[analyzer] Use the new registration mechanism on the non-path-sensitive-checkers:
[clang.git] / lib / CodeGen / CGExpr.cpp
blob1b7e7a007ed27d36099f7f8721375234ce18ef3e
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGRecordLayout.h"
19 #include "CGObjCRuntime.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "llvm/Intrinsics.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
28 //===--------------------------------------------------------------------===//
29 // Miscellaneous Helper Methods
30 //===--------------------------------------------------------------------===//
32 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
33 unsigned addressSpace =
34 cast<llvm::PointerType>(value->getType())->getAddressSpace();
36 const llvm::PointerType *destType = Int8PtrTy;
37 if (addressSpace)
38 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
40 if (value->getType() == destType) return value;
41 return Builder.CreateBitCast(value, destType);
44 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
45 /// block.
46 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
47 const llvm::Twine &Name) {
48 if (!Builder.isNamePreserving())
49 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
50 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
53 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
54 llvm::Value *Init) {
55 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
56 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
57 Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
60 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
61 const llvm::Twine &Name) {
62 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
63 // FIXME: Should we prefer the preferred type alignment here?
64 CharUnits Align = getContext().getTypeAlignInChars(Ty);
65 Alloc->setAlignment(Align.getQuantity());
66 return Alloc;
69 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
70 const llvm::Twine &Name) {
71 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
72 // FIXME: Should we prefer the preferred type alignment here?
73 CharUnits Align = getContext().getTypeAlignInChars(Ty);
74 Alloc->setAlignment(Align.getQuantity());
75 return Alloc;
78 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
79 /// expression and compare the result against zero, returning an Int1Ty value.
80 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
81 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
82 llvm::Value *MemPtr = EmitScalarExpr(E);
83 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
86 QualType BoolTy = getContext().BoolTy;
87 if (!E->getType()->isAnyComplexType())
88 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
90 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
93 /// EmitIgnoredExpr - Emit code to compute the specified expression,
94 /// ignoring the result.
95 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
96 if (E->isRValue())
97 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
99 // Just emit it as an l-value and drop the result.
100 EmitLValue(E);
103 /// EmitAnyExpr - Emit code to compute the specified expression which
104 /// can have any type. The result is returned as an RValue struct.
105 /// If this is an aggregate expression, AggSlot indicates where the
106 /// result should be returned.
107 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
108 bool IgnoreResult) {
109 if (!hasAggregateLLVMType(E->getType()))
110 return RValue::get(EmitScalarExpr(E, IgnoreResult));
111 else if (E->getType()->isAnyComplexType())
112 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
114 EmitAggExpr(E, AggSlot, IgnoreResult);
115 return AggSlot.asRValue();
118 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
119 /// always be accessible even if no aggregate location is provided.
120 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
121 AggValueSlot AggSlot = AggValueSlot::ignored();
123 if (hasAggregateLLVMType(E->getType()) &&
124 !E->getType()->isAnyComplexType())
125 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
126 return EmitAnyExpr(E, AggSlot);
129 /// EmitAnyExprToMem - Evaluate an expression into a given memory
130 /// location.
131 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
132 llvm::Value *Location,
133 bool IsLocationVolatile,
134 bool IsInit) {
135 if (E->getType()->isComplexType())
136 EmitComplexExprIntoAddr(E, Location, IsLocationVolatile);
137 else if (hasAggregateLLVMType(E->getType()))
138 EmitAggExpr(E, AggValueSlot::forAddr(Location, IsLocationVolatile, IsInit));
139 else {
140 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
141 LValue LV = MakeAddrLValue(Location, E->getType());
142 EmitStoreThroughLValue(RV, LV, E->getType());
146 namespace {
147 /// \brief An adjustment to be made to the temporary created when emitting a
148 /// reference binding, which accesses a particular subobject of that temporary.
149 struct SubobjectAdjustment {
150 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
152 union {
153 struct {
154 const CastExpr *BasePath;
155 const CXXRecordDecl *DerivedClass;
156 } DerivedToBase;
158 FieldDecl *Field;
161 SubobjectAdjustment(const CastExpr *BasePath,
162 const CXXRecordDecl *DerivedClass)
163 : Kind(DerivedToBaseAdjustment) {
164 DerivedToBase.BasePath = BasePath;
165 DerivedToBase.DerivedClass = DerivedClass;
168 SubobjectAdjustment(FieldDecl *Field)
169 : Kind(FieldAdjustment) {
170 this->Field = Field;
175 static llvm::Value *
176 CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type,
177 const NamedDecl *InitializedDecl) {
178 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
179 if (VD->hasGlobalStorage()) {
180 llvm::SmallString<256> Name;
181 llvm::raw_svector_ostream Out(Name);
182 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
183 Out.flush();
185 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
187 // Create the reference temporary.
188 llvm::GlobalValue *RefTemp =
189 new llvm::GlobalVariable(CGF.CGM.getModule(),
190 RefTempTy, /*isConstant=*/false,
191 llvm::GlobalValue::InternalLinkage,
192 llvm::Constant::getNullValue(RefTempTy),
193 Name.str());
194 return RefTemp;
198 return CGF.CreateMemTemp(Type, "ref.tmp");
201 static llvm::Value *
202 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
203 llvm::Value *&ReferenceTemporary,
204 const CXXDestructorDecl *&ReferenceTemporaryDtor,
205 const NamedDecl *InitializedDecl) {
206 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
207 E = DAE->getExpr();
209 if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
210 CodeGenFunction::RunCleanupsScope Scope(CGF);
212 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
213 ReferenceTemporary,
214 ReferenceTemporaryDtor,
215 InitializedDecl);
218 RValue RV;
219 if (E->isGLValue()) {
220 // Emit the expression as an lvalue.
221 LValue LV = CGF.EmitLValue(E);
222 if (LV.isSimple())
223 return LV.getAddress();
225 // We have to load the lvalue.
226 RV = CGF.EmitLoadOfLValue(LV, E->getType());
227 } else {
228 QualType ResultTy = E->getType();
230 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments;
231 while (true) {
232 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
233 E = PE->getSubExpr();
234 continue;
237 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
238 if ((CE->getCastKind() == CK_DerivedToBase ||
239 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
240 E->getType()->isRecordType()) {
241 E = CE->getSubExpr();
242 CXXRecordDecl *Derived
243 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
244 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
245 continue;
248 if (CE->getCastKind() == CK_NoOp) {
249 E = CE->getSubExpr();
250 continue;
252 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
253 if (!ME->isArrow() && ME->getBase()->isRValue()) {
254 assert(ME->getBase()->getType()->isRecordType());
255 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
256 E = ME->getBase();
257 Adjustments.push_back(SubobjectAdjustment(Field));
258 continue;
263 // Nothing changed.
264 break;
267 // Create a reference temporary if necessary.
268 AggValueSlot AggSlot = AggValueSlot::ignored();
269 if (CGF.hasAggregateLLVMType(E->getType()) &&
270 !E->getType()->isAnyComplexType()) {
271 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
272 InitializedDecl);
273 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, false,
274 InitializedDecl != 0);
277 RV = CGF.EmitAnyExpr(E, AggSlot);
279 if (InitializedDecl) {
280 // Get the destructor for the reference temporary.
281 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
282 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
283 if (!ClassDecl->hasTrivialDestructor())
284 ReferenceTemporaryDtor = ClassDecl->getDestructor();
288 // Check if need to perform derived-to-base casts and/or field accesses, to
289 // get from the temporary object we created (and, potentially, for which we
290 // extended the lifetime) to the subobject we're binding the reference to.
