Fix the diagnostic when we are shadowing an external variable and there exists a...
[clang.git] / lib / Sema / SemaDecl.cpp
blob253f1dcde87ba17b0ef27117676341ba28cf77ea
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Parse/ParseDiagnostic.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Lex/HeaderSearch.h"
39 #include "llvm/ADT/Triple.h"
40 #include <algorithm>
41 #include <cstring>
42 #include <functional>
43 using namespace clang;
44 using namespace sema;
46 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50 /// \brief If the identifier refers to a type name within this scope,
51 /// return the declaration of that type.
52 ///
53 /// This routine performs ordinary name lookup of the identifier II
54 /// within the given scope, with optional C++ scope specifier SS, to
55 /// determine whether the name refers to a type. If so, returns an
56 /// opaque pointer (actually a QualType) corresponding to that
57 /// type. Otherwise, returns NULL.
58 ///
59 /// If name lookup results in an ambiguity, this routine will complain
60 /// and then return NULL.
61 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62 Scope *S, CXXScopeSpec *SS,
63 bool isClassName,
64 ParsedType ObjectTypePtr) {
65 // Determine where we will perform name lookup.
66 DeclContext *LookupCtx = 0;
67 if (ObjectTypePtr) {
68 QualType ObjectType = ObjectTypePtr.get();
69 if (ObjectType->isRecordType())
70 LookupCtx = computeDeclContext(ObjectType);
71 } else if (SS && SS->isNotEmpty()) {
72 LookupCtx = computeDeclContext(*SS, false);
74 if (!LookupCtx) {
75 if (isDependentScopeSpecifier(*SS)) {
76 // C++ [temp.res]p3:
77 // A qualified-id that refers to a type and in which the
78 // nested-name-specifier depends on a template-parameter (14.6.2)
79 // shall be prefixed by the keyword typename to indicate that the
80 // qualified-id denotes a type, forming an
81 // elaborated-type-specifier (7.1.5.3).
83 // We therefore do not perform any name lookup if the result would
84 // refer to a member of an unknown specialization.
85 if (!isClassName)
86 return ParsedType();
88 // We know from the grammar that this name refers to a type,
89 // so build a dependent node to describe the type.
90 QualType T =
91 CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92 SourceLocation(), SS->getRange(), NameLoc);
93 return ParsedType::make(T);
96 return ParsedType();
99 if (!LookupCtx->isDependentContext() &&
100 RequireCompleteDeclContext(*SS, LookupCtx))
101 return ParsedType();
104 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105 // lookup for class-names.
106 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107 LookupOrdinaryName;
108 LookupResult Result(*this, &II, NameLoc, Kind);
109 if (LookupCtx) {
110 // Perform "qualified" name lookup into the declaration context we
111 // computed, which is either the type of the base of a member access
112 // expression or the declaration context associated with a prior
113 // nested-name-specifier.
114 LookupQualifiedName(Result, LookupCtx);
116 if (ObjectTypePtr && Result.empty()) {
117 // C++ [basic.lookup.classref]p3:
118 // If the unqualified-id is ~type-name, the type-name is looked up
119 // in the context of the entire postfix-expression. If the type T of
120 // the object expression is of a class type C, the type-name is also
121 // looked up in the scope of class C. At least one of the lookups shall
122 // find a name that refers to (possibly cv-qualified) T.
123 LookupName(Result, S);
125 } else {
126 // Perform unqualified name lookup.
127 LookupName(Result, S);
130 NamedDecl *IIDecl = 0;
131 switch (Result.getResultKind()) {
132 case LookupResult::NotFound:
133 case LookupResult::NotFoundInCurrentInstantiation:
134 case LookupResult::FoundOverloaded:
135 case LookupResult::FoundUnresolvedValue:
136 Result.suppressDiagnostics();
137 return ParsedType();
139 case LookupResult::Ambiguous:
140 // Recover from type-hiding ambiguities by hiding the type. We'll
141 // do the lookup again when looking for an object, and we can
142 // diagnose the error then. If we don't do this, then the error
143 // about hiding the type will be immediately followed by an error
144 // that only makes sense if the identifier was treated like a type.
145 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146 Result.suppressDiagnostics();
147 return ParsedType();
150 // Look to see if we have a type anywhere in the list of results.
151 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152 Res != ResEnd; ++Res) {
153 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154 if (!IIDecl ||
155 (*Res)->getLocation().getRawEncoding() <
156 IIDecl->getLocation().getRawEncoding())
157 IIDecl = *Res;
161 if (!IIDecl) {
162 // None of the entities we found is a type, so there is no way
163 // to even assume that the result is a type. In this case, don't
164 // complain about the ambiguity. The parser will either try to
165 // perform this lookup again (e.g., as an object name), which
166 // will produce the ambiguity, or will complain that it expected
167 // a type name.
168 Result.suppressDiagnostics();
169 return ParsedType();
172 // We found a type within the ambiguous lookup; diagnose the
173 // ambiguity and then return that type. This might be the right
174 // answer, or it might not be, but it suppresses any attempt to
175 // perform the name lookup again.
176 break;
178 case LookupResult::Found:
179 IIDecl = Result.getFoundDecl();
180 break;
183 assert(IIDecl && "Didn't find decl");
185 QualType T;
186 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187 DiagnoseUseOfDecl(IIDecl, NameLoc);
189 if (T.isNull())
190 T = Context.getTypeDeclType(TD);
192 if (SS)
193 T = getElaboratedType(ETK_None, *SS, T);
195 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196 T = Context.getObjCInterfaceType(IDecl);
197 } else {
198 // If it's not plausibly a type, suppress diagnostics.
199 Result.suppressDiagnostics();
200 return ParsedType();
203 return ParsedType::make(T);
206 /// isTagName() - This method is called *for error recovery purposes only*
207 /// to determine if the specified name is a valid tag name ("struct foo"). If
208 /// so, this returns the TST for the tag corresponding to it (TST_enum,
209 /// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
210 /// where the user forgot to specify the tag.
211 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212 // Do a tag name lookup in this scope.
213 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214 LookupName(R, S, false);
215 R.suppressDiagnostics();
216 if (R.getResultKind() == LookupResult::Found)
217 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218 switch (TD->getTagKind()) {
219 default: return DeclSpec::TST_unspecified;
220 case TTK_Struct: return DeclSpec::TST_struct;
221 case TTK_Union: return DeclSpec::TST_union;
222 case TTK_Class: return DeclSpec::TST_class;
223 case TTK_Enum: return DeclSpec::TST_enum;
227 return DeclSpec::TST_unspecified;
230 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231 SourceLocation IILoc,
232 Scope *S,
233 CXXScopeSpec *SS,
234 ParsedType &SuggestedType) {
235 // We don't have anything to suggest (yet).
236 SuggestedType = ParsedType();
238 // There may have been a typo in the name of the type. Look up typo
239 // results, in case we have something that we can suggest.
240 LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241 NotForRedeclaration);
243 if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244 if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245 if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246 !Result->isInvalidDecl()) {
247 // We found a similarly-named type or interface; suggest that.
248 if (!SS || !SS->isSet())
249 Diag(IILoc, diag::err_unknown_typename_suggest)
250 << &II << Lookup.getLookupName()
251 << FixItHint::CreateReplacement(SourceRange(IILoc),
252 Result->getNameAsString());
253 else if (DeclContext *DC = computeDeclContext(*SS, false))
254 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255 << &II << DC << Lookup.getLookupName() << SS->getRange()
256 << FixItHint::CreateReplacement(SourceRange(IILoc),
257 Result->getNameAsString());
258 else
259 llvm_unreachable("could not have corrected a typo here");
261 Diag(Result->getLocation(), diag::note_previous_decl)
262 << Result->getDeclName();
264 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265 return true;
267 } else if (Lookup.empty()) {
268 // We corrected to a keyword.
269 // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270 Diag(IILoc, diag::err_unknown_typename_suggest)
271 << &II << Corrected;
272 return true;
276 if (getLangOptions().CPlusPlus) {
277 // See if II is a class template that the user forgot to pass arguments to.
278 UnqualifiedId Name;
279 Name.setIdentifier(&II, IILoc);
280 CXXScopeSpec EmptySS;
281 TemplateTy TemplateResult;
282 bool MemberOfUnknownSpecialization;
283 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284 Name, ParsedType(), true, TemplateResult,
285 MemberOfUnknownSpecialization) == TNK_Type_template) {
286 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287 Diag(IILoc, diag::err_template_missing_args) << TplName;
288 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290 << TplDecl->getTemplateParameters()->getSourceRange();
292 return true;
296 // FIXME: Should we move the logic that tries to recover from a missing tag
297 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299 if (!SS || (!SS->isSet() && !SS->isInvalid()))
300 Diag(IILoc, diag::err_unknown_typename) << &II;
301 else if (DeclContext *DC = computeDeclContext(*SS, false))
302 Diag(IILoc, diag::err_typename_nested_not_found)
303 << &II << DC << SS->getRange();
304 else if (isDependentScopeSpecifier(*SS)) {
305 Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306 << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307 << SourceRange(SS->getRange().getBegin(), IILoc)
308 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309 SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310 } else {
311 assert(SS && SS->isInvalid() &&
312 "Invalid scope specifier has already been diagnosed");
315 return true;
318 // Determines the context to return to after temporarily entering a
319 // context. This depends in an unnecessarily complicated way on the
320 // exact ordering of callbacks from the parser.
321 DeclContext *Sema::getContainingDC(DeclContext *DC) {
323 // Functions defined inline within classes aren't parsed until we've
324 // finished parsing the top-level class, so the top-level class is
325 // the context we'll need to return to.
326 if (isa<FunctionDecl>(DC)) {
327 DC = DC->getLexicalParent();
329 // A function not defined within a class will always return to its
330 // lexical context.
331 if (!isa<CXXRecordDecl>(DC))
332 return DC;
334 // A C++ inline method/friend is parsed *after* the topmost class
335 // it was declared in is fully parsed ("complete"); the topmost
336 // class is the context we need to return to.
337 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338 DC = RD;
340 // Return the declaration context of the topmost class the inline method is
341 // declared in.
342 return DC;
345 // ObjCMethodDecls are parsed (for some reason) outside the context
346 // of the class.
347 if (isa<ObjCMethodDecl>(DC))
348 return DC->getLexicalParent()->getLexicalParent();
350 return DC->getLexicalParent();
353 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354 assert(getContainingDC(DC) == CurContext &&
355 "The next DeclContext should be lexically contained in the current one.");
356 CurContext = DC;
357 S->setEntity(DC);
360 void Sema::PopDeclContext() {
361 assert(CurContext && "DeclContext imbalance!");
363 CurContext = getContainingDC(CurContext);
364 assert(CurContext && "Popped translation unit!");
367 /// EnterDeclaratorContext - Used when we must lookup names in the context
368 /// of a declarator's nested name specifier.
370 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371 // C++0x [basic.lookup.unqual]p13:
372 // A name used in the definition of a static data member of class
373 // X (after the qualified-id of the static member) is looked up as
374 // if the name was used in a member function of X.
375 // C++0x [basic.lookup.unqual]p14:
376 // If a variable member of a namespace is defined outside of the
377 // scope of its namespace then any name used in the definition of
378 // the variable member (after the declarator-id) is looked up as
379 // if the definition of the variable member occurred in its
380 // namespace.
381 // Both of these imply that we should push a scope whose context
382 // is the semantic context of the declaration. We can't use
383 // PushDeclContext here because that context is not necessarily
384 // lexically contained in the current context. Fortunately,
385 // the containing scope should have the appropriate information.
387 assert(!S->getEntity() && "scope already has entity");
389 #ifndef NDEBUG
390 Scope *Ancestor = S->getParent();
391 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393 #endif
395 CurContext = DC;
396 S->setEntity(DC);
399 void Sema::ExitDeclaratorContext(Scope *S) {
400 assert(S->getEntity() == CurContext && "Context imbalance!");
402 // Switch back to the lexical context. The safety of this is
403 // enforced by an assert in EnterDeclaratorContext.
404 Scope *Ancestor = S->getParent();
405 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406 CurContext = (DeclContext*) Ancestor->getEntity();
408 // We don't need to do anything with the scope, which is going to
409 // disappear.
412 /// \brief Determine whether we allow overloading of the function
413 /// PrevDecl with another declaration.
415 /// This routine determines whether overloading is possible, not
416 /// whether some new function is actually an overload. It will return
417 /// true in C++ (where we can always provide overloads) or, as an
418 /// extension, in C when the previous function is already an
419 /// overloaded function declaration or has the "overloadable"
420 /// attribute.
421 static bool AllowOverloadingOfFunction(LookupResult &Previous,
422 ASTContext &Context) {
423 if (Context.getLangOptions().CPlusPlus)
424 return true;
426 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427 return true;
429 return (Previous.getResultKind() == LookupResult::Found
430 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433 /// Add this decl to the scope shadowed decl chains.
434 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435 // Move up the scope chain until we find the nearest enclosing
436 // non-transparent context. The declaration will be introduced into this
437 // scope.
438 while (S->getEntity() &&
439 ((DeclContext *)S->getEntity())->isTransparentContext())
440 S = S->getParent();
442 // Add scoped declarations into their context, so that they can be
443 // found later. Declarations without a context won't be inserted
444 // into any context.
445 if (AddToContext)
446 CurContext->addDecl(D);
448 // Out-of-line definitions shouldn't be pushed into scope in C++.
449 // Out-of-line variable and function definitions shouldn't even in C.
450 if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451 D->isOutOfLine())
452 return;
454 // Template instantiations should also not be pushed into scope.
455 if (isa<FunctionDecl>(D) &&
456 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457 return;
459 // If this replaces anything in the current scope,
460 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461 IEnd = IdResolver.end();
462 for (; I != IEnd; ++I) {
463 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464 S->RemoveDecl(*I);
465 IdResolver.RemoveDecl(*I);
467 // Should only need to replace one decl.
468 break;
472 S->AddDecl(D);
473 IdResolver.AddDecl(D);
476 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477 return IdResolver.isDeclInScope(D, Ctx, Context, S);
480 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481 DeclContext *TargetDC = DC->getPrimaryContext();
482 do {
483 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484 if (ScopeDC->getPrimaryContext() == TargetDC)
485 return S;
486 } while ((S = S->getParent()));
488 return 0;
491 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492 DeclContext*,
493 ASTContext&);
495 /// Filters out lookup results that don't fall within the given scope
496 /// as determined by isDeclInScope.
497 static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498 DeclContext *Ctx, Scope *S,
499 bool ConsiderLinkage) {
500 LookupResult::Filter F = R.makeFilter();
501 while (F.hasNext()) {
502 NamedDecl *D = F.next();
504 if (SemaRef.isDeclInScope(D, Ctx, S))
505 continue;
507 if (ConsiderLinkage &&
508 isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509 continue;
511 F.erase();
514 F.done();
517 static bool isUsingDecl(NamedDecl *D) {
518 return isa<UsingShadowDecl>(D) ||
519 isa<UnresolvedUsingTypenameDecl>(D) ||
520 isa<UnresolvedUsingValueDecl>(D);
523 /// Removes using shadow declarations from the lookup results.
524 static void RemoveUsingDecls(LookupResult &R) {
525 LookupResult::Filter F = R.makeFilter();
526 while (F.hasNext())
527 if (isUsingDecl(F.next()))
528 F.erase();
530 F.done();
533 /// \brief Check for this common pattern:
534 /// @code
535 /// class S {
536 /// S(const S&); // DO NOT IMPLEMENT
537 /// void operator=(const S&); // DO NOT IMPLEMENT
538 /// };
539 /// @endcode
540 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541 // FIXME: Should check for private access too but access is set after we get
542 // the decl here.
543 if (D->isThisDeclarationADefinition())
544 return false;
546 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547 return CD->isCopyConstructor();
548 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549 return Method->isCopyAssignmentOperator();
550 return false;
553 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554 assert(D);
556 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557 return false;
559 // Ignore class templates.
560 if (D->getDeclContext()->isDependentContext() ||
561 D->getLexicalDeclContext()->isDependentContext())
562 return false;
564 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566 return false;
568 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570 return false;
571 } else {
572 // 'static inline' functions are used in headers; don't warn.
573 if (FD->getStorageClass() == SC_Static &&
574 FD->isInlineSpecified())
575 return false;
578 if (FD->isThisDeclarationADefinition() &&
579 Context.DeclMustBeEmitted(FD))
580 return false;
582 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
583 if (!VD->isFileVarDecl() ||
584 VD->getType().isConstant(Context) ||
585 Context.DeclMustBeEmitted(VD))
586 return false;
588 if (VD->isStaticDataMember() &&
589 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
590 return false;
592 } else {
593 return false;
596 // Only warn for unused decls internal to the translation unit.
597 if (D->getLinkage() == ExternalLinkage)
598 return false;
600 return true;
603 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
604 if (!D)
605 return;
607 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
608 const FunctionDecl *First = FD->getFirstDeclaration();
609 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
610 return; // First should already be in the vector.
613 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
614 const VarDecl *First = VD->getFirstDeclaration();
615 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
616 return; // First should already be in the vector.
619 if (ShouldWarnIfUnusedFileScopedDecl(D))
620 UnusedFileScopedDecls.push_back(D);
623 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
624 if (D->isInvalidDecl())
625 return false;
627 if (D->isUsed() || D->hasAttr<UnusedAttr>())
628 return false;
630 // White-list anything that isn't a local variable.
631 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
632 !D->getDeclContext()->isFunctionOrMethod())
633 return false;
635 // Types of valid local variables should be complete, so this should succeed.
636 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
638 // White-list anything with an __attribute__((unused)) type.
639 QualType Ty = VD->getType();
641 // Only look at the outermost level of typedef.
642 if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
643 if (TT->getDecl()->hasAttr<UnusedAttr>())
644 return false;
647 // If we failed to complete the type for some reason, or if the type is
648 // dependent, don't diagnose the variable.
649 if (Ty->isIncompleteType() || Ty->isDependentType())
650 return false;
652 if (const TagType *TT = Ty->getAs<TagType>()) {
653 const TagDecl *Tag = TT->getDecl();
654 if (Tag->hasAttr<UnusedAttr>())
655 return false;
657 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
658 // FIXME: Checking for the presence of a user-declared constructor
659 // isn't completely accurate; we'd prefer to check that the initializer
660 // has no side effects.
661 if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
662 return false;
666 // TODO: __attribute__((unused)) templates?
669 return true;
672 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
673 if (!ShouldDiagnoseUnusedDecl(D))
674 return;
676 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
677 Diag(D->getLocation(), diag::warn_unused_exception_param)
678 << D->getDeclName();
679 else
680 Diag(D->getLocation(), diag::warn_unused_variable)
681 << D->getDeclName();
684 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
685 if (S->decl_empty()) return;
686 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
687 "Scope shouldn't contain decls!");
689 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
690 I != E; ++I) {
691 Decl *TmpD = (*I);
692 assert(TmpD && "This decl didn't get pushed??");
694 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
695 NamedDecl *D = cast<NamedDecl>(TmpD);
697 if (!D->getDeclName()) continue;
699 // Diagnose unused variables in this scope.
700 if (!S->hasErrorOccurred())
701 DiagnoseUnusedDecl(D);
703 // Remove this name from our lexical scope.
704 IdResolver.RemoveDecl(D);
708 /// \brief Look for an Objective-C class in the translation unit.
710 /// \param Id The name of the Objective-C class we're looking for. If
711 /// typo-correction fixes this name, the Id will be updated
712 /// to the fixed name.
714 /// \param IdLoc The location of the name in the translation unit.
716 /// \param TypoCorrection If true, this routine will attempt typo correction
717 /// if there is no class with the given name.
719 /// \returns The declaration of the named Objective-C class, or NULL if the
720 /// class could not be found.
721 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
722 SourceLocation IdLoc,
723 bool TypoCorrection) {
724 // The third "scope" argument is 0 since we aren't enabling lazy built-in
725 // creation from this context.
726 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
728 if (!IDecl && TypoCorrection) {
729 // Perform typo correction at the given location, but only if we
730 // find an Objective-C class name.
731 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
732 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
733 (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
734 Diag(IdLoc, diag::err_undef_interface_suggest)
735 << Id << IDecl->getDeclName()
736 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
737 Diag(IDecl->getLocation(), diag::note_previous_decl)
738 << IDecl->getDeclName();
740 Id = IDecl->getIdentifier();
744 return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
747 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
748 /// from S, where a non-field would be declared. This routine copes
749 /// with the difference between C and C++ scoping rules in structs and
750 /// unions. For example, the following code is well-formed in C but
751 /// ill-formed in C++:
752 /// @code
753 /// struct S6 {
754 /// enum { BAR } e;
755 /// };
757 /// void test_S6() {
758 /// struct S6 a;
759 /// a.e = BAR;
760 /// }
761 /// @endcode
762 /// For the declaration of BAR, this routine will return a different
763 /// scope. The scope S will be the scope of the unnamed enumeration
764 /// within S6. In C++, this routine will return the scope associated
765 /// with S6, because the enumeration's scope is a transparent
766 /// context but structures can contain non-field names. In C, this
767 /// routine will return the translation unit scope, since the
768 /// enumeration's scope is a transparent context and structures cannot
769 /// contain non-field names.
770 Scope *Sema::getNonFieldDeclScope(Scope *S) {
771 while (((S->getFlags() & Scope::DeclScope) == 0) ||
772 (S->getEntity() &&
773 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
774 (S->isClassScope() && !getLangOptions().CPlusPlus))
775 S = S->getParent();
776 return S;
779 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
780 /// file scope. lazily create a decl for it. ForRedeclaration is true
781 /// if we're creating this built-in in anticipation of redeclaring the
782 /// built-in.
783 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
784 Scope *S, bool ForRedeclaration,
785 SourceLocation Loc) {
786 Builtin::ID BID = (Builtin::ID)bid;
788 ASTContext::GetBuiltinTypeError Error;
789 QualType R = Context.GetBuiltinType(BID, Error);
790 switch (Error) {
791 case ASTContext::GE_None:
792 // Okay
793 break;
795 case ASTContext::GE_Missing_stdio:
796 if (ForRedeclaration)
797 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
798 << Context.BuiltinInfo.GetName(BID);
799 return 0;
801 case ASTContext::GE_Missing_setjmp:
802 if (ForRedeclaration)
803 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
804 << Context.BuiltinInfo.GetName(BID);
805 return 0;
808 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
809 Diag(Loc, diag::ext_implicit_lib_function_decl)
810 << Context.BuiltinInfo.GetName(BID)
811 << R;
812 if (Context.BuiltinInfo.getHeaderName(BID) &&
813 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
814 != Diagnostic::Ignored)
815 Diag(Loc, diag::note_please_include_header)
816 << Context.BuiltinInfo.getHeaderName(BID)
817 << Context.BuiltinInfo.GetName(BID);
820 FunctionDecl *New = FunctionDecl::Create(Context,
821 Context.getTranslationUnitDecl(),
822 Loc, II, R, /*TInfo=*/0,
823 SC_Extern,
824 SC_None, false,
825 /*hasPrototype=*/true);
826 New->setImplicit();
828 // Create Decl objects for each parameter, adding them to the
829 // FunctionDecl.
830 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
831 llvm::SmallVector<ParmVarDecl*, 16> Params;
832 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
833 Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
834 FT->getArgType(i), /*TInfo=*/0,
835 SC_None, SC_None, 0));
836 New->setParams(Params.data(), Params.size());
839 AddKnownFunctionAttributes(New);
841 // TUScope is the translation-unit scope to insert this function into.
842 // FIXME: This is hideous. We need to teach PushOnScopeChains to
843 // relate Scopes to DeclContexts, and probably eliminate CurContext
844 // entirely, but we're not there yet.
845 DeclContext *SavedContext = CurContext;
846 CurContext = Context.getTranslationUnitDecl();
847 PushOnScopeChains(New, TUScope);
848 CurContext = SavedContext;
849 return New;
852 /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
853 /// same name and scope as a previous declaration 'Old'. Figure out
854 /// how to resolve this situation, merging decls or emitting
855 /// diagnostics as appropriate. If there was an error, set New to be invalid.
857 void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
858 // If the new decl is known invalid already, don't bother doing any
859 // merging checks.
860 if (New->isInvalidDecl()) return;
862 // Allow multiple definitions for ObjC built-in typedefs.
863 // FIXME: Verify the underlying types are equivalent!
864 if (getLangOptions().ObjC1) {
865 const IdentifierInfo *TypeID = New->getIdentifier();
866 switch (TypeID->getLength()) {
867 default: break;
868 case 2:
869 if (!TypeID->isStr("id"))
870 break;
871 Context.ObjCIdRedefinitionType = New->getUnderlyingType();
872 // Install the built-in type for 'id', ignoring the current definition.
873 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
874 return;
875 case 5:
876 if (!TypeID->isStr("Class"))
877 break;
878 Context.ObjCClassRedefinitionType = New->getUnderlyingType();
879 // Install the built-in type for 'Class', ignoring the current definition.
880 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
881 return;
882 case 3:
883 if (!TypeID->isStr("SEL"))
884 break;
885 Context.ObjCSelRedefinitionType = New->getUnderlyingType();
886 // Install the built-in type for 'SEL', ignoring the current definition.
887 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
888 return;
889 case 8:
890 if (!TypeID->isStr("Protocol"))
891 break;
892 Context.setObjCProtoType(New->getUnderlyingType());
893 return;
895 // Fall through - the typedef name was not a builtin type.
898 // Verify the old decl was also a type.
899 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
900 if (!Old) {
901 Diag(New->getLocation(), diag::err_redefinition_different_kind)
902 << New->getDeclName();
904 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
905 if (OldD->getLocation().isValid())
906 Diag(OldD->getLocation(), diag::note_previous_definition);
908 return New->setInvalidDecl();
911 // If the old declaration is invalid, just give up here.
912 if (Old->isInvalidDecl())
913 return New->setInvalidDecl();
915 // Determine the "old" type we'll use for checking and diagnostics.
916 QualType OldType;
917 if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
918 OldType = OldTypedef->getUnderlyingType();
919 else
920 OldType = Context.getTypeDeclType(Old);
922 // If the typedef types are not identical, reject them in all languages and
923 // with any extensions enabled.
925 if (OldType != New->getUnderlyingType() &&
926 Context.getCanonicalType(OldType) !=
927 Context.getCanonicalType(New->getUnderlyingType())) {
928 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
929 << New->getUnderlyingType() << OldType;
930 if (Old->getLocation().isValid())
931 Diag(Old->getLocation(), diag::note_previous_definition);
932 return New->setInvalidDecl();
935 // The types match. Link up the redeclaration chain if the old
936 // declaration was a typedef.
937 // FIXME: this is a potential source of wierdness if the type
938 // spellings don't match exactly.
939 if (isa<TypedefDecl>(Old))
940 New->setPreviousDeclaration(cast<TypedefDecl>(Old));
942 if (getLangOptions().Microsoft)
943 return;
945 if (getLangOptions().CPlusPlus) {
946 // C++ [dcl.typedef]p2:
947 // In a given non-class scope, a typedef specifier can be used to
948 // redefine the name of any type declared in that scope to refer
949 // to the type to which it already refers.
950 if (!isa<CXXRecordDecl>(CurContext))
951 return;
953 // C++0x [dcl.typedef]p4:
954 // In a given class scope, a typedef specifier can be used to redefine
955 // any class-name declared in that scope that is not also a typedef-name
956 // to refer to the type to which it already refers.
958 // This wording came in via DR424, which was a correction to the
959 // wording in DR56, which accidentally banned code like:
961 // struct S {
962 // typedef struct A { } A;
963 // };
965 // in the C++03 standard. We implement the C++0x semantics, which
966 // allow the above but disallow
968 // struct S {
969 // typedef int I;
970 // typedef int I;
971 // };
973 // since that was the intent of DR56.
974 if (!isa<TypedefDecl >(Old))
975 return;
977 Diag(New->getLocation(), diag::err_redefinition)
978 << New->getDeclName();
979 Diag(Old->getLocation(), diag::note_previous_definition);
980 return New->setInvalidDecl();
983 // If we have a redefinition of a typedef in C, emit a warning. This warning
984 // is normally mapped to an error, but can be controlled with
985 // -Wtypedef-redefinition. If either the original or the redefinition is
986 // in a system header, don't emit this for compatibility with GCC.
987 if (getDiagnostics().getSuppressSystemWarnings() &&
988 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
989 Context.getSourceManager().isInSystemHeader(New->getLocation())))
990 return;
992 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
993 << New->getDeclName();
994 Diag(Old->getLocation(), diag::note_previous_definition);
995 return;
998 /// DeclhasAttr - returns true if decl Declaration already has the target
999 /// attribute.
1000 static bool
1001 DeclHasAttr(const Decl *D, const Attr *A) {
1002 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1003 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1004 if ((*i)->getKind() == A->getKind()) {
1005 // FIXME: Don't hardcode this check
1006 if (OA && isa<OwnershipAttr>(*i))
1007 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1008 return true;
1011 return false;
1014 /// MergeDeclAttributes - append attributes from the Old decl to the New one.
1015 static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1016 if (!Old->hasAttrs())
1017 return;
1018 // Ensure that any moving of objects within the allocated map is done before
1019 // we process them.
1020 if (!New->hasAttrs())
1021 New->setAttrs(AttrVec());
1022 for (specific_attr_iterator<InheritableAttr>
1023 i = Old->specific_attr_begin<InheritableAttr>(),
1024 e = Old->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1025 if (!DeclHasAttr(New, *i)) {
1026 InheritableAttr *NewAttr = cast<InheritableAttr>((*i)->clone(C));
1027 NewAttr->setInherited(true);
1028 New->addAttr(NewAttr);
1033 namespace {
1035 /// Used in MergeFunctionDecl to keep track of function parameters in
1036 /// C.
1037 struct GNUCompatibleParamWarning {
1038 ParmVarDecl *OldParm;
1039 ParmVarDecl *NewParm;
1040 QualType PromotedType;
1045 /// getSpecialMember - get the special member enum for a method.
1046 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1047 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1048 if (Ctor->isCopyConstructor())
1049 return Sema::CXXCopyConstructor;
1051 return Sema::CXXConstructor;
1054 if (isa<CXXDestructorDecl>(MD))
1055 return Sema::CXXDestructor;
1057 assert(MD->isCopyAssignmentOperator() &&
1058 "Must have copy assignment operator");
1059 return Sema::CXXCopyAssignment;
1062 /// canRedefineFunction - checks if a function can be redefined. Currently,
1063 /// only extern inline functions can be redefined, and even then only in
1064 /// GNU89 mode.
1065 static bool canRedefineFunction(const FunctionDecl *FD,
1066 const LangOptions& LangOpts) {
1067 return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1068 FD->isInlineSpecified() &&
1069 FD->getStorageClass() == SC_Extern);
1072 /// MergeFunctionDecl - We just parsed a function 'New' from
1073 /// declarator D which has the same name and scope as a previous
1074 /// declaration 'Old'. Figure out how to resolve this situation,
1075 /// merging decls or emitting diagnostics as appropriate.
1077 /// In C++, New and Old must be declarations that are not
1078 /// overloaded. Use IsOverload to determine whether New and Old are
1079 /// overloaded, and to select the Old declaration that New should be
1080 /// merged with.
1082 /// Returns true if there was an error, false otherwise.
1083 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1084 // Verify the old decl was also a function.
1085 FunctionDecl *Old = 0;
1086 if (FunctionTemplateDecl *OldFunctionTemplate
1087 = dyn_cast<FunctionTemplateDecl>(OldD))
1088 Old = OldFunctionTemplate->getTemplatedDecl();
1089 else
1090 Old = dyn_cast<FunctionDecl>(OldD);
1091 if (!Old) {
1092 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1093 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1094 Diag(Shadow->getTargetDecl()->getLocation(),
1095 diag::note_using_decl_target);
1096 Diag(Shadow->getUsingDecl()->getLocation(),
1097 diag::note_using_decl) << 0;
1098 return true;
1101 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1102 << New->getDeclName();
1103 Diag(OldD->getLocation(), diag::note_previous_definition);
1104 return true;
1107 // Determine whether the previous declaration was a definition,
1108 // implicit declaration, or a declaration.
1109 diag::kind PrevDiag;
1110 if (Old->isThisDeclarationADefinition())
1111 PrevDiag = diag::note_previous_definition;
1112 else if (Old->isImplicit())
1113 PrevDiag = diag::note_previous_implicit_declaration;
1114 else
1115 PrevDiag = diag::note_previous_declaration;
1117 QualType OldQType = Context.getCanonicalType(Old->getType());
1118 QualType NewQType = Context.getCanonicalType(New->getType());
1120 // Don't complain about this if we're in GNU89 mode and the old function
1121 // is an extern inline function.
1122 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1123 New->getStorageClass() == SC_Static &&
1124 Old->getStorageClass() != SC_Static &&
1125 !canRedefineFunction(Old, getLangOptions())) {
1126 Diag(New->getLocation(), diag::err_static_non_static)
1127 << New;
1128 Diag(Old->getLocation(), PrevDiag);
1129 return true;
1132 // If a function is first declared with a calling convention, but is
1133 // later declared or defined without one, the second decl assumes the
1134 // calling convention of the first.
1136 // For the new decl, we have to look at the NON-canonical type to tell the
1137 // difference between a function that really doesn't have a calling
1138 // convention and one that is declared cdecl. That's because in
1139 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1140 // because it is the default calling convention.
1142 // Note also that we DO NOT return at this point, because we still have
1143 // other tests to run.
1144 const FunctionType *OldType = cast<FunctionType>(OldQType);
1145 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1146 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1147 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1148 bool RequiresAdjustment = false;
1149 if (OldTypeInfo.getCC() != CC_Default &&
1150 NewTypeInfo.getCC() == CC_Default) {
1151 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1152 RequiresAdjustment = true;
1153 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1154 NewTypeInfo.getCC())) {
1155 // Calling conventions really aren't compatible, so complain.
1156 Diag(New->getLocation(), diag::err_cconv_change)
1157 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1158 << (OldTypeInfo.getCC() == CC_Default)
1159 << (OldTypeInfo.getCC() == CC_Default ? "" :
1160 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1161 Diag(Old->getLocation(), diag::note_previous_declaration);
1162 return true;
1165 // FIXME: diagnose the other way around?
1166 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1167 NewTypeInfo = NewTypeInfo.withNoReturn(true);
1168 RequiresAdjustment = true;
1171 // Merge regparm attribute.
1172 if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1173 if (NewTypeInfo.getRegParm()) {
1174 Diag(New->getLocation(), diag::err_regparm_mismatch)
1175 << NewType->getRegParmType()
1176 << OldType->getRegParmType();
1177 Diag(Old->getLocation(), diag::note_previous_declaration);
1178 return true;
1181 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1182 RequiresAdjustment = true;
1185 if (RequiresAdjustment) {
1186 NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1187 New->setType(QualType(NewType, 0));
1188 NewQType = Context.getCanonicalType(New->getType());
1191 if (getLangOptions().CPlusPlus) {
1192 // (C++98 13.1p2):
1193 // Certain function declarations cannot be overloaded:
1194 // -- Function declarations that differ only in the return type
1195 // cannot be overloaded.
1196 QualType OldReturnType = OldType->getResultType();
1197 QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1198 QualType ResQT;
1199 if (OldReturnType != NewReturnType) {
1200 if (NewReturnType->isObjCObjectPointerType()
1201 && OldReturnType->isObjCObjectPointerType())
1202 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1203 if (ResQT.isNull()) {
1204 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1205 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1206 return true;
1208 else
1209 NewQType = ResQT;
1212 const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1213 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1214 if (OldMethod && NewMethod) {
1215 // Preserve triviality.
1216 NewMethod->setTrivial(OldMethod->isTrivial());
1218 bool isFriend = NewMethod->getFriendObjectKind();
1220 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1221 // -- Member function declarations with the same name and the
1222 // same parameter types cannot be overloaded if any of them
1223 // is a static member function declaration.
1224 if (OldMethod->isStatic() || NewMethod->isStatic()) {
1225 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1226 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1227 return true;
1230 // C++ [class.mem]p1:
1231 // [...] A member shall not be declared twice in the
1232 // member-specification, except that a nested class or member
1233 // class template can be declared and then later defined.
1234 unsigned NewDiag;
1235 if (isa<CXXConstructorDecl>(OldMethod))
1236 NewDiag = diag::err_constructor_redeclared;
1237 else if (isa<CXXDestructorDecl>(NewMethod))
1238 NewDiag = diag::err_destructor_redeclared;
1239 else if (isa<CXXConversionDecl>(NewMethod))
1240 NewDiag = diag::err_conv_function_redeclared;
1241 else
1242 NewDiag = diag::err_member_redeclared;
1244 Diag(New->getLocation(), NewDiag);
1245 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1247 // Complain if this is an explicit declaration of a special
1248 // member that was initially declared implicitly.
1250 // As an exception, it's okay to befriend such methods in order
1251 // to permit the implicit constructor/destructor/operator calls.
1252 } else if (OldMethod->isImplicit()) {
1253 if (isFriend) {
1254 NewMethod->setImplicit();
1255 } else {
1256 Diag(NewMethod->getLocation(),
1257 diag::err_definition_of_implicitly_declared_member)
1258 << New << getSpecialMember(OldMethod);
1259 return true;
1264 // (C++98 8.3.5p3):
1265 // All declarations for a function shall agree exactly in both the
1266 // return type and the parameter-type-list.
1267 // We also want to respect all the extended bits except noreturn.
1269 // noreturn should now match unless the old type info didn't have it.
1270 QualType OldQTypeForComparison = OldQType;
1271 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1272 assert(OldQType == QualType(OldType, 0));
1273 const FunctionType *OldTypeForComparison
1274 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1275 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1276 assert(OldQTypeForComparison.isCanonical());
1279 if (OldQTypeForComparison == NewQType)
1280 return MergeCompatibleFunctionDecls(New, Old);
1282 // Fall through for conflicting redeclarations and redefinitions.
1285 // C: Function types need to be compatible, not identical. This handles
1286 // duplicate function decls like "void f(int); void f(enum X);" properly.
1287 if (!getLangOptions().CPlusPlus &&
1288 Context.typesAreCompatible(OldQType, NewQType)) {
1289 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1290 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1291 const FunctionProtoType *OldProto = 0;
1292 if (isa<FunctionNoProtoType>(NewFuncType) &&
1293 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1294 // The old declaration provided a function prototype, but the
1295 // new declaration does not. Merge in the prototype.
1296 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1297 llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1298 OldProto->arg_type_end());
1299 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1300 ParamTypes.data(), ParamTypes.size(),
1301 OldProto->getExtProtoInfo());
1302 New->setType(NewQType);
1303 New->setHasInheritedPrototype();
1305 // Synthesize a parameter for each argument type.
1306 llvm::SmallVector<ParmVarDecl*, 16> Params;
1307 for (FunctionProtoType::arg_type_iterator
1308 ParamType = OldProto->arg_type_begin(),
1309 ParamEnd = OldProto->arg_type_end();
1310 ParamType != ParamEnd; ++ParamType) {
1311 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312 SourceLocation(), 0,
1313 *ParamType, /*TInfo=*/0,
1314 SC_None, SC_None,
1316 Param->setImplicit();
1317 Params.push_back(Param);
1320 New->setParams(Params.data(), Params.size());
1323 return MergeCompatibleFunctionDecls(New, Old);
1326 // GNU C permits a K&R definition to follow a prototype declaration
1327 // if the declared types of the parameters in the K&R definition
1328 // match the types in the prototype declaration, even when the
1329 // promoted types of the parameters from the K&R definition differ
1330 // from the types in the prototype. GCC then keeps the types from
1331 // the prototype.
1333 // If a variadic prototype is followed by a non-variadic K&R definition,
1334 // the K&R definition becomes variadic. This is sort of an edge case, but
1335 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336 // C99 6.9.1p8.
1337 if (!getLangOptions().CPlusPlus &&
1338 Old->hasPrototype() && !New->hasPrototype() &&
1339 New->getType()->getAs<FunctionProtoType>() &&
1340 Old->getNumParams() == New->getNumParams()) {
1341 llvm::SmallVector<QualType, 16> ArgTypes;
1342 llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343 const FunctionProtoType *OldProto
1344 = Old->getType()->getAs<FunctionProtoType>();
1345 const FunctionProtoType *NewProto
1346 = New->getType()->getAs<FunctionProtoType>();
1348 // Determine whether this is the GNU C extension.
1349 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350 NewProto->getResultType());
1351 bool LooseCompatible = !MergedReturn.isNull();
1352 for (unsigned Idx = 0, End = Old->getNumParams();
1353 LooseCompatible && Idx != End; ++Idx) {
1354 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355 ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356 if (Context.typesAreCompatible(OldParm->getType(),
1357 NewProto->getArgType(Idx))) {
1358 ArgTypes.push_back(NewParm->getType());
1359 } else if (Context.typesAreCompatible(OldParm->getType(),
1360 NewParm->getType(),
1361 /*CompareUnqualified=*/true)) {
1362 GNUCompatibleParamWarning Warn
1363 = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364 Warnings.push_back(Warn);
1365 ArgTypes.push_back(NewParm->getType());
1366 } else
1367 LooseCompatible = false;
1370 if (LooseCompatible) {
1371 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372 Diag(Warnings[Warn].NewParm->getLocation(),
1373 diag::ext_param_promoted_not_compatible_with_prototype)
1374 << Warnings[Warn].PromotedType
1375 << Warnings[Warn].OldParm->getType();
1376 if (Warnings[Warn].OldParm->getLocation().isValid())
1377 Diag(Warnings[Warn].OldParm->getLocation(),
1378 diag::note_previous_declaration);
1381 New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382 ArgTypes.size(),
1383 OldProto->getExtProtoInfo()));
1384 return MergeCompatibleFunctionDecls(New, Old);
1387 // Fall through to diagnose conflicting types.
1390 // A function that has already been declared has been redeclared or defined
1391 // with a different type- show appropriate diagnostic
1392 if (unsigned BuiltinID = Old->getBuiltinID()) {
1393 // The user has declared a builtin function with an incompatible
1394 // signature.
1395 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1396 // The function the user is redeclaring is a library-defined
1397 // function like 'malloc' or 'printf'. Warn about the
1398 // redeclaration, then pretend that we don't know about this
1399 // library built-in.
1400 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1401 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1402 << Old << Old->getType();
1403 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1404 Old->setInvalidDecl();
1405 return false;
1408 PrevDiag = diag::note_previous_builtin_declaration;
1411 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1412 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1413 return true;
1416 /// \brief Completes the merge of two function declarations that are
1417 /// known to be compatible.
1419 /// This routine handles the merging of attributes and other
1420 /// properties of function declarations form the old declaration to
1421 /// the new declaration, once we know that New is in fact a
1422 /// redeclaration of Old.
1424 /// \returns false
1425 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1426 // Merge the attributes
1427 MergeDeclAttributes(New, Old, Context);
1429 // Merge the storage class.
1430 if (Old->getStorageClass() != SC_Extern &&
1431 Old->getStorageClass() != SC_None)
1432 New->setStorageClass(Old->getStorageClass());
1434 // Merge "pure" flag.
1435 if (Old->isPure())
1436 New->setPure();
1438 // Merge the "deleted" flag.
1439 if (Old->isDeleted())
1440 New->setDeleted();
1442 if (getLangOptions().CPlusPlus)
1443 return MergeCXXFunctionDecl(New, Old);
1445 return false;
1448 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
1449 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
1450 /// situation, merging decls or emitting diagnostics as appropriate.
1452 /// Tentative definition rules (C99 6.9.2p2) are checked by
1453 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1454 /// definitions here, since the initializer hasn't been attached.
1456 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1457 // If the new decl is already invalid, don't do any other checking.
1458 if (New->isInvalidDecl())
1459 return;
1461 // Verify the old decl was also a variable.
1462 VarDecl *Old = 0;
1463 if (!Previous.isSingleResult() ||
1464 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1465 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1466 << New->getDeclName();
1467 Diag(Previous.getRepresentativeDecl()->getLocation(),
1468 diag::note_previous_definition);
1469 return New->setInvalidDecl();
1472 // C++ [class.mem]p1:
1473 // A member shall not be declared twice in the member-specification [...]
1475 // Here, we need only consider static data members.
1476 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1477 Diag(New->getLocation(), diag::err_duplicate_member)
1478 << New->getIdentifier();
1479 Diag(Old->getLocation(), diag::note_previous_declaration);
1480 New->setInvalidDecl();
1483 MergeDeclAttributes(New, Old, Context);
1485 // Merge the types
1486 QualType MergedT;
1487 if (getLangOptions().CPlusPlus) {
1488 if (Context.hasSameType(New->getType(), Old->getType()))
1489 MergedT = New->getType();
1490 // C++ [basic.link]p10:
1491 // [...] the types specified by all declarations referring to a given
1492 // object or function shall be identical, except that declarations for an
1493 // array object can specify array types that differ by the presence or
1494 // absence of a major array bound (8.3.4).
1495 else if (Old->getType()->isIncompleteArrayType() &&
1496 New->getType()->isArrayType()) {
1497 CanQual<ArrayType> OldArray
1498 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499 CanQual<ArrayType> NewArray
1500 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501 if (OldArray->getElementType() == NewArray->getElementType())
1502 MergedT = New->getType();
1503 } else if (Old->getType()->isArrayType() &&
1504 New->getType()->isIncompleteArrayType()) {
1505 CanQual<ArrayType> OldArray
1506 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1507 CanQual<ArrayType> NewArray
1508 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1509 if (OldArray->getElementType() == NewArray->getElementType())
1510 MergedT = Old->getType();
1511 } else if (New->getType()->isObjCObjectPointerType()
1512 && Old->getType()->isObjCObjectPointerType()) {
1513 MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1515 } else {
1516 MergedT = Context.mergeTypes(New->getType(), Old->getType());
1518 if (MergedT.isNull()) {
1519 Diag(New->getLocation(), diag::err_redefinition_different_type)
1520 << New->getDeclName();
1521 Diag(Old->getLocation(), diag::note_previous_definition);
1522 return New->setInvalidDecl();
1524 New->setType(MergedT);
1526 // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1527 if (New->getStorageClass() == SC_Static &&
1528 (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1529 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1530 Diag(Old->getLocation(), diag::note_previous_definition);
1531 return New->setInvalidDecl();
1533 // C99 6.2.2p4:
1534 // For an identifier declared with the storage-class specifier
1535 // extern in a scope in which a prior declaration of that
1536 // identifier is visible,23) if the prior declaration specifies
1537 // internal or external linkage, the linkage of the identifier at
1538 // the later declaration is the same as the linkage specified at
1539 // the prior declaration. If no prior declaration is visible, or
1540 // if the prior declaration specifies no linkage, then the
1541 // identifier has external linkage.
1542 if (New->hasExternalStorage() && Old->hasLinkage())
1543 /* Okay */;
1544 else if (New->getStorageClass() != SC_Static &&
1545 Old->getStorageClass() == SC_Static) {
1546 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1547 Diag(Old->getLocation(), diag::note_previous_definition);
1548 return New->setInvalidDecl();
1551 // Check if extern is followed by non-extern and vice-versa.
1552 if (New->hasExternalStorage() &&
1553 !Old->hasLinkage() && Old->isLocalVarDecl()) {
1554 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1555 Diag(Old->getLocation(), diag::note_previous_definition);
1556 return New->setInvalidDecl();
1558 if (Old->hasExternalStorage() &&
1559 !New->hasLinkage() && New->isLocalVarDecl()) {
1560 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1561 Diag(Old->getLocation(), diag::note_previous_definition);
1562 return New->setInvalidDecl();
1565 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1567 // FIXME: The test for external storage here seems wrong? We still
1568 // need to check for mismatches.
1569 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1570 // Don't complain about out-of-line definitions of static members.
1571 !(Old->getLexicalDeclContext()->isRecord() &&
1572 !New->getLexicalDeclContext()->isRecord())) {
1573 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1574 Diag(Old->getLocation(), diag::note_previous_definition);
1575 return New->setInvalidDecl();
1578 if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1579 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1580 Diag(Old->getLocation(), diag::note_previous_definition);
1581 } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1582 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1583 Diag(Old->getLocation(), diag::note_previous_definition);
1586 // C++ doesn't have tentative definitions, so go right ahead and check here.
1587 const VarDecl *Def;
1588 if (getLangOptions().CPlusPlus &&
1589 New->isThisDeclarationADefinition() == VarDecl::Definition &&
1590 (Def = Old->getDefinition())) {
1591 Diag(New->getLocation(), diag::err_redefinition)
1592 << New->getDeclName();
1593 Diag(Def->getLocation(), diag::note_previous_definition);
1594 New->setInvalidDecl();
1595 return;
1597 // c99 6.2.2 P4.
1598 // For an identifier declared with the storage-class specifier extern in a
1599 // scope in which a prior declaration of that identifier is visible, if
1600 // the prior declaration specifies internal or external linkage, the linkage
1601 // of the identifier at the later declaration is the same as the linkage
1602 // specified at the prior declaration.
1603 // FIXME. revisit this code.
1604 if (New->hasExternalStorage() &&
1605 Old->getLinkage() == InternalLinkage &&
1606 New->getDeclContext() == Old->getDeclContext())
1607 New->setStorageClass(Old->getStorageClass());
1609 // Keep a chain of previous declarations.
1610 New->setPreviousDeclaration(Old);
1612 // Inherit access appropriately.
1613 New->setAccess(Old->getAccess());
1616 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1617 /// no declarator (e.g. "struct foo;") is parsed.
1618 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1619 DeclSpec &DS) {
1620 // FIXME: Error on inline/virtual/explicit
1621 // FIXME: Warn on useless __thread
1622 // FIXME: Warn on useless const/volatile
1623 // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1624 // FIXME: Warn on useless attributes
1625 Decl *TagD = 0;
1626 TagDecl *Tag = 0;
1627 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1628 DS.getTypeSpecType() == DeclSpec::TST_struct ||
1629 DS.getTypeSpecType() == DeclSpec::TST_union ||
1630 DS.getTypeSpecType() == DeclSpec::TST_enum) {
1631 TagD = DS.getRepAsDecl();
1633 if (!TagD) // We probably had an error
1634 return 0;
1636 // Note that the above type specs guarantee that the
1637 // type rep is a Decl, whereas in many of the others
1638 // it's a Type.
1639 Tag = dyn_cast<TagDecl>(TagD);
1642 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1643 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1644 // or incomplete types shall not be restrict-qualified."
1645 if (TypeQuals & DeclSpec::TQ_restrict)
1646 Diag(DS.getRestrictSpecLoc(),
1647 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1648 << DS.getSourceRange();
1651 if (DS.isFriendSpecified()) {
1652 // If we're dealing with a decl but not a TagDecl, assume that
1653 // whatever routines created it handled the friendship aspect.
1654 if (TagD && !Tag)
1655 return 0;
1656 return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1659 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1660 ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1662 if (!Record->getDeclName() && Record->isDefinition() &&
1663 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1664 if (getLangOptions().CPlusPlus ||
1665 Record->getDeclContext()->isRecord())
1666 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1668 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1669 << DS.getSourceRange();
1673 // Check for Microsoft C extension: anonymous struct.
1674 if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1675 CurContext->isRecord() &&
1676 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1677 // Handle 2 kinds of anonymous struct:
1678 // struct STRUCT;
1679 // and
1680 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
1681 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1682 if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1683 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1684 DS.getRepAsType().get()->isStructureType())) {
1685 Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1686 << DS.getSourceRange();
1687 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1691 if (getLangOptions().CPlusPlus &&
1692 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1693 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1694 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1695 !Enum->getIdentifier() && !Enum->isInvalidDecl())
1696 Diag(Enum->getLocation(), diag::ext_no_declarators)
1697 << DS.getSourceRange();
1699 if (!DS.isMissingDeclaratorOk() &&
1700 DS.getTypeSpecType() != DeclSpec::TST_error) {
1701 // Warn about typedefs of enums without names, since this is an
1702 // extension in both Microsoft and GNU.
1703 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1704 Tag && isa<EnumDecl>(Tag)) {
1705 Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1706 << DS.getSourceRange();
1707 return Tag;
1710 Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1711 << DS.getSourceRange();
1714 return TagD;
1717 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1718 /// builds a statement for it and returns it so it is evaluated.
1719 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1720 StmtResult R;
1721 if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1722 Expr *Exp = DS.getRepAsExpr();
1723 QualType Ty = Exp->getType();
1724 if (Ty->isPointerType()) {
1726 Ty = Ty->getAs<PointerType>()->getPointeeType();
1727 while (Ty->isPointerType());
1729 if (Ty->isVariableArrayType()) {
1730 R = ActOnExprStmt(MakeFullExpr(Exp));
1733 return R;
1736 /// We are trying to inject an anonymous member into the given scope;
1737 /// check if there's an existing declaration that can't be overloaded.
1739 /// \return true if this is a forbidden redeclaration
1740 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1741 Scope *S,
1742 DeclContext *Owner,
1743 DeclarationName Name,
1744 SourceLocation NameLoc,
1745 unsigned diagnostic) {
1746 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1747 Sema::ForRedeclaration);
1748 if (!SemaRef.LookupName(R, S)) return false;
1750 if (R.getAsSingle<TagDecl>())
1751 return false;
1753 // Pick a representative declaration.
1754 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1755 assert(PrevDecl && "Expected a non-null Decl");
1757 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1758 return false;
1760 SemaRef.Diag(NameLoc, diagnostic) << Name;
1761 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1763 return true;
1766 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
1767 /// anonymous struct or union AnonRecord into the owning context Owner
1768 /// and scope S. This routine will be invoked just after we realize
1769 /// that an unnamed union or struct is actually an anonymous union or
1770 /// struct, e.g.,
1772 /// @code
1773 /// union {
1774 /// int i;
1775 /// float f;
1776 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1777 /// // f into the surrounding scope.x
1778 /// @endcode
1780 /// This routine is recursive, injecting the names of nested anonymous
1781 /// structs/unions into the owning context and scope as well.
1782 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1783 DeclContext *Owner,
1784 RecordDecl *AnonRecord,
1785 AccessSpecifier AS,
1786 llvm::SmallVector<NamedDecl*, 2> &Chaining,
1787 bool MSAnonStruct) {
1788 unsigned diagKind
1789 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1790 : diag::err_anonymous_struct_member_redecl;
1792 bool Invalid = false;
1794 // Look every FieldDecl and IndirectFieldDecl with a name.
1795 for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1796 DEnd = AnonRecord->decls_end();
1797 D != DEnd; ++D) {
1798 if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1799 cast<NamedDecl>(*D)->getDeclName()) {
1800 ValueDecl *VD = cast<ValueDecl>(*D);
1801 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1802 VD->getLocation(), diagKind)) {
1803 // C++ [class.union]p2:
1804 // The names of the members of an anonymous union shall be
1805 // distinct from the names of any other entity in the
1806 // scope in which the anonymous union is declared.
1807 Invalid = true;
1808 } else {
1809 // C++ [class.union]p2:
1810 // For the purpose of name lookup, after the anonymous union
1811 // definition, the members of the anonymous union are
1812 // considered to have been defined in the scope in which the
1813 // anonymous union is declared.
1814 unsigned OldChainingSize = Chaining.size();
1815 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1816 for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1817 PE = IF->chain_end(); PI != PE; ++PI)
1818 Chaining.push_back(*PI);
1819 else
1820 Chaining.push_back(VD);
1822 assert(Chaining.size() >= 2);
1823 NamedDecl **NamedChain =
1824 new (SemaRef.Context)NamedDecl*[Chaining.size()];
1825 for (unsigned i = 0; i < Chaining.size(); i++)
1826 NamedChain[i] = Chaining[i];
1828 IndirectFieldDecl* IndirectField =
1829 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1830 VD->getIdentifier(), VD->getType(),
1831 NamedChain, Chaining.size());
1833 IndirectField->setAccess(AS);
1834 IndirectField->setImplicit();
1835 SemaRef.PushOnScopeChains(IndirectField, S);
1837 // That includes picking up the appropriate access specifier.
1838 if (AS != AS_none) IndirectField->setAccess(AS);
1840 Chaining.resize(OldChainingSize);
1845 return Invalid;
1848 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1849 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
1850 /// illegal input values are mapped to SC_None.
1851 static StorageClass
1852 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1853 switch (StorageClassSpec) {
1854 case DeclSpec::SCS_unspecified: return SC_None;
1855 case DeclSpec::SCS_extern: return SC_Extern;
1856 case DeclSpec::SCS_static: return SC_Static;
1857 case DeclSpec::SCS_auto: return SC_Auto;
1858 case DeclSpec::SCS_register: return SC_Register;
1859 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1860 // Illegal SCSs map to None: error reporting is up to the caller.
1861 case DeclSpec::SCS_mutable: // Fall through.
1862 case DeclSpec::SCS_typedef: return SC_None;
1864 llvm_unreachable("unknown storage class specifier");
1867 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1868 /// a StorageClass. Any error reporting is up to the caller:
1869 /// illegal input values are mapped to SC_None.
1870 static StorageClass
1871 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1872 switch (StorageClassSpec) {
1873 case DeclSpec::SCS_unspecified: return SC_None;
1874 case DeclSpec::SCS_extern: return SC_Extern;
1875 case DeclSpec::SCS_static: return SC_Static;
1876 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1877 // Illegal SCSs map to None: error reporting is up to the caller.
1878 case DeclSpec::SCS_auto: // Fall through.
1879 case DeclSpec::SCS_mutable: // Fall through.
1880 case DeclSpec::SCS_register: // Fall through.
1881 case DeclSpec::SCS_typedef: return SC_None;
1883 llvm_unreachable("unknown storage class specifier");
1886 /// BuildAnonymousStructOrUnion - Handle the declaration of an
1887 /// anonymous structure or union. Anonymous unions are a C++ feature
1888 /// (C++ [class.union]) and a GNU C extension; anonymous structures
1889 /// are a GNU C and GNU C++ extension.
1890 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1891 AccessSpecifier AS,
1892 RecordDecl *Record) {
1893 DeclContext *Owner = Record->getDeclContext();
1895 // Diagnose whether this anonymous struct/union is an extension.
1896 if (Record->isUnion() && !getLangOptions().CPlusPlus)
1897 Diag(Record->getLocation(), diag::ext_anonymous_union);
1898 else if (!Record->isUnion())
1899 Diag(Record->getLocation(), diag::ext_anonymous_struct);
1901 // C and C++ require different kinds of checks for anonymous
1902 // structs/unions.
1903 bool Invalid = false;
1904 if (getLangOptions().CPlusPlus) {
1905 const char* PrevSpec = 0;
1906 unsigned DiagID;
1907 // C++ [class.union]p3:
1908 // Anonymous unions declared in a named namespace or in the
1909 // global namespace shall be declared static.
1910 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1911 (isa<TranslationUnitDecl>(Owner) ||
1912 (isa<NamespaceDecl>(Owner) &&
1913 cast<NamespaceDecl>(Owner)->getDeclName()))) {
1914 Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1915 Invalid = true;
1917 // Recover by adding 'static'.
1918 DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1919 PrevSpec, DiagID);
1921 // C++ [class.union]p3:
1922 // A storage class is not allowed in a declaration of an
1923 // anonymous union in a class scope.
1924 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1925 isa<RecordDecl>(Owner)) {
1926 Diag(DS.getStorageClassSpecLoc(),
1927 diag::err_anonymous_union_with_storage_spec);
1928 Invalid = true;
1930 // Recover by removing the storage specifier.
1931 DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1932 PrevSpec, DiagID);
1935 // C++ [class.union]p2:
1936 // The member-specification of an anonymous union shall only
1937 // define non-static data members. [Note: nested types and
1938 // functions cannot be declared within an anonymous union. ]
1939 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1940 MemEnd = Record->decls_end();
1941 Mem != MemEnd; ++Mem) {
1942 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1943 // C++ [class.union]p3:
1944 // An anonymous union shall not have private or protected
1945 // members (clause 11).
1946 assert(FD->getAccess() != AS_none);
1947 if (FD->getAccess() != AS_public) {
1948 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1949 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1950 Invalid = true;
1953 if (CheckNontrivialField(FD))
1954 Invalid = true;
1955 } else if ((*Mem)->isImplicit()) {
1956 // Any implicit members are fine.
1957 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1958 // This is a type that showed up in an
1959 // elaborated-type-specifier inside the anonymous struct or
1960 // union, but which actually declares a type outside of the
1961 // anonymous struct or union. It's okay.
1962 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1963 if (!MemRecord->isAnonymousStructOrUnion() &&
1964 MemRecord->getDeclName()) {
1965 // Visual C++ allows type definition in anonymous struct or union.
1966 if (getLangOptions().Microsoft)
1967 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1968 << (int)Record->isUnion();
1969 else {
1970 // This is a nested type declaration.
1971 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1972 << (int)Record->isUnion();
1973 Invalid = true;
1976 } else if (isa<AccessSpecDecl>(*Mem)) {
1977 // Any access specifier is fine.
1978 } else {
1979 // We have something that isn't a non-static data
1980 // member. Complain about it.
1981 unsigned DK = diag::err_anonymous_record_bad_member;
1982 if (isa<TypeDecl>(*Mem))
1983 DK = diag::err_anonymous_record_with_type;
1984 else if (isa<FunctionDecl>(*Mem))
1985 DK = diag::err_anonymous_record_with_function;
1986 else if (isa<VarDecl>(*Mem))
1987 DK = diag::err_anonymous_record_with_static;
1989 // Visual C++ allows type definition in anonymous struct or union.
1990 if (getLangOptions().Microsoft &&
1991 DK == diag::err_anonymous_record_with_type)
1992 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1993 << (int)Record->isUnion();
1994 else {
1995 Diag((*Mem)->getLocation(), DK)
1996 << (int)Record->isUnion();
1997 Invalid = true;
2003 if (!Record->isUnion() && !Owner->isRecord()) {
2004 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2005 << (int)getLangOptions().CPlusPlus;
2006 Invalid = true;
2009 // Mock up a declarator.
2010 Declarator Dc(DS, Declarator::TypeNameContext);
2011 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2012 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2014 // Create a declaration for this anonymous struct/union.
2015 NamedDecl *Anon = 0;
2016 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2017 Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2018 /*IdentifierInfo=*/0,
2019 Context.getTypeDeclType(Record),
2020 TInfo,
2021 /*BitWidth=*/0, /*Mutable=*/false);
2022 Anon->setAccess(AS);
2023 if (getLangOptions().CPlusPlus)
2024 FieldCollector->Add(cast<FieldDecl>(Anon));
2025 } else {
2026 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2027 assert(SCSpec != DeclSpec::SCS_typedef &&
2028 "Parser allowed 'typedef' as storage class VarDecl.");
2029 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2030 if (SCSpec == DeclSpec::SCS_mutable) {
2031 // mutable can only appear on non-static class members, so it's always
2032 // an error here
2033 Diag(Record->getLocation(), diag::err_mutable_nonmember);
2034 Invalid = true;
2035 SC = SC_None;
2037 SCSpec = DS.getStorageClassSpecAsWritten();
2038 VarDecl::StorageClass SCAsWritten
2039 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2041 Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2042 /*IdentifierInfo=*/0,
2043 Context.getTypeDeclType(Record),
2044 TInfo, SC, SCAsWritten);
2046 Anon->setImplicit();
2048 // Add the anonymous struct/union object to the current
2049 // context. We'll be referencing this object when we refer to one of
2050 // its members.
2051 Owner->addDecl(Anon);
2053 // Inject the members of the anonymous struct/union into the owning
2054 // context and into the identifier resolver chain for name lookup
2055 // purposes.
2056 llvm::SmallVector<NamedDecl*, 2> Chain;
2057 Chain.push_back(Anon);
2059 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2060 Chain, false))
2061 Invalid = true;
2063 // Mark this as an anonymous struct/union type. Note that we do not
2064 // do this until after we have already checked and injected the
2065 // members of this anonymous struct/union type, because otherwise
2066 // the members could be injected twice: once by DeclContext when it
2067 // builds its lookup table, and once by
2068 // InjectAnonymousStructOrUnionMembers.
2069 Record->setAnonymousStructOrUnion(true);
2071 if (Invalid)
2072 Anon->setInvalidDecl();
2074 return Anon;
2077 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2078 /// Microsoft C anonymous structure.
2079 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2080 /// Example:
2082 /// struct A { int a; };
2083 /// struct B { struct A; int b; };
2085 /// void foo() {
2086 /// B var;
2087 /// var.a = 3;
2088 /// }
2090 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2091 RecordDecl *Record) {
2093 // If there is no Record, get the record via the typedef.
2094 if (!Record)
2095 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2097 // Mock up a declarator.
2098 Declarator Dc(DS, Declarator::TypeNameContext);
2099 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2100 assert(TInfo && "couldn't build declarator info for anonymous struct");
2102 // Create a declaration for this anonymous struct.
2103 NamedDecl* Anon = FieldDecl::Create(Context,
2104 cast<RecordDecl>(CurContext),
2105 DS.getSourceRange().getBegin(),
2106 /*IdentifierInfo=*/0,
2107 Context.getTypeDeclType(Record),
2108 TInfo,
2109 /*BitWidth=*/0, /*Mutable=*/false);
2110 Anon->setImplicit();
2112 // Add the anonymous struct object to the current context.
2113 CurContext->addDecl(Anon);
2115 // Inject the members of the anonymous struct into the current
2116 // context and into the identifier resolver chain for name lookup
2117 // purposes.
2118 llvm::SmallVector<NamedDecl*, 2> Chain;
2119 Chain.push_back(Anon);
2121 if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2122 Record->getDefinition(),
2123 AS_none, Chain, true))
2124 Anon->setInvalidDecl();
2126 return Anon;
2129 /// GetNameForDeclarator - Determine the full declaration name for the
2130 /// given Declarator.
2131 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2132 return GetNameFromUnqualifiedId(D.getName());
2135 /// \brief Retrieves the declaration name from a parsed unqualified-id.
2136 DeclarationNameInfo
2137 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2138 DeclarationNameInfo NameInfo;
2139 NameInfo.setLoc(Name.StartLocation);
2141 switch (Name.getKind()) {
2143 case UnqualifiedId::IK_Identifier:
2144 NameInfo.setName(Name.Identifier);
2145 NameInfo.setLoc(Name.StartLocation);
2146 return NameInfo;
2148 case UnqualifiedId::IK_OperatorFunctionId:
2149 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2150 Name.OperatorFunctionId.Operator));
2151 NameInfo.setLoc(Name.StartLocation);
2152 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2153 = Name.OperatorFunctionId.SymbolLocations[0];
2154 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2155 = Name.EndLocation.getRawEncoding();
2156 return NameInfo;
2158 case UnqualifiedId::IK_LiteralOperatorId:
2159 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2160 Name.Identifier));
2161 NameInfo.setLoc(Name.StartLocation);
2162 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2163 return NameInfo;
2165 case UnqualifiedId::IK_ConversionFunctionId: {
2166 TypeSourceInfo *TInfo;
2167 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2168 if (Ty.isNull())
2169 return DeclarationNameInfo();
2170 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2171 Context.getCanonicalType(Ty)));
2172 NameInfo.setLoc(Name.StartLocation);
2173 NameInfo.setNamedTypeInfo(TInfo);
2174 return NameInfo;
2177 case UnqualifiedId::IK_ConstructorName: {
2178 TypeSourceInfo *TInfo;
2179 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2180 if (Ty.isNull())
2181 return DeclarationNameInfo();
2182 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2183 Context.getCanonicalType(Ty)));
2184 NameInfo.setLoc(Name.StartLocation);
2185 NameInfo.setNamedTypeInfo(TInfo);
2186 return NameInfo;
2189 case UnqualifiedId::IK_ConstructorTemplateId: {
2190 // In well-formed code, we can only have a constructor
2191 // template-id that refers to the current context, so go there
2192 // to find the actual type being constructed.
2193 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2194 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2195 return DeclarationNameInfo();
2197 // Determine the type of the class being constructed.
2198 QualType CurClassType = Context.getTypeDeclType(CurClass);
2200 // FIXME: Check two things: that the template-id names the same type as
2201 // CurClassType, and that the template-id does not occur when the name
2202 // was qualified.
2204 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2205 Context.getCanonicalType(CurClassType)));
2206 NameInfo.setLoc(Name.StartLocation);
2207 // FIXME: should we retrieve TypeSourceInfo?
2208 NameInfo.setNamedTypeInfo(0);
2209 return NameInfo;
2212 case UnqualifiedId::IK_DestructorName: {
2213 TypeSourceInfo *TInfo;
2214 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2215 if (Ty.isNull())
2216 return DeclarationNameInfo();
2217 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2218 Context.getCanonicalType(Ty)));
2219 NameInfo.setLoc(Name.StartLocation);
2220 NameInfo.setNamedTypeInfo(TInfo);
2221 return NameInfo;
2224 case UnqualifiedId::IK_TemplateId: {
2225 TemplateName TName = Name.TemplateId->Template.get();
2226 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2227 return Context.getNameForTemplate(TName, TNameLoc);
2230 } // switch (Name.getKind())
2232 assert(false && "Unknown name kind");
2233 return DeclarationNameInfo();
2236 /// isNearlyMatchingFunction - Determine whether the C++ functions
2237 /// Declaration and Definition are "nearly" matching. This heuristic
2238 /// is used to improve diagnostics in the case where an out-of-line
2239 /// function definition doesn't match any declaration within
2240 /// the class or namespace.
2241 static bool isNearlyMatchingFunction(ASTContext &Context,
2242 FunctionDecl *Declaration,
2243 FunctionDecl *Definition) {
2244 if (Declaration->param_size() != Definition->param_size())
2245 return false;
2246 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2247 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2248 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2250 if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2251 DefParamTy.getNonReferenceType()))
2252 return false;
2255 return true;
2258 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2259 /// declarator needs to be rebuilt in the current instantiation.
2260 /// Any bits of declarator which appear before the name are valid for
2261 /// consideration here. That's specifically the type in the decl spec
2262 /// and the base type in any member-pointer chunks.
2263 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2264 DeclarationName Name) {
2265 // The types we specifically need to rebuild are:
2266 // - typenames, typeofs, and decltypes
2267 // - types which will become injected class names
2268 // Of course, we also need to rebuild any type referencing such a
2269 // type. It's safest to just say "dependent", but we call out a
2270 // few cases here.
2272 DeclSpec &DS = D.getMutableDeclSpec();
2273 switch (DS.getTypeSpecType()) {
2274 case DeclSpec::TST_typename:
2275 case DeclSpec::TST_typeofType:
2276 case DeclSpec::TST_decltype: {
2277 // Grab the type from the parser.
2278 TypeSourceInfo *TSI = 0;
2279 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2280 if (T.isNull() || !T->isDependentType()) break;
2282 // Make sure there's a type source info. This isn't really much
2283 // of a waste; most dependent types should have type source info
2284 // attached already.
2285 if (!TSI)
2286 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2288 // Rebuild the type in the current instantiation.
2289 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2290 if (!TSI) return true;
2292 // Store the new type back in the decl spec.
2293 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2294 DS.UpdateTypeRep(LocType);
2295 break;
2298 case DeclSpec::TST_typeofExpr: {
2299 Expr *E = DS.getRepAsExpr();
2300 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2301 if (Result.isInvalid()) return true;
2302 DS.UpdateExprRep(Result.get());
2303 break;
2306 default:
2307 // Nothing to do for these decl specs.
2308 break;
2311 // It doesn't matter what order we do this in.
2312 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2313 DeclaratorChunk &Chunk = D.getTypeObject(I);
2315 // The only type information in the declarator which can come
2316 // before the declaration name is the base type of a member
2317 // pointer.
2318 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2319 continue;
2321 // Rebuild the scope specifier in-place.
2322 CXXScopeSpec &SS = Chunk.Mem.Scope();
2323 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2324 return true;
2327 return false;
2330 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2331 return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2334 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2335 MultiTemplateParamsArg TemplateParamLists,
2336 bool IsFunctionDefinition) {
2337 // TODO: consider using NameInfo for diagnostic.
2338 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2339 DeclarationName Name = NameInfo.getName();
2341 // All of these full declarators require an identifier. If it doesn't have
2342 // one, the ParsedFreeStandingDeclSpec action should be used.
2343 if (!Name) {
2344 if (!D.isInvalidType()) // Reject this if we think it is valid.
2345 Diag(D.getDeclSpec().getSourceRange().getBegin(),
2346 diag::err_declarator_need_ident)
2347 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2348 return 0;
2349 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2350 return 0;
2352 // The scope passed in may not be a decl scope. Zip up the scope tree until
2353 // we find one that is.
2354 while ((S->getFlags() & Scope::DeclScope) == 0 ||
2355 (S->getFlags() & Scope::TemplateParamScope) != 0)
2356 S = S->getParent();
2358 DeclContext *DC = CurContext;
2359 if (D.getCXXScopeSpec().isInvalid())
2360 D.setInvalidType();
2361 else if (D.getCXXScopeSpec().isSet()) {
2362 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2363 UPPC_DeclarationQualifier))
2364 return 0;
2366 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2367 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2368 if (!DC) {
2369 // If we could not compute the declaration context, it's because the
2370 // declaration context is dependent but does not refer to a class,
2371 // class template, or class template partial specialization. Complain
2372 // and return early, to avoid the coming semantic disaster.
2373 Diag(D.getIdentifierLoc(),
2374 diag::err_template_qualified_declarator_no_match)
2375 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2376 << D.getCXXScopeSpec().getRange();
2377 return 0;
2380 bool IsDependentContext = DC->isDependentContext();
2382 if (!IsDependentContext &&
2383 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2384 return 0;
2386 if (isa<CXXRecordDecl>(DC)) {
2387 if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2388 Diag(D.getIdentifierLoc(),
2389 diag::err_member_def_undefined_record)
2390 << Name << DC << D.getCXXScopeSpec().getRange();
2391 D.setInvalidType();
2392 } else if (isa<CXXRecordDecl>(CurContext) &&
2393 !D.getDeclSpec().isFriendSpecified()) {
2394 // The user provided a superfluous scope specifier inside a class
2395 // definition:
2397 // class X {
2398 // void X::f();
2399 // };
2400 if (CurContext->Equals(DC))
2401 Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2402 << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2403 else
2404 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2405 << Name << D.getCXXScopeSpec().getRange();
2407 // Pretend that this qualifier was not here.
2408 D.getCXXScopeSpec().clear();
2412 // Check whether we need to rebuild the type of the given
2413 // declaration in the current instantiation.
2414 if (EnteringContext && IsDependentContext &&
2415 TemplateParamLists.size() != 0) {
2416 ContextRAII SavedContext(*this, DC);
2417 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2418 D.setInvalidType();
2422 // C++ [class.mem]p13:
2423 // If T is the name of a class, then each of the following shall have a
2424 // name different from T:
2425 // - every static data member of class T;
2426 // - every member function of class T
2427 // - every member of class T that is itself a type;
2428 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2429 if (Record->getIdentifier() && Record->getDeclName() == Name) {
2430 Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2431 << Name;
2433 // If this is a typedef, we'll end up spewing multiple diagnostics.
2434 // Just return early; it's safer.
2435 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2436 return 0;
2439 NamedDecl *New;
2441 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2442 QualType R = TInfo->getType();
2444 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2445 UPPC_DeclarationType))
2446 D.setInvalidType();
2448 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2449 ForRedeclaration);
2451 // See if this is a redefinition of a variable in the same scope.
2452 if (!D.getCXXScopeSpec().isSet()) {
2453 bool IsLinkageLookup = false;
2455 // If the declaration we're planning to build will be a function
2456 // or object with linkage, then look for another declaration with
2457 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2458 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2459 /* Do nothing*/;
2460 else if (R->isFunctionType()) {
2461 if (CurContext->isFunctionOrMethod() ||
2462 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2463 IsLinkageLookup = true;
2464 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2465 IsLinkageLookup = true;
2466 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2467 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2468 IsLinkageLookup = true;
2470 if (IsLinkageLookup)
2471 Previous.clear(LookupRedeclarationWithLinkage);
2473 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2474 } else { // Something like "int foo::x;"
2475 LookupQualifiedName(Previous, DC);
2477 // Don't consider using declarations as previous declarations for
2478 // out-of-line members.
2479 RemoveUsingDecls(Previous);
2481 // C++ 7.3.1.2p2:
2482 // Members (including explicit specializations of templates) of a named
2483 // namespace can also be defined outside that namespace by explicit
2484 // qualification of the name being defined, provided that the entity being
2485 // defined was already declared in the namespace and the definition appears
2486 // after the point of declaration in a namespace that encloses the
2487 // declarations namespace.
2489 // Note that we only check the context at this point. We don't yet
2490 // have enough information to make sure that PrevDecl is actually
2491 // the declaration we want to match. For example, given:
2493 // class X {
2494 // void f();
2495 // void f(float);
2496 // };
2498 // void X::f(int) { } // ill-formed
2500 // In this case, PrevDecl will point to the overload set
2501 // containing the two f's declared in X, but neither of them
2502 // matches.
2504 // First check whether we named the global scope.
2505 if (isa<TranslationUnitDecl>(DC)) {
2506 Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2507 << Name << D.getCXXScopeSpec().getRange();
2508 } else {
2509 DeclContext *Cur = CurContext;
2510 while (isa<LinkageSpecDecl>(Cur))
2511 Cur = Cur->getParent();
2512 if (!Cur->Encloses(DC)) {
2513 // The qualifying scope doesn't enclose the original declaration.
2514 // Emit diagnostic based on current scope.
2515 SourceLocation L = D.getIdentifierLoc();
2516 SourceRange R = D.getCXXScopeSpec().getRange();
2517 if (isa<FunctionDecl>(Cur))
2518 Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2519 else
2520 Diag(L, diag::err_invalid_declarator_scope)
2521 << Name << cast<NamedDecl>(DC) << R;
2522 D.setInvalidType();
2527 if (Previous.isSingleResult() &&
2528 Previous.getFoundDecl()->isTemplateParameter()) {
2529 // Maybe we will complain about the shadowed template parameter.
2530 if (!D.isInvalidType())
2531 if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2532 Previous.getFoundDecl()))
2533 D.setInvalidType();
2535 // Just pretend that we didn't see the previous declaration.
2536 Previous.clear();
2539 // In C++, the previous declaration we find might be a tag type
2540 // (class or enum). In this case, the new declaration will hide the
2541 // tag type. Note that this does does not apply if we're declaring a
2542 // typedef (C++ [dcl.typedef]p4).
2543 if (Previous.isSingleTagDecl() &&
2544 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2545 Previous.clear();
2547 bool Redeclaration = false;
2548 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2549 if (TemplateParamLists.size()) {
2550 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2551 return 0;
2554 New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2555 } else if (R->isFunctionType()) {
2556 New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2557 move(TemplateParamLists),
2558 IsFunctionDefinition, Redeclaration);
2559 } else {
2560 New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2561 move(TemplateParamLists),
2562 Redeclaration);
2565 if (New == 0)
2566 return 0;
2568 // If this has an identifier and is not an invalid redeclaration or
2569 // function template specialization, add it to the scope stack.
2570 if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2571 PushOnScopeChains(New, S);
2573 return New;
2576 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2577 /// types into constant array types in certain situations which would otherwise
2578 /// be errors (for GCC compatibility).
2579 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2580 ASTContext &Context,
2581 bool &SizeIsNegative,
2582 llvm::APSInt &Oversized) {
2583 // This method tries to turn a variable array into a constant
2584 // array even when the size isn't an ICE. This is necessary
2585 // for compatibility with code that depends on gcc's buggy
2586 // constant expression folding, like struct {char x[(int)(char*)2];}
2587 SizeIsNegative = false;
2588 Oversized = 0;
2590 if (T->isDependentType())
2591 return QualType();
2593 QualifierCollector Qs;
2594 const Type *Ty = Qs.strip(T);
2596 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2597 QualType Pointee = PTy->getPointeeType();
2598 QualType FixedType =
2599 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2600 Oversized);
2601 if (FixedType.isNull()) return FixedType;
2602 FixedType = Context.getPointerType(FixedType);
2603 return Qs.apply(Context, FixedType);
2605 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2606 QualType Inner = PTy->getInnerType();
2607 QualType FixedType =
2608 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2609 Oversized);
2610 if (FixedType.isNull()) return FixedType;
2611 FixedType = Context.getParenType(FixedType);
2612 return Qs.apply(Context, FixedType);
2615 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2616 if (!VLATy)
2617 return QualType();
2618 // FIXME: We should probably handle this case
2619 if (VLATy->getElementType()->isVariablyModifiedType())
2620 return QualType();
2622 Expr::EvalResult EvalResult;
2623 if (!VLATy->getSizeExpr() ||
2624 !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2625 !EvalResult.Val.isInt())
2626 return QualType();
2628 // Check whether the array size is negative.
2629 llvm::APSInt &Res = EvalResult.Val.getInt();
2630 if (Res.isSigned() && Res.isNegative()) {
2631 SizeIsNegative = true;
2632 return QualType();
2635 // Check whether the array is too large to be addressed.
2636 unsigned ActiveSizeBits
2637 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2638 Res);
2639 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2640 Oversized = Res;
2641 return QualType();
2644 return Context.getConstantArrayType(VLATy->getElementType(),
2645 Res, ArrayType::Normal, 0);
2648 /// \brief Register the given locally-scoped external C declaration so
2649 /// that it can be found later for redeclarations
2650 void
2651 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2652 const LookupResult &Previous,
2653 Scope *S) {
2654 assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2655 "Decl is not a locally-scoped decl!");
2656 // Note that we have a locally-scoped external with this name.
2657 LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2659 if (!Previous.isSingleResult())
2660 return;
2662 NamedDecl *PrevDecl = Previous.getFoundDecl();
2664 // If there was a previous declaration of this variable, it may be
2665 // in our identifier chain. Update the identifier chain with the new
2666 // declaration.
2667 if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2668 // The previous declaration was found on the identifer resolver
2669 // chain, so remove it from its scope.
2670 while (S && !S->isDeclScope(PrevDecl))
2671 S = S->getParent();
2673 if (S)
2674 S->RemoveDecl(PrevDecl);
2678 /// \brief Diagnose function specifiers on a declaration of an identifier that
2679 /// does not identify a function.
2680 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2681 // FIXME: We should probably indicate the identifier in question to avoid
2682 // confusion for constructs like "inline int a(), b;"
2683 if (D.getDeclSpec().isInlineSpecified())
2684 Diag(D.getDeclSpec().getInlineSpecLoc(),
2685 diag::err_inline_non_function);
2687 if (D.getDeclSpec().isVirtualSpecified())
2688 Diag(D.getDeclSpec().getVirtualSpecLoc(),
2689 diag::err_virtual_non_function);
2691 if (D.getDeclSpec().isExplicitSpecified())
2692 Diag(D.getDeclSpec().getExplicitSpecLoc(),
2693 diag::err_explicit_non_function);
2696 NamedDecl*
2697 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2698 QualType R, TypeSourceInfo *TInfo,
2699 LookupResult &Previous, bool &Redeclaration) {
2700 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2701 if (D.getCXXScopeSpec().isSet()) {
2702 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2703 << D.getCXXScopeSpec().getRange();
2704 D.setInvalidType();
2705 // Pretend we didn't see the scope specifier.
2706 DC = CurContext;
2707 Previous.clear();
2710 if (getLangOptions().CPlusPlus) {
2711 // Check that there are no default arguments (C++ only).
2712 CheckExtraCXXDefaultArguments(D);
2715 DiagnoseFunctionSpecifiers(D);
2717 if (D.getDeclSpec().isThreadSpecified())
2718 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2720 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2721 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2722 << D.getName().getSourceRange();
2723 return 0;
2726 TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2727 if (!NewTD) return 0;
2729 // Handle attributes prior to checking for duplicates in MergeVarDecl
2730 ProcessDeclAttributes(S, NewTD, D);
2732 // C99 6.7.7p2: If a typedef name specifies a variably modified type
2733 // then it shall have block scope.
2734 // Note that variably modified types must be fixed before merging the decl so
2735 // that redeclarations will match.
2736 QualType T = NewTD->getUnderlyingType();
2737 if (T->isVariablyModifiedType()) {
2738 getCurFunction()->setHasBranchProtectedScope();
2740 if (S->getFnParent() == 0) {
2741 bool SizeIsNegative;
2742 llvm::APSInt Oversized;
2743 QualType FixedTy =
2744 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2745 Oversized);
2746 if (!FixedTy.isNull()) {
2747 Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2748 NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2749 } else {
2750 if (SizeIsNegative)
2751 Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2752 else if (T->isVariableArrayType())
2753 Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2754 else if (Oversized.getBoolValue())
2755 Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2756 << Oversized.toString(10);
2757 else
2758 Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2759 NewTD->setInvalidDecl();
2764 // Merge the decl with the existing one if appropriate. If the decl is
2765 // in an outer scope, it isn't the same thing.
2766 FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2767 if (!Previous.empty()) {
2768 Redeclaration = true;
2769 MergeTypeDefDecl(NewTD, Previous);
2772 // If this is the C FILE type, notify the AST context.
2773 if (IdentifierInfo *II = NewTD->getIdentifier())
2774 if (!NewTD->isInvalidDecl() &&
2775 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2776 if (II->isStr("FILE"))
2777 Context.setFILEDecl(NewTD);
2778 else if (II->isStr("jmp_buf"))
2779 Context.setjmp_bufDecl(NewTD);
2780 else if (II->isStr("sigjmp_buf"))
2781 Context.setsigjmp_bufDecl(NewTD);
2782 else if (II->isStr("__builtin_va_list"))
2783 Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2786 return NewTD;
2789 /// \brief Determines whether the given declaration is an out-of-scope
2790 /// previous declaration.
2792 /// This routine should be invoked when name lookup has found a
2793 /// previous declaration (PrevDecl) that is not in the scope where a
2794 /// new declaration by the same name is being introduced. If the new
2795 /// declaration occurs in a local scope, previous declarations with
2796 /// linkage may still be considered previous declarations (C99
2797 /// 6.2.2p4-5, C++ [basic.link]p6).
2799 /// \param PrevDecl the previous declaration found by name
2800 /// lookup
2802 /// \param DC the context in which the new declaration is being
2803 /// declared.
2805 /// \returns true if PrevDecl is an out-of-scope previous declaration
2806 /// for a new delcaration with the same name.
2807 static bool
2808 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2809 ASTContext &Context) {
2810 if (!PrevDecl)
2811 return false;
2813 if (!PrevDecl->hasLinkage())
2814 return false;
2816 if (Context.getLangOptions().CPlusPlus) {
2817 // C++ [basic.link]p6:
2818 // If there is a visible declaration of an entity with linkage
2819 // having the same name and type, ignoring entities declared
2820 // outside the innermost enclosing namespace scope, the block
2821 // scope declaration declares that same entity and receives the
2822 // linkage of the previous declaration.
2823 DeclContext *OuterContext = DC->getRedeclContext();
2824 if (!OuterContext->isFunctionOrMethod())
2825 // This rule only applies to block-scope declarations.
2826 return false;
2828 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2829 if (PrevOuterContext->isRecord())
2830 // We found a member function: ignore it.
2831 return false;
2833 // Find the innermost enclosing namespace for the new and
2834 // previous declarations.
2835 OuterContext = OuterContext->getEnclosingNamespaceContext();
2836 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2838 // The previous declaration is in a different namespace, so it
2839 // isn't the same function.
2840 if (!OuterContext->Equals(PrevOuterContext))
2841 return false;
2844 return true;
2847 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2848 CXXScopeSpec &SS = D.getCXXScopeSpec();
2849 if (!SS.isSet()) return;
2850 DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2851 SS.getRange());
2854 NamedDecl*
2855 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2856 QualType R, TypeSourceInfo *TInfo,
2857 LookupResult &Previous,
2858 MultiTemplateParamsArg TemplateParamLists,
2859 bool &Redeclaration) {
2860 DeclarationName Name = GetNameForDeclarator(D).getName();
2862 // Check that there are no default arguments (C++ only).
2863 if (getLangOptions().CPlusPlus)
2864 CheckExtraCXXDefaultArguments(D);
2866 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2867 assert(SCSpec != DeclSpec::SCS_typedef &&
2868 "Parser allowed 'typedef' as storage class VarDecl.");
2869 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2870 if (SCSpec == DeclSpec::SCS_mutable) {
2871 // mutable can only appear on non-static class members, so it's always
2872 // an error here
2873 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2874 D.setInvalidType();
2875 SC = SC_None;
2877 SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2878 VarDecl::StorageClass SCAsWritten
2879 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2881 IdentifierInfo *II = Name.getAsIdentifierInfo();
2882 if (!II) {
2883 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2884 << Name.getAsString();
2885 return 0;
2888 DiagnoseFunctionSpecifiers(D);
2890 if (!DC->isRecord() && S->getFnParent() == 0) {
2891 // C99 6.9p2: The storage-class specifiers auto and register shall not
2892 // appear in the declaration specifiers in an external declaration.
2893 if (SC == SC_Auto || SC == SC_Register) {
2895 // If this is a register variable with an asm label specified, then this
2896 // is a GNU extension.
2897 if (SC == SC_Register && D.getAsmLabel())
2898 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2899 else
2900 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2901 D.setInvalidType();
2905 bool isExplicitSpecialization = false;
2906 VarDecl *NewVD;
2907 if (!getLangOptions().CPlusPlus) {
2908 NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2909 II, R, TInfo, SC, SCAsWritten);
2911 if (D.isInvalidType())
2912 NewVD->setInvalidDecl();
2913 } else {
2914 if (DC->isRecord() && !CurContext->isRecord()) {
2915 // This is an out-of-line definition of a static data member.
2916 if (SC == SC_Static) {
2917 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2918 diag::err_static_out_of_line)
2919 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2920 } else if (SC == SC_None)
2921 SC = SC_Static;
2923 if (SC == SC_Static) {
2924 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2925 if (RD->isLocalClass())
2926 Diag(D.getIdentifierLoc(),
2927 diag::err_static_data_member_not_allowed_in_local_class)
2928 << Name << RD->getDeclName();
2930 // C++ [class.union]p1: If a union contains a static data member,
2931 // the program is ill-formed.
2933 // We also disallow static data members in anonymous structs.
2934 if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2935 Diag(D.getIdentifierLoc(),
2936 diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2937 << Name << RD->isUnion();
2941 // Match up the template parameter lists with the scope specifier, then
2942 // determine whether we have a template or a template specialization.
2943 isExplicitSpecialization = false;
2944 unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2945 bool Invalid = false;
2946 if (TemplateParameterList *TemplateParams
2947 = MatchTemplateParametersToScopeSpecifier(
2948 D.getDeclSpec().getSourceRange().getBegin(),
2949 D.getCXXScopeSpec(),
2950 TemplateParamLists.get(),
2951 TemplateParamLists.size(),
2952 /*never a friend*/ false,
2953 isExplicitSpecialization,
2954 Invalid)) {
2955 // All but one template parameter lists have been matching.
2956 --NumMatchedTemplateParamLists;
2958 if (TemplateParams->size() > 0) {
2959 // There is no such thing as a variable template.
2960 Diag(D.getIdentifierLoc(), diag::err_template_variable)
2961 << II
2962 << SourceRange(TemplateParams->getTemplateLoc(),
2963 TemplateParams->getRAngleLoc());
2964 return 0;
2965 } else {
2966 // There is an extraneous 'template<>' for this variable. Complain
2967 // about it, but allow the declaration of the variable.
2968 Diag(TemplateParams->getTemplateLoc(),
2969 diag::err_template_variable_noparams)
2970 << II
2971 << SourceRange(TemplateParams->getTemplateLoc(),
2972 TemplateParams->getRAngleLoc());
2974 isExplicitSpecialization = true;
2978 NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2979 II, R, TInfo, SC, SCAsWritten);
2981 if (D.isInvalidType() || Invalid)
2982 NewVD->setInvalidDecl();
2984 SetNestedNameSpecifier(NewVD, D);
2986 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2987 NewVD->setTemplateParameterListsInfo(Context,
2988 NumMatchedTemplateParamLists,
2989 TemplateParamLists.release());
2993 if (D.getDeclSpec().isThreadSpecified()) {
2994 if (NewVD->hasLocalStorage())
2995 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2996 else if (!Context.Target.isTLSSupported())
2997 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2998 else
2999 NewVD->setThreadSpecified(true);
3002 // Set the lexical context. If the declarator has a C++ scope specifier, the
3003 // lexical context will be different from the semantic context.
3004 NewVD->setLexicalDeclContext(CurContext);
3006 // Handle attributes prior to checking for duplicates in MergeVarDecl
3007 ProcessDeclAttributes(S, NewVD, D);
3009 // Handle GNU asm-label extension (encoded as an attribute).
3010 if (Expr *E = (Expr*)D.getAsmLabel()) {
3011 // The parser guarantees this is a string.
3012 StringLiteral *SE = cast<StringLiteral>(E);
3013 llvm::StringRef Label = SE->getString();
3014 if (S->getFnParent() != 0) {
3015 switch (SC) {
3016 case SC_None:
3017 case SC_Auto:
3018 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3019 break;
3020 case SC_Register:
3021 if (!Context.Target.isValidGCCRegisterName(Label))
3022 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3023 break;
3024 case SC_Static:
3025 case SC_Extern:
3026 case SC_PrivateExtern:
3027 break;
3031 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3032 Context, Label));
3035 // Diagnose shadowed variables before filtering for scope.
3036 if (!D.getCXXScopeSpec().isSet())
3037 CheckShadow(S, NewVD, Previous);
3039 // Don't consider existing declarations that are in a different
3040 // scope and are out-of-semantic-context declarations (if the new
3041 // declaration has linkage).
3042 FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3044 if (!getLangOptions().CPlusPlus)
3045 CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3046 else {
3047 // Merge the decl with the existing one if appropriate.
3048 if (!Previous.empty()) {
3049 if (Previous.isSingleResult() &&
3050 isa<FieldDecl>(Previous.getFoundDecl()) &&
3051 D.getCXXScopeSpec().isSet()) {
3052 // The user tried to define a non-static data member
3053 // out-of-line (C++ [dcl.meaning]p1).
3054 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3055 << D.getCXXScopeSpec().getRange();
3056 Previous.clear();
3057 NewVD->setInvalidDecl();
3059 } else if (D.getCXXScopeSpec().isSet()) {
3060 // No previous declaration in the qualifying scope.
3061 Diag(D.getIdentifierLoc(), diag::err_no_member)
3062 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3063 << D.getCXXScopeSpec().getRange();
3064 NewVD->setInvalidDecl();
3067 CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3069 // This is an explicit specialization of a static data member. Check it.
3070 if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3071 CheckMemberSpecialization(NewVD, Previous))
3072 NewVD->setInvalidDecl();
3075 // attributes declared post-definition are currently ignored
3076 // FIXME: This should be handled in attribute merging, not
3077 // here.
3078 if (Previous.isSingleResult()) {
3079 VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3080 if (Def && (Def = Def->getDefinition()) &&
3081 Def != NewVD && D.hasAttributes()) {
3082 Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3083 Diag(Def->getLocation(), diag::note_previous_definition);
3087 // If this is a locally-scoped extern C variable, update the map of
3088 // such variables.
3089 if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3090 !NewVD->isInvalidDecl())
3091 RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3093 // If there's a #pragma GCC visibility in scope, and this isn't a class
3094 // member, set the visibility of this variable.
3095 if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3096 AddPushedVisibilityAttribute(NewVD);
3098 MarkUnusedFileScopedDecl(NewVD);
3100 return NewVD;
3103 /// \brief Diagnose variable or built-in function shadowing. Implements
3104 /// -Wshadow.
3106 /// This method is called whenever a VarDecl is added to a "useful"
3107 /// scope.
3109 /// \param S the scope in which the shadowing name is being declared
3110 /// \param R the lookup of the name
3112 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3113 // Return if warning is ignored.
3114 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3115 Diagnostic::Ignored)
3116 return;
3118 // Don't diagnose declarations at file scope. The scope might not
3119 // have a DeclContext if (e.g.) we're parsing a function prototype.
3120 DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3121 if (NewDC && NewDC->isFileContext())
3122 return;
3124 // Only diagnose if we're shadowing an unambiguous field or variable.
3125 if (R.getResultKind() != LookupResult::Found)
3126 return;
3128 NamedDecl* ShadowedDecl = R.getFoundDecl();
3129 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3130 return;
3132 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3133 if (shadowedVar->isExternC()) {
3134 // Don't warn for this case:
3136 // @code
3137 // extern int bob;
3138 // void f() {
3139 // extern int bob;
3140 // }
3141 // @endcode
3142 if (D->isExternC())
3143 return;
3145 // For shadowing external vars, make sure that we point to the global
3146 // declaration, not a locally scoped extern declaration.
3147 for (VarDecl::redecl_iterator
3148 I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3149 I != E; ++I)
3150 if (I->isFileVarDecl()) {
3151 ShadowedDecl = *I;
3152 break;
3156 DeclContext *OldDC = ShadowedDecl->getDeclContext();
3158 // Only warn about certain kinds of shadowing for class members.
3159 if (NewDC && NewDC->isRecord()) {
3160 // In particular, don't warn about shadowing non-class members.
3161 if (!OldDC->isRecord())
3162 return;
3164 // TODO: should we warn about static data members shadowing
3165 // static data members from base classes?
3167 // TODO: don't diagnose for inaccessible shadowed members.
3168 // This is hard to do perfectly because we might friend the
3169 // shadowing context, but that's just a false negative.
3172 // Determine what kind of declaration we're shadowing.
3173 unsigned Kind;
3174 if (isa<RecordDecl>(OldDC)) {
3175 if (isa<FieldDecl>(ShadowedDecl))
3176 Kind = 3; // field
3177 else
3178 Kind = 2; // static data member
3179 } else if (OldDC->isFileContext())
3180 Kind = 1; // global
3181 else
3182 Kind = 0; // local
3184 DeclarationName Name = R.getLookupName();
3186 // Emit warning and note.
3187 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3188 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3191 /// \brief Check -Wshadow without the advantage of a previous lookup.
3192 void Sema::CheckShadow(Scope *S, VarDecl *D) {
3193 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3194 Diagnostic::Ignored)
3195 return;
3197 LookupResult R(*this, D->getDeclName(), D->getLocation(),
3198 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3199 LookupName(R, S);
3200 CheckShadow(S, D, R);
3203 /// \brief Perform semantic checking on a newly-created variable
3204 /// declaration.
3206 /// This routine performs all of the type-checking required for a
3207 /// variable declaration once it has been built. It is used both to
3208 /// check variables after they have been parsed and their declarators
3209 /// have been translated into a declaration, and to check variables
3210 /// that have been instantiated from a template.
3212 /// Sets NewVD->isInvalidDecl() if an error was encountered.
3213 void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3214 LookupResult &Previous,
3215 bool &Redeclaration) {
3216 // If the decl is already known invalid, don't check it.
3217 if (NewVD->isInvalidDecl())
3218 return;
3220 QualType T = NewVD->getType();
3222 if (T->isObjCObjectType()) {
3223 Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3224 return NewVD->setInvalidDecl();
3227 // Emit an error if an address space was applied to decl with local storage.
3228 // This includes arrays of objects with address space qualifiers, but not
3229 // automatic variables that point to other address spaces.
3230 // ISO/IEC TR 18037 S5.1.2
3231 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3232 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3233 return NewVD->setInvalidDecl();
3236 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3237 && !NewVD->hasAttr<BlocksAttr>())
3238 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3240 bool isVM = T->isVariablyModifiedType();
3241 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3242 NewVD->hasAttr<BlocksAttr>())
3243 getCurFunction()->setHasBranchProtectedScope();
3245 if ((isVM && NewVD->hasLinkage()) ||
3246 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3247 bool SizeIsNegative;
3248 llvm::APSInt Oversized;
3249 QualType FixedTy =
3250 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3251 Oversized);
3253 if (FixedTy.isNull() && T->isVariableArrayType()) {
3254 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3255 // FIXME: This won't give the correct result for
3256 // int a[10][n];
3257 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3259 if (NewVD->isFileVarDecl())
3260 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3261 << SizeRange;
3262 else if (NewVD->getStorageClass() == SC_Static)
3263 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3264 << SizeRange;
3265 else
3266 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3267 << SizeRange;
3268 return NewVD->setInvalidDecl();
3271 if (FixedTy.isNull()) {
3272 if (NewVD->isFileVarDecl())
3273 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3274 else
3275 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3276 return NewVD->setInvalidDecl();
3279 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3280 NewVD->setType(FixedTy);
3283 if (Previous.empty() && NewVD->isExternC()) {
3284 // Since we did not find anything by this name and we're declaring
3285 // an extern "C" variable, look for a non-visible extern "C"
3286 // declaration with the same name.
3287 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3288 = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3289 if (Pos != LocallyScopedExternalDecls.end())
3290 Previous.addDecl(Pos->second);
3293 if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3294 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3295 << T;
3296 return NewVD->setInvalidDecl();
3299 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3300 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3301 return NewVD->setInvalidDecl();
3304 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3305 Diag(NewVD->getLocation(), diag::err_block_on_vm);
3306 return NewVD->setInvalidDecl();
3309 // Function pointers and references cannot have qualified function type, only
3310 // function pointer-to-members can do that.
3311 QualType Pointee;
3312 unsigned PtrOrRef = 0;
3313 if (const PointerType *Ptr = T->getAs<PointerType>())
3314 Pointee = Ptr->getPointeeType();
3315 else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3316 Pointee = Ref->getPointeeType();
3317 PtrOrRef = 1;
3319 if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3320 Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3321 Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3322 << PtrOrRef;
3323 return NewVD->setInvalidDecl();
3326 if (!Previous.empty()) {
3327 Redeclaration = true;
3328 MergeVarDecl(NewVD, Previous);
3332 /// \brief Data used with FindOverriddenMethod
3333 struct FindOverriddenMethodData {
3334 Sema *S;
3335 CXXMethodDecl *Method;
3338 /// \brief Member lookup function that determines whether a given C++
3339 /// method overrides a method in a base class, to be used with
3340 /// CXXRecordDecl::lookupInBases().
3341 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3342 CXXBasePath &Path,
3343 void *UserData) {
3344 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3346 FindOverriddenMethodData *Data
3347 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3349 DeclarationName Name = Data->Method->getDeclName();
3351 // FIXME: Do we care about other names here too?
3352 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3353 // We really want to find the base class destructor here.
3354 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3355 CanQualType CT = Data->S->Context.getCanonicalType(T);
3357 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3360 for (Path.Decls = BaseRecord->lookup(Name);
3361 Path.Decls.first != Path.Decls.second;
3362 ++Path.Decls.first) {
3363 NamedDecl *D = *Path.Decls.first;
3364 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3365 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3366 return true;
3370 return false;
3373 /// AddOverriddenMethods - See if a method overrides any in the base classes,
3374 /// and if so, check that it's a valid override and remember it.
3375 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3376 // Look for virtual methods in base classes that this method might override.
3377 CXXBasePaths Paths;
3378 FindOverriddenMethodData Data;
3379 Data.Method = MD;
3380 Data.S = this;
3381 bool AddedAny = false;
3382 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3383 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3384 E = Paths.found_decls_end(); I != E; ++I) {
3385 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3386 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3387 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3388 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3389 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3390 AddedAny = true;
3396 return AddedAny;
3399 static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3400 LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3401 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3402 S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3403 assert(!Prev.isAmbiguous() &&
3404 "Cannot have an ambiguity in previous-declaration lookup");
3405 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3406 Func != FuncEnd; ++Func) {
3407 if (isa<FunctionDecl>(*Func) &&
3408 isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3409 S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3413 NamedDecl*
3414 Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3415 QualType R, TypeSourceInfo *TInfo,
3416 LookupResult &Previous,
3417 MultiTemplateParamsArg TemplateParamLists,
3418 bool IsFunctionDefinition, bool &Redeclaration) {
3419 assert(R.getTypePtr()->isFunctionType());
3421 // TODO: consider using NameInfo for diagnostic.
3422 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3423 DeclarationName Name = NameInfo.getName();
3424 FunctionDecl::StorageClass SC = SC_None;
3425 switch (D.getDeclSpec().getStorageClassSpec()) {
3426 default: assert(0 && "Unknown storage class!");
3427 case DeclSpec::SCS_auto:
3428 case DeclSpec::SCS_register:
3429 case DeclSpec::SCS_mutable:
3430 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3431 diag::err_typecheck_sclass_func);
3432 D.setInvalidType();
3433 break;
3434 case DeclSpec::SCS_unspecified: SC = SC_None; break;
3435 case DeclSpec::SCS_extern: SC = SC_Extern; break;
3436 case DeclSpec::SCS_static: {
3437 if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3438 // C99 6.7.1p5:
3439 // The declaration of an identifier for a function that has
3440 // block scope shall have no explicit storage-class specifier
3441 // other than extern
3442 // See also (C++ [dcl.stc]p4).
3443 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3444 diag::err_static_block_func);
3445 SC = SC_None;
3446 } else
3447 SC = SC_Static;
3448 break;
3450 case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3453 if (D.getDeclSpec().isThreadSpecified())
3454 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3456 // Do not allow returning a objc interface by-value.
3457 if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3458 Diag(D.getIdentifierLoc(),
3459 diag::err_object_cannot_be_passed_returned_by_value) << 0
3460 << R->getAs<FunctionType>()->getResultType();
3461 D.setInvalidType();
3464 FunctionDecl *NewFD;
3465 bool isInline = D.getDeclSpec().isInlineSpecified();
3466 bool isFriend = false;
3467 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3468 FunctionDecl::StorageClass SCAsWritten
3469 = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3470 FunctionTemplateDecl *FunctionTemplate = 0;
3471 bool isExplicitSpecialization = false;
3472 bool isFunctionTemplateSpecialization = false;
3473 unsigned NumMatchedTemplateParamLists = 0;
3475 if (!getLangOptions().CPlusPlus) {
3476 // Determine whether the function was written with a
3477 // prototype. This true when:
3478 // - there is a prototype in the declarator, or
3479 // - the type R of the function is some kind of typedef or other reference
3480 // to a type name (which eventually refers to a function type).
3481 bool HasPrototype =
3482 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3483 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3485 NewFD = FunctionDecl::Create(Context, DC,
3486 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3487 HasPrototype);
3488 if (D.isInvalidType())
3489 NewFD->setInvalidDecl();
3491 // Set the lexical context.
3492 NewFD->setLexicalDeclContext(CurContext);
3493 // Filter out previous declarations that don't match the scope.
3494 FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3495 } else {
3496 isFriend = D.getDeclSpec().isFriendSpecified();
3497 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3498 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3499 bool isVirtualOkay = false;
3501 // Check that the return type is not an abstract class type.
3502 // For record types, this is done by the AbstractClassUsageDiagnoser once
3503 // the class has been completely parsed.
3504 if (!DC->isRecord() &&
3505 RequireNonAbstractType(D.getIdentifierLoc(),
3506 R->getAs<FunctionType>()->getResultType(),
3507 diag::err_abstract_type_in_decl,
3508 AbstractReturnType))
3509 D.setInvalidType();
3512 if (isFriend) {
3513 // C++ [class.friend]p5
3514 // A function can be defined in a friend declaration of a
3515 // class . . . . Such a function is implicitly inline.
3516 isInline |= IsFunctionDefinition;
3519 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3520 // This is a C++ constructor declaration.
3521 assert(DC->isRecord() &&
3522 "Constructors can only be declared in a member context");
3524 R = CheckConstructorDeclarator(D, R, SC);
3526 // Create the new declaration
3527 NewFD = CXXConstructorDecl::Create(Context,
3528 cast<CXXRecordDecl>(DC),
3529 NameInfo, R, TInfo,
3530 isExplicit, isInline,
3531 /*isImplicitlyDeclared=*/false);
3532 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3533 // This is a C++ destructor declaration.
3534 if (DC->isRecord()) {
3535 R = CheckDestructorDeclarator(D, R, SC);
3537 NewFD = CXXDestructorDecl::Create(Context,
3538 cast<CXXRecordDecl>(DC),
3539 NameInfo, R, TInfo,
3540 isInline,
3541 /*isImplicitlyDeclared=*/false);
3542 isVirtualOkay = true;
3543 } else {
3544 Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3546 // Create a FunctionDecl to satisfy the function definition parsing
3547 // code path.
3548 NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3549 Name, R, TInfo, SC, SCAsWritten, isInline,
3550 /*hasPrototype=*/true);
3551 D.setInvalidType();
3553 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3554 if (!DC->isRecord()) {
3555 Diag(D.getIdentifierLoc(),
3556 diag::err_conv_function_not_member);
3557 return 0;
3560 CheckConversionDeclarator(D, R, SC);
3561 NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3562 NameInfo, R, TInfo,
3563 isInline, isExplicit);
3565 isVirtualOkay = true;
3566 } else if (DC->isRecord()) {
3567 // If the of the function is the same as the name of the record, then this
3568 // must be an invalid constructor that has a return type.
3569 // (The parser checks for a return type and makes the declarator a
3570 // constructor if it has no return type).
3571 // must have an invalid constructor that has a return type
3572 if (Name.getAsIdentifierInfo() &&
3573 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3574 Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3575 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3576 << SourceRange(D.getIdentifierLoc());
3577 return 0;
3580 bool isStatic = SC == SC_Static;
3582 // [class.free]p1:
3583 // Any allocation function for a class T is a static member
3584 // (even if not explicitly declared static).
3585 if (Name.getCXXOverloadedOperator() == OO_New ||
3586 Name.getCXXOverloadedOperator() == OO_Array_New)
3587 isStatic = true;
3589 // [class.free]p6 Any deallocation function for a class X is a static member
3590 // (even if not explicitly declared static).
3591 if (Name.getCXXOverloadedOperator() == OO_Delete ||
3592 Name.getCXXOverloadedOperator() == OO_Array_Delete)
3593 isStatic = true;
3595 // This is a C++ method declaration.
3596 NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3597 NameInfo, R, TInfo,
3598 isStatic, SCAsWritten, isInline);
3600 isVirtualOkay = !isStatic;
3601 } else {
3602 // Determine whether the function was written with a
3603 // prototype. This true when:
3604 // - we're in C++ (where every function has a prototype),
3605 NewFD = FunctionDecl::Create(Context, DC,
3606 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3607 true/*HasPrototype*/);
3609 SetNestedNameSpecifier(NewFD, D);
3610 isExplicitSpecialization = false;
3611 isFunctionTemplateSpecialization = false;
3612 NumMatchedTemplateParamLists = TemplateParamLists.size();
3613 if (D.isInvalidType())
3614 NewFD->setInvalidDecl();
3616 // Set the lexical context. If the declarator has a C++
3617 // scope specifier, or is the object of a friend declaration, the
3618 // lexical context will be different from the semantic context.
3619 NewFD->setLexicalDeclContext(CurContext);
3621 // Match up the template parameter lists with the scope specifier, then
3622 // determine whether we have a template or a template specialization.
3623 bool Invalid = false;
3624 if (TemplateParameterList *TemplateParams
3625 = MatchTemplateParametersToScopeSpecifier(
3626 D.getDeclSpec().getSourceRange().getBegin(),
3627 D.getCXXScopeSpec(),
3628 TemplateParamLists.get(),
3629 TemplateParamLists.size(),
3630 isFriend,
3631 isExplicitSpecialization,
3632 Invalid)) {
3633 // All but one template parameter lists have been matching.
3634 --NumMatchedTemplateParamLists;
3636 if (TemplateParams->size() > 0) {
3637 // This is a function template
3639 // Check that we can declare a template here.
3640 if (CheckTemplateDeclScope(S, TemplateParams))
3641 return 0;
3643 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3644 NewFD->getLocation(),
3645 Name, TemplateParams,
3646 NewFD);
3647 FunctionTemplate->setLexicalDeclContext(CurContext);
3648 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3649 } else {
3650 // This is a function template specialization.
3651 isFunctionTemplateSpecialization = true;
3653 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3654 if (isFriend && isFunctionTemplateSpecialization) {
3655 // We want to remove the "template<>", found here.
3656 SourceRange RemoveRange = TemplateParams->getSourceRange();
3658 // If we remove the template<> and the name is not a
3659 // template-id, we're actually silently creating a problem:
3660 // the friend declaration will refer to an untemplated decl,
3661 // and clearly the user wants a template specialization. So
3662 // we need to insert '<>' after the name.
3663 SourceLocation InsertLoc;
3664 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3665 InsertLoc = D.getName().getSourceRange().getEnd();
3666 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3669 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3670 << Name << RemoveRange
3671 << FixItHint::CreateRemoval(RemoveRange)
3672 << FixItHint::CreateInsertion(InsertLoc, "<>");
3677 if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3678 NewFD->setTemplateParameterListsInfo(Context,
3679 NumMatchedTemplateParamLists,
3680 TemplateParamLists.release());
3683 if (Invalid) {
3684 NewFD->setInvalidDecl();
3685 if (FunctionTemplate)
3686 FunctionTemplate->setInvalidDecl();
3689 // C++ [dcl.fct.spec]p5:
3690 // The virtual specifier shall only be used in declarations of
3691 // nonstatic class member functions that appear within a
3692 // member-specification of a class declaration; see 10.3.
3694 if (isVirtual && !NewFD->isInvalidDecl()) {
3695 if (!isVirtualOkay) {
3696 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3697 diag::err_virtual_non_function);
3698 } else if (!CurContext->isRecord()) {
3699 // 'virtual' was specified outside of the class.
3700 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3701 diag::err_virtual_out_of_class)
3702 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3703 } else if (NewFD->getDescribedFunctionTemplate()) {
3704 // C++ [temp.mem]p3:
3705 // A member function template shall not be virtual.
3706 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3707 diag::err_virtual_member_function_template)
3708 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3709 } else {
3710 // Okay: Add virtual to the method.
3711 NewFD->setVirtualAsWritten(true);
3715 // C++ [dcl.fct.spec]p3:
3716 // The inline specifier shall not appear on a block scope function declaration.
3717 if (isInline && !NewFD->isInvalidDecl()) {
3718 if (CurContext->isFunctionOrMethod()) {
3719 // 'inline' is not allowed on block scope function declaration.
3720 Diag(D.getDeclSpec().getInlineSpecLoc(),
3721 diag::err_inline_declaration_block_scope) << Name
3722 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3726 // C++ [dcl.fct.spec]p6:
3727 // The explicit specifier shall be used only in the declaration of a
3728 // constructor or conversion function within its class definition; see 12.3.1
3729 // and 12.3.2.
3730 if (isExplicit && !NewFD->isInvalidDecl()) {
3731 if (!CurContext->isRecord()) {
3732 // 'explicit' was specified outside of the class.
3733 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3734 diag::err_explicit_out_of_class)
3735 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3736 } else if (!isa<CXXConstructorDecl>(NewFD) &&
3737 !isa<CXXConversionDecl>(NewFD)) {
3738 // 'explicit' was specified on a function that wasn't a constructor
3739 // or conversion function.
3740 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3741 diag::err_explicit_non_ctor_or_conv_function)
3742 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3746 // Filter out previous declarations that don't match the scope.
3747 FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3749 if (isFriend) {
3750 // For now, claim that the objects have no previous declaration.
3751 if (FunctionTemplate) {
3752 FunctionTemplate->setObjectOfFriendDecl(false);
3753 FunctionTemplate->setAccess(AS_public);
3755 NewFD->setObjectOfFriendDecl(false);
3756 NewFD->setAccess(AS_public);
3759 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3760 // A method is implicitly inline if it's defined in its class
3761 // definition.
3762 NewFD->setImplicitlyInline();
3765 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3766 !CurContext->isRecord()) {
3767 // C++ [class.static]p1:
3768 // A data or function member of a class may be declared static
3769 // in a class definition, in which case it is a static member of
3770 // the class.
3772 // Complain about the 'static' specifier if it's on an out-of-line
3773 // member function definition.
3774 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3775 diag::err_static_out_of_line)
3776 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3780 // Handle GNU asm-label extension (encoded as an attribute).
3781 if (Expr *E = (Expr*) D.getAsmLabel()) {
3782 // The parser guarantees this is a string.
3783 StringLiteral *SE = cast<StringLiteral>(E);
3784 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3785 SE->getString()));
3788 // Copy the parameter declarations from the declarator D to the function
3789 // declaration NewFD, if they are available. First scavenge them into Params.
3790 llvm::SmallVector<ParmVarDecl*, 16> Params;
3791 if (D.isFunctionDeclarator()) {
3792 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3794 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3795 // function that takes no arguments, not a function that takes a
3796 // single void argument.
3797 // We let through "const void" here because Sema::GetTypeForDeclarator
3798 // already checks for that case.
3799 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3800 FTI.ArgInfo[0].Param &&
3801 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3802 // Empty arg list, don't push any params.
3803 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3805 // In C++, the empty parameter-type-list must be spelled "void"; a
3806 // typedef of void is not permitted.
3807 if (getLangOptions().CPlusPlus &&
3808 Param->getType().getUnqualifiedType() != Context.VoidTy)
3809 Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3810 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3811 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3812 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3813 assert(Param->getDeclContext() != NewFD && "Was set before ?");
3814 Param->setDeclContext(NewFD);
3815 Params.push_back(Param);
3817 if (Param->isInvalidDecl())
3818 NewFD->setInvalidDecl();
3822 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3823 // When we're declaring a function with a typedef, typeof, etc as in the
3824 // following example, we'll need to synthesize (unnamed)
3825 // parameters for use in the declaration.
3827 // @code
3828 // typedef void fn(int);
3829 // fn f;
3830 // @endcode
3832 // Synthesize a parameter for each argument type.
3833 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3834 AE = FT->arg_type_end(); AI != AE; ++AI) {
3835 ParmVarDecl *Param =
3836 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3837 Params.push_back(Param);
3839 } else {
3840 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3841 "Should not need args for typedef of non-prototype fn");
3843 // Finally, we know we have the right number of parameters, install them.
3844 NewFD->setParams(Params.data(), Params.size());
3846 // Process the non-inheritable attributes on this declaration.
3847 ProcessDeclAttributes(S, NewFD, D,
3848 /*NonInheritable=*/true, /*Inheritable=*/false);
3850 if (!getLangOptions().CPlusPlus) {
3851 // Perform semantic checking on the function declaration.
3852 bool isExplctSpecialization=false;
3853 CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3854 Redeclaration);
3855 assert((NewFD->isInvalidDecl() || !Redeclaration ||
3856 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3857 "previous declaration set still overloaded");
3858 } else {
3859 // If the declarator is a template-id, translate the parser's template
3860 // argument list into our AST format.
3861 bool HasExplicitTemplateArgs = false;
3862 TemplateArgumentListInfo TemplateArgs;
3863 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3864 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3865 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3866 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3867 ASTTemplateArgsPtr TemplateArgsPtr(*this,
3868 TemplateId->getTemplateArgs(),
3869 TemplateId->NumArgs);
3870 translateTemplateArguments(TemplateArgsPtr,
3871 TemplateArgs);
3872 TemplateArgsPtr.release();
3874 HasExplicitTemplateArgs = true;
3876 if (FunctionTemplate) {
3877 // Function template with explicit template arguments.
3878 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
3879 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
3881 HasExplicitTemplateArgs = false;
3882 } else if (!isFunctionTemplateSpecialization &&
3883 !D.getDeclSpec().isFriendSpecified()) {
3884 // We have encountered something that the user meant to be a
3885 // specialization (because it has explicitly-specified template
3886 // arguments) but that was not introduced with a "template<>" (or had
3887 // too few of them).
3888 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3889 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3890 << FixItHint::CreateInsertion(
3891 D.getDeclSpec().getSourceRange().getBegin(),
3892 "template<> ");
3893 isFunctionTemplateSpecialization = true;
3894 } else {
3895 // "friend void foo<>(int);" is an implicit specialization decl.
3896 isFunctionTemplateSpecialization = true;
3898 } else if (isFriend && isFunctionTemplateSpecialization) {
3899 // This combination is only possible in a recovery case; the user
3900 // wrote something like:
3901 // template <> friend void foo(int);
3902 // which we're recovering from as if the user had written:
3903 // friend void foo<>(int);
3904 // Go ahead and fake up a template id.
3905 HasExplicitTemplateArgs = true;
3906 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3907 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3910 // If it's a friend (and only if it's a friend), it's possible
3911 // that either the specialized function type or the specialized
3912 // template is dependent, and therefore matching will fail. In
3913 // this case, don't check the specialization yet.
3914 if (isFunctionTemplateSpecialization && isFriend &&
3915 (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3916 assert(HasExplicitTemplateArgs &&
3917 "friend function specialization without template args");
3918 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3919 Previous))
3920 NewFD->setInvalidDecl();
3921 } else if (isFunctionTemplateSpecialization) {
3922 if (CheckFunctionTemplateSpecialization(NewFD,
3923 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3924 Previous))
3925 NewFD->setInvalidDecl();
3926 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3927 if (CheckMemberSpecialization(NewFD, Previous))
3928 NewFD->setInvalidDecl();
3931 // Perform semantic checking on the function declaration.
3932 CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3933 Redeclaration);
3935 assert((NewFD->isInvalidDecl() || !Redeclaration ||
3936 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3937 "previous declaration set still overloaded");
3939 NamedDecl *PrincipalDecl = (FunctionTemplate
3940 ? cast<NamedDecl>(FunctionTemplate)
3941 : NewFD);
3943 if (isFriend && Redeclaration) {
3944 AccessSpecifier Access = AS_public;
3945 if (!NewFD->isInvalidDecl())
3946 Access = NewFD->getPreviousDeclaration()->getAccess();
3948 NewFD->setAccess(Access);
3949 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3951 PrincipalDecl->setObjectOfFriendDecl(true);
3954 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3955 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3956 PrincipalDecl->setNonMemberOperator();
3958 // If we have a function template, check the template parameter
3959 // list. This will check and merge default template arguments.
3960 if (FunctionTemplate) {
3961 FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3962 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3963 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3964 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3965 : TPC_FunctionTemplate);
3968 if (NewFD->isInvalidDecl()) {
3969 // Ignore all the rest of this.
3970 } else if (!Redeclaration) {
3971 // Fake up an access specifier if it's supposed to be a class member.
3972 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3973 NewFD->setAccess(AS_public);
3975 // Qualified decls generally require a previous declaration.
3976 if (D.getCXXScopeSpec().isSet()) {
3977 // ...with the major exception of templated-scope or
3978 // dependent-scope friend declarations.
3980 // TODO: we currently also suppress this check in dependent
3981 // contexts because (1) the parameter depth will be off when
3982 // matching friend templates and (2) we might actually be
3983 // selecting a friend based on a dependent factor. But there
3984 // are situations where these conditions don't apply and we
3985 // can actually do this check immediately.
3986 if (isFriend &&
3987 (NumMatchedTemplateParamLists ||
3988 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3989 CurContext->isDependentContext())) {
3990 // ignore these
3991 } else {
3992 // The user tried to provide an out-of-line definition for a
3993 // function that is a member of a class or namespace, but there
3994 // was no such member function declared (C++ [class.mfct]p2,
3995 // C++ [namespace.memdef]p2). For example:
3997 // class X {
3998 // void f() const;
3999 // };
4001 // void X::f() { } // ill-formed
4003 // Complain about this problem, and attempt to suggest close
4004 // matches (e.g., those that differ only in cv-qualifiers and
4005 // whether the parameter types are references).
4006 Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4007 << Name << DC << D.getCXXScopeSpec().getRange();
4008 NewFD->setInvalidDecl();
4010 DiagnoseInvalidRedeclaration(*this, NewFD);
4013 // Unqualified local friend declarations are required to resolve
4014 // to something.
4015 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4016 Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4017 NewFD->setInvalidDecl();
4018 DiagnoseInvalidRedeclaration(*this, NewFD);
4021 } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4022 !isFriend && !isFunctionTemplateSpecialization &&
4023 !isExplicitSpecialization) {
4024 // An out-of-line member function declaration must also be a
4025 // definition (C++ [dcl.meaning]p1).
4026 // Note that this is not the case for explicit specializations of
4027 // function templates or member functions of class templates, per
4028 // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4029 // for compatibility with old SWIG code which likes to generate them.
4030 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4031 << D.getCXXScopeSpec().getRange();
4036 // Handle attributes. We need to have merged decls when handling attributes
4037 // (for example to check for conflicts, etc).
4038 // FIXME: This needs to happen before we merge declarations. Then,
4039 // let attribute merging cope with attribute conflicts.
4040 ProcessDeclAttributes(S, NewFD, D,
4041 /*NonInheritable=*/false, /*Inheritable=*/true);
4043 // attributes declared post-definition are currently ignored
4044 // FIXME: This should happen during attribute merging
4045 if (Redeclaration && Previous.isSingleResult()) {
4046 const FunctionDecl *Def;
4047 FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4048 if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4049 Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4050 Diag(Def->getLocation(), diag::note_previous_definition);
4054 AddKnownFunctionAttributes(NewFD);
4056 if (NewFD->hasAttr<OverloadableAttr>() &&
4057 !NewFD->getType()->getAs<FunctionProtoType>()) {
4058 Diag(NewFD->getLocation(),
4059 diag::err_attribute_overloadable_no_prototype)
4060 << NewFD;
4062 // Turn this into a variadic function with no parameters.
4063 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4064 FunctionProtoType::ExtProtoInfo EPI;
4065 EPI.Variadic = true;
4066 EPI.ExtInfo = FT->getExtInfo();
4068 QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4069 NewFD->setType(R);
4072 // If there's a #pragma GCC visibility in scope, and this isn't a class
4073 // member, set the visibility of this function.
4074 if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4075 AddPushedVisibilityAttribute(NewFD);
4077 // If this is a locally-scoped extern C function, update the
4078 // map of such names.
4079 if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4080 && !NewFD->isInvalidDecl())
4081 RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4083 // Set this FunctionDecl's range up to the right paren.
4084 NewFD->setLocEnd(D.getSourceRange().getEnd());
4086 if (getLangOptions().CPlusPlus) {
4087 if (FunctionTemplate) {
4088 if (NewFD->isInvalidDecl())
4089 FunctionTemplate->setInvalidDecl();
4090 return FunctionTemplate;
4094 MarkUnusedFileScopedDecl(NewFD);
4095 return NewFD;
4098 /// \brief Perform semantic checking of a new function declaration.
4100 /// Performs semantic analysis of the new function declaration
4101 /// NewFD. This routine performs all semantic checking that does not
4102 /// require the actual declarator involved in the declaration, and is
4103 /// used both for the declaration of functions as they are parsed
4104 /// (called via ActOnDeclarator) and for the declaration of functions
4105 /// that have been instantiated via C++ template instantiation (called
4106 /// via InstantiateDecl).
4108 /// \param IsExplicitSpecialiation whether this new function declaration is
4109 /// an explicit specialization of the previous declaration.
4111 /// This sets NewFD->isInvalidDecl() to true if there was an error.
4112 void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4113 LookupResult &Previous,
4114 bool IsExplicitSpecialization,
4115 bool &Redeclaration) {
4116 // If NewFD is already known erroneous, don't do any of this checking.
4117 if (NewFD->isInvalidDecl()) {
4118 // If this is a class member, mark the class invalid immediately.
4119 // This avoids some consistency errors later.
4120 if (isa<CXXMethodDecl>(NewFD))
4121 cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4123 return;
4126 if (NewFD->getResultType()->isVariablyModifiedType()) {
4127 // Functions returning a variably modified type violate C99 6.7.5.2p2
4128 // because all functions have linkage.
4129 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4130 return NewFD->setInvalidDecl();
4133 if (NewFD->isMain())
4134 CheckMain(NewFD);
4136 // Check for a previous declaration of this name.
4137 if (Previous.empty() && NewFD->isExternC()) {
4138 // Since we did not find anything by this name and we're declaring
4139 // an extern "C" function, look for a non-visible extern "C"
4140 // declaration with the same name.
4141 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4142 = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4143 if (Pos != LocallyScopedExternalDecls.end())
4144 Previous.addDecl(Pos->second);
4147 // Merge or overload the declaration with an existing declaration of
4148 // the same name, if appropriate.
4149 if (!Previous.empty()) {
4150 // Determine whether NewFD is an overload of PrevDecl or
4151 // a declaration that requires merging. If it's an overload,
4152 // there's no more work to do here; we'll just add the new
4153 // function to the scope.
4155 NamedDecl *OldDecl = 0;
4156 if (!AllowOverloadingOfFunction(Previous, Context)) {
4157 Redeclaration = true;
4158 OldDecl = Previous.getFoundDecl();
4159 } else {
4160 switch (CheckOverload(S, NewFD, Previous, OldDecl,
4161 /*NewIsUsingDecl*/ false)) {
4162 case Ovl_Match:
4163 Redeclaration = true;
4164 break;
4166 case Ovl_NonFunction:
4167 Redeclaration = true;
4168 break;
4170 case Ovl_Overload:
4171 Redeclaration = false;
4172 break;
4175 if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4176 // If a function name is overloadable in C, then every function
4177 // with that name must be marked "overloadable".
4178 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4179 << Redeclaration << NewFD;
4180 NamedDecl *OverloadedDecl = 0;
4181 if (Redeclaration)
4182 OverloadedDecl = OldDecl;
4183 else if (!Previous.empty())
4184 OverloadedDecl = Previous.getRepresentativeDecl();
4185 if (OverloadedDecl)
4186 Diag(OverloadedDecl->getLocation(),
4187 diag::note_attribute_overloadable_prev_overload);
4188 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4189 Context));
4193 if (Redeclaration) {
4194 // NewFD and OldDecl represent declarations that need to be
4195 // merged.
4196 if (MergeFunctionDecl(NewFD, OldDecl))
4197 return NewFD->setInvalidDecl();
4199 Previous.clear();
4200 Previous.addDecl(OldDecl);
4202 if (FunctionTemplateDecl *OldTemplateDecl
4203 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4204 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4205 FunctionTemplateDecl *NewTemplateDecl
4206 = NewFD->getDescribedFunctionTemplate();
4207 assert(NewTemplateDecl && "Template/non-template mismatch");
4208 if (CXXMethodDecl *Method
4209 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4210 Method->setAccess(OldTemplateDecl->getAccess());
4211 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4214 // If this is an explicit specialization of a member that is a function
4215 // template, mark it as a member specialization.
4216 if (IsExplicitSpecialization &&
4217 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4218 NewTemplateDecl->setMemberSpecialization();
4219 assert(OldTemplateDecl->isMemberSpecialization());
4221 } else {
4222 if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4223 NewFD->setAccess(OldDecl->getAccess());
4224 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4229 // Semantic checking for this function declaration (in isolation).
4230 if (getLangOptions().CPlusPlus) {
4231 // C++-specific checks.
4232 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4233 CheckConstructor(Constructor);
4234 } else if (CXXDestructorDecl *Destructor =
4235 dyn_cast<CXXDestructorDecl>(NewFD)) {
4236 CXXRecordDecl *Record = Destructor->getParent();
4237 QualType ClassType = Context.getTypeDeclType(Record);
4239 // FIXME: Shouldn't we be able to perform this check even when the class
4240 // type is dependent? Both gcc and edg can handle that.
4241 if (!ClassType->isDependentType()) {
4242 DeclarationName Name
4243 = Context.DeclarationNames.getCXXDestructorName(
4244 Context.getCanonicalType(ClassType));
4245 if (NewFD->getDeclName() != Name) {
4246 Diag(NewFD->getLocation(), diag::err_destructor_name);
4247 return NewFD->setInvalidDecl();
4250 } else if (CXXConversionDecl *Conversion
4251 = dyn_cast<CXXConversionDecl>(NewFD)) {
4252 ActOnConversionDeclarator(Conversion);
4255 // Find any virtual functions that this function overrides.
4256 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4257 if (!Method->isFunctionTemplateSpecialization() &&
4258 !Method->getDescribedFunctionTemplate()) {
4259 if (AddOverriddenMethods(Method->getParent(), Method)) {
4260 // If the function was marked as "static", we have a problem.
4261 if (NewFD->getStorageClass() == SC_Static) {
4262 Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4263 << NewFD->getDeclName();
4264 for (CXXMethodDecl::method_iterator
4265 Overridden = Method->begin_overridden_methods(),
4266 OverriddenEnd = Method->end_overridden_methods();
4267 Overridden != OverriddenEnd;
4268 ++Overridden) {
4269 Diag((*Overridden)->getLocation(),
4270 diag::note_overridden_virtual_function);
4277 // Extra checking for C++ overloaded operators (C++ [over.oper]).
4278 if (NewFD->isOverloadedOperator() &&
4279 CheckOverloadedOperatorDeclaration(NewFD))
4280 return NewFD->setInvalidDecl();
4282 // Extra checking for C++0x literal operators (C++0x [over.literal]).
4283 if (NewFD->getLiteralIdentifier() &&
4284 CheckLiteralOperatorDeclaration(NewFD))
4285 return NewFD->setInvalidDecl();
4287 // In C++, check default arguments now that we have merged decls. Unless
4288 // the lexical context is the class, because in this case this is done
4289 // during delayed parsing anyway.
4290 if (!CurContext->isRecord())
4291 CheckCXXDefaultArguments(NewFD);
4293 // If this function declares a builtin function, check the type of this
4294 // declaration against the expected type for the builtin.
4295 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4296 ASTContext::GetBuiltinTypeError Error;
4297 QualType T = Context.GetBuiltinType(BuiltinID, Error);
4298 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4299 // The type of this function differs from the type of the builtin,
4300 // so forget about the builtin entirely.
4301 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4307 void Sema::CheckMain(FunctionDecl* FD) {
4308 // C++ [basic.start.main]p3: A program that declares main to be inline
4309 // or static is ill-formed.
4310 // C99 6.7.4p4: In a hosted environment, the inline function specifier
4311 // shall not appear in a declaration of main.
4312 // static main is not an error under C99, but we should warn about it.
4313 bool isInline = FD->isInlineSpecified();
4314 bool isStatic = FD->getStorageClass() == SC_Static;
4315 if (isInline || isStatic) {
4316 unsigned diagID = diag::warn_unusual_main_decl;
4317 if (isInline || getLangOptions().CPlusPlus)
4318 diagID = diag::err_unusual_main_decl;
4320 int which = isStatic + (isInline << 1) - 1;
4321 Diag(FD->getLocation(), diagID) << which;
4324 QualType T = FD->getType();
4325 assert(T->isFunctionType() && "function decl is not of function type");
4326 const FunctionType* FT = T->getAs<FunctionType>();
4328 if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4329 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4330 TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4331 const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4332 diag::err_main_returns_nonint);
4333 if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4334 D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4335 "int");
4337 FD->setInvalidDecl(true);
4340 // Treat protoless main() as nullary.
4341 if (isa<FunctionNoProtoType>(FT)) return;
4343 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4344 unsigned nparams = FTP->getNumArgs();
4345 assert(FD->getNumParams() == nparams);
4347 bool HasExtraParameters = (nparams > 3);
4349 // Darwin passes an undocumented fourth argument of type char**. If
4350 // other platforms start sprouting these, the logic below will start
4351 // getting shifty.
4352 if (nparams == 4 &&
4353 Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4354 HasExtraParameters = false;
4356 if (HasExtraParameters) {
4357 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4358 FD->setInvalidDecl(true);
4359 nparams = 3;
4362 // FIXME: a lot of the following diagnostics would be improved
4363 // if we had some location information about types.
4365 QualType CharPP =
4366 Context.getPointerType(Context.getPointerType(Context.CharTy));
4367 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4369 for (unsigned i = 0; i < nparams; ++i) {
4370 QualType AT = FTP->getArgType(i);
4372 bool mismatch = true;
4374 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4375 mismatch = false;
4376 else if (Expected[i] == CharPP) {
4377 // As an extension, the following forms are okay:
4378 // char const **
4379 // char const * const *
4380 // char * const *
4382 QualifierCollector qs;
4383 const PointerType* PT;
4384 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4385 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4386 (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4387 qs.removeConst();
4388 mismatch = !qs.empty();
4392 if (mismatch) {
4393 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4394 // TODO: suggest replacing given type with expected type
4395 FD->setInvalidDecl(true);
4399 if (nparams == 1 && !FD->isInvalidDecl()) {
4400 Diag(FD->getLocation(), diag::warn_main_one_arg);
4403 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4404 Diag(FD->getLocation(), diag::err_main_template_decl);
4405 FD->setInvalidDecl();
4409 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4410 // FIXME: Need strict checking. In C89, we need to check for
4411 // any assignment, increment, decrement, function-calls, or
4412 // commas outside of a sizeof. In C99, it's the same list,
4413 // except that the aforementioned are allowed in unevaluated
4414 // expressions. Everything else falls under the
4415 // "may accept other forms of constant expressions" exception.
4416 // (We never end up here for C++, so the constant expression
4417 // rules there don't matter.)
4418 if (Init->isConstantInitializer(Context, false))
4419 return false;
4420 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4421 << Init->getSourceRange();
4422 return true;
4425 void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4426 AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4429 /// AddInitializerToDecl - Adds the initializer Init to the
4430 /// declaration dcl. If DirectInit is true, this is C++ direct
4431 /// initialization rather than copy initialization.
4432 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4433 // If there is no declaration, there was an error parsing it. Just ignore
4434 // the initializer.
4435 if (RealDecl == 0)
4436 return;
4438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4439 // With declarators parsed the way they are, the parser cannot
4440 // distinguish between a normal initializer and a pure-specifier.
4441 // Thus this grotesque test.
4442 IntegerLiteral *IL;
4443 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4444 Context.getCanonicalType(IL->getType()) == Context.IntTy)
4445 CheckPureMethod(Method, Init->getSourceRange());
4446 else {
4447 Diag(Method->getLocation(), diag::err_member_function_initialization)
4448 << Method->getDeclName() << Init->getSourceRange();
4449 Method->setInvalidDecl();
4451 return;
4454 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4455 if (!VDecl) {
4456 if (getLangOptions().CPlusPlus &&
4457 RealDecl->getLexicalDeclContext()->isRecord() &&
4458 isa<NamedDecl>(RealDecl))
4459 Diag(RealDecl->getLocation(), diag::err_member_initialization);
4460 else
4461 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4462 RealDecl->setInvalidDecl();
4463 return;
4468 // A definition must end up with a complete type, which means it must be
4469 // complete with the restriction that an array type might be completed by the
4470 // initializer; note that later code assumes this restriction.
4471 QualType BaseDeclType = VDecl->getType();
4472 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4473 BaseDeclType = Array->getElementType();
4474 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4475 diag::err_typecheck_decl_incomplete_type)) {
4476 RealDecl->setInvalidDecl();
4477 return;
4480 // The variable can not have an abstract class type.
4481 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4482 diag::err_abstract_type_in_decl,
4483 AbstractVariableType))
4484 VDecl->setInvalidDecl();
4486 const VarDecl *Def;
4487 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4488 Diag(VDecl->getLocation(), diag::err_redefinition)
4489 << VDecl->getDeclName();
4490 Diag(Def->getLocation(), diag::note_previous_definition);
4491 VDecl->setInvalidDecl();
4492 return;
4495 const VarDecl* PrevInit = 0;
4496 if (getLangOptions().CPlusPlus) {
4497 // C++ [class.static.data]p4
4498 // If a static data member is of const integral or const
4499 // enumeration type, its declaration in the class definition can
4500 // specify a constant-initializer which shall be an integral
4501 // constant expression (5.19). In that case, the member can appear
4502 // in integral constant expressions. The member shall still be
4503 // defined in a namespace scope if it is used in the program and the
4504 // namespace scope definition shall not contain an initializer.
4506 // We already performed a redefinition check above, but for static
4507 // data members we also need to check whether there was an in-class
4508 // declaration with an initializer.
4509 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4510 Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4511 Diag(PrevInit->getLocation(), diag::note_previous_definition);
4512 return;
4515 if (VDecl->hasLocalStorage())
4516 getCurFunction()->setHasBranchProtectedScope();
4518 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4519 VDecl->setInvalidDecl();
4520 return;
4524 // Capture the variable that is being initialized and the style of
4525 // initialization.
4526 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4528 // FIXME: Poor source location information.
4529 InitializationKind Kind
4530 = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4531 Init->getLocStart(),
4532 Init->getLocEnd())
4533 : InitializationKind::CreateCopy(VDecl->getLocation(),
4534 Init->getLocStart());
4536 // Get the decls type and save a reference for later, since
4537 // CheckInitializerTypes may change it.
4538 QualType DclT = VDecl->getType(), SavT = DclT;
4539 if (VDecl->isLocalVarDecl()) {
4540 if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4541 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4542 VDecl->setInvalidDecl();
4543 } else if (!VDecl->isInvalidDecl()) {
4544 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4545 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4546 MultiExprArg(*this, &Init, 1),
4547 &DclT);
4548 if (Result.isInvalid()) {
4549 VDecl->setInvalidDecl();
4550 return;
4553 Init = Result.takeAs<Expr>();
4555 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4556 // Don't check invalid declarations to avoid emitting useless diagnostics.
4557 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4558 if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4559 CheckForConstantInitializer(Init, DclT);
4562 } else if (VDecl->isStaticDataMember() &&
4563 VDecl->getLexicalDeclContext()->isRecord()) {
4564 // This is an in-class initialization for a static data member, e.g.,
4566 // struct S {
4567 // static const int value = 17;
4568 // };
4570 // Try to perform the initialization regardless.
4571 if (!VDecl->isInvalidDecl()) {
4572 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4573 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4574 MultiExprArg(*this, &Init, 1),
4575 &DclT);
4576 if (Result.isInvalid()) {
4577 VDecl->setInvalidDecl();
4578 return;
4581 Init = Result.takeAs<Expr>();
4584 // C++ [class.mem]p4:
4585 // A member-declarator can contain a constant-initializer only
4586 // if it declares a static member (9.4) of const integral or
4587 // const enumeration type, see 9.4.2.
4588 QualType T = VDecl->getType();
4590 // Do nothing on dependent types.
4591 if (T->isDependentType()) {
4593 // Require constness.
4594 } else if (!T.isConstQualified()) {
4595 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4596 << Init->getSourceRange();
4597 VDecl->setInvalidDecl();
4599 // We allow integer constant expressions in all cases.
4600 } else if (T->isIntegralOrEnumerationType()) {
4601 if (!Init->isValueDependent()) {
4602 // Check whether the expression is a constant expression.
4603 llvm::APSInt Value;
4604 SourceLocation Loc;
4605 if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4606 Diag(Loc, diag::err_in_class_initializer_non_constant)
4607 << Init->getSourceRange();
4608 VDecl->setInvalidDecl();
4612 // We allow floating-point constants as an extension in C++03, and
4613 // C++0x has far more complicated rules that we don't really
4614 // implement fully.
4615 } else {
4616 bool Allowed = false;
4617 if (getLangOptions().CPlusPlus0x) {
4618 Allowed = T->isLiteralType();
4619 } else if (T->isFloatingType()) { // also permits complex, which is ok
4620 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4621 << T << Init->getSourceRange();
4622 Allowed = true;
4625 if (!Allowed) {
4626 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4627 << T << Init->getSourceRange();
4628 VDecl->setInvalidDecl();
4630 // TODO: there are probably expressions that pass here that shouldn't.
4631 } else if (!Init->isValueDependent() &&
4632 !Init->isConstantInitializer(Context, false)) {
4633 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4634 << Init->getSourceRange();
4635 VDecl->setInvalidDecl();
4638 } else if (VDecl->isFileVarDecl()) {
4639 if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4640 (!getLangOptions().CPlusPlus ||
4641 !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4642 Diag(VDecl->getLocation(), diag::warn_extern_init);
4643 if (!VDecl->isInvalidDecl()) {
4644 InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4645 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4646 MultiExprArg(*this, &Init, 1),
4647 &DclT);
4648 if (Result.isInvalid()) {
4649 VDecl->setInvalidDecl();
4650 return;
4653 Init = Result.takeAs<Expr>();
4656 // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4657 // Don't check invalid declarations to avoid emitting useless diagnostics.
4658 if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4659 // C99 6.7.8p4. All file scoped initializers need to be constant.
4660 CheckForConstantInitializer(Init, DclT);
4663 // If the type changed, it means we had an incomplete type that was
4664 // completed by the initializer. For example:
4665 // int ary[] = { 1, 3, 5 };
4666 // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4667 if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4668 VDecl->setType(DclT);
4669 Init->setType(DclT);
4673 // If this variable is a local declaration with record type, make sure it
4674 // doesn't have a flexible member initialization. We only support this as a
4675 // global/static definition.
4676 if (VDecl->hasLocalStorage())
4677 if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4678 if (RT->getDecl()->hasFlexibleArrayMember()) {
4679 // Check whether the initializer tries to initialize the flexible
4680 // array member itself to anything other than an empty initializer list.
4681 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4682 unsigned Index = std::distance(RT->getDecl()->field_begin(),
4683 RT->getDecl()->field_end()) - 1;
4684 if (Index < ILE->getNumInits() &&
4685 !(isa<InitListExpr>(ILE->getInit(Index)) &&
4686 cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4687 Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4688 VDecl->setInvalidDecl();
4693 // Check any implicit conversions within the expression.
4694 CheckImplicitConversions(Init, VDecl->getLocation());
4696 Init = MaybeCreateExprWithCleanups(Init);
4697 // Attach the initializer to the decl.
4698 VDecl->setInit(Init);
4700 CheckCompleteVariableDeclaration(VDecl);
4703 /// ActOnInitializerError - Given that there was an error parsing an
4704 /// initializer for the given declaration, try to return to some form
4705 /// of sanity.
4706 void Sema::ActOnInitializerError(Decl *D) {
4707 // Our main concern here is re-establishing invariants like "a
4708 // variable's type is either dependent or complete".
4709 if (!D || D->isInvalidDecl()) return;
4711 VarDecl *VD = dyn_cast<VarDecl>(D);
4712 if (!VD) return;
4714 QualType Ty = VD->getType();
4715 if (Ty->isDependentType()) return;
4717 // Require a complete type.
4718 if (RequireCompleteType(VD->getLocation(),
4719 Context.getBaseElementType(Ty),
4720 diag::err_typecheck_decl_incomplete_type)) {
4721 VD->setInvalidDecl();
4722 return;
4725 // Require an abstract type.
4726 if (RequireNonAbstractType(VD->getLocation(), Ty,
4727 diag::err_abstract_type_in_decl,
4728 AbstractVariableType)) {
4729 VD->setInvalidDecl();
4730 return;
4733 // Don't bother complaining about constructors or destructors,
4734 // though.
4737 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4738 bool TypeContainsUndeducedAuto) {
4739 // If there is no declaration, there was an error parsing it. Just ignore it.
4740 if (RealDecl == 0)
4741 return;
4743 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4744 QualType Type = Var->getType();
4746 // C++0x [dcl.spec.auto]p3
4747 if (TypeContainsUndeducedAuto) {
4748 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4749 << Var->getDeclName() << Type;
4750 Var->setInvalidDecl();
4751 return;
4754 switch (Var->isThisDeclarationADefinition()) {
4755 case VarDecl::Definition:
4756 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4757 break;
4759 // We have an out-of-line definition of a static data member
4760 // that has an in-class initializer, so we type-check this like
4761 // a declaration.
4763 // Fall through
4765 case VarDecl::DeclarationOnly:
4766 // It's only a declaration.
4768 // Block scope. C99 6.7p7: If an identifier for an object is
4769 // declared with no linkage (C99 6.2.2p6), the type for the
4770 // object shall be complete.
4771 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4772 !Var->getLinkage() && !Var->isInvalidDecl() &&
4773 RequireCompleteType(Var->getLocation(), Type,
4774 diag::err_typecheck_decl_incomplete_type))
4775 Var->setInvalidDecl();
4777 // Make sure that the type is not abstract.
4778 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4779 RequireNonAbstractType(Var->getLocation(), Type,
4780 diag::err_abstract_type_in_decl,
4781 AbstractVariableType))
4782 Var->setInvalidDecl();
4783 return;
4785 case VarDecl::TentativeDefinition:
4786 // File scope. C99 6.9.2p2: A declaration of an identifier for an
4787 // object that has file scope without an initializer, and without a
4788 // storage-class specifier or with the storage-class specifier "static",
4789 // constitutes a tentative definition. Note: A tentative definition with
4790 // external linkage is valid (C99 6.2.2p5).
4791 if (!Var->isInvalidDecl()) {
4792 if (const IncompleteArrayType *ArrayT
4793 = Context.getAsIncompleteArrayType(Type)) {
4794 if (RequireCompleteType(Var->getLocation(),
4795 ArrayT->getElementType(),
4796 diag::err_illegal_decl_array_incomplete_type))
4797 Var->setInvalidDecl();
4798 } else if (Var->getStorageClass() == SC_Static) {
4799 // C99 6.9.2p3: If the declaration of an identifier for an object is
4800 // a tentative definition and has internal linkage (C99 6.2.2p3), the
4801 // declared type shall not be an incomplete type.
4802 // NOTE: code such as the following
4803 // static struct s;
4804 // struct s { int a; };
4805 // is accepted by gcc. Hence here we issue a warning instead of
4806 // an error and we do not invalidate the static declaration.
4807 // NOTE: to avoid multiple warnings, only check the first declaration.
4808 if (Var->getPreviousDeclaration() == 0)
4809 RequireCompleteType(Var->getLocation(), Type,
4810 diag::ext_typecheck_decl_incomplete_type);
4814 // Record the tentative definition; we're done.
4815 if (!Var->isInvalidDecl())
4816 TentativeDefinitions.push_back(Var);
4817 return;
4820 // Provide a specific diagnostic for uninitialized variable
4821 // definitions with incomplete array type.
4822 if (Type->isIncompleteArrayType()) {
4823 Diag(Var->getLocation(),
4824 diag::err_typecheck_incomplete_array_needs_initializer);
4825 Var->setInvalidDecl();
4826 return;
4829 // Provide a specific diagnostic for uninitialized variable
4830 // definitions with reference type.
4831 if (Type->isReferenceType()) {
4832 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4833 << Var->getDeclName()
4834 << SourceRange(Var->getLocation(), Var->getLocation());
4835 Var->setInvalidDecl();
4836 return;
4839 // Do not attempt to type-check the default initializer for a
4840 // variable with dependent type.
4841 if (Type->isDependentType())
4842 return;
4844 if (Var->isInvalidDecl())
4845 return;
4847 if (RequireCompleteType(Var->getLocation(),
4848 Context.getBaseElementType(Type),
4849 diag::err_typecheck_decl_incomplete_type)) {
4850 Var->setInvalidDecl();
4851 return;
4854 // The variable can not have an abstract class type.
4855 if (RequireNonAbstractType(Var->getLocation(), Type,
4856 diag::err_abstract_type_in_decl,
4857 AbstractVariableType)) {
4858 Var->setInvalidDecl();
4859 return;
4862 const RecordType *Record
4863 = Context.getBaseElementType(Type)->getAs<RecordType>();
4864 if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4865 cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4866 // C++03 [dcl.init]p9:
4867 // If no initializer is specified for an object, and the
4868 // object is of (possibly cv-qualified) non-