[analyzer] Use the new registration mechanism on the non-path-sensitive-checkers:
[clang.git] / lib / CodeGen / CGExprAgg.cpp
blobf992dc7c9cb92c790471660425c3a7f9945bbd35
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
27 //===----------------------------------------------------------------------===//
28 // Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
31 namespace {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33 CodeGenFunction &CGF;
34 CGBuilderTy &Builder;
35 AggValueSlot Dest;
36 bool IgnoreResult;
38 ReturnValueSlot getReturnValueSlot() const {
39 // If the destination slot requires garbage collection, we can't
40 // use the real return value slot, because we have to use the GC
41 // API.
42 if (Dest.requiresGCollection()) return ReturnValueSlot();
44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
47 AggValueSlot EnsureSlot(QualType T) {
48 if (!Dest.isIgnored()) return Dest;
49 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
52 public:
53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54 bool ignore)
55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56 IgnoreResult(ignore) {
59 //===--------------------------------------------------------------------===//
60 // Utilities
61 //===--------------------------------------------------------------------===//
63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64 /// represents a value lvalue, this method emits the address of the lvalue,
65 /// then loads the result into DestPtr.
66 void EmitAggLoadOfLValue(const Expr *E);
68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
72 void EmitGCMove(const Expr *E, RValue Src);
74 bool TypeRequiresGCollection(QualType T);
76 //===--------------------------------------------------------------------===//
77 // Visitor Methods
78 //===--------------------------------------------------------------------===//
80 void VisitStmt(Stmt *S) {
81 CGF.ErrorUnsupported(S, "aggregate expression");
83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
86 // l-values.
87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92 EmitAggLoadOfLValue(E);
94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95 EmitAggLoadOfLValue(E);
97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98 EmitAggLoadOfLValue(E);
100 void VisitPredefinedExpr(const PredefinedExpr *E) {
101 EmitAggLoadOfLValue(E);
104 // Operators.
105 void VisitCastExpr(CastExpr *E);
106 void VisitCallExpr(const CallExpr *E);
107 void VisitStmtExpr(const StmtExpr *E);
108 void VisitBinaryOperator(const BinaryOperator *BO);
109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110 void VisitBinAssign(const BinaryOperator *E);
111 void VisitBinComma(const BinaryOperator *E);
113 void VisitObjCMessageExpr(ObjCMessageExpr *E);
114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115 EmitAggLoadOfLValue(E);
117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
119 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
120 void VisitChooseExpr(const ChooseExpr *CE);
121 void VisitInitListExpr(InitListExpr *E);
122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
124 Visit(DAE->getExpr());
126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
127 void VisitCXXConstructExpr(const CXXConstructExpr *E);
128 void VisitExprWithCleanups(ExprWithCleanups *E);
129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
134 void VisitVAArgExpr(VAArgExpr *E);
136 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
137 void EmitNullInitializationToLValue(LValue Address, QualType T);
138 // case Expr::ChooseExprClass:
139 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
141 } // end anonymous namespace.
143 //===----------------------------------------------------------------------===//
144 // Utilities
145 //===----------------------------------------------------------------------===//
147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
148 /// represents a value lvalue, this method emits the address of the lvalue,
149 /// then loads the result into DestPtr.
150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
151 LValue LV = CGF.EmitLValue(E);
152 EmitFinalDestCopy(E, LV);
155 /// \brief True if the given aggregate type requires special GC API calls.
156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
157 // Only record types have members that might require garbage collection.
158 const RecordType *RecordTy = T->getAs<RecordType>();
159 if (!RecordTy) return false;
161 // Don't mess with non-trivial C++ types.
162 RecordDecl *Record = RecordTy->getDecl();
163 if (isa<CXXRecordDecl>(Record) &&
164 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
165 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
166 return false;
168 // Check whether the type has an object member.
169 return Record->hasObjectMember();
172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
174 /// The idea is that you do something like this:
175 /// RValue Result = EmitSomething(..., getReturnValueSlot());
176 /// EmitGCMove(E, Result);
177 /// If GC doesn't interfere, this will cause the result to be emitted
178 /// directly into the return value slot. If GC does interfere, a final
179 /// move will be performed.
180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
181 if (Dest.requiresGCollection()) {
182 std::pair<uint64_t, unsigned> TypeInfo =
183 CGF.getContext().getTypeInfo(E->getType());
184 unsigned long size = TypeInfo.first/8;
185 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
186 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
187 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
188 Src.getAggregateAddr(),
189 SizeVal);
193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
195 assert(Src.isAggregate() && "value must be aggregate value!");
197 // If Dest is ignored, then we're evaluating an aggregate expression
198 // in a context (like an expression statement) that doesn't care
199 // about the result. C says that an lvalue-to-rvalue conversion is
200 // performed in these cases; C++ says that it is not. In either
201 // case, we don't actually need to do anything unless the value is
202 // volatile.
203 if (Dest.isIgnored()) {
204 if (!Src.isVolatileQualified() ||
205 CGF.CGM.getLangOptions().CPlusPlus ||
206 (IgnoreResult && Ignore))
207 return;
209 // If the source is volatile, we must read from it; to do that, we need
210 // some place to put it.
211 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
214 if (Dest.requiresGCollection()) {
215 std::pair<uint64_t, unsigned> TypeInfo =
216 CGF.getContext().getTypeInfo(E->getType());
217 unsigned long size = TypeInfo.first/8;
218 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
219 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
220 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
221 Dest.getAddr(),
222 Src.getAggregateAddr(),
223 SizeVal);
224 return;
226 // If the result of the assignment is used, copy the LHS there also.
227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile
228 // from the source as well, as we can't eliminate it if either operand
229 // is volatile, unless copy has volatile for both source and destination..
230 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
231 Dest.isVolatile()|Src.isVolatileQualified());
234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
236 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
238 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
239 Src.isVolatileQualified()),
240 Ignore);
243 //===----------------------------------------------------------------------===//
244 // Visitor Methods
245 //===----------------------------------------------------------------------===//
247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
248 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
251 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
252 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
253 Visit(E->getSubExpr());
254 return;
257 switch (E->getCastKind()) {
258 case CK_Dynamic: {
259 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
260 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
261 // FIXME: Do we also need to handle property references here?
262 if (LV.isSimple())
263 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
264 else
265 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
267 if (!Dest.isIgnored())
268 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
269 break;
272 case CK_ToUnion: {
273 // GCC union extension
274 QualType Ty = E->getSubExpr()->getType();
275 QualType PtrTy = CGF.getContext().getPointerType(Ty);
276 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
277 CGF.ConvertType(PtrTy));
278 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
279 Ty);
280 break;
283 case CK_DerivedToBase:
284 case CK_BaseToDerived:
285 case CK_UncheckedDerivedToBase: {
286 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
287 "should have been unpacked before we got here");
288 break;
291 case CK_GetObjCProperty: {
292 LValue LV = CGF.EmitLValue(E->getSubExpr());
293 assert(LV.isPropertyRef());
294 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
295 EmitGCMove(E, RV);
296 break;
299 case CK_LValueToRValue: // hope for downstream optimization
300 case CK_NoOp:
301 case CK_UserDefinedConversion:
302 case CK_ConstructorConversion:
303 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
304 E->getType()) &&
305 "Implicit cast types must be compatible");
306 Visit(E->getSubExpr());
307 break;
309 case CK_LValueBitCast:
310 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
311 break;
313 case CK_Dependent:
314 case CK_BitCast:
315 case CK_ArrayToPointerDecay:
316 case CK_FunctionToPointerDecay:
317 case CK_NullToPointer:
318 case CK_NullToMemberPointer:
319 case CK_BaseToDerivedMemberPointer:
320 case CK_DerivedToBaseMemberPointer:
321 case CK_MemberPointerToBoolean:
322 case CK_IntegralToPointer:
323 case CK_PointerToIntegral:
324 case CK_PointerToBoolean:
325 case CK_ToVoid:
326 case CK_VectorSplat:
327 case CK_IntegralCast:
328 case CK_IntegralToBoolean:
329 case CK_IntegralToFloating:
330 case CK_FloatingToIntegral:
331 case CK_FloatingToBoolean:
332 case CK_FloatingCast:
333 case CK_AnyPointerToObjCPointerCast:
334 case CK_AnyPointerToBlockPointerCast:
335 case CK_ObjCObjectLValueCast:
336 case CK_FloatingRealToComplex:
337 case CK_FloatingComplexToReal:
338 case CK_FloatingComplexToBoolean:
339 case CK_FloatingComplexCast:
340 case CK_FloatingComplexToIntegralComplex:
341 case CK_IntegralRealToComplex:
342 case CK_IntegralComplexToReal:
343 case CK_IntegralComplexToBoolean:
344 case CK_IntegralComplexCast:
345 case CK_IntegralComplexToFloatingComplex:
346 llvm_unreachable("cast kind invalid for aggregate types");
350 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
351 if (E->getCallReturnType()->isReferenceType()) {
352 EmitAggLoadOfLValue(E);
353 return;
356 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
357 EmitGCMove(E, RV);
360 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
361 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
362 EmitGCMove(E, RV);
365 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
366 llvm_unreachable("direct property access not surrounded by "
367 "lvalue-to-rvalue cast");
370 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
371 CGF.EmitIgnoredExpr(E->getLHS());
372 Visit(E->getRHS());
375 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
376 CodeGenFunction::StmtExprEvaluation eval(CGF);
377 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
380 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
381 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
382 VisitPointerToDataMemberBinaryOperator(E);
383 else
384 CGF.ErrorUnsupported(E, "aggregate binary expression");
387 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
388 const BinaryOperator *E) {
389 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
390 EmitFinalDestCopy(E, LV);
393 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
394 // For an assignment to work, the value on the right has
395 // to be compatible with the value on the left.
396 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
397 E->getRHS()->getType())
398 && "Invalid assignment");
400 // FIXME: __block variables need the RHS evaluated first!
401 LValue LHS = CGF.EmitLValue(E->getLHS());
403 // We have to special case property setters, otherwise we must have
404 // a simple lvalue (no aggregates inside vectors, bitfields).
405 if (LHS.isPropertyRef()) {
406 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
407 CGF.EmitAggExpr(E->getRHS(), Slot);
408 CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS);
409 } else {
410 bool GCollection = false;
411 if (CGF.getContext().getLangOptions().getGCMode())
412 GCollection = TypeRequiresGCollection(E->getLHS()->getType());
414 // Codegen the RHS so that it stores directly into the LHS.
415 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
416 GCollection);
417 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
418 EmitFinalDestCopy(E, LHS, true);
422 void AggExprEmitter::
423 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
424 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
425 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
426 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
428 // Bind the common expression if necessary.
429 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
431 CodeGenFunction::ConditionalEvaluation eval(CGF);
432 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
434 // Save whether the destination's lifetime is externally managed.
435 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
437 eval.begin(CGF);
438 CGF.EmitBlock(LHSBlock);
439 Visit(E->getTrueExpr());
440 eval.end(CGF);
442 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
443 CGF.Builder.CreateBr(ContBlock);
445 // If the result of an agg expression is unused, then the emission
446 // of the LHS might need to create a destination slot. That's fine
447 // with us, and we can safely emit the RHS into the same slot, but
448 // we shouldn't claim that its lifetime is externally managed.
449 Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
451 eval.begin(CGF);
452 CGF.EmitBlock(RHSBlock);
453 Visit(E->getFalseExpr());
454 eval.end(CGF);
456 CGF.EmitBlock(ContBlock);
459 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
460 Visit(CE->getChosenSubExpr(CGF.getContext()));
463 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
464 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
465 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
467 if (!ArgPtr) {
468 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
469 return;
472 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
475 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
476 // Ensure that we have a slot, but if we already do, remember
477 // whether its lifetime was externally managed.
478 bool WasManaged = Dest.isLifetimeExternallyManaged();
479 Dest = EnsureSlot(E->getType());
480 Dest.setLifetimeExternallyManaged();
482 Visit(E->getSubExpr());
484 // Set up the temporary's destructor if its lifetime wasn't already
485 // being managed.
486 if (!WasManaged)
487 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
490 void
491 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
492 AggValueSlot Slot = EnsureSlot(E->getType());
493 CGF.EmitCXXConstructExpr(E, Slot);
496 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
497 CGF.EmitExprWithCleanups(E, Dest);
500 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
501 QualType T = E->getType();
502 AggValueSlot Slot = EnsureSlot(T);
503 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
506 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
507 QualType T = E->getType();
508 AggValueSlot Slot = EnsureSlot(T);
509 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
512 /// isSimpleZero - If emitting this value will obviously just cause a store of
513 /// zero to memory, return true. This can return false if uncertain, so it just
514 /// handles simple cases.
515 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
516 // (0)
517 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
518 return isSimpleZero(PE->getSubExpr(), CGF);
519 // 0
520 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
521 return IL->getValue() == 0;
522 // +0.0
523 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
524 return FL->getValue().isPosZero();
525 // int()
526 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
527 CGF.getTypes().isZeroInitializable(E->getType()))
528 return true;
529 // (int*)0 - Null pointer expressions.
530 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
531 return ICE->getCastKind() == CK_NullToPointer;
532 // '\0'
533 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
534 return CL->getValue() == 0;
536 // Otherwise, hard case: conservatively return false.
537 return false;
541 void
542 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
543 // FIXME: Ignore result?
544 // FIXME: Are initializers affected by volatile?
545 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
546 // Storing "i32 0" to a zero'd memory location is a noop.
547 } else if (isa<ImplicitValueInitExpr>(E)) {
548 EmitNullInitializationToLValue(LV, T);
549 } else if (T->isReferenceType()) {
550 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
551 CGF.EmitStoreThroughLValue(RV, LV, T);
552 } else if (T->isAnyComplexType()) {
553 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
554 } else if (CGF.hasAggregateLLVMType(T)) {
555 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
556 false, Dest.isZeroed()));
557 } else {
558 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
562 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
563 // If the destination slot is already zeroed out before the aggregate is
564 // copied into it, we don't have to emit any zeros here.
565 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
566 return;
568 if (!CGF.hasAggregateLLVMType(T)) {
569 // For non-aggregates, we can store zero
570 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
571 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
572 } else {
573 // There's a potential optimization opportunity in combining
574 // memsets; that would be easy for arrays, but relatively
575 // difficult for structures with the current code.
576 CGF.EmitNullInitialization(LV.getAddress(), T);
580 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
581 #if 0
582 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
583 // (Length of globals? Chunks of zeroed-out space?).
585 // If we can, prefer a copy from a global; this is a lot less code for long
586 // globals, and it's easier for the current optimizers to analyze.
587 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
588 llvm::GlobalVariable* GV =
589 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
590 llvm::GlobalValue::InternalLinkage, C, "");
591 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
592 return;
594 #endif
595 if (E->hadArrayRangeDesignator())
596 CGF.ErrorUnsupported(E, "GNU array range designator extension");
598 llvm::Value *DestPtr = Dest.getAddr();
600 // Handle initialization of an array.
601 if (E->getType()->isArrayType()) {
602 const llvm::PointerType *APType =
603 cast<llvm::PointerType>(DestPtr->getType());
604 const llvm::ArrayType *AType =
605 cast<llvm::ArrayType>(APType->getElementType());
607 uint64_t NumInitElements = E->getNumInits();
609 if (E->getNumInits() > 0) {
610 QualType T1 = E->getType();
611 QualType T2 = E->getInit(0)->getType();
612 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
613 EmitAggLoadOfLValue(E->getInit(0));
614 return;
618 uint64_t NumArrayElements = AType->getNumElements();
619 QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
620 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
622 // FIXME: were we intentionally ignoring address spaces and GC attributes?
624 for (uint64_t i = 0; i != NumArrayElements; ++i) {
625 // If we're done emitting initializers and the destination is known-zeroed
626 // then we're done.
627 if (i == NumInitElements &&
628 Dest.isZeroed() &&
629 CGF.getTypes().isZeroInitializable(ElementType))
630 break;
632 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
633 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
635 if (i < NumInitElements)
636 EmitInitializationToLValue(E->getInit(i), LV, ElementType);
637 else
638 EmitNullInitializationToLValue(LV, ElementType);
640 // If the GEP didn't get used because of a dead zero init or something
641 // else, clean it up for -O0 builds and general tidiness.
642 if (llvm::GetElementPtrInst *GEP =
643 dyn_cast<llvm::GetElementPtrInst>(NextVal))
644 if (GEP->use_empty())
645 GEP->eraseFromParent();
647 return;
650 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
652 // Do struct initialization; this code just sets each individual member
653 // to the approprate value. This makes bitfield support automatic;
654 // the disadvantage is that the generated code is more difficult for
655 // the optimizer, especially with bitfields.
656 unsigned NumInitElements = E->getNumInits();
657 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
659 if (E->getType()->isUnionType()) {
660 // Only initialize one field of a union. The field itself is
661 // specified by the initializer list.
662 if (!E->getInitializedFieldInUnion()) {
663 // Empty union; we have nothing to do.
665 #ifndef NDEBUG
666 // Make sure that it's really an empty and not a failure of
667 // semantic analysis.
668 for (RecordDecl::field_iterator Field = SD->field_begin(),
669 FieldEnd = SD->field_end();
670 Field != FieldEnd; ++Field)
671 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
672 #endif
673 return;
676 // FIXME: volatility
677 FieldDecl *Field = E->getInitializedFieldInUnion();
679 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
680 if (NumInitElements) {
681 // Store the initializer into the field
682 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
683 } else {
684 // Default-initialize to null.
685 EmitNullInitializationToLValue(FieldLoc, Field->getType());
688 return;
691 // Here we iterate over the fields; this makes it simpler to both
692 // default-initialize fields and skip over unnamed fields.
693 unsigned CurInitVal = 0;
694 for (RecordDecl::field_iterator Field = SD->field_begin(),
695 FieldEnd = SD->field_end();
696 Field != FieldEnd; ++Field) {
697 // We're done once we hit the flexible array member
698 if (Field->getType()->isIncompleteArrayType())
699 break;
701 if (Field->isUnnamedBitfield())
702 continue;
704 // Don't emit GEP before a noop store of zero.
705 if (CurInitVal == NumInitElements && Dest.isZeroed() &&
706 CGF.getTypes().isZeroInitializable(E->getType()))
707 break;
709 // FIXME: volatility
710 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
711 // We never generate write-barries for initialized fields.
712 FieldLoc.setNonGC(true);
714 if (CurInitVal < NumInitElements) {
715 // Store the initializer into the field.
716 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
717 Field->getType());
718 } else {
719 // We're out of initalizers; default-initialize to null
720 EmitNullInitializationToLValue(FieldLoc, Field->getType());
723 // If the GEP didn't get used because of a dead zero init or something
724 // else, clean it up for -O0 builds and general tidiness.
725 if (FieldLoc.isSimple())
726 if (llvm::GetElementPtrInst *GEP =
727 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
728 if (GEP->use_empty())
729 GEP->eraseFromParent();
733 //===----------------------------------------------------------------------===//
734 // Entry Points into this File
735 //===----------------------------------------------------------------------===//
737 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
738 /// non-zero bytes that will be stored when outputting the initializer for the
739 /// specified initializer expression.
740 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
741 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
742 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
744 // 0 and 0.0 won't require any non-zero stores!
745 if (isSimpleZero(E, CGF)) return 0;
747 // If this is an initlist expr, sum up the size of sizes of the (present)
748 // elements. If this is something weird, assume the whole thing is non-zero.
749 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
750 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
751 return CGF.getContext().getTypeSize(E->getType())/8;
753 // InitListExprs for structs have to be handled carefully. If there are
754 // reference members, we need to consider the size of the reference, not the
755 // referencee. InitListExprs for unions and arrays can't have references.
756 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
757 if (!RT->isUnionType()) {
758 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
759 uint64_t NumNonZeroBytes = 0;
761 unsigned ILEElement = 0;
762 for (RecordDecl::field_iterator Field = SD->field_begin(),
763 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
764 // We're done once we hit the flexible array member or run out of
765 // InitListExpr elements.
766 if (Field->getType()->isIncompleteArrayType() ||
767 ILEElement == ILE->getNumInits())
768 break;
769 if (Field->isUnnamedBitfield())
770 continue;
772 const Expr *E = ILE->getInit(ILEElement++);
774 // Reference values are always non-null and have the width of a pointer.
775 if (Field->getType()->isReferenceType())
776 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
777 else
778 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
781 return NumNonZeroBytes;
786 uint64_t NumNonZeroBytes = 0;
787 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
788 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
789 return NumNonZeroBytes;
792 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
793 /// zeros in it, emit a memset and avoid storing the individual zeros.
795 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
796 CodeGenFunction &CGF) {
797 // If the slot is already known to be zeroed, nothing to do. Don't mess with
798 // volatile stores.
799 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
801 // If the type is 16-bytes or smaller, prefer individual stores over memset.
802 std::pair<uint64_t, unsigned> TypeInfo =
803 CGF.getContext().getTypeInfo(E->getType());
804 if (TypeInfo.first/8 <= 16)
805 return;
807 // Check to see if over 3/4 of the initializer are known to be zero. If so,
808 // we prefer to emit memset + individual stores for the rest.
809 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
810 if (NumNonZeroBytes*4 > TypeInfo.first/8)
811 return;
813 // Okay, it seems like a good idea to use an initial memset, emit the call.
814 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
815 unsigned Align = TypeInfo.second/8;
817 llvm::Value *Loc = Slot.getAddr();
818 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
820 Loc = CGF.Builder.CreateBitCast(Loc, BP);
821 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
823 // Tell the AggExprEmitter that the slot is known zero.
824 Slot.setZeroed();
830 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
831 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
832 /// the value of the aggregate expression is not needed. If VolatileDest is
833 /// true, DestPtr cannot be 0.
835 /// \param IsInitializer - true if this evaluation is initializing an
836 /// object whose lifetime is already being managed.
838 // FIXME: Take Qualifiers object.
839 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
840 bool IgnoreResult) {
841 assert(E && hasAggregateLLVMType(E->getType()) &&
842 "Invalid aggregate expression to emit");
843 assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
844 "slot has bits but no address");
846 // Optimize the slot if possible.
847 CheckAggExprForMemSetUse(Slot, E, *this);
849 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
852 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
853 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
854 llvm::Value *Temp = CreateMemTemp(E->getType());
855 LValue LV = MakeAddrLValue(Temp, E->getType());
856 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
857 return LV;
860 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
861 llvm::Value *SrcPtr, QualType Ty,
862 bool isVolatile) {
863 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
865 if (getContext().getLangOptions().CPlusPlus) {
866 if (const RecordType *RT = Ty->getAs<RecordType>()) {
867 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
868 assert((Record->hasTrivialCopyConstructor() ||
869 Record->hasTrivialCopyAssignment()) &&
870 "Trying to aggregate-copy a type without a trivial copy "
871 "constructor or assignment operator");
872 // Ignore empty classes in C++.
873 if (Record->isEmpty())
874 return;
878 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
879 // C99 6.5.16.1p3, which states "If the value being stored in an object is
880 // read from another object that overlaps in anyway the storage of the first
881 // object, then the overlap shall be exact and the two objects shall have
882 // qualified or unqualified versions of a compatible type."
884 // memcpy is not defined if the source and destination pointers are exactly
885 // equal, but other compilers do this optimization, and almost every memcpy
886 // implementation handles this case safely. If there is a libc that does not
887 // safely handle this, we can add a target hook.
889 // Get size and alignment info for this aggregate.
890 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
892 // FIXME: Handle variable sized types.
894 // FIXME: If we have a volatile struct, the optimizer can remove what might
895 // appear to be `extra' memory ops:
897 // volatile struct { int i; } a, b;
899 // int main() {
900 // a = b;
901 // a = b;
902 // }
904 // we need to use a different call here. We use isVolatile to indicate when
905 // either the source or the destination is volatile.
907 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
908 const llvm::Type *DBP =
909 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
910 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
912 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
913 const llvm::Type *SBP =
914 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
915 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
917 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
918 RecordDecl *Record = RecordTy->getDecl();
919 if (Record->hasObjectMember()) {
920 unsigned long size = TypeInfo.first/8;
921 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
922 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
923 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
924 SizeVal);
925 return;
927 } else if (getContext().getAsArrayType(Ty)) {
928 QualType BaseType = getContext().getBaseElementType(Ty);
929 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
930 if (RecordTy->getDecl()->hasObjectMember()) {
931 unsigned long size = TypeInfo.first/8;
932 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
933 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
934 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
935 SizeVal);
936 return;
941 Builder.CreateMemCpy(DestPtr, SrcPtr,
942 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
943 TypeInfo.second/8, isVolatile);