291 if (!Adjustments.empty()) {
292 llvm::Value *Object = RV.getAggregateAddr();
293 for (unsigned I = Adjustments.size(); I != 0; --I) {
294 SubobjectAdjustment &Adjustment = Adjustments[I-1];
295 switch (Adjustment.Kind) {
296 case SubobjectAdjustment::DerivedToBaseAdjustment:
297 Object =
298 CGF.GetAddressOfBaseClass(Object,
299 Adjustment.DerivedToBase.DerivedClass,
300 Adjustment.DerivedToBase.BasePath->path_begin(),
301 Adjustment.DerivedToBase.BasePath->path_end(),
302 /*NullCheckValue=*/false);
303 break;
305 case SubobjectAdjustment::FieldAdjustment: {
306 LValue LV =
307 CGF.EmitLValueForField(Object, Adjustment.Field, 0);
308 if (LV.isSimple()) {
309 Object = LV.getAddress();
310 break;
313 // For non-simple lvalues, we actually have to create a copy of
314 // the object we're binding to.
315 QualType T = Adjustment.Field->getType().getNonReferenceType()
316 .getUnqualifiedType();
317 Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
318 LValue TempLV = CGF.MakeAddrLValue(Object,
319 Adjustment.Field->getType());
320 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T);
321 break;
327 const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo();
328 return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp");
332 if (RV.isAggregate())
333 return RV.getAggregateAddr();
335 // Create a temporary variable that we can bind the reference to.
336 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
337 InitializedDecl);
340 unsigned Alignment =
341 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
342 if (RV.isScalar())
343 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
344 /*Volatile=*/false, Alignment, E->getType());
345 else
346 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
347 /*Volatile=*/false);
348 return ReferenceTemporary;
351 RValue
352 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
353 const NamedDecl *InitializedDecl) {
354 llvm::Value *ReferenceTemporary = 0;
355 const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
356 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
357 ReferenceTemporaryDtor,
358 InitializedDecl);
359 if (!ReferenceTemporaryDtor)
360 return RValue::get(Value);
362 // Make sure to call the destructor for the reference temporary.
363 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
364 if (VD->hasGlobalStorage()) {
365 llvm::Constant *DtorFn =
366 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
367 EmitCXXGlobalDtorRegistration(DtorFn,
368 cast<llvm::Constant>(ReferenceTemporary));
370 return RValue::get(Value);
374 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
376 return RValue::get(Value);
380 /// getAccessedFieldNo - Given an encoded value and a result number, return the
381 /// input field number being accessed.
382 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
383 const llvm::Constant *Elts) {
384 if (isa<llvm::ConstantAggregateZero>(Elts))
385 return 0;
387 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
390 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
391 if (!CatchUndefined)
392 return;
394 // This needs to be to the standard address space.
395 Address = Builder.CreateBitCast(Address, Int8PtrTy);
397 const llvm::Type *IntPtrT = IntPtrTy;
398 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1);
400 // In time, people may want to control this and use a 1 here.
401 llvm::Value *Arg = Builder.getFalse();
402 llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
403 llvm::BasicBlock *Cont = createBasicBlock();
404 llvm::BasicBlock *Check = createBasicBlock();
405 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
406 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
408 EmitBlock(Check);
409 Builder.CreateCondBr(Builder.CreateICmpUGE(C,
410 llvm::ConstantInt::get(IntPtrTy, Size)),
411 Cont, getTrapBB());
412 EmitBlock(Cont);
416 CodeGenFunction::ComplexPairTy CodeGenFunction::
417 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
418 bool isInc, bool isPre) {
419 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
420 LV.isVolatileQualified());
422 llvm::Value *NextVal;
423 if (isa<llvm::IntegerType>(InVal.first->getType())) {
424 uint64_t AmountVal = isInc ? 1 : -1;
425 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
427 // Add the inc/dec to the real part.
428 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
429 } else {
430 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
431 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
432 if (!isInc)
433 FVal.changeSign();
434 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
436 // Add the inc/dec to the real part.
437 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
440 ComplexPairTy IncVal(NextVal, InVal.second);
442 // Store the updated result through the lvalue.
443 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
445 // If this is a postinc, return the value read from memory, otherwise use the
446 // updated value.
447 return isPre ? IncVal : InVal;
451 //===----------------------------------------------------------------------===//
452 // LValue Expression Emission
453 //===----------------------------------------------------------------------===//
455 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
456 if (Ty->isVoidType())
457 return RValue::get(0);
459 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
460 const llvm::Type *EltTy = ConvertType(CTy->getElementType());
461 llvm::Value *U = llvm::UndefValue::get(EltTy);
462 return RValue::getComplex(std::make_pair(U, U));
465 // If this is a use of an undefined aggregate type, the aggregate must have an
466 // identifiable address. Just because the contents of the value are undefined
467 // doesn't mean that the address can't be taken and compared.
468 if (hasAggregateLLVMType(Ty)) {
469 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
470 return RValue::getAggregate(DestPtr);
473 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
476 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
477 const char *Name) {
478 ErrorUnsupported(E, Name);
479 return GetUndefRValue(E->getType());
482 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
483 const char *Name) {
484 ErrorUnsupported(E, Name);
485 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
486 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
489 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
490 LValue LV = EmitLValue(E);
491 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
492 EmitCheck(LV.getAddress(),
493 getContext().getTypeSizeInChars(E->getType()).getQuantity());
494 return LV;
497 /// EmitLValue - Emit code to compute a designator that specifies the location
498 /// of the expression.
500 /// This can return one of two things: a simple address or a bitfield reference.
501 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
502 /// an LLVM pointer type.
504 /// If this returns a bitfield reference, nothing about the pointee type of the
505 /// LLVM value is known: For example, it may not be a pointer to an integer.
507 /// If this returns a normal address, and if the lvalue's C type is fixed size,
508 /// this method guarantees that the returned pointer type will point to an LLVM
509 /// type of the same size of the lvalue's type. If the lvalue has a variable
510 /// length type, this is not possible.
512 LValue CodeGenFunction::EmitLValue(const Expr *E) {
513 switch (E->getStmtClass()) {
514 default: return EmitUnsupportedLValue(E, "l-value expression");
516 case Expr::ObjCSelectorExprClass:
517 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
518 case Expr::ObjCIsaExprClass:
519 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
520 case Expr::BinaryOperatorClass:
521 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
522 case Expr::CompoundAssignOperatorClass:
523 if (!E->getType()->isAnyComplexType())
524 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
525 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
526 case Expr::CallExprClass:
527 case Expr::CXXMemberCallExprClass:
528 case Expr::CXXOperatorCallExprClass:
529 return EmitCallExprLValue(cast<CallExpr>(E));
530 case Expr::VAArgExprClass:
531 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
532 case Expr::DeclRefExprClass:
533 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
534 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
535 case Expr::PredefinedExprClass:
536 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
537 case Expr::StringLiteralClass:
538 return EmitStringLiteralLValue(cast<StringLiteral>(E));
539 case Expr::ObjCEncodeExprClass:
540 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
542 case Expr::BlockDeclRefExprClass:
543 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
545 case Expr::CXXTemporaryObjectExprClass:
546 case Expr::CXXConstructExprClass:
547 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
548 case Expr::CXXBindTemporaryExprClass:
549 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
550 case Expr::ExprWithCleanupsClass:
551 return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
552 case Expr::CXXScalarValueInitExprClass:
553 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
554 case Expr::CXXDefaultArgExprClass:
555 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
556 case Expr::CXXTypeidExprClass:
557 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
559 case Expr::ObjCMessageExprClass:
560 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
561 case Expr::ObjCIvarRefExprClass:
562 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
563 case Expr::ObjCPropertyRefExprClass:
564 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
565 case Expr::StmtExprClass:
566 return EmitStmtExprLValue(cast<StmtExpr>(E));
567 case Expr::UnaryOperatorClass:
568 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
569 case Expr::ArraySubscriptExprClass:
570 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
571 case Expr::ExtVectorElementExprClass:
572 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
573 case Expr::MemberExprClass:
574 return EmitMemberExpr(cast<MemberExpr>(E));
575 case Expr::CompoundLiteralExprClass:
576 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
577 case Expr::ConditionalOperatorClass:
578 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
579 case Expr::BinaryConditionalOperatorClass:
580 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
581 case Expr::ChooseExprClass:
582 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
583 case Expr::OpaqueValueExprClass:
584 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
585 case Expr::ImplicitCastExprClass:
586 case Expr::CStyleCastExprClass:
587 case Expr::CXXFunctionalCastExprClass:
588 case Expr::CXXStaticCastExprClass:
589 case Expr::CXXDynamicCastExprClass:
590 case Expr::CXXReinterpretCastExprClass:
591 case Expr::CXXConstCastExprClass:
592 return EmitCastLValue(cast<CastExpr>(E));
596 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
597 unsigned Alignment, QualType Ty,
598 llvm::MDNode *TBAAInfo) {
599 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
600 if (Volatile)
601 Load->setVolatile(true);
602 if (Alignment)
603 Load->setAlignment(Alignment);
604 if (TBAAInfo)
605 CGM.DecorateInstruction(Load, TBAAInfo);
607 return EmitFromMemory(Load, Ty);
610 static bool isBooleanUnderlyingType(QualType Ty) {
611 if (const EnumType *ET = dyn_cast<EnumType>(Ty))
612 return ET->getDecl()->getIntegerType()->isBooleanType();
613 return false;
616 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
617 // Bool has a different representation in memory than in registers.
618 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
619 // This should really always be an i1, but sometimes it's already
620 // an i8, and it's awkward to track those cases down.
621 if (Value->getType()->isIntegerTy(1))
622 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
623 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
626 return Value;
629 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
630 // Bool has a different representation in memory than in registers.
631 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
632 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
633 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
636 return Value;
639 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
640 bool Volatile, unsigned Alignment,
641 QualType Ty,
642 llvm::MDNode *TBAAInfo) {
643 Value = EmitToMemory(Value, Ty);
644 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
645 if (Alignment)
646 Store->setAlignment(Alignment);
647 if (TBAAInfo)
648 CGM.DecorateInstruction(Store, TBAAInfo);
651 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
652 /// method emits the address of the lvalue, then loads the result as an rvalue,
653 /// returning the rvalue.
654 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
655 if (LV.isObjCWeak()) {
656 // load of a __weak object.
657 llvm::Value *AddrWeakObj = LV.getAddress();
658 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
659 AddrWeakObj));
662 if (LV.isSimple()) {
663 llvm::Value *Ptr = LV.getAddress();
665 // Functions are l-values that don't require loading.
666 if (ExprType->isFunctionType())
667 return RValue::get(Ptr);
669 // Everything needs a load.
670 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
671 LV.getAlignment(), ExprType,
672 LV.getTBAAInfo()));
676 if (LV.isVectorElt()) {
677 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
678 LV.isVolatileQualified(), "tmp");
679 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
680 "vecext"));
683 // If this is a reference to a subset of the elements of a vector, either
684 // shuffle the input or extract/insert them as appropriate.
685 if (LV.isExtVectorElt())
686 return EmitLoadOfExtVectorElementLValue(LV, ExprType);
688 if (LV.isBitField())
689 return EmitLoadOfBitfieldLValue(LV, ExprType);
691 assert(LV.isPropertyRef() && "Unknown LValue type!");
692 return EmitLoadOfPropertyRefLValue(LV);
695 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
696 QualType ExprType) {
697 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
699 // Get the output type.
700 const llvm::Type *ResLTy = ConvertType(ExprType);
701 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
703 // Compute the result as an OR of all of the individual component accesses.
704 llvm::Value *Res = 0;
705 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
706 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
708 // Get the field pointer.
709 llvm::Value *Ptr = LV.getBitFieldBaseAddr();
711 // Only offset by the field index if used, so that incoming values are not
712 // required to be structures.
713 if (AI.FieldIndex)
714 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
716 // Offset by the byte offset, if used.
717 if (AI.FieldByteOffset) {
718 Ptr = EmitCastToVoidPtr(Ptr);
719 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs");
722 // Cast to the access type.
723 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
724 AI.AccessWidth,
725 ExprType.getAddressSpace());
726 Ptr = Builder.CreateBitCast(Ptr, PTy);
728 // Perform the load.
729 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
730 if (AI.AccessAlignment)
731 Load->setAlignment(AI.AccessAlignment);
733 // Shift out unused low bits and mask out unused high bits.
734 llvm::Value *Val = Load;
735 if (AI.FieldBitStart)
736 Val = Builder.CreateLShr(Load, AI.FieldBitStart);
737 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
738 AI.TargetBitWidth),
739 "bf.clear");
741 // Extend or truncate to the target size.
742 if (AI.AccessWidth < ResSizeInBits)
743 Val = Builder.CreateZExt(Val, ResLTy);
744 else if (AI.AccessWidth > ResSizeInBits)
745 Val = Builder.CreateTrunc(Val, ResLTy);
747 // Shift into place, and OR into the result.
748 if (AI.TargetBitOffset)
749 Val = Builder.CreateShl(Val, AI.TargetBitOffset);
750 Res = Res ? Builder.CreateOr(Res, Val) : Val;
753 // If the bit-field is signed, perform the sign-extension.
755 // FIXME: This can easily be folded into the load of the high bits, which
756 // could also eliminate the mask of high bits in some situations.
757 if (Info.isSigned()) {
758 unsigned ExtraBits = ResSizeInBits - Info.getSize();
759 if (ExtraBits)
760 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
761 ExtraBits, "bf.val.sext");
764 return RValue::get(Res);
767 // If this is a reference to a subset of the elements of a vector, create an
768 // appropriate shufflevector.
769 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
770 QualType ExprType) {
771 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
772 LV.isVolatileQualified(), "tmp");
774 const llvm::Constant *Elts = LV.getExtVectorElts();
776 // If the result of the expression is a non-vector type, we must be extracting
777 // a single element. Just codegen as an extractelement.
778 const VectorType *ExprVT = ExprType->getAs<VectorType>();
779 if (!ExprVT) {
780 unsigned InIdx = getAccessedFieldNo(0, Elts);
781 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
782 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
785 // Always use shuffle vector to try to retain the original program structure
786 unsigned NumResultElts = ExprVT->getNumElements();
788 llvm::SmallVector<llvm::Constant*, 4> Mask;
789 for (unsigned i = 0; i != NumResultElts; ++i) {
790 unsigned InIdx = getAccessedFieldNo(i, Elts);
791 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
794 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
795 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
796 MaskV, "tmp");
797 return RValue::get(Vec);
802 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
803 /// lvalue, where both are guaranteed to the have the same type, and that type
804 /// is 'Ty'.
805 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
806 QualType Ty) {
807 if (!Dst.isSimple()) {
808 if (Dst.isVectorElt()) {
809 // Read/modify/write the vector, inserting the new element.
810 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
811 Dst.isVolatileQualified(), "tmp");
812 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
813 Dst.getVectorIdx(), "vecins");
814 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
815 return;
818 // If this is an update of extended vector elements, insert them as
819 // appropriate.
820 if (Dst.isExtVectorElt())
821 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
823 if (Dst.isBitField())
824 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
826 assert(Dst.isPropertyRef() && "Unknown LValue type");
827 return EmitStoreThroughPropertyRefLValue(Src, Dst);
830 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
831 // load of a __weak object.
832 llvm::Value *LvalueDst = Dst.getAddress();
833 llvm::Value *src = Src.getScalarVal();
834 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
835 return;
838 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
839 // load of a __strong object.
840 llvm::Value *LvalueDst = Dst.getAddress();
841 llvm::Value *src = Src.getScalarVal();
842 if (Dst.isObjCIvar()) {
843 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
844 const llvm::Type *ResultType = ConvertType(getContext().LongTy);
845 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
846 llvm::Value *dst = RHS;
847 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
848 llvm::Value *LHS =
849 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
850 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
851 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
852 BytesBetween);
853 } else if (Dst.isGlobalObjCRef()) {
854 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
855 Dst.isThreadLocalRef());
857 else
858 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
859 return;
862 assert(Src.isScalar() && "Can't emit an agg store with this method");
863 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
864 Dst.isVolatileQualified(), Dst.getAlignment(), Ty,
865 Dst.getTBAAInfo());
868 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
869 QualType Ty,
870 llvm::Value **Result) {
871 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
873 // Get the output type.
874 const llvm::Type *ResLTy = ConvertTypeForMem(Ty);
875 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
877 // Get the source value, truncated to the width of the bit-field.
878 llvm::Value *SrcVal = Src.getScalarVal();
880 if (Ty->isBooleanType())
881 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
883 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
884 Info.getSize()),
885 "bf.value");
887 // Return the new value of the bit-field, if requested.
888 if (Result) {
889 // Cast back to the proper type for result.
890 const llvm::Type *SrcTy = Src.getScalarVal()->getType();
891 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
892 "bf.reload.val");
894 // Sign extend if necessary.
895 if (Info.isSigned()) {
896 unsigned ExtraBits = ResSizeInBits - Info.getSize();
897 if (ExtraBits)
898 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
899 ExtraBits, "bf.reload.sext");
902 *Result = ReloadVal;
905 // Iterate over the components, writing each piece to memory.
906 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
907 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
909 // Get the field pointer.
910 llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
911 unsigned addressSpace =
912 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
914 // Only offset by the field index if used, so that incoming values are not
915 // required to be structures.
916 if (AI.FieldIndex)
917 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
919 // Offset by the byte offset, if used.
920 if (AI.FieldByteOffset) {
921 Ptr = EmitCastToVoidPtr(Ptr);
922 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs");
925 // Cast to the access type.
926 const llvm::Type *AccessLTy =
927 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
929 const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
930 Ptr = Builder.CreateBitCast(Ptr, PTy);
932 // Extract the piece of the bit-field value to write in this access, limited
933 // to the values that are part of this access.
934 llvm::Value *Val = SrcVal;
935 if (AI.TargetBitOffset)
936 Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
937 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
938 AI.TargetBitWidth));
940 // Extend or truncate to the access size.
941 if (ResSizeInBits < AI.AccessWidth)
942 Val = Builder.CreateZExt(Val, AccessLTy);
943 else if (ResSizeInBits > AI.AccessWidth)
944 Val = Builder.CreateTrunc(Val, AccessLTy);
946 // Shift into the position in memory.
947 if (AI.FieldBitStart)
948 Val = Builder.CreateShl(Val, AI.FieldBitStart);
950 // If necessary, load and OR in bits that are outside of the bit-field.
951 if (AI.TargetBitWidth != AI.AccessWidth) {
952 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
953 if (AI.AccessAlignment)
954 Load->setAlignment(AI.AccessAlignment);
956 // Compute the mask for zeroing the bits that are part of the bit-field.
957 llvm::APInt InvMask =
958 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
959 AI.FieldBitStart + AI.TargetBitWidth);
961 // Apply the mask and OR in to the value to write.
962 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
965 // Write the value.
966 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
967 Dst.isVolatileQualified());
968 if (AI.AccessAlignment)
969 Store->setAlignment(AI.AccessAlignment);
973 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
974 LValue Dst,
975 QualType Ty) {
976 // This access turns into a read/modify/write of the vector. Load the input
977 // value now.
978 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
979 Dst.isVolatileQualified(), "tmp");
980 const llvm::Constant *Elts = Dst.getExtVectorElts();
982 llvm::Value *SrcVal = Src.getScalarVal();
984 if (const VectorType *VTy = Ty->getAs<VectorType>()) {
985 unsigned NumSrcElts = VTy->getNumElements();
986 unsigned NumDstElts =
987 cast<llvm::VectorType>(Vec->getType())->getNumElements();
988 if (NumDstElts == NumSrcElts) {
989 // Use shuffle vector is the src and destination are the same number of
990 // elements and restore the vector mask since it is on the side it will be
991 // stored.
992 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
993 for (unsigned i = 0; i != NumSrcElts; ++i) {
994 unsigned InIdx = getAccessedFieldNo(i, Elts);
995 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
998 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
999 Vec = Builder.CreateShuffleVector(SrcVal,
1000 llvm::UndefValue::get(Vec->getType()),
1001 MaskV, "tmp");
1002 } else if (NumDstElts > NumSrcElts) {
1003 // Extended the source vector to the same length and then shuffle it
1004 // into the destination.
1005 // FIXME: since we're shuffling with undef, can we just use the indices
1006 // into that? This could be simpler.
1007 llvm::SmallVector<llvm::Constant*, 4> ExtMask;
1008 unsigned i;
1009 for (i = 0; i != NumSrcElts; ++i)
1010 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1011 for (; i != NumDstElts; ++i)
1012 ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1013 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1014 llvm::Value *ExtSrcVal =
1015 Builder.CreateShuffleVector(SrcVal,
1016 llvm::UndefValue::get(SrcVal->getType()),
1017 ExtMaskV, "tmp");
1018 // build identity
1019 llvm::SmallVector<llvm::Constant*, 4> Mask;
1020 for (unsigned i = 0; i != NumDstElts; ++i)
1021 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1023 // modify when what gets shuffled in
1024 for (unsigned i = 0; i != NumSrcElts; ++i) {
1025 unsigned Idx = getAccessedFieldNo(i, Elts);
1026 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1028 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1029 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
1030 } else {
1031 // We should never shorten the vector
1032 assert(0 && "unexpected shorten vector length");
1034 } else {
1035 // If the Src is a scalar (not a vector) it must be updating one element.
1036 unsigned InIdx = getAccessedFieldNo(0, Elts);
1037 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1038 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
1041 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1044 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1045 // generating write-barries API. It is currently a global, ivar,
1046 // or neither.
1047 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1048 LValue &LV) {
1049 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
1050 return;
1052 if (isa<ObjCIvarRefExpr>(E)) {
1053 LV.setObjCIvar(true);
1054 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1055 LV.setBaseIvarExp(Exp->getBase());
1056 LV.setObjCArray(E->getType()->isArrayType());
1057 return;
1060 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1061 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1062 if (VD->hasGlobalStorage()) {
1063 LV.setGlobalObjCRef(true);
1064 LV.setThreadLocalRef(VD->isThreadSpecified());
1067 LV.setObjCArray(E->getType()->isArrayType());
1068 return;
1071 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1072 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1073 return;
1076 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1077 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1078 if (LV.isObjCIvar()) {
1079 // If cast is to a structure pointer, follow gcc's behavior and make it
1080 // a non-ivar write-barrier.
1081 QualType ExpTy = E->getType();
1082 if (ExpTy->isPointerType())
1083 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1084 if (ExpTy->isRecordType())
1085 LV.setObjCIvar(false);
1087 return;
1089 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1090 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1091 return;
1094 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1095 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1096 return;
1099 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1100 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1101 if (LV.isObjCIvar() && !LV.isObjCArray())
1102 // Using array syntax to assigning to what an ivar points to is not
1103 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1104 LV.setObjCIvar(false);
1105 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1106 // Using array syntax to assigning to what global points to is not
1107 // same as assigning to the global itself. {id *G;} G[i] = 0;
1108 LV.setGlobalObjCRef(false);
1109 return;
1112 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1113 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1114 // We don't know if member is an 'ivar', but this flag is looked at
1115 // only in the context of LV.isObjCIvar().
1116 LV.setObjCArray(E->getType()->isArrayType());
1117 return;
1121 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1122 const Expr *E, const VarDecl *VD) {
1123 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1124 "Var decl must have external storage or be a file var decl!");
1126 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1127 if (VD->getType()->isReferenceType())
1128 V = CGF.Builder.CreateLoad(V, "tmp");
1129 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1130 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1131 setObjCGCLValueClass(CGF.getContext(), E, LV);
1132 return LV;
1135 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1136 const Expr *E, const FunctionDecl *FD) {
1137 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1138 if (!FD->hasPrototype()) {
1139 if (const FunctionProtoType *Proto =
1140 FD->getType()->getAs<FunctionProtoType>()) {
1141 // Ugly case: for a K&R-style definition, the type of the definition
1142 // isn't the same as the type of a use. Correct for this with a
1143 // bitcast.
1144 QualType NoProtoType =
1145 CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1146 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1147 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1150 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1151 return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1154 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1155 const NamedDecl *ND = E->getDecl();
1156 unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1158 if (ND->hasAttr<WeakRefAttr>()) {
1159 const ValueDecl *VD = cast<ValueDecl>(ND);
1160 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1161 return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1164 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1166 // Check if this is a global variable.
1167 if (VD->hasExternalStorage() || VD->isFileVarDecl())
1168 return EmitGlobalVarDeclLValue(*this, E, VD);
1170 bool NonGCable = VD->hasLocalStorage() &&
1171 !VD->getType()->isReferenceType() &&
1172 !VD->hasAttr<BlocksAttr>();
1174 llvm::Value *V = LocalDeclMap[VD];
1175 if (!V && VD->isStaticLocal())
1176 V = CGM.getStaticLocalDeclAddress(VD);
1177 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1179 if (VD->hasAttr<BlocksAttr>())
1180 V = BuildBlockByrefAddress(V, VD);
1182 if (VD->getType()->isReferenceType())
1183 V = Builder.CreateLoad(V, "tmp");
1185 LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1186 if (NonGCable) {
1187 LV.getQuals().removeObjCGCAttr();
1188 LV.setNonGC(true);
1190 setObjCGCLValueClass(getContext(), E, LV);
1191 return LV;
1194 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1195 return EmitFunctionDeclLValue(*this, E, fn);
1197 assert(false && "Unhandled DeclRefExpr");
1199 // an invalid LValue, but the assert will
1200 // ensure that this point is never reached.
1201 return LValue();
1204 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1205 unsigned Alignment =
1206 getContext().getDeclAlign(E->getDecl()).getQuantity();
1207 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1210 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1211 // __extension__ doesn't affect lvalue-ness.
1212 if (E->getOpcode() == UO_Extension)
1213 return EmitLValue(E->getSubExpr());
1215 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1216 switch (E->getOpcode()) {
1217 default: assert(0 && "Unknown unary operator lvalue!");
1218 case UO_Deref: {
1219 QualType T = E->getSubExpr()->getType()->getPointeeType();
1220 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1222 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1223 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1225 // We should not generate __weak write barrier on indirect reference
1226 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1227 // But, we continue to generate __strong write barrier on indirect write
1228 // into a pointer to object.
1229 if (getContext().getLangOptions().ObjC1 &&
1230 getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1231 LV.isObjCWeak())
1232 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1233 return LV;
1235 case UO_Real:
1236 case UO_Imag: {
1237 LValue LV = EmitLValue(E->getSubExpr());
1238 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1239 llvm::Value *Addr = LV.getAddress();
1241 // real and imag are valid on scalars. This is a faster way of
1242 // testing that.
1243 if (!cast<llvm::PointerType>(Addr->getType())
1244 ->getElementType()->isStructTy()) {
1245 assert(E->getSubExpr()->getType()->isArithmeticType());
1246 return LV;
1249 assert(E->getSubExpr()->getType()->isAnyComplexType());
1251 unsigned Idx = E->getOpcode() == UO_Imag;
1252 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1253 Idx, "idx"),
1254 ExprTy);
1256 case UO_PreInc:
1257 case UO_PreDec: {
1258 LValue LV = EmitLValue(E->getSubExpr());
1259 bool isInc = E->getOpcode() == UO_PreInc;
1261 if (E->getType()->isAnyComplexType())
1262 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1263 else
1264 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1265 return LV;
1270 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1271 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1272 E->getType());
1275 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1276 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1277 E->getType());
1281 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1282 switch (E->getIdentType()) {
1283 default:
1284 return EmitUnsupportedLValue(E, "predefined expression");
1286 case PredefinedExpr::Func:
1287 case PredefinedExpr::Function:
1288 case PredefinedExpr::PrettyFunction: {
1289 unsigned Type = E->getIdentType();
1290 std::string GlobalVarName;
1292 switch (Type) {
1293 default: assert(0 && "Invalid type");
1294 case PredefinedExpr::Func:
1295 GlobalVarName = "__func__.";
1296 break;
1297 case PredefinedExpr::Function:
1298 GlobalVarName = "__FUNCTION__.";
1299 break;
1300 case PredefinedExpr::PrettyFunction:
1301 GlobalVarName = "__PRETTY_FUNCTION__.";
1302 break;
1305 llvm::StringRef FnName = CurFn->getName();
1306 if (FnName.startswith("\01"))
1307 FnName = FnName.substr(1);
1308 GlobalVarName += FnName;
1310 const Decl *CurDecl = CurCodeDecl;
1311 if (CurDecl == 0)
1312 CurDecl = getContext().getTranslationUnitDecl();
1314 std::string FunctionName =
1315 (isa<BlockDecl>(CurDecl)
1316 ? FnName.str()
1317 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1319 llvm::Constant *C =
1320 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1321 return MakeAddrLValue(C, E->getType());
1326 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1327 const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1329 // If we are not optimzing, don't collapse all calls to trap in the function
1330 // to the same call, that way, in the debugger they can see which operation
1331 // did in fact fail. If we are optimizing, we collapse all calls to trap down
1332 // to just one per function to save on codesize.
1333 if (GCO.OptimizationLevel && TrapBB)
1334 return TrapBB;
1336 llvm::BasicBlock *Cont = 0;
1337 if (HaveInsertPoint()) {
1338 Cont = createBasicBlock("cont");
1339 EmitBranch(Cont);
1341 TrapBB = createBasicBlock("trap");
1342 EmitBlock(TrapBB);
1344 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1345 llvm::CallInst *TrapCall = Builder.CreateCall(F);
1346 TrapCall->setDoesNotReturn();
1347 TrapCall->setDoesNotThrow();
1348 Builder.CreateUnreachable();
1350 if (Cont)
1351 EmitBlock(Cont);
1352 return TrapBB;
1355 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1356 /// array to pointer, return the array subexpression.
1357 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1358 // If this isn't just an array->pointer decay, bail out.
1359 const CastExpr *CE = dyn_cast<CastExpr>(E);
1360 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1361 return 0;
1363 // If this is a decay from variable width array, bail out.
1364 const Expr *SubExpr = CE->getSubExpr();
1365 if (SubExpr->getType()->isVariableArrayType())
1366 return 0;
1368 return SubExpr;
1371 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1372 // The index must always be an integer, which is not an aggregate. Emit it.
1373 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1374 QualType IdxTy = E->getIdx()->getType();
1375 bool IdxSigned = IdxTy->isSignedIntegerType();
1377 // If the base is a vector type, then we are forming a vector element lvalue
1378 // with this subscript.
1379 if (E->getBase()->getType()->isVectorType()) {
1380 // Emit the vector as an lvalue to get its address.
1381 LValue LHS = EmitLValue(E->getBase());
1382 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1383 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1384 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1385 E->getBase()->getType().getCVRQualifiers());
1388 // Extend or truncate the index type to 32 or 64-bits.
1389 if (Idx->getType() != IntPtrTy)
1390 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1392 // FIXME: As llvm implements the object size checking, this can come out.
1393 if (CatchUndefined) {
1394 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1395 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1396 if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1397 if (const ConstantArrayType *CAT
1398 = getContext().getAsConstantArrayType(DRE->getType())) {
1399 llvm::APInt Size = CAT->getSize();
1400 llvm::BasicBlock *Cont = createBasicBlock("cont");
1401 Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1402 llvm::ConstantInt::get(Idx->getType(), Size)),
1403 Cont, getTrapBB());
1404 EmitBlock(Cont);
1411 // We know that the pointer points to a type of the correct size, unless the
1412 // size is a VLA or Objective-C interface.
1413 llvm::Value *Address = 0;
1414 if (const VariableArrayType *VAT =
1415 getContext().getAsVariableArrayType(E->getType())) {
1416 llvm::Value *VLASize = GetVLASize(VAT);
1418 Idx = Builder.CreateMul(Idx, VLASize);
1420 // The base must be a pointer, which is not an aggregate. Emit it.
1421 llvm::Value *Base = EmitScalarExpr(E->getBase());
1423 Address = EmitCastToVoidPtr(Base);
1424 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1425 Address = Builder.CreateBitCast(Address, Base->getType());
1426 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1427 // Indexing over an interface, as in "NSString *P; P[4];"
1428 llvm::Value *InterfaceSize =
1429 llvm::ConstantInt::get(Idx->getType(),
1430 getContext().getTypeSizeInChars(OIT).getQuantity());
1432 Idx = Builder.CreateMul(Idx, InterfaceSize);
1434 // The base must be a pointer, which is not an aggregate. Emit it.
1435 llvm::Value *Base = EmitScalarExpr(E->getBase());
1436 Address = EmitCastToVoidPtr(Base);
1437 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1438 Address = Builder.CreateBitCast(Address, Base->getType());
1439 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1440 // If this is A[i] where A is an array, the frontend will have decayed the
1441 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
1442 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1443 // "gep x, i" here. Emit one "gep A, 0, i".
1444 assert(Array->getType()->isArrayType() &&
1445 "Array to pointer decay must have array source type!");
1446 llvm::Value *ArrayPtr = EmitLValue(Array).getAddress();
1447 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1448 llvm::Value *Args[] = { Zero, Idx };
1450 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx");
1451 } else {
1452 // The base must be a pointer, which is not an aggregate. Emit it.
1453 llvm::Value *Base = EmitScalarExpr(E->getBase());
1454 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1457 QualType T = E->getBase()->getType()->getPointeeType();
1458 assert(!T.isNull() &&
1459 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1461 LValue LV = MakeAddrLValue(Address, T);
1462 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1464 if (getContext().getLangOptions().ObjC1 &&
1465 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1466 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1467 setObjCGCLValueClass(getContext(), E, LV);
1469 return LV;
1472 static
1473 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1474 llvm::SmallVector<unsigned, 4> &Elts) {
1475 llvm::SmallVector<llvm::Constant*, 4> CElts;
1477 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1478 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1479 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1481 return llvm::ConstantVector::get(CElts);
1484 LValue CodeGenFunction::
1485 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1486 // Emit the base vector as an l-value.
1487 LValue Base;
1489 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1490 if (E->isArrow()) {
1491 // If it is a pointer to a vector, emit the address and form an lvalue with
1492 // it.
1493 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1494 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1495 Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1496 Base.getQuals().removeObjCGCAttr();
1497 } else if (E->getBase()->isGLValue()) {
1498 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1499 // emit the base as an lvalue.
1500 assert(E->getBase()->getType()->isVectorType());
1501 Base = EmitLValue(E->getBase());
1502 } else {
1503 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1504 assert(E->getBase()->getType()->getAs<VectorType>() &&
1505 "Result must be a vector");
1506 llvm::Value *Vec = EmitScalarExpr(E->getBase());
1508 // Store the vector to memory (because LValue wants an address).
1509 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1510 Builder.CreateStore(Vec, VecMem);
1511 Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1514 // Encode the element access list into a vector of unsigned indices.
1515 llvm::SmallVector<unsigned, 4> Indices;
1516 E->getEncodedElementAccess(Indices);
1518 if (Base.isSimple()) {
1519 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1520 return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1521 Base.getVRQualifiers());
1523 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1525 llvm::Constant *BaseElts = Base.getExtVectorElts();
1526 llvm::SmallVector<llvm::Constant *, 4> CElts;
1528 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1529 if (isa<llvm::ConstantAggregateZero>(BaseElts))
1530 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1531 else
1532 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1534 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1535 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1536 Base.getVRQualifiers());
1539 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1540 bool isNonGC = false;
1541 Expr *BaseExpr = E->getBase();
1542 llvm::Value *BaseValue = NULL;
1543 Qualifiers BaseQuals;
1545 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
1546 if (E->isArrow()) {
1547 BaseValue = EmitScalarExpr(BaseExpr);
1548 const PointerType *PTy =
1549 BaseExpr->getType()->getAs<PointerType>();
1550 BaseQuals = PTy->getPointeeType().getQualifiers();
1551 } else {
1552 LValue BaseLV = EmitLValue(BaseExpr);
1553 if (BaseLV.isNonGC())
1554 isNonGC = true;
1555 // FIXME: this isn't right for bitfields.
1556 BaseValue = BaseLV.getAddress();
1557 QualType BaseTy = BaseExpr->getType();
1558 BaseQuals = BaseTy.getQualifiers();
1561 NamedDecl *ND = E->getMemberDecl();
1562 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1563 LValue LV = EmitLValueForField(BaseValue, Field,
1564 BaseQuals.getCVRQualifiers());
1565 LV.setNonGC(isNonGC);
1566 setObjCGCLValueClass(getContext(), E, LV);
1567 return LV;
1570 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1571 return EmitGlobalVarDeclLValue(*this, E, VD);
1573 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1574 return EmitFunctionDeclLValue(*this, E, FD);
1576 assert(false && "Unhandled member declaration!");
1577 return LValue();
1580 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1581 const FieldDecl *Field,
1582 unsigned CVRQualifiers) {
1583 const CGRecordLayout &RL =
1584 CGM.getTypes().getCGRecordLayout(Field->getParent());
1585 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1586 return LValue::MakeBitfield(BaseValue, Info,
1587 Field->getType().getCVRQualifiers()|CVRQualifiers);
1590 /// EmitLValueForAnonRecordField - Given that the field is a member of
1591 /// an anonymous struct or union buried inside a record, and given
1592 /// that the base value is a pointer to the enclosing record, derive
1593 /// an lvalue for the ultimate field.
1594 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1595 const IndirectFieldDecl *Field,
1596 unsigned CVRQualifiers) {
1597 IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1598 IEnd = Field->chain_end();
1599 while (true) {
1600 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), CVRQualifiers);
1601 if (++I == IEnd) return LV;
1603 assert(LV.isSimple());
1604 BaseValue = LV.getAddress();
1605 CVRQualifiers |= LV.getVRQualifiers();
1609 LValue CodeGenFunction::EmitLValueForField(llvm::Value *BaseValue,
1610 const FieldDecl *Field,
1611 unsigned CVRQualifiers) {
1612 if (Field->isBitField())
1613 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1615 const CGRecordLayout &RL =
1616 CGM.getTypes().getCGRecordLayout(Field->getParent());
1617 unsigned idx = RL.getLLVMFieldNo(Field);
1618 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1620 // Match union field type.
1621 if (Field->getParent()->isUnion()) {
1622 const llvm::Type *FieldTy =
1623 CGM.getTypes().ConvertTypeForMem(Field->getType());
1624 const llvm::PointerType *BaseTy =
1625 cast<llvm::PointerType>(BaseValue->getType());
1626 unsigned AS = BaseTy->getAddressSpace();
1627 V = Builder.CreateBitCast(V,
1628 llvm::PointerType::get(FieldTy, AS),
1629 "tmp");
1631 if (Field->getType()->isReferenceType())
1632 V = Builder.CreateLoad(V, "tmp");
1634 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1635 LValue LV = MakeAddrLValue(V, Field->getType(), Alignment);
1636 LV.getQuals().addCVRQualifiers(CVRQualifiers);
1638 // __weak attribute on a field is ignored.
1639 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1640 LV.getQuals().removeObjCGCAttr();
1642 return LV;
1645 LValue
1646 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1647 const FieldDecl *Field,
1648 unsigned CVRQualifiers) {
1649 QualType FieldType = Field->getType();
1651 if (!FieldType->isReferenceType())
1652 return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1654 const CGRecordLayout &RL =
1655 CGM.getTypes().getCGRecordLayout(Field->getParent());
1656 unsigned idx = RL.getLLVMFieldNo(Field);
1657 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1659 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1661 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1662 return MakeAddrLValue(V, FieldType, Alignment);
1665 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1666 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1667 const Expr *InitExpr = E->getInitializer();
1668 LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1670 EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false, /*Init*/ true);
1672 return Result;
1675 LValue CodeGenFunction::
1676 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1677 if (!expr->isGLValue()) {
1678 // ?: here should be an aggregate.
1679 assert((hasAggregateLLVMType(expr->getType()) &&
1680 !expr->getType()->isAnyComplexType()) &&
1681 "Unexpected conditional operator!");
1682 return EmitAggExprToLValue(expr);
1685 const Expr *condExpr = expr->getCond();
1687 if (int condValue = ConstantFoldsToSimpleInteger(condExpr)) {
1688 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1689 if (condValue == -1) std::swap(live, dead);
1691 if (!ContainsLabel(dead))
1692 return EmitLValue(live);
1695 OpaqueValueMapping binding(*this, expr);
1697 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1698 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1699 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1701 ConditionalEvaluation eval(*this);
1702 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1704 // Any temporaries created here are conditional.
1705 EmitBlock(lhsBlock);
1706 eval.begin(*this);
1707 LValue lhs = EmitLValue(expr->getTrueExpr());
1708 eval.end(*this);
1710 if (!lhs.isSimple())
1711 return EmitUnsupportedLValue(expr, "conditional operator");
1713 lhsBlock = Builder.GetInsertBlock();
1714 Builder.CreateBr(contBlock);
1716 // Any temporaries created here are conditional.
1717 EmitBlock(rhsBlock);
1718 eval.begin(*this);
1719 LValue rhs = EmitLValue(expr->getFalseExpr());
1720 eval.end(*this);
1721 if (!rhs.isSimple())
1722 return EmitUnsupportedLValue(expr, "conditional operator");
1723 rhsBlock = Builder.GetInsertBlock();
1725 EmitBlock(contBlock);
1727 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(),
1728 "cond-lvalue");
1729 phi->reserveOperandSpace(2);
1730 phi->addIncoming(lhs.getAddress(), lhsBlock);
1731 phi->addIncoming(rhs.getAddress(), rhsBlock);
1732 return MakeAddrLValue(phi, expr->getType());
1735 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1736 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1737 /// otherwise if a cast is needed by the code generator in an lvalue context,
1738 /// then it must mean that we need the address of an aggregate in order to
1739 /// access one of its fields. This can happen for all the reasons that casts
1740 /// are permitted with aggregate result, including noop aggregate casts, and
1741 /// cast from scalar to union.
1742 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1743 switch (E->getCastKind()) {
1744 case CK_ToVoid:
1745 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1747 case CK_Dependent:
1748 llvm_unreachable("dependent cast kind in IR gen!");
1750 case CK_GetObjCProperty: {
1751 LValue LV = EmitLValue(E->getSubExpr());
1752 assert(LV.isPropertyRef());
1753 RValue RV = EmitLoadOfPropertyRefLValue(LV);
1755 // Property is an aggregate r-value.
1756 if (RV.isAggregate()) {
1757 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
1760 // Implicit property returns an l-value.
1761 assert(RV.isScalar());
1762 return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
1765 case CK_NoOp:
1766 case CK_LValueToRValue:
1767 if (!E->getSubExpr()->Classify(getContext()).isPRValue()
1768 || E->getType()->isRecordType())
1769 return EmitLValue(E->getSubExpr());
1770 // Fall through to synthesize a temporary.
1772 case CK_BitCast:
1773 case CK_ArrayToPointerDecay:
1774 case CK_FunctionToPointerDecay:
1775 case CK_NullToMemberPointer:
1776 case CK_NullToPointer:
1777 case CK_IntegralToPointer:
1778 case CK_PointerToIntegral:
1779 case CK_PointerToBoolean:
1780 case CK_VectorSplat:
1781 case CK_IntegralCast:
1782 case CK_IntegralToBoolean:
1783 case CK_IntegralToFloating:
1784 case CK_FloatingToIntegral:
1785 case CK_FloatingToBoolean:
1786 case CK_FloatingCast:
1787 case CK_FloatingRealToComplex:
1788 case CK_FloatingComplexToReal:
1789 case CK_FloatingComplexToBoolean:
1790 case CK_FloatingComplexCast:
1791 case CK_FloatingComplexToIntegralComplex:
1792 case CK_IntegralRealToComplex:
1793 case CK_IntegralComplexToReal:
1794 case CK_IntegralComplexToBoolean:
1795 case CK_IntegralComplexCast:
1796 case CK_IntegralComplexToFloatingComplex:
1797 case CK_DerivedToBaseMemberPointer:
1798 case CK_BaseToDerivedMemberPointer:
1799 case CK_MemberPointerToBoolean:
1800 case CK_AnyPointerToBlockPointerCast: {
1801 // These casts only produce lvalues when we're binding a reference to a
1802 // temporary realized from a (converted) pure rvalue. Emit the expression
1803 // as a value, copy it into a temporary, and return an lvalue referring to
1804 // that temporary.
1805 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
1806 EmitAnyExprToMem(E, V, false, false);
1807 return MakeAddrLValue(V, E->getType());
1810 case CK_Dynamic: {
1811 LValue LV = EmitLValue(E->getSubExpr());
1812 llvm::Value *V = LV.getAddress();
1813 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1814 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
1817 case CK_ConstructorConversion:
1818 case CK_UserDefinedConversion:
1819 case CK_AnyPointerToObjCPointerCast:
1820 return EmitLValue(E->getSubExpr());
1822 case CK_UncheckedDerivedToBase:
1823 case CK_DerivedToBase: {
1824 const RecordType *DerivedClassTy =
1825 E->getSubExpr()->getType()->getAs<RecordType>();
1826 CXXRecordDecl *DerivedClassDecl =
1827 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1829 LValue LV = EmitLValue(E->getSubExpr());
1830 llvm::Value *This = LV.getAddress();
1832 // Perform the derived-to-base conversion
1833 llvm::Value *Base =
1834 GetAddressOfBaseClass(This, DerivedClassDecl,
1835 E->path_begin(), E->path_end(),
1836 /*NullCheckValue=*/false);
1838 return MakeAddrLValue(Base, E->getType());
1840 case CK_ToUnion:
1841 return EmitAggExprToLValue(E);
1842 case CK_BaseToDerived: {
1843 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1844 CXXRecordDecl *DerivedClassDecl =
1845 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1847 LValue LV = EmitLValue(E->getSubExpr());
1849 // Perform the base-to-derived conversion
1850 llvm::Value *Derived =
1851 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
1852 E->path_begin(), E->path_end(),
1853 /*NullCheckValue=*/false);
1855 return MakeAddrLValue(Derived, E->getType());
1857 case CK_LValueBitCast: {
1858 // This must be a reinterpret_cast (or c-style equivalent).
1859 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1861 LValue LV = EmitLValue(E->getSubExpr());
1862 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1863 ConvertType(CE->getTypeAsWritten()));
1864 return MakeAddrLValue(V, E->getType());
1866 case CK_ObjCObjectLValueCast: {
1867 LValue LV = EmitLValue(E->getSubExpr());
1868 QualType ToType = getContext().getLValueReferenceType(E->getType());
1869 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1870 ConvertType(ToType));
1871 return MakeAddrLValue(V, E->getType());
1875 llvm_unreachable("Unhandled lvalue cast kind?");
1878 LValue CodeGenFunction::EmitNullInitializationLValue(
1879 const CXXScalarValueInitExpr *E) {
1880 QualType Ty = E->getType();
1881 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
1882 EmitNullInitialization(LV.getAddress(), Ty);
1883 return LV;
1886 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
1887 assert(e->isGLValue() || e->getType()->isRecordType());
1888 return getOpaqueLValueMapping(e);
1891 //===--------------------------------------------------------------------===//
1892 // Expression Emission
1893 //===--------------------------------------------------------------------===//
1896 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1897 ReturnValueSlot ReturnValue) {
1898 // Builtins never have block type.
1899 if (E->getCallee()->getType()->isBlockPointerType())
1900 return EmitBlockCallExpr(E, ReturnValue);
1902 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1903 return EmitCXXMemberCallExpr(CE, ReturnValue);
1905 const Decl *TargetDecl = 0;
1906 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1907 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1908 TargetDecl = DRE->getDecl();
1909 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1910 if (unsigned builtinID = FD->getBuiltinID())
1911 return EmitBuiltinExpr(FD, builtinID, E);
1915 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1916 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1917 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1919 if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1920 // C++ [expr.pseudo]p1:
1921 // The result shall only be used as the operand for the function call
1922 // operator (), and the result of such a call has type void. The only
1923 // effect is the evaluation of the postfix-expression before the dot or
1924 // arrow.
1925 EmitScalarExpr(E->getCallee());
1926 return RValue::get(0);
1929 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1930 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1931 E->arg_begin(), E->arg_end(), TargetDecl);
1934 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1935 // Comma expressions just emit their LHS then their RHS as an l-value.
1936 if (E->getOpcode() == BO_Comma) {
1937 EmitIgnoredExpr(E->getLHS());
1938 EnsureInsertPoint();
1939 return EmitLValue(E->getRHS());
1942 if (E->getOpcode() == BO_PtrMemD ||
1943 E->getOpcode() == BO_PtrMemI)
1944 return EmitPointerToDataMemberBinaryExpr(E);
1946 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
1948 if (!hasAggregateLLVMType(E->getType())) {
1949 // __block variables need the RHS evaluated first.
1950 RValue RV = EmitAnyExpr(E->getRHS());
1951 LValue LV = EmitLValue(E->getLHS());
1952 EmitStoreThroughLValue(RV, LV, E->getType());
1953 return LV;
1956 if (E->getType()->isAnyComplexType())
1957 return EmitComplexAssignmentLValue(E);
1959 return EmitAggExprToLValue(E);
1962 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1963 RValue RV = EmitCallExpr(E);
1965 if (!RV.isScalar())
1966 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
1968 assert(E->getCallReturnType()->isReferenceType() &&
1969 "Can't have a scalar return unless the return type is a "
1970 "reference type!");
1972 return MakeAddrLValue(RV.getScalarVal(), E->getType());
1975 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1976 // FIXME: This shouldn't require another copy.
1977 return EmitAggExprToLValue(E);
1980 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1981 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
1982 && "binding l-value to type which needs a temporary");
1983 AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
1984 EmitCXXConstructExpr(E, Slot);
1985 return MakeAddrLValue(Slot.getAddr(), E->getType());
1988 LValue
1989 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1990 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
1993 LValue
1994 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1995 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
1996 Slot.setLifetimeExternallyManaged();
1997 EmitAggExpr(E->getSubExpr(), Slot);
1998 EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
1999 return MakeAddrLValue(Slot.getAddr(), E->getType());
2002 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2003 RValue RV = EmitObjCMessageExpr(E);
2005 if (!RV.isScalar())
2006 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2008 assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2009 "Can't have a scalar return unless the return type is a "
2010 "reference type!");
2012 return MakeAddrLValue(RV.getScalarVal(), E->getType());
2015 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2016 llvm::Value *V =
2017 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2018 return MakeAddrLValue(V, E->getType());
2021 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2022 const ObjCIvarDecl *Ivar) {
2023 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2026 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2027 llvm::Value *BaseValue,
2028 const ObjCIvarDecl *Ivar,
2029 unsigned CVRQualifiers) {
2030 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2031 Ivar, CVRQualifiers);
2034 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2035 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2036 llvm::Value *BaseValue = 0;
2037 const Expr *BaseExpr = E->getBase();
2038 Qualifiers BaseQuals;
2039 QualType ObjectTy;
2040 if (E->isArrow()) {
2041 BaseValue = EmitScalarExpr(BaseExpr);
2042 ObjectTy = BaseExpr->getType()->getPointeeType();
2043 BaseQuals = ObjectTy.getQualifiers();
2044 } else {
2045 LValue BaseLV = EmitLValue(BaseExpr);
2046 // FIXME: this isn't right for bitfields.
2047 BaseValue = BaseLV.getAddress();
2048 ObjectTy = BaseExpr->getType();
2049 BaseQuals = ObjectTy.getQualifiers();
2052 LValue LV =
2053 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2054 BaseQuals.getCVRQualifiers());
2055 setObjCGCLValueClass(getContext(), E, LV);
2056 return LV;
2059 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2060 // Can only get l-value for message expression returning aggregate type
2061 RValue RV = EmitAnyExprToTemp(E);
2062 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2065 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2066 ReturnValueSlot ReturnValue,
2067 CallExpr::const_arg_iterator ArgBeg,
2068 CallExpr::const_arg_iterator ArgEnd,
2069 const Decl *TargetDecl) {
2070 // Get the actual function type. The callee type will always be a pointer to
2071 // function type or a block pointer type.
2072 assert(CalleeType->isFunctionPointerType() &&
2073 "Call must have function pointer type!");
2075 CalleeType = getContext().getCanonicalType(CalleeType);
2077 const FunctionType *FnType
2078 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2080 CallArgList Args;
2081 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2083 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
2084 Callee, ReturnValue, Args, TargetDecl);
2087 LValue CodeGenFunction::
2088 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2089 llvm::Value *BaseV;
2090 if (E->getOpcode() == BO_PtrMemI)
2091 BaseV = EmitScalarExpr(E->getLHS());
2092 else
2093 BaseV = EmitLValue(E->getLHS()).getAddress();
2095 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2097 const MemberPointerType *MPT
2098 = E->getRHS()->getType()->getAs<MemberPointerType>();
2100 llvm::Value *AddV =
2101 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2103 return MakeAddrLValue(AddV, MPT->getPointeeType());