1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang
;
25 using namespace CodeGen
;
27 //===----------------------------------------------------------------------===//
28 // Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
32 class AggExprEmitter
: public StmtVisitor
<AggExprEmitter
> {
38 ReturnValueSlot
getReturnValueSlot() const {
39 // If the destination slot requires garbage collection, we can't
40 // use the real return value slot, because we have to use the GC
42 if (Dest
.requiresGCollection()) return ReturnValueSlot();
44 return ReturnValueSlot(Dest
.getAddr(), Dest
.isVolatile());
47 AggValueSlot
EnsureSlot(QualType T
) {
48 if (!Dest
.isIgnored()) return Dest
;
49 return CGF
.CreateAggTemp(T
, "agg.tmp.ensured");
53 AggExprEmitter(CodeGenFunction
&cgf
, AggValueSlot Dest
,
55 : CGF(cgf
), Builder(CGF
.Builder
), Dest(Dest
),
56 IgnoreResult(ignore
) {
59 //===--------------------------------------------------------------------===//
61 //===--------------------------------------------------------------------===//
63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64 /// represents a value lvalue, this method emits the address of the lvalue,
65 /// then loads the result into DestPtr.
66 void EmitAggLoadOfLValue(const Expr
*E
);
68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69 void EmitFinalDestCopy(const Expr
*E
, LValue Src
, bool Ignore
= false);
70 void EmitFinalDestCopy(const Expr
*E
, RValue Src
, bool Ignore
= false);
72 void EmitGCMove(const Expr
*E
, RValue Src
);
74 bool TypeRequiresGCollection(QualType T
);
76 //===--------------------------------------------------------------------===//
78 //===--------------------------------------------------------------------===//
80 void VisitStmt(Stmt
*S
) {
81 CGF
.ErrorUnsupported(S
, "aggregate expression");
83 void VisitParenExpr(ParenExpr
*PE
) { Visit(PE
->getSubExpr()); }
84 void VisitUnaryExtension(UnaryOperator
*E
) { Visit(E
->getSubExpr()); }
87 void VisitDeclRefExpr(DeclRefExpr
*DRE
) { EmitAggLoadOfLValue(DRE
); }
88 void VisitMemberExpr(MemberExpr
*ME
) { EmitAggLoadOfLValue(ME
); }
89 void VisitUnaryDeref(UnaryOperator
*E
) { EmitAggLoadOfLValue(E
); }
90 void VisitStringLiteral(StringLiteral
*E
) { EmitAggLoadOfLValue(E
); }
91 void VisitCompoundLiteralExpr(CompoundLiteralExpr
*E
) {
92 EmitAggLoadOfLValue(E
);
94 void VisitArraySubscriptExpr(ArraySubscriptExpr
*E
) {
95 EmitAggLoadOfLValue(E
);
97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr
*E
) {
98 EmitAggLoadOfLValue(E
);
100 void VisitPredefinedExpr(const PredefinedExpr
*E
) {
101 EmitAggLoadOfLValue(E
);
105 void VisitCastExpr(CastExpr
*E
);
106 void VisitCallExpr(const CallExpr
*E
);
107 void VisitStmtExpr(const StmtExpr
*E
);
108 void VisitBinaryOperator(const BinaryOperator
*BO
);
109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator
*BO
);
110 void VisitBinAssign(const BinaryOperator
*E
);
111 void VisitBinComma(const BinaryOperator
*E
);
113 void VisitObjCMessageExpr(ObjCMessageExpr
*E
);
114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr
*E
) {
115 EmitAggLoadOfLValue(E
);
117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr
*E
);
119 void VisitAbstractConditionalOperator(const AbstractConditionalOperator
*CO
);
120 void VisitChooseExpr(const ChooseExpr
*CE
);
121 void VisitInitListExpr(InitListExpr
*E
);
122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr
*E
);
123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr
*DAE
) {
124 Visit(DAE
->getExpr());
126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
);
127 void VisitCXXConstructExpr(const CXXConstructExpr
*E
);
128 void VisitExprWithCleanups(ExprWithCleanups
*E
);
129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr
*E
);
130 void VisitCXXTypeidExpr(CXXTypeidExpr
*E
) { EmitAggLoadOfLValue(E
); }
132 void VisitOpaqueValueExpr(OpaqueValueExpr
*E
);
134 void VisitVAArgExpr(VAArgExpr
*E
);
136 void EmitInitializationToLValue(Expr
*E
, LValue Address
, QualType T
);
137 void EmitNullInitializationToLValue(LValue Address
, QualType T
);
138 // case Expr::ChooseExprClass:
139 void VisitCXXThrowExpr(const CXXThrowExpr
*E
) { CGF
.EmitCXXThrowExpr(E
); }
141 } // end anonymous namespace.
143 //===----------------------------------------------------------------------===//
145 //===----------------------------------------------------------------------===//
147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
148 /// represents a value lvalue, this method emits the address of the lvalue,
149 /// then loads the result into DestPtr.
150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr
*E
) {
151 LValue LV
= CGF
.EmitLValue(E
);
152 EmitFinalDestCopy(E
, LV
);
155 /// \brief True if the given aggregate type requires special GC API calls.
156 bool AggExprEmitter::TypeRequiresGCollection(QualType T
) {
157 // Only record types have members that might require garbage collection.
158 const RecordType
*RecordTy
= T
->getAs
<RecordType
>();
159 if (!RecordTy
) return false;
161 // Don't mess with non-trivial C++ types.
162 RecordDecl
*Record
= RecordTy
->getDecl();
163 if (isa
<CXXRecordDecl
>(Record
) &&
164 (!cast
<CXXRecordDecl
>(Record
)->hasTrivialCopyConstructor() ||
165 !cast
<CXXRecordDecl
>(Record
)->hasTrivialDestructor()))
168 // Check whether the type has an object member.
169 return Record
->hasObjectMember();
172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
174 /// The idea is that you do something like this:
175 /// RValue Result = EmitSomething(..., getReturnValueSlot());
176 /// EmitGCMove(E, Result);
177 /// If GC doesn't interfere, this will cause the result to be emitted
178 /// directly into the return value slot. If GC does interfere, a final
179 /// move will be performed.
180 void AggExprEmitter::EmitGCMove(const Expr
*E
, RValue Src
) {
181 if (Dest
.requiresGCollection()) {
182 std::pair
<uint64_t, unsigned> TypeInfo
=
183 CGF
.getContext().getTypeInfo(E
->getType());
184 unsigned long size
= TypeInfo
.first
/8;
185 const llvm::Type
*SizeTy
= CGF
.ConvertType(CGF
.getContext().getSizeType());
186 llvm::Value
*SizeVal
= llvm::ConstantInt::get(SizeTy
, size
);
187 CGF
.CGM
.getObjCRuntime().EmitGCMemmoveCollectable(CGF
, Dest
.getAddr(),
188 Src
.getAggregateAddr(),
193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
194 void AggExprEmitter::EmitFinalDestCopy(const Expr
*E
, RValue Src
, bool Ignore
) {
195 assert(Src
.isAggregate() && "value must be aggregate value!");
197 // If Dest is ignored, then we're evaluating an aggregate expression
198 // in a context (like an expression statement) that doesn't care
199 // about the result. C says that an lvalue-to-rvalue conversion is
200 // performed in these cases; C++ says that it is not. In either
201 // case, we don't actually need to do anything unless the value is
203 if (Dest
.isIgnored()) {
204 if (!Src
.isVolatileQualified() ||
205 CGF
.CGM
.getLangOptions().CPlusPlus
||
206 (IgnoreResult
&& Ignore
))
209 // If the source is volatile, we must read from it; to do that, we need
210 // some place to put it.
211 Dest
= CGF
.CreateAggTemp(E
->getType(), "agg.tmp");
214 if (Dest
.requiresGCollection()) {
215 std::pair
<uint64_t, unsigned> TypeInfo
=
216 CGF
.getContext().getTypeInfo(E
->getType());
217 unsigned long size
= TypeInfo
.first
/8;
218 const llvm::Type
*SizeTy
= CGF
.ConvertType(CGF
.getContext().getSizeType());
219 llvm::Value
*SizeVal
= llvm::ConstantInt::get(SizeTy
, size
);
220 CGF
.CGM
.getObjCRuntime().EmitGCMemmoveCollectable(CGF
,
222 Src
.getAggregateAddr(),
226 // If the result of the assignment is used, copy the LHS there also.
227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile
228 // from the source as well, as we can't eliminate it if either operand
229 // is volatile, unless copy has volatile for both source and destination..
230 CGF
.EmitAggregateCopy(Dest
.getAddr(), Src
.getAggregateAddr(), E
->getType(),
231 Dest
.isVolatile()|Src
.isVolatileQualified());
234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
235 void AggExprEmitter::EmitFinalDestCopy(const Expr
*E
, LValue Src
, bool Ignore
) {
236 assert(Src
.isSimple() && "Can't have aggregate bitfield, vector, etc");
238 EmitFinalDestCopy(E
, RValue::getAggregate(Src
.getAddress(),
239 Src
.isVolatileQualified()),
243 //===----------------------------------------------------------------------===//
245 //===----------------------------------------------------------------------===//
247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr
*e
) {
248 EmitFinalDestCopy(e
, CGF
.getOpaqueLValueMapping(e
));
251 void AggExprEmitter::VisitCastExpr(CastExpr
*E
) {
252 if (Dest
.isIgnored() && E
->getCastKind() != CK_Dynamic
) {
253 Visit(E
->getSubExpr());
257 switch (E
->getCastKind()) {
259 assert(isa
<CXXDynamicCastExpr
>(E
) && "CK_Dynamic without a dynamic_cast?");
260 LValue LV
= CGF
.EmitCheckedLValue(E
->getSubExpr());
261 // FIXME: Do we also need to handle property references here?
263 CGF
.EmitDynamicCast(LV
.getAddress(), cast
<CXXDynamicCastExpr
>(E
));
265 CGF
.CGM
.ErrorUnsupported(E
, "non-simple lvalue dynamic_cast");
267 if (!Dest
.isIgnored())
268 CGF
.CGM
.ErrorUnsupported(E
, "lvalue dynamic_cast with a destination");
273 // GCC union extension
274 QualType Ty
= E
->getSubExpr()->getType();
275 QualType PtrTy
= CGF
.getContext().getPointerType(Ty
);
276 llvm::Value
*CastPtr
= Builder
.CreateBitCast(Dest
.getAddr(),
277 CGF
.ConvertType(PtrTy
));
278 EmitInitializationToLValue(E
->getSubExpr(), CGF
.MakeAddrLValue(CastPtr
, Ty
),
283 case CK_DerivedToBase
:
284 case CK_BaseToDerived
:
285 case CK_UncheckedDerivedToBase
: {
286 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
287 "should have been unpacked before we got here");
291 case CK_GetObjCProperty
: {
292 LValue LV
= CGF
.EmitLValue(E
->getSubExpr());
293 assert(LV
.isPropertyRef());
294 RValue RV
= CGF
.EmitLoadOfPropertyRefLValue(LV
, getReturnValueSlot());
299 case CK_LValueToRValue
: // hope for downstream optimization
301 case CK_UserDefinedConversion
:
302 case CK_ConstructorConversion
:
303 assert(CGF
.getContext().hasSameUnqualifiedType(E
->getSubExpr()->getType(),
305 "Implicit cast types must be compatible");
306 Visit(E
->getSubExpr());
309 case CK_LValueBitCast
:
310 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
315 case CK_ArrayToPointerDecay
:
316 case CK_FunctionToPointerDecay
:
317 case CK_NullToPointer
:
318 case CK_NullToMemberPointer
:
319 case CK_BaseToDerivedMemberPointer
:
320 case CK_DerivedToBaseMemberPointer
:
321 case CK_MemberPointerToBoolean
:
322 case CK_IntegralToPointer
:
323 case CK_PointerToIntegral
:
324 case CK_PointerToBoolean
:
327 case CK_IntegralCast
:
328 case CK_IntegralToBoolean
:
329 case CK_IntegralToFloating
:
330 case CK_FloatingToIntegral
:
331 case CK_FloatingToBoolean
:
332 case CK_FloatingCast
:
333 case CK_AnyPointerToObjCPointerCast
:
334 case CK_AnyPointerToBlockPointerCast
:
335 case CK_ObjCObjectLValueCast
:
336 case CK_FloatingRealToComplex
:
337 case CK_FloatingComplexToReal
:
338 case CK_FloatingComplexToBoolean
:
339 case CK_FloatingComplexCast
:
340 case CK_FloatingComplexToIntegralComplex
:
341 case CK_IntegralRealToComplex
:
342 case CK_IntegralComplexToReal
:
343 case CK_IntegralComplexToBoolean
:
344 case CK_IntegralComplexCast
:
345 case CK_IntegralComplexToFloatingComplex
:
346 llvm_unreachable("cast kind invalid for aggregate types");
350 void AggExprEmitter::VisitCallExpr(const CallExpr
*E
) {
351 if (E
->getCallReturnType()->isReferenceType()) {
352 EmitAggLoadOfLValue(E
);
356 RValue RV
= CGF
.EmitCallExpr(E
, getReturnValueSlot());
360 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr
*E
) {
361 RValue RV
= CGF
.EmitObjCMessageExpr(E
, getReturnValueSlot());
365 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr
*E
) {
366 llvm_unreachable("direct property access not surrounded by "
367 "lvalue-to-rvalue cast");
370 void AggExprEmitter::VisitBinComma(const BinaryOperator
*E
) {
371 CGF
.EmitIgnoredExpr(E
->getLHS());
375 void AggExprEmitter::VisitStmtExpr(const StmtExpr
*E
) {
376 CodeGenFunction::StmtExprEvaluation
eval(CGF
);
377 CGF
.EmitCompoundStmt(*E
->getSubStmt(), true, Dest
);
380 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator
*E
) {
381 if (E
->getOpcode() == BO_PtrMemD
|| E
->getOpcode() == BO_PtrMemI
)
382 VisitPointerToDataMemberBinaryOperator(E
);
384 CGF
.ErrorUnsupported(E
, "aggregate binary expression");
387 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
388 const BinaryOperator
*E
) {
389 LValue LV
= CGF
.EmitPointerToDataMemberBinaryExpr(E
);
390 EmitFinalDestCopy(E
, LV
);
393 void AggExprEmitter::VisitBinAssign(const BinaryOperator
*E
) {
394 // For an assignment to work, the value on the right has
395 // to be compatible with the value on the left.
396 assert(CGF
.getContext().hasSameUnqualifiedType(E
->getLHS()->getType(),
397 E
->getRHS()->getType())
398 && "Invalid assignment");
400 // FIXME: __block variables need the RHS evaluated first!
401 LValue LHS
= CGF
.EmitLValue(E
->getLHS());
403 // We have to special case property setters, otherwise we must have
404 // a simple lvalue (no aggregates inside vectors, bitfields).
405 if (LHS
.isPropertyRef()) {
406 AggValueSlot Slot
= EnsureSlot(E
->getRHS()->getType());
407 CGF
.EmitAggExpr(E
->getRHS(), Slot
);
408 CGF
.EmitStoreThroughPropertyRefLValue(Slot
.asRValue(), LHS
);
410 bool GCollection
= false;
411 if (CGF
.getContext().getLangOptions().getGCMode())
412 GCollection
= TypeRequiresGCollection(E
->getLHS()->getType());
414 // Codegen the RHS so that it stores directly into the LHS.
415 AggValueSlot LHSSlot
= AggValueSlot::forLValue(LHS
, true,
417 CGF
.EmitAggExpr(E
->getRHS(), LHSSlot
, false);
418 EmitFinalDestCopy(E
, LHS
, true);
422 void AggExprEmitter::
423 VisitAbstractConditionalOperator(const AbstractConditionalOperator
*E
) {
424 llvm::BasicBlock
*LHSBlock
= CGF
.createBasicBlock("cond.true");
425 llvm::BasicBlock
*RHSBlock
= CGF
.createBasicBlock("cond.false");
426 llvm::BasicBlock
*ContBlock
= CGF
.createBasicBlock("cond.end");
428 // Bind the common expression if necessary.
429 CodeGenFunction::OpaqueValueMapping
binding(CGF
, E
);
431 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
432 CGF
.EmitBranchOnBoolExpr(E
->getCond(), LHSBlock
, RHSBlock
);
434 // Save whether the destination's lifetime is externally managed.
435 bool DestLifetimeManaged
= Dest
.isLifetimeExternallyManaged();
438 CGF
.EmitBlock(LHSBlock
);
439 Visit(E
->getTrueExpr());
442 assert(CGF
.HaveInsertPoint() && "expression evaluation ended with no IP!");
443 CGF
.Builder
.CreateBr(ContBlock
);
445 // If the result of an agg expression is unused, then the emission
446 // of the LHS might need to create a destination slot. That's fine
447 // with us, and we can safely emit the RHS into the same slot, but
448 // we shouldn't claim that its lifetime is externally managed.
449 Dest
.setLifetimeExternallyManaged(DestLifetimeManaged
);
452 CGF
.EmitBlock(RHSBlock
);
453 Visit(E
->getFalseExpr());
456 CGF
.EmitBlock(ContBlock
);
459 void AggExprEmitter::VisitChooseExpr(const ChooseExpr
*CE
) {
460 Visit(CE
->getChosenSubExpr(CGF
.getContext()));
463 void AggExprEmitter::VisitVAArgExpr(VAArgExpr
*VE
) {
464 llvm::Value
*ArgValue
= CGF
.EmitVAListRef(VE
->getSubExpr());
465 llvm::Value
*ArgPtr
= CGF
.EmitVAArg(ArgValue
, VE
->getType());
468 CGF
.ErrorUnsupported(VE
, "aggregate va_arg expression");
472 EmitFinalDestCopy(VE
, CGF
.MakeAddrLValue(ArgPtr
, VE
->getType()));
475 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
476 // Ensure that we have a slot, but if we already do, remember
477 // whether its lifetime was externally managed.
478 bool WasManaged
= Dest
.isLifetimeExternallyManaged();
479 Dest
= EnsureSlot(E
->getType());
480 Dest
.setLifetimeExternallyManaged();
482 Visit(E
->getSubExpr());
484 // Set up the temporary's destructor if its lifetime wasn't already
487 CGF
.EmitCXXTemporary(E
->getTemporary(), Dest
.getAddr());
491 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
492 AggValueSlot Slot
= EnsureSlot(E
->getType());
493 CGF
.EmitCXXConstructExpr(E
, Slot
);
496 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups
*E
) {
497 CGF
.EmitExprWithCleanups(E
, Dest
);
500 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr
*E
) {
501 QualType T
= E
->getType();
502 AggValueSlot Slot
= EnsureSlot(T
);
503 EmitNullInitializationToLValue(CGF
.MakeAddrLValue(Slot
.getAddr(), T
), T
);
506 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr
*E
) {
507 QualType T
= E
->getType();
508 AggValueSlot Slot
= EnsureSlot(T
);
509 EmitNullInitializationToLValue(CGF
.MakeAddrLValue(Slot
.getAddr(), T
), T
);
512 /// isSimpleZero - If emitting this value will obviously just cause a store of
513 /// zero to memory, return true. This can return false if uncertain, so it just
514 /// handles simple cases.
515 static bool isSimpleZero(const Expr
*E
, CodeGenFunction
&CGF
) {
517 if (const ParenExpr
*PE
= dyn_cast
<ParenExpr
>(E
))
518 return isSimpleZero(PE
->getSubExpr(), CGF
);
520 if (const IntegerLiteral
*IL
= dyn_cast
<IntegerLiteral
>(E
))
521 return IL
->getValue() == 0;
523 if (const FloatingLiteral
*FL
= dyn_cast
<FloatingLiteral
>(E
))
524 return FL
->getValue().isPosZero();
526 if ((isa
<ImplicitValueInitExpr
>(E
) || isa
<CXXScalarValueInitExpr
>(E
)) &&
527 CGF
.getTypes().isZeroInitializable(E
->getType()))
529 // (int*)0 - Null pointer expressions.
530 if (const CastExpr
*ICE
= dyn_cast
<CastExpr
>(E
))
531 return ICE
->getCastKind() == CK_NullToPointer
;
533 if (const CharacterLiteral
*CL
= dyn_cast
<CharacterLiteral
>(E
))
534 return CL
->getValue() == 0;
536 // Otherwise, hard case: conservatively return false.
542 AggExprEmitter::EmitInitializationToLValue(Expr
* E
, LValue LV
, QualType T
) {
543 // FIXME: Ignore result?
544 // FIXME: Are initializers affected by volatile?
545 if (Dest
.isZeroed() && isSimpleZero(E
, CGF
)) {
546 // Storing "i32 0" to a zero'd memory location is a noop.
547 } else if (isa
<ImplicitValueInitExpr
>(E
)) {
548 EmitNullInitializationToLValue(LV
, T
);
549 } else if (T
->isReferenceType()) {
550 RValue RV
= CGF
.EmitReferenceBindingToExpr(E
, /*InitializedDecl=*/0);
551 CGF
.EmitStoreThroughLValue(RV
, LV
, T
);
552 } else if (T
->isAnyComplexType()) {
553 CGF
.EmitComplexExprIntoAddr(E
, LV
.getAddress(), false);
554 } else if (CGF
.hasAggregateLLVMType(T
)) {
555 CGF
.EmitAggExpr(E
, AggValueSlot::forAddr(LV
.getAddress(), false, true,
556 false, Dest
.isZeroed()));
558 CGF
.EmitStoreThroughLValue(RValue::get(CGF
.EmitScalarExpr(E
)), LV
, T
);
562 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV
, QualType T
) {
563 // If the destination slot is already zeroed out before the aggregate is
564 // copied into it, we don't have to emit any zeros here.
565 if (Dest
.isZeroed() && CGF
.getTypes().isZeroInitializable(T
))
568 if (!CGF
.hasAggregateLLVMType(T
)) {
569 // For non-aggregates, we can store zero
570 llvm::Value
*Null
= llvm::Constant::getNullValue(CGF
.ConvertType(T
));
571 CGF
.EmitStoreThroughLValue(RValue::get(Null
), LV
, T
);
573 // There's a potential optimization opportunity in combining
574 // memsets; that would be easy for arrays, but relatively
575 // difficult for structures with the current code.
576 CGF
.EmitNullInitialization(LV
.getAddress(), T
);
580 void AggExprEmitter::VisitInitListExpr(InitListExpr
*E
) {
582 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
583 // (Length of globals? Chunks of zeroed-out space?).
585 // If we can, prefer a copy from a global; this is a lot less code for long
586 // globals, and it's easier for the current optimizers to analyze.
587 if (llvm::Constant
* C
= CGF
.CGM
.EmitConstantExpr(E
, E
->getType(), &CGF
)) {
588 llvm::GlobalVariable
* GV
=
589 new llvm::GlobalVariable(CGF
.CGM
.getModule(), C
->getType(), true,
590 llvm::GlobalValue::InternalLinkage
, C
, "");
591 EmitFinalDestCopy(E
, CGF
.MakeAddrLValue(GV
, E
->getType()));
595 if (E
->hadArrayRangeDesignator())
596 CGF
.ErrorUnsupported(E
, "GNU array range designator extension");
598 llvm::Value
*DestPtr
= Dest
.getAddr();
600 // Handle initialization of an array.
601 if (E
->getType()->isArrayType()) {
602 const llvm::PointerType
*APType
=
603 cast
<llvm::PointerType
>(DestPtr
->getType());
604 const llvm::ArrayType
*AType
=
605 cast
<llvm::ArrayType
>(APType
->getElementType());
607 uint64_t NumInitElements
= E
->getNumInits();
609 if (E
->getNumInits() > 0) {
610 QualType T1
= E
->getType();
611 QualType T2
= E
->getInit(0)->getType();
612 if (CGF
.getContext().hasSameUnqualifiedType(T1
, T2
)) {
613 EmitAggLoadOfLValue(E
->getInit(0));
618 uint64_t NumArrayElements
= AType
->getNumElements();
619 QualType ElementType
= CGF
.getContext().getCanonicalType(E
->getType());
620 ElementType
= CGF
.getContext().getAsArrayType(ElementType
)->getElementType();
622 // FIXME: were we intentionally ignoring address spaces and GC attributes?
624 for (uint64_t i
= 0; i
!= NumArrayElements
; ++i
) {
625 // If we're done emitting initializers and the destination is known-zeroed
627 if (i
== NumInitElements
&&
629 CGF
.getTypes().isZeroInitializable(ElementType
))
632 llvm::Value
*NextVal
= Builder
.CreateStructGEP(DestPtr
, i
, ".array");
633 LValue LV
= CGF
.MakeAddrLValue(NextVal
, ElementType
);
635 if (i
< NumInitElements
)
636 EmitInitializationToLValue(E
->getInit(i
), LV
, ElementType
);
638 EmitNullInitializationToLValue(LV
, ElementType
);
640 // If the GEP didn't get used because of a dead zero init or something
641 // else, clean it up for -O0 builds and general tidiness.
642 if (llvm::GetElementPtrInst
*GEP
=
643 dyn_cast
<llvm::GetElementPtrInst
>(NextVal
))
644 if (GEP
->use_empty())
645 GEP
->eraseFromParent();
650 assert(E
->getType()->isRecordType() && "Only support structs/unions here!");
652 // Do struct initialization; this code just sets each individual member
653 // to the approprate value. This makes bitfield support automatic;
654 // the disadvantage is that the generated code is more difficult for
655 // the optimizer, especially with bitfields.
656 unsigned NumInitElements
= E
->getNumInits();
657 RecordDecl
*SD
= E
->getType()->getAs
<RecordType
>()->getDecl();
659 if (E
->getType()->isUnionType()) {
660 // Only initialize one field of a union. The field itself is
661 // specified by the initializer list.
662 if (!E
->getInitializedFieldInUnion()) {
663 // Empty union; we have nothing to do.
666 // Make sure that it's really an empty and not a failure of
667 // semantic analysis.
668 for (RecordDecl::field_iterator Field
= SD
->field_begin(),
669 FieldEnd
= SD
->field_end();
670 Field
!= FieldEnd
; ++Field
)
671 assert(Field
->isUnnamedBitfield() && "Only unnamed bitfields allowed");
677 FieldDecl
*Field
= E
->getInitializedFieldInUnion();
679 LValue FieldLoc
= CGF
.EmitLValueForFieldInitialization(DestPtr
, Field
, 0);
680 if (NumInitElements
) {
681 // Store the initializer into the field
682 EmitInitializationToLValue(E
->getInit(0), FieldLoc
, Field
->getType());
684 // Default-initialize to null.
685 EmitNullInitializationToLValue(FieldLoc
, Field
->getType());
691 // Here we iterate over the fields; this makes it simpler to both
692 // default-initialize fields and skip over unnamed fields.
693 unsigned CurInitVal
= 0;
694 for (RecordDecl::field_iterator Field
= SD
->field_begin(),
695 FieldEnd
= SD
->field_end();
696 Field
!= FieldEnd
; ++Field
) {
697 // We're done once we hit the flexible array member
698 if (Field
->getType()->isIncompleteArrayType())
701 if (Field
->isUnnamedBitfield())
704 // Don't emit GEP before a noop store of zero.
705 if (CurInitVal
== NumInitElements
&& Dest
.isZeroed() &&
706 CGF
.getTypes().isZeroInitializable(E
->getType()))
710 LValue FieldLoc
= CGF
.EmitLValueForFieldInitialization(DestPtr
, *Field
, 0);
711 // We never generate write-barries for initialized fields.
712 FieldLoc
.setNonGC(true);
714 if (CurInitVal
< NumInitElements
) {
715 // Store the initializer into the field.
716 EmitInitializationToLValue(E
->getInit(CurInitVal
++), FieldLoc
,
719 // We're out of initalizers; default-initialize to null
720 EmitNullInitializationToLValue(FieldLoc
, Field
->getType());
723 // If the GEP didn't get used because of a dead zero init or something
724 // else, clean it up for -O0 builds and general tidiness.
725 if (FieldLoc
.isSimple())
726 if (llvm::GetElementPtrInst
*GEP
=
727 dyn_cast
<llvm::GetElementPtrInst
>(FieldLoc
.getAddress()))
728 if (GEP
->use_empty())
729 GEP
->eraseFromParent();
733 //===----------------------------------------------------------------------===//
734 // Entry Points into this File
735 //===----------------------------------------------------------------------===//
737 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
738 /// non-zero bytes that will be stored when outputting the initializer for the
739 /// specified initializer expression.
740 static uint64_t GetNumNonZeroBytesInInit(const Expr
*E
, CodeGenFunction
&CGF
) {
741 if (const ParenExpr
*PE
= dyn_cast
<ParenExpr
>(E
))
742 return GetNumNonZeroBytesInInit(PE
->getSubExpr(), CGF
);
744 // 0 and 0.0 won't require any non-zero stores!
745 if (isSimpleZero(E
, CGF
)) return 0;
747 // If this is an initlist expr, sum up the size of sizes of the (present)
748 // elements. If this is something weird, assume the whole thing is non-zero.
749 const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(E
);
750 if (ILE
== 0 || !CGF
.getTypes().isZeroInitializable(ILE
->getType()))
751 return CGF
.getContext().getTypeSize(E
->getType())/8;
753 // InitListExprs for structs have to be handled carefully. If there are
754 // reference members, we need to consider the size of the reference, not the
755 // referencee. InitListExprs for unions and arrays can't have references.
756 if (const RecordType
*RT
= E
->getType()->getAs
<RecordType
>()) {
757 if (!RT
->isUnionType()) {
758 RecordDecl
*SD
= E
->getType()->getAs
<RecordType
>()->getDecl();
759 uint64_t NumNonZeroBytes
= 0;
761 unsigned ILEElement
= 0;
762 for (RecordDecl::field_iterator Field
= SD
->field_begin(),
763 FieldEnd
= SD
->field_end(); Field
!= FieldEnd
; ++Field
) {
764 // We're done once we hit the flexible array member or run out of
765 // InitListExpr elements.
766 if (Field
->getType()->isIncompleteArrayType() ||
767 ILEElement
== ILE
->getNumInits())
769 if (Field
->isUnnamedBitfield())
772 const Expr
*E
= ILE
->getInit(ILEElement
++);
774 // Reference values are always non-null and have the width of a pointer.
775 if (Field
->getType()->isReferenceType())
776 NumNonZeroBytes
+= CGF
.getContext().Target
.getPointerWidth(0);
778 NumNonZeroBytes
+= GetNumNonZeroBytesInInit(E
, CGF
);
781 return NumNonZeroBytes
;
786 uint64_t NumNonZeroBytes
= 0;
787 for (unsigned i
= 0, e
= ILE
->getNumInits(); i
!= e
; ++i
)
788 NumNonZeroBytes
+= GetNumNonZeroBytesInInit(ILE
->getInit(i
), CGF
);
789 return NumNonZeroBytes
;
792 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
793 /// zeros in it, emit a memset and avoid storing the individual zeros.
795 static void CheckAggExprForMemSetUse(AggValueSlot
&Slot
, const Expr
*E
,
796 CodeGenFunction
&CGF
) {
797 // If the slot is already known to be zeroed, nothing to do. Don't mess with
799 if (Slot
.isZeroed() || Slot
.isVolatile() || Slot
.getAddr() == 0) return;
801 // If the type is 16-bytes or smaller, prefer individual stores over memset.
802 std::pair
<uint64_t, unsigned> TypeInfo
=
803 CGF
.getContext().getTypeInfo(E
->getType());
804 if (TypeInfo
.first
/8 <= 16)
807 // Check to see if over 3/4 of the initializer are known to be zero. If so,
808 // we prefer to emit memset + individual stores for the rest.
809 uint64_t NumNonZeroBytes
= GetNumNonZeroBytesInInit(E
, CGF
);
810 if (NumNonZeroBytes
*4 > TypeInfo
.first
/8)
813 // Okay, it seems like a good idea to use an initial memset, emit the call.
814 llvm::Constant
*SizeVal
= CGF
.Builder
.getInt64(TypeInfo
.first
/8);
815 unsigned Align
= TypeInfo
.second
/8;
817 llvm::Value
*Loc
= Slot
.getAddr();
818 const llvm::Type
*BP
= llvm::Type::getInt8PtrTy(CGF
.getLLVMContext());
820 Loc
= CGF
.Builder
.CreateBitCast(Loc
, BP
);
821 CGF
.Builder
.CreateMemSet(Loc
, CGF
.Builder
.getInt8(0), SizeVal
, Align
, false);
823 // Tell the AggExprEmitter that the slot is known zero.
830 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
831 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
832 /// the value of the aggregate expression is not needed. If VolatileDest is
833 /// true, DestPtr cannot be 0.
835 /// \param IsInitializer - true if this evaluation is initializing an
836 /// object whose lifetime is already being managed.
838 // FIXME: Take Qualifiers object.
839 void CodeGenFunction::EmitAggExpr(const Expr
*E
, AggValueSlot Slot
,
841 assert(E
&& hasAggregateLLVMType(E
->getType()) &&
842 "Invalid aggregate expression to emit");
843 assert((Slot
.getAddr() != 0 || Slot
.isIgnored()) &&
844 "slot has bits but no address");
846 // Optimize the slot if possible.
847 CheckAggExprForMemSetUse(Slot
, E
, *this);
849 AggExprEmitter(*this, Slot
, IgnoreResult
).Visit(const_cast<Expr
*>(E
));
852 LValue
CodeGenFunction::EmitAggExprToLValue(const Expr
*E
) {
853 assert(hasAggregateLLVMType(E
->getType()) && "Invalid argument!");
854 llvm::Value
*Temp
= CreateMemTemp(E
->getType());
855 LValue LV
= MakeAddrLValue(Temp
, E
->getType());
856 EmitAggExpr(E
, AggValueSlot::forAddr(Temp
, LV
.isVolatileQualified(), false));
860 void CodeGenFunction::EmitAggregateCopy(llvm::Value
*DestPtr
,
861 llvm::Value
*SrcPtr
, QualType Ty
,
863 assert(!Ty
->isAnyComplexType() && "Shouldn't happen for complex");
865 if (getContext().getLangOptions().CPlusPlus
) {
866 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
867 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(RT
->getDecl());
868 assert((Record
->hasTrivialCopyConstructor() ||
869 Record
->hasTrivialCopyAssignment()) &&
870 "Trying to aggregate-copy a type without a trivial copy "
871 "constructor or assignment operator");
872 // Ignore empty classes in C++.
873 if (Record
->isEmpty())
878 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
879 // C99 6.5.16.1p3, which states "If the value being stored in an object is
880 // read from another object that overlaps in anyway the storage of the first
881 // object, then the overlap shall be exact and the two objects shall have
882 // qualified or unqualified versions of a compatible type."
884 // memcpy is not defined if the source and destination pointers are exactly
885 // equal, but other compilers do this optimization, and almost every memcpy
886 // implementation handles this case safely. If there is a libc that does not
887 // safely handle this, we can add a target hook.
889 // Get size and alignment info for this aggregate.
890 std::pair
<uint64_t, unsigned> TypeInfo
= getContext().getTypeInfo(Ty
);
892 // FIXME: Handle variable sized types.
894 // FIXME: If we have a volatile struct, the optimizer can remove what might
895 // appear to be `extra' memory ops:
897 // volatile struct { int i; } a, b;
904 // we need to use a different call here. We use isVolatile to indicate when
905 // either the source or the destination is volatile.
907 const llvm::PointerType
*DPT
= cast
<llvm::PointerType
>(DestPtr
->getType());
908 const llvm::Type
*DBP
=
909 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT
->getAddressSpace());
910 DestPtr
= Builder
.CreateBitCast(DestPtr
, DBP
, "tmp");
912 const llvm::PointerType
*SPT
= cast
<llvm::PointerType
>(SrcPtr
->getType());
913 const llvm::Type
*SBP
=
914 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT
->getAddressSpace());
915 SrcPtr
= Builder
.CreateBitCast(SrcPtr
, SBP
, "tmp");
917 if (const RecordType
*RecordTy
= Ty
->getAs
<RecordType
>()) {
918 RecordDecl
*Record
= RecordTy
->getDecl();
919 if (Record
->hasObjectMember()) {
920 unsigned long size
= TypeInfo
.first
/8;
921 const llvm::Type
*SizeTy
= ConvertType(getContext().getSizeType());
922 llvm::Value
*SizeVal
= llvm::ConstantInt::get(SizeTy
, size
);
923 CGM
.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr
, SrcPtr
,
927 } else if (getContext().getAsArrayType(Ty
)) {
928 QualType BaseType
= getContext().getBaseElementType(Ty
);
929 if (const RecordType
*RecordTy
= BaseType
->getAs
<RecordType
>()) {
930 if (RecordTy
->getDecl()->hasObjectMember()) {
931 unsigned long size
= TypeInfo
.first
/8;
932 const llvm::Type
*SizeTy
= ConvertType(getContext().getSizeType());
933 llvm::Value
*SizeVal
= llvm::ConstantInt::get(SizeTy
, size
);
934 CGM
.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr
, SrcPtr
,
941 Builder
.CreateMemCpy(DestPtr
, SrcPtr
,
942 llvm::ConstantInt::get(IntPtrTy
, TypeInfo
.first
/8),
943 TypeInfo
.second
/8, isVolatile
);