(diag::note_precedence_bitwise_silence)
7328 << BinOp::getOpcodeStr(rhsopc),
7329 rhs->getSourceRange());
7332 /// \brief It accepts a '&&' expr that is inside a '||' one.
7333 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7334 /// in parentheses.
7335 static void
7336 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
7337 Expr *E) {
7338 assert(isa<BinaryOperator>(E) &&
7339 cast<BinaryOperator>(E)->getOpcode() == BO_LAnd);
7340 SuggestParentheses(Self, OpLoc,
7341 Self.PDiag(diag::warn_logical_and_in_logical_or)
7342 << E->getSourceRange(),
7343 Self.PDiag(diag::note_logical_and_in_logical_or_silence),
7344 E->getSourceRange(),
7345 Self.PDiag(0), SourceRange());
7348 /// \brief Returns true if the given expression can be evaluated as a constant
7349 /// 'true'.
7350 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
7351 bool Res;
7352 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
7355 /// \brief Look for '&&' in the left hand of a '||' expr.
7356 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
7357 Expr *E) {
7358 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
7359 if (Bop->getOpcode() == BO_LAnd) {
7360 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
7361 if (!EvaluatesAsTrue(S, Bop->getLHS()))
7362 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7363 } else if (Bop->getOpcode() == BO_LOr) {
7364 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
7365 // If it's "a || b && 1 || c" we didn't warn earlier for
7366 // "a || b && 1", but warn now.
7367 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
7368 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
7374 /// \brief Look for '&&' in the right hand of a '||' expr.
7375 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
7376 Expr *E) {
7377 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
7378 if (Bop->getOpcode() == BO_LAnd) {
7379 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
7380 if (!EvaluatesAsTrue(S, Bop->getRHS()))
7381 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7386 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
7387 /// precedence.
7388 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
7389 SourceLocation OpLoc, Expr *lhs, Expr *rhs){
7390 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
7391 if (BinaryOperator::isBitwiseOp(Opc))
7392 return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
7394 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
7395 // We don't warn for 'assert(a || b && "bad")' since this is safe.
7396 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7397 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs);
7398 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, rhs);
7402 // Binary Operators. 'Tok' is the token for the operator.
7403 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
7404 tok::TokenKind Kind,
7405 Expr *lhs, Expr *rhs) {
7406 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
7407 assert((lhs != 0) && "ActOnBinOp(): missing left expression");
7408 assert((rhs != 0) && "ActOnBinOp(): missing right expression");
7410 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
7411 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
7413 return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
7416 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
7417 BinaryOperatorKind Opc,
7418 Expr *lhs, Expr *rhs) {
7419 if (getLangOptions().CPlusPlus &&
7420 ((!isa<ObjCImplicitSetterGetterRefExpr>(lhs) &&
7421 !isa<ObjCPropertyRefExpr>(lhs))
7422 || rhs->isTypeDependent() || Opc != BO_Assign) &&
7423 (lhs->getType()->isOverloadableType() ||
7424 rhs->getType()->isOverloadableType())) {
7425 // Find all of the overloaded operators visible from this
7426 // point. We perform both an operator-name lookup from the local
7427 // scope and an argument-dependent lookup based on the types of
7428 // the arguments.
7429 UnresolvedSet<16> Functions;
7430 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
7431 if (S && OverOp != OO_None)
7432 LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
7433 Functions);
7435 // Build the (potentially-overloaded, potentially-dependent)
7436 // binary operation.
7437 return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
7440 // Build a built-in binary operation.
7441 return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
7444 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
7445 unsigned OpcIn,
7446 Expr *Input) {
7447 UnaryOperatorKind Opc = static_cast<UnaryOperatorKind>(OpcIn);
7449 QualType resultType;
7450 switch (Opc) {
7451 case UO_PreInc:
7452 case UO_PreDec:
7453 case UO_PostInc:
7454 case UO_PostDec:
7455 resultType = CheckIncrementDecrementOperand(Input, OpLoc,
7456 Opc == UO_PreInc ||
7457 Opc == UO_PostInc,
7458 Opc == UO_PreInc ||
7459 Opc == UO_PreDec);
7460 break;
7461 case UO_AddrOf:
7462 resultType = CheckAddressOfOperand(Input, OpLoc);
7463 break;
7464 case UO_Deref:
7465 DefaultFunctionArrayLvalueConversion(Input);
7466 resultType = CheckIndirectionOperand(Input, OpLoc);
7467 break;
7468 case UO_Plus:
7469 case UO_Minus:
7470 UsualUnaryConversions(Input);
7471 resultType = Input->getType();
7472 if (resultType->isDependentType())
7473 break;
7474 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
7475 resultType->isVectorType())
7476 break;
7477 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
7478 resultType->isEnumeralType())
7479 break;
7480 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
7481 Opc == UO_Plus &&
7482 resultType->isPointerType())
7483 break;
7484 else if (resultType->isPlaceholderType()) {
7485 ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7486 if (PR.isInvalid()) return ExprError();
7487 return CreateBuiltinUnaryOp(OpLoc, OpcIn, PR.take());
7490 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7491 << resultType << Input->getSourceRange());
7492 case UO_Not: // bitwise complement
7493 UsualUnaryConversions(Input);
7494 resultType = Input->getType();
7495 if (resultType->isDependentType())
7496 break;
7497 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
7498 if (resultType->isComplexType() || resultType->isComplexIntegerType())
7499 // C99 does not support '~' for complex conjugation.
7500 Diag(OpLoc, diag::ext_integer_complement_complex)
7501 << resultType << Input->getSourceRange();
7502 else if (resultType->hasIntegerRepresentation())
7503 break;
7504 else if (resultType->isPlaceholderType()) {
7505 ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7506 if (PR.isInvalid()) return ExprError();
7507 return CreateBuiltinUnaryOp(OpLoc, OpcIn, PR.take());
7508 } else {
7509 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7510 << resultType << Input->getSourceRange());
7512 break;
7513 case UO_LNot: // logical negation
7514 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
7515 DefaultFunctionArrayLvalueConversion(Input);
7516 resultType = Input->getType();
7517 if (resultType->isDependentType())
7518 break;
7519 if (resultType->isScalarType()) { // C99 6.5.3.3p1
7520 // ok, fallthrough
7521 } else if (resultType->isPlaceholderType()) {
7522 ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7523 if (PR.isInvalid()) return ExprError();
7524 return CreateBuiltinUnaryOp(OpLoc, OpcIn, PR.take());
7525 } else {
7526 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7527 << resultType << Input->getSourceRange());
7530 // LNot always has type int. C99 6.5.3.3p5.
7531 // In C++, it's bool. C++ 5.3.1p8
7532 resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
7533 break;
7534 case UO_Real:
7535 case UO_Imag:
7536 resultType = CheckRealImagOperand(Input, OpLoc, Opc == UO_Real);
7537 break;
7538 case UO_Extension:
7539 resultType = Input->getType();
7540 break;
7542 if (resultType.isNull())
7543 return ExprError();
7545 return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
7548 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
7549 UnaryOperatorKind Opc,
7550 Expr *Input) {
7551 if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
7552 UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
7553 // Find all of the overloaded operators visible from this
7554 // point. We perform both an operator-name lookup from the local
7555 // scope and an argument-dependent lookup based on the types of
7556 // the arguments.
7557 UnresolvedSet<16> Functions;
7558 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
7559 if (S && OverOp != OO_None)
7560 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
7561 Functions);
7563 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
7566 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7569 // Unary Operators. 'Tok' is the token for the operator.
7570 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
7571 tok::TokenKind Op, Expr *Input) {
7572 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
7575 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
7576 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
7577 SourceLocation LabLoc,
7578 IdentifierInfo *LabelII) {
7579 // Look up the record for this label identifier.
7580 LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
7582 // If we haven't seen this label yet, create a forward reference. It
7583 // will be validated and/or cleaned up in ActOnFinishFunctionBody.
7584 if (LabelDecl == 0)
7585 LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
7587 LabelDecl->setUsed();
7588 // Create the AST node. The address of a label always has type 'void*'.
7589 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
7590 Context.getPointerType(Context.VoidTy)));
7593 ExprResult
7594 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
7595 SourceLocation RPLoc) { // "({..})"
7596 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
7597 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
7599 bool isFileScope
7600 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
7601 if (isFileScope)
7602 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
7604 // FIXME: there are a variety of strange constraints to enforce here, for
7605 // example, it is not possible to goto into a stmt expression apparently.
7606 // More semantic analysis is needed.
7608 // If there are sub stmts in the compound stmt, take the type of the last one
7609 // as the type of the stmtexpr.
7610 QualType Ty = Context.VoidTy;
7611 bool StmtExprMayBindToTemp = false;
7612 if (!Compound->body_empty()) {
7613 Stmt *LastStmt = Compound->body_back();
7614 LabelStmt *LastLabelStmt = 0;
7615 // If LastStmt is a label, skip down through into the body.
7616 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
7617 LastLabelStmt = Label;
7618 LastStmt = Label->getSubStmt();
7620 if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) {
7621 DefaultFunctionArrayLvalueConversion(LastExpr);
7622 Ty = LastExpr->getType();
7623 if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) {
7624 ExprResult Res = PerformCopyInitialization(
7625 InitializedEntity::InitializeResult(LPLoc,
7627 false),
7628 SourceLocation(),
7629 Owned(LastExpr));
7630 if (Res.isInvalid())
7631 return ExprError();
7632 if ((LastExpr = Res.takeAs<Expr>())) {
7633 if (!LastLabelStmt)
7634 Compound->setLastStmt(LastExpr);
7635 else
7636 LastLabelStmt->setSubStmt(LastExpr);
7637 StmtExprMayBindToTemp = true;
7643 // FIXME: Check that expression type is complete/non-abstract; statement
7644 // expressions are not lvalues.
7645 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
7646 if (StmtExprMayBindToTemp)
7647 return MaybeBindToTemporary(ResStmtExpr);
7648 return Owned(ResStmtExpr);
7651 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
7652 TypeSourceInfo *TInfo,
7653 OffsetOfComponent *CompPtr,
7654 unsigned NumComponents,
7655 SourceLocation RParenLoc) {
7656 QualType ArgTy = TInfo->getType();
7657 bool Dependent = ArgTy->isDependentType();
7658 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
7660 // We must have at least one component that refers to the type, and the first
7661 // one is known to be a field designator. Verify that the ArgTy represents
7662 // a struct/union/class.
7663 if (!Dependent && !ArgTy->isRecordType())
7664 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
7665 << ArgTy << TypeRange);
7667 // Type must be complete per C99 7.17p3 because a declaring a variable
7668 // with an incomplete type would be ill-formed.
7669 if (!Dependent
7670 && RequireCompleteType(BuiltinLoc, ArgTy,
7671 PDiag(diag::err_offsetof_incomplete_type)
7672 << TypeRange))
7673 return ExprError();
7675 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
7676 // GCC extension, diagnose them.
7677 // FIXME: This diagnostic isn't actually visible because the location is in
7678 // a system header!
7679 if (NumComponents != 1)
7680 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
7681 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
7683 bool DidWarnAboutNonPOD = false;
7684 QualType CurrentType = ArgTy;
7685 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
7686 llvm::SmallVector<OffsetOfNode, 4> Comps;
7687 llvm::SmallVector<Expr*, 4> Exprs;
7688 for (unsigned i = 0; i != NumComponents; ++i) {
7689 const OffsetOfComponent &OC = CompPtr[i];
7690 if (OC.isBrackets) {
7691 // Offset of an array sub-field. TODO: Should we allow vector elements?
7692 if (!CurrentType->isDependentType()) {
7693 const ArrayType *AT = Context.getAsArrayType(CurrentType);
7694 if(!AT)
7695 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
7696 << CurrentType);
7697 CurrentType = AT->getElementType();
7698 } else
7699 CurrentType = Context.DependentTy;
7701 // The expression must be an integral expression.
7702 // FIXME: An integral constant expression?
7703 Expr *Idx = static_cast<Expr*>(OC.U.E);
7704 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
7705 !Idx->getType()->isIntegerType())
7706 return ExprError(Diag(Idx->getLocStart(),
7707 diag::err_typecheck_subscript_not_integer)
7708 << Idx->getSourceRange());
7710 // Record this array index.
7711 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
7712 Exprs.push_back(Idx);
7713 continue;
7716 // Offset of a field.
7717 if (CurrentType->isDependentType()) {
7718 // We have the offset of a field, but we can't look into the dependent
7719 // type. Just record the identifier of the field.
7720 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
7721 CurrentType = Context.DependentTy;
7722 continue;
7725 // We need to have a complete type to look into.
7726 if (RequireCompleteType(OC.LocStart, CurrentType,
7727 diag::err_offsetof_incomplete_type))
7728 return ExprError();
7730 // Look for the designated field.
7731 const RecordType *RC = CurrentType->getAs<RecordType>();
7732 if (!RC)
7733 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
7734 << CurrentType);
7735 RecordDecl *RD = RC->getDecl();
7737 // C++ [lib.support.types]p5:
7738 // The macro offsetof accepts a restricted set of type arguments in this
7739 // International Standard. type shall be a POD structure or a POD union
7740 // (clause 9).
7741 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7742 if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
7743 DiagRuntimeBehavior(BuiltinLoc,
7744 PDiag(diag::warn_offsetof_non_pod_type)
7745 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
7746 << CurrentType))
7747 DidWarnAboutNonPOD = true;
7750 // Look for the field.
7751 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
7752 LookupQualifiedName(R, RD);
7753 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
7754 if (!MemberDecl)
7755 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
7756 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
7757 OC.LocEnd));
7759 // C99 7.17p3:
7760 // (If the specified member is a bit-field, the behavior is undefined.)
7762 // We diagnose this as an error.
7763 if (MemberDecl->getBitWidth()) {
7764 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
7765 << MemberDecl->getDeclName()
7766 << SourceRange(BuiltinLoc, RParenLoc);
7767 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
7768 return ExprError();
7771 RecordDecl *Parent = MemberDecl->getParent();
7772 bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
7773 if (AnonStructUnion) {
7774 do {
7775 Parent = cast<RecordDecl>(Parent->getParent());
7776 } while (Parent->isAnonymousStructOrUnion());
7779 // If the member was found in a base class, introduce OffsetOfNodes for
7780 // the base class indirections.
7781 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
7782 /*DetectVirtual=*/false);
7783 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
7784 CXXBasePath &Path = Paths.front();
7785 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
7786 B != BEnd; ++B)
7787 Comps.push_back(OffsetOfNode(B->Base));
7790 if (AnonStructUnion) {
7791 llvm::SmallVector<FieldDecl*, 4> Path;
7792 BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
7793 unsigned n = Path.size();
7794 for (int j = n - 1; j > -1; --j)
7795 Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
7796 } else {
7797 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
7799 CurrentType = MemberDecl->getType().getNonReferenceType();
7802 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
7803 TInfo, Comps.data(), Comps.size(),
7804 Exprs.data(), Exprs.size(), RParenLoc));
7807 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
7808 SourceLocation BuiltinLoc,
7809 SourceLocation TypeLoc,
7810 ParsedType argty,
7811 OffsetOfComponent *CompPtr,
7812 unsigned NumComponents,
7813 SourceLocation RPLoc) {
7815 TypeSourceInfo *ArgTInfo;
7816 QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
7817 if (ArgTy.isNull())
7818 return ExprError();
7820 if (!ArgTInfo)
7821 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
7823 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
7824 RPLoc);
7828 ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7829 ParsedType arg1, ParsedType arg2,
7830 SourceLocation RPLoc) {
7831 TypeSourceInfo *argTInfo1;
7832 QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
7833 TypeSourceInfo *argTInfo2;
7834 QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
7836 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7838 return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
7841 ExprResult
7842 Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
7843 TypeSourceInfo *argTInfo1,
7844 TypeSourceInfo *argTInfo2,
7845 SourceLocation RPLoc) {
7846 if (getLangOptions().CPlusPlus) {
7847 Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7848 << SourceRange(BuiltinLoc, RPLoc);
7849 return ExprError();
7852 return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7853 argTInfo1, argTInfo2, RPLoc));
7857 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7858 Expr *CondExpr,
7859 Expr *LHSExpr, Expr *RHSExpr,
7860 SourceLocation RPLoc) {
7861 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7863 QualType resType;
7864 bool ValueDependent = false;
7865 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7866 resType = Context.DependentTy;
7867 ValueDependent = true;
7868 } else {
7869 // The conditional expression is required to be a constant expression.
7870 llvm::APSInt condEval(32);
7871 SourceLocation ExpLoc;
7872 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7873 return ExprError(Diag(ExpLoc,
7874 diag::err_typecheck_choose_expr_requires_constant)
7875 << CondExpr->getSourceRange());
7877 // If the condition is > zero, then the AST type is the same as the LSHExpr.
7878 resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7879 ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7880 : RHSExpr->isValueDependent();
7883 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7884 resType, RPLoc,
7885 resType->isDependentType(),
7886 ValueDependent));
7889 //===----------------------------------------------------------------------===//
7890 // Clang Extensions.
7891 //===----------------------------------------------------------------------===//
7893 /// ActOnBlockStart - This callback is invoked when a block literal is started.
7894 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7895 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7896 PushBlockScope(BlockScope, Block);
7897 CurContext->addDecl(Block);
7898 if (BlockScope)
7899 PushDeclContext(BlockScope, Block);
7900 else
7901 CurContext = Block;
7904 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7905 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7906 BlockScopeInfo *CurBlock = getCurBlock();
7908 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7909 CurBlock->TheDecl->setSignatureAsWritten(Sig);
7910 QualType T = Sig->getType();
7912 bool isVariadic;
7913 QualType RetTy;
7914 if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7915 CurBlock->FunctionType = T;
7916 RetTy = Fn->getResultType();
7917 isVariadic =
7918 !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7919 } else {
7920 RetTy = T;
7921 isVariadic = false;
7924 CurBlock->TheDecl->setIsVariadic(isVariadic);
7926 // Don't allow returning an array by value.
7927 if (RetTy->isArrayType()) {
7928 Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7929 return;
7932 // Don't allow returning a objc interface by value.
7933 if (RetTy->isObjCObjectType()) {
7934 Diag(ParamInfo.getSourceRange().getBegin(),
7935 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7936 return;
7939 // Context.DependentTy is used as a placeholder for a missing block
7940 // return type. TODO: what should we do with declarators like:
7941 // ^ * { ... }
7942 // If the answer is "apply template argument deduction"....
7943 if (RetTy != Context.DependentTy)
7944 CurBlock->ReturnType = RetTy;
7946 // Push block parameters from the declarator if we had them.
7947 llvm::SmallVector<ParmVarDecl*, 8> Params;
7948 if (isa<FunctionProtoType>(T)) {
7949 FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7950 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7951 ParmVarDecl *Param = TL.getArg(I);
7952 if (Param->getIdentifier() == 0 &&
7953 !Param->isImplicit() &&
7954 !Param->isInvalidDecl() &&
7955 !getLangOptions().CPlusPlus)
7956 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7957 Params.push_back(Param);
7960 // Fake up parameter variables if we have a typedef, like
7961 // ^ fntype { ... }
7962 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7963 for (FunctionProtoType::arg_type_iterator
7964 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7965 ParmVarDecl *Param =
7966 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7967 ParamInfo.getSourceRange().getBegin(),
7968 *I);
7969 Params.push_back(Param);
7973 // Set the parameters on the block decl.
7974 if (!Params.empty()) {
7975 CurBlock->TheDecl->setParams(Params.data(), Params.size());
7976 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
7977 CurBlock->TheDecl->param_end(),
7978 /*CheckParameterNames=*/false);
7981 // Finally we can process decl attributes.
7982 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7984 if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7985 Diag(ParamInfo.getAttributes()->getLoc(),
7986 diag::warn_attribute_sentinel_not_variadic) << 1;
7987 // FIXME: remove the attribute.
7990 // Put the parameter variables in scope. We can bail out immediately
7991 // if we don't have any.
7992 if (Params.empty())
7993 return;
7995 bool ShouldCheckShadow =
7996 Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7998 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7999 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8000 (*AI)->setOwningFunction(CurBlock->TheDecl);
8002 // If this has an identifier, add it to the scope stack.
8003 if ((*AI)->getIdentifier()) {
8004 if (ShouldCheckShadow)
8005 CheckShadow(CurBlock->TheScope, *AI);
8007 PushOnScopeChains(*AI, CurBlock->TheScope);
8012 /// ActOnBlockError - If there is an error parsing a block, this callback
8013 /// is invoked to pop the information about the block from the action impl.
8014 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
8015 // Pop off CurBlock, handle nested blocks.
8016 PopDeclContext();
8017 PopFunctionOrBlockScope();
8020 /// ActOnBlockStmtExpr - This is called when the body of a block statement
8021 /// literal was successfully completed. ^(int x){...}
8022 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
8023 Stmt *Body, Scope *CurScope) {
8024 // If blocks are disabled, emit an error.
8025 if (!LangOpts.Blocks)
8026 Diag(CaretLoc, diag::err_blocks_disable);
8028 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
8030 PopDeclContext();
8032 QualType RetTy = Context.VoidTy;
8033 if (!BSI->ReturnType.isNull())
8034 RetTy = BSI->ReturnType;
8036 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
8037 QualType BlockTy;
8039 // If the user wrote a function type in some form, try to use that.
8040 if (!BSI->FunctionType.isNull()) {
8041 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
8043 FunctionType::ExtInfo Ext = FTy->getExtInfo();
8044 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
8046 // Turn protoless block types into nullary block types.
8047 if (isa<FunctionNoProtoType>(FTy)) {
8048 BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
8049 false, false, 0, 0, Ext);
8051 // Otherwise, if we don't need to change anything about the function type,
8052 // preserve its sugar structure.
8053 } else if (FTy->getResultType() == RetTy &&
8054 (!NoReturn || FTy->getNoReturnAttr())) {
8055 BlockTy = BSI->FunctionType;
8057 // Otherwise, make the minimal modifications to the function type.
8058 } else {
8059 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
8060 BlockTy = Context.getFunctionType(RetTy,
8061 FPT->arg_type_begin(),
8062 FPT->getNumArgs(),
8063 FPT->isVariadic(),
8064 /*quals*/ 0,
8065 FPT->hasExceptionSpec(),
8066 FPT->hasAnyExceptionSpec(),
8067 FPT->getNumExceptions(),
8068 FPT->exception_begin(),
8069 Ext);
8072 // If we don't have a function type, just build one from nothing.
8073 } else {
8074 BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
8075 false, false, 0, 0,
8076 FunctionType::ExtInfo(NoReturn, 0, CC_Default));
8079 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
8080 BSI->TheDecl->param_end());
8081 BlockTy = Context.getBlockPointerType(BlockTy);
8083 // If needed, diagnose invalid gotos and switches in the block.
8084 if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
8085 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
8087 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
8089 bool Good = true;
8090 // Check goto/label use.
8091 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
8092 I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
8093 LabelStmt *L = I->second;
8095 // Verify that we have no forward references left. If so, there was a goto
8096 // or address of a label taken, but no definition of it.
8097 if (L->getSubStmt() != 0) {
8098 if (!L->isUsed())
8099 Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
8100 continue;
8103 // Emit error.
8104 Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
8105 Good = false;
8107 if (!Good) {
8108 PopFunctionOrBlockScope();
8109 return ExprError();
8112 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
8113 BSI->hasBlockDeclRefExprs);
8115 // Issue any analysis-based warnings.
8116 const sema::AnalysisBasedWarnings::Policy &WP =
8117 AnalysisWarnings.getDefaultPolicy();
8118 AnalysisWarnings.IssueWarnings(WP, Result);
8120 PopFunctionOrBlockScope();
8121 return Owned(Result);
8124 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
8125 Expr *expr, ParsedType type,
8126 SourceLocation RPLoc) {
8127 TypeSourceInfo *TInfo;
8128 QualType T = GetTypeFromParser(type, &TInfo);
8129 return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
8132 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
8133 Expr *E, TypeSourceInfo *TInfo,
8134 SourceLocation RPLoc) {
8135 Expr *OrigExpr = E;
8137 // Get the va_list type
8138 QualType VaListType = Context.getBuiltinVaListType();
8139 if (VaListType->isArrayType()) {
8140 // Deal with implicit array decay; for example, on x86-64,
8141 // va_list is an array, but it's supposed to decay to
8142 // a pointer for va_arg.
8143 VaListType = Context.getArrayDecayedType(VaListType);
8144 // Make sure the input expression also decays appropriately.
8145 UsualUnaryConversions(E);
8146 } else {
8147 // Otherwise, the va_list argument must be an l-value because
8148 // it is modified by va_arg.
8149 if (!E->isTypeDependent() &&
8150 CheckForModifiableLvalue(E, BuiltinLoc, *this))
8151 return ExprError();
8154 if (!E->isTypeDependent() &&
8155 !Context.hasSameType(VaListType, E->getType())) {
8156 return ExprError(Diag(E->getLocStart(),
8157 diag::err_first_argument_to_va_arg_not_of_type_va_list)
8158 << OrigExpr->getType() << E->getSourceRange());
8161 // FIXME: Check that type is complete/non-abstract
8162 // FIXME: Warn if a non-POD type is passed in.
8164 QualType T = TInfo->getType().getNonLValueExprType(Context);
8165 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
8168 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
8169 // The type of __null will be int or long, depending on the size of
8170 // pointers on the target.
8171 QualType Ty;
8172 if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
8173 Ty = Context.IntTy;
8174 else
8175 Ty = Context.LongTy;
8177 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
8180 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
8181 Expr *SrcExpr, FixItHint &Hint) {
8182 if (!SemaRef.getLangOptions().ObjC1)
8183 return;
8185 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
8186 if (!PT)
8187 return;
8189 // Check if the destination is of type 'id'.
8190 if (!PT->isObjCIdType()) {
8191 // Check if the destination is the 'NSString' interface.
8192 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
8193 if (!ID || !ID->getIdentifier()->isStr("NSString"))
8194 return;
8197 // Strip off any parens and casts.
8198 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
8199 if (!SL || SL->isWide())
8200 return;
8202 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
8205 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
8206 SourceLocation Loc,
8207 QualType DstType, QualType SrcType,
8208 Expr *SrcExpr, AssignmentAction Action,
8209 bool *Complained) {
8210 if (Complained)
8211 *Complained = false;
8213 // Decode the result (notice that AST's are still created for extensions).
8214 bool isInvalid = false;
8215 unsigned DiagKind;
8216 FixItHint Hint;
8218 switch (ConvTy) {
8219 default: assert(0 && "Unknown conversion type");
8220 case Compatible: return false;
8221 case PointerToInt:
8222 DiagKind = diag::ext_typecheck_convert_pointer_int;
8223 break;
8224 case IntToPointer:
8225 DiagKind = diag::ext_typecheck_convert_int_pointer;
8226 break;
8227 case IncompatiblePointer:
8228 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
8229 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
8230 break;
8231 case IncompatiblePointerSign:
8232 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
8233 break;
8234 case FunctionVoidPointer:
8235 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
8236 break;
8237 case CompatiblePointerDiscardsQualifiers:
8238 // If the qualifiers lost were because we were applying the
8239 // (deprecated) C++ conversion from a string literal to a char*
8240 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
8241 // Ideally, this check would be performed in
8242 // CheckPointerTypesForAssignment. However, that would require a
8243 // bit of refactoring (so that the second argument is an
8244 // expression, rather than a type), which should be done as part
8245 // of a larger effort to fix CheckPointerTypesForAssignment for
8246 // C++ semantics.
8247 if (getLangOptions().CPlusPlus &&
8248 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
8249 return false;
8250 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
8251 break;
8252 case IncompatibleNestedPointerQualifiers:
8253 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
8254 break;
8255 case IntToBlockPointer:
8256 DiagKind = diag::err_int_to_block_pointer;
8257 break;
8258 case IncompatibleBlockPointer:
8259 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
8260 break;
8261 case IncompatibleObjCQualifiedId:
8262 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
8263 // it can give a more specific diagnostic.
8264 DiagKind = diag::warn_incompatible_qualified_id;
8265 break;
8266 case IncompatibleVectors:
8267 DiagKind = diag::warn_incompatible_vectors;
8268 break;
8269 case Incompatible:
8270 DiagKind = diag::err_typecheck_convert_incompatible;
8271 isInvalid = true;
8272 break;
8275 QualType FirstType, SecondType;
8276 switch (Action) {
8277 case AA_Assigning:
8278 case AA_Initializing:
8279 // The destination type comes first.
8280 FirstType = DstType;
8281 SecondType = SrcType;
8282 break;
8284 case AA_Returning:
8285 case AA_Passing:
8286 case AA_Converting:
8287 case AA_Sending:
8288 case AA_Casting:
8289 // The source type comes first.
8290 FirstType = SrcType;
8291 SecondType = DstType;
8292 break;
8295 Diag(Loc, DiagKind) << FirstType << SecondType << Action
8296 << SrcExpr->getSourceRange() << Hint;
8297 if (Complained)
8298 *Complained = true;
8299 return isInvalid;
8302 bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
8303 llvm::APSInt ICEResult;
8304 if (E->isIntegerConstantExpr(ICEResult, Context)) {
8305 if (Result)
8306 *Result = ICEResult;
8307 return false;
8310 Expr::EvalResult EvalResult;
8312 if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
8313 EvalResult.HasSideEffects) {
8314 Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
8316 if (EvalResult.Diag) {
8317 // We only show the note if it's not the usual "invalid subexpression"
8318 // or if it's actually in a subexpression.
8319 if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
8320 E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
8321 Diag(EvalResult.DiagLoc, EvalResult.Diag);
8324 return true;
8327 Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
8328 E->getSourceRange();
8330 if (EvalResult.Diag &&
8331 Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
8332 Diag(EvalResult.DiagLoc, EvalResult.Diag);
8334 if (Result)
8335 *Result = EvalResult.Val.getInt();
8336 return false;
8339 void
8340 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
8341 ExprEvalContexts.push_back(
8342 ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
8345 void
8346 Sema::PopExpressionEvaluationContext() {
8347 // Pop the current expression evaluation context off the stack.
8348 ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
8349 ExprEvalContexts.pop_back();
8351 if (Rec.Context == PotentiallyPotentiallyEvaluated) {
8352 if (Rec.PotentiallyReferenced) {
8353 // Mark any remaining declarations in the current position of the stack
8354 // as "referenced". If they were not meant to be referenced, semantic
8355 // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
8356 for (PotentiallyReferencedDecls::iterator
8357 I = Rec.PotentiallyReferenced->begin(),
8358 IEnd = Rec.PotentiallyReferenced->end();
8359 I != IEnd; ++I)
8360 MarkDeclarationReferenced(I->first, I->second);
8363 if (Rec.PotentiallyDiagnosed) {
8364 // Emit any pending diagnostics.
8365 for (PotentiallyEmittedDiagnostics::iterator
8366 I = Rec.PotentiallyDiagnosed->begin(),
8367 IEnd = Rec.PotentiallyDiagnosed->end();
8368 I != IEnd; ++I)
8369 Diag(I->first, I->second);
8373 // When are coming out of an unevaluated context, clear out any
8374 // temporaries that we may have created as part of the evaluation of
8375 // the expression in that context: they aren't relevant because they
8376 // will never be constructed.
8377 if (Rec.Context == Unevaluated &&
8378 ExprTemporaries.size() > Rec.NumTemporaries)
8379 ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
8380 ExprTemporaries.end());
8382 // Destroy the popped expression evaluation record.
8383 Rec.Destroy();
8386 /// \brief Note that the given declaration was referenced in the source code.
8388 /// This routine should be invoke whenever a given declaration is referenced
8389 /// in the source code, and where that reference occurred. If this declaration
8390 /// reference means that the the declaration is used (C++ [basic.def.odr]p2,
8391 /// C99 6.9p3), then the declaration will be marked as used.
8393 /// \param Loc the location where the declaration was referenced.
8395 /// \param D the declaration that has been referenced by the source code.
8396 void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
8397 assert(D && "No declaration?");
8399 if (D->isUsed(false))
8400 return;
8402 // Mark a parameter or variable declaration "used", regardless of whether we're in a
8403 // template or not. The reason for this is that unevaluated expressions
8404 // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
8405 // -Wunused-parameters)
8406 if (isa<ParmVarDecl>(D) ||
8407 (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
8408 D->setUsed();
8409 return;
8412 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
8413 return;
8415 // Do not mark anything as "used" within a dependent context; wait for
8416 // an instantiation.
8417 if (CurContext->isDependentContext())
8418 return;
8420 switch (ExprEvalContexts.back().Context) {
8421 case Unevaluated:
8422 // We are in an expression that is not potentially evaluated; do nothing.
8423 return;
8425 case PotentiallyEvaluated:
8426 // We are in a potentially-evaluated expression, so this declaration is
8427 // "used"; handle this below.
8428 break;
8430 case PotentiallyPotentiallyEvaluated:
8431 // We are in an expression that may be potentially evaluated; queue this
8432 // declaration reference until we know whether the expression is
8433 // potentially evaluated.
8434 ExprEvalContexts.back().addReferencedDecl(Loc, D);
8435 return;
8437 case PotentiallyEvaluatedIfUsed:
8438 // Referenced declarations will only be used if the construct in the
8439 // containing expression is used.
8440 return;
8443 // Note that this declaration has been used.
8444 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
8445 unsigned TypeQuals;
8446 if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
8447 if (Constructor->getParent()->hasTrivialConstructor())
8448 return;
8449 if (!Constructor->isUsed(false))
8450 DefineImplicitDefaultConstructor(Loc, Constructor);
8451 } else if (Constructor->isImplicit() &&
8452 Constructor->isCopyConstructor(TypeQuals)) {
8453 if (!Constructor->isUsed(false))
8454 DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
8457 MarkVTableUsed(Loc, Constructor->getParent());
8458 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
8459 if (Destructor->isImplicit() && !Destructor->isUsed(false))
8460 DefineImplicitDestructor(Loc, Destructor);
8461 if (Destructor->isVirtual())
8462 MarkVTableUsed(Loc, Destructor->getParent());
8463 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
8464 if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
8465 MethodDecl->getOverloadedOperator() == OO_Equal) {
8466 if (!MethodDecl->isUsed(false))
8467 DefineImplicitCopyAssignment(Loc, MethodDecl);
8468 } else if (MethodDecl->isVirtual())
8469 MarkVTableUsed(Loc, MethodDecl->getParent());
8471 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
8472 // Implicit instantiation of function templates and member functions of
8473 // class templates.
8474 if (Function->isImplicitlyInstantiable()) {
8475 bool AlreadyInstantiated = false;
8476 if (FunctionTemplateSpecializationInfo *SpecInfo
8477 = Function->getTemplateSpecializationInfo()) {
8478 if (SpecInfo->getPointOfInstantiation().isInvalid())
8479 SpecInfo->setPointOfInstantiation(Loc);
8480 else if (SpecInfo->getTemplateSpecializationKind()
8481 == TSK_ImplicitInstantiation)
8482 AlreadyInstantiated = true;
8483 } else if (MemberSpecializationInfo *MSInfo
8484 = Function->getMemberSpecializationInfo()) {
8485 if (MSInfo->getPointOfInstantiation().isInvalid())
8486 MSInfo->setPointOfInstantiation(Loc);
8487 else if (MSInfo->getTemplateSpecializationKind()
8488 == TSK_ImplicitInstantiation)
8489 AlreadyInstantiated = true;
8492 if (!AlreadyInstantiated) {
8493 if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
8494 cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
8495 PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
8496 Loc));
8497 else
8498 PendingInstantiations.push_back(std::make_pair(Function, Loc));
8500 } else // Walk redefinitions, as some of them may be instantiable.
8501 for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
8502 e(Function->redecls_end()); i != e; ++i) {
8503 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
8504 MarkDeclarationReferenced(Loc, *i);
8507 // FIXME: keep track of references to static functions
8509 // Recursive functions should be marked when used from another function.
8510 if (CurContext != Function)
8511 Function->setUsed(true);
8513 return;
8516 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
8517 // Implicit instantiation of static data members of class templates.
8518 if (Var->isStaticDataMember() &&
8519 Var->getInstantiatedFromStaticDataMember()) {
8520 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
8521 assert(MSInfo && "Missing member specialization information?");
8522 if (MSInfo->getPointOfInstantiation().isInvalid() &&
8523 MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
8524 MSInfo->setPointOfInstantiation(Loc);
8525 PendingInstantiations.push_back(std::make_pair(Var, Loc));
8529 // FIXME: keep track of references to static data?
8531 D->setUsed(true);
8532 return;
8536 namespace {
8537 // Mark all of the declarations referenced
8538 // FIXME: Not fully implemented yet! We need to have a better understanding
8539 // of when we're entering
8540 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
8541 Sema &S;
8542 SourceLocation Loc;
8544 public:
8545 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
8547 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
8549 bool TraverseTemplateArgument(const TemplateArgument &Arg);
8550 bool TraverseRecordType(RecordType *T);
8554 bool MarkReferencedDecls::TraverseTemplateArgument(
8555 const TemplateArgument &Arg) {
8556 if (Arg.getKind() == TemplateArgument::Declaration) {
8557 S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
8560 return Inherited::TraverseTemplateArgument(Arg);
8563 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
8564 if (ClassTemplateSpecializationDecl *Spec
8565 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
8566 const TemplateArgumentList &Args = Spec->getTemplateArgs();
8567 return TraverseTemplateArguments(Args.data(), Args.size());
8570 return true;
8573 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
8574 MarkReferencedDecls Marker(*this, Loc);
8575 Marker.TraverseType(Context.getCanonicalType(T));
8578 namespace {
8579 /// \brief Helper class that marks all of the declarations referenced by
8580 /// potentially-evaluated subexpressions as "referenced".
8581 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
8582 Sema &S;
8584 public:
8585 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
8587 explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
8589 void VisitDeclRefExpr(DeclRefExpr *E) {
8590 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
8593 void VisitMemberExpr(MemberExpr *E) {
8594 S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
8595 Inherited::VisitMemberExpr(E);
8598 void VisitCXXNewExpr(CXXNewExpr *E) {
8599 if (E->getConstructor())
8600 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
8601 if (E->getOperatorNew())
8602 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
8603 if (E->getOperatorDelete())
8604 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
8605 Inherited::VisitCXXNewExpr(E);
8608 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
8609 if (E->getOperatorDelete())
8610 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
8611 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
8612 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
8613 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
8614 S.MarkDeclarationReferenced(E->getLocStart(),
8615 S.LookupDestructor(Record));
8618 Inherited::VisitCXXDeleteExpr(E);
8621 void VisitCXXConstructExpr(CXXConstructExpr *E) {
8622 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
8623 Inherited::VisitCXXConstructExpr(E);
8626 void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
8627 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
8630 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
8631 Visit(E->getExpr());
8636 /// \brief Mark any declarations that appear within this expression or any
8637 /// potentially-evaluated subexpressions as "referenced".
8638 void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
8639 EvaluatedExprMarker(*this).Visit(E);
8642 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
8643 /// of the program being compiled.
8645 /// This routine emits the given diagnostic when the code currently being
8646 /// type-checked is "potentially evaluated", meaning that there is a
8647 /// possibility that the code will actually be executable. Code in sizeof()
8648 /// expressions, code used only during overload resolution, etc., are not
8649 /// potentially evaluated. This routine will suppress such diagnostics or,
8650 /// in the absolutely nutty case of potentially potentially evaluated
8651 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
8652 /// later.
8654 /// This routine should be used for all diagnostics that describe the run-time
8655 /// behavior of a program, such as passing a non-POD value through an ellipsis.
8656 /// Failure to do so will likely result in spurious diagnostics or failures
8657 /// during overload resolution or within sizeof/alignof/typeof/typeid.
8658 bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
8659 const PartialDiagnostic &PD) {
8660 switch (ExprEvalContexts.back().Context ) {
8661 case Unevaluated:
8662 // The argument will never be evaluated, so don't complain.
8663 break;
8665 case PotentiallyEvaluated:
8666 case PotentiallyEvaluatedIfUsed:
8667 Diag(Loc, PD);
8668 return true;
8670 case PotentiallyPotentiallyEvaluated:
8671 ExprEvalContexts.back().addDiagnostic(Loc, PD);
8672 break;
8675 return false;
8678 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
8679 CallExpr *CE, FunctionDecl *FD) {
8680 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
8681 return false;
8683 PartialDiagnostic Note =
8684 FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
8685 << FD->getDeclName() : PDiag();
8686 SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
8688 if (RequireCompleteType(Loc, ReturnType,
8689 FD ?
8690 PDiag(diag::err_call_function_incomplete_return)
8691 << CE->getSourceRange() << FD->getDeclName() :
8692 PDiag(diag::err_call_incomplete_return)
8693 << CE->getSourceRange(),
8694 std::make_pair(NoteLoc, Note)))
8695 return true;
8697 return false;
8700 // Diagnose the common s/=/==/ typo. Note that adding parentheses
8701 // will prevent this condition from triggering, which is what we want.
8702 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
8703 SourceLocation Loc;
8705 unsigned diagnostic = diag::warn_condition_is_assignment;
8707 if (isa<BinaryOperator>(E)) {
8708 BinaryOperator *Op = cast<BinaryOperator>(E);
8709 if (Op->getOpcode() != BO_Assign)
8710 return;
8712 // Greylist some idioms by putting them into a warning subcategory.
8713 if (ObjCMessageExpr *ME
8714 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
8715 Selector Sel = ME->getSelector();
8717 // self = [<foo> init...]
8718 if (isSelfExpr(Op->getLHS())
8719 && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
8720 diagnostic = diag::warn_condition_is_idiomatic_assignment;
8722 // <foo> = [<bar> nextObject]
8723 else if (Sel.isUnarySelector() &&
8724 Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
8725 diagnostic = diag::warn_condition_is_idiomatic_assignment;
8728 Loc = Op->getOperatorLoc();
8729 } else if (isa<CXXOperatorCallExpr>(E)) {
8730 CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
8731 if (Op->getOperator() != OO_Equal)
8732 return;
8734 Loc = Op->getOperatorLoc();
8735 } else {
8736 // Not an assignment.
8737 return;
8740 SourceLocation Open = E->getSourceRange().getBegin();
8741 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
8743 Diag(Loc, diagnostic) << E->getSourceRange();
8744 Diag(Loc, diag::note_condition_assign_to_comparison)
8745 << FixItHint::CreateReplacement(Loc, "==");
8746 Diag(Loc, diag::note_condition_assign_silence)
8747 << FixItHint::CreateInsertion(Open, "(")
8748 << FixItHint::CreateInsertion(Close, ")");
8751 bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
8752 DiagnoseAssignmentAsCondition(E);
8754 if (!E->isTypeDependent()) {
8755 if (E->isBoundMemberFunction(Context))
8756 return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
8757 << E->getSourceRange();
8759 DefaultFunctionArrayLvalueConversion(E);
8761 QualType T = E->getType();
8763 if (getLangOptions().CPlusPlus) {
8764 if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
8765 return true;
8766 } else if (!T->isScalarType()) { // C99 6.8.4.1p1
8767 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
8768 << T << E->getSourceRange();
8769 return true;
8773 return false;
8776 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
8777 Expr *Sub) {
8778 if (!Sub)
8779 return ExprError();
8781 if (CheckBooleanCondition(Sub, Loc))
8782 return ExprError();
8784 return Owned(Sub);
8787 /// Check for operands with placeholder types and complain if found.
8788 /// Returns true if there was an error and no recovery was possible.
8789 ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
8790 const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
8791 if (!BT || !BT->isPlaceholderType()) return Owned(E);
8793 // If this is overload, check for a single overload.
8794 if (BT->getKind() == BuiltinType::Overload) {
8795 if (FunctionDecl *Specialization
8796 = ResolveSingleFunctionTemplateSpecialization(E)) {
8797 // The access doesn't really matter in this case.
8798 DeclAccessPair Found = DeclAccessPair::make(Specialization,
8799 Specialization->getAccess());
8800 E = FixOverloadedFunctionReference(E, Found, Specialization);
8801 if (!E) return ExprError();
8802 return Owned(E);
8805 Diag(Loc, diag::err_ovl_unresolvable) << E->getSourceRange();
8806 return ExprError();
8809 // Otherwise it's a use of undeduced auto.
8810 assert(BT->getKind() == BuiltinType::UndeducedAuto);
8812 DeclRefExpr *DRE = cast<DeclRefExpr>(E->IgnoreParens());
8813 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
8814 << DRE->getDecl() << E->getSourceRange();
8815 return ExprError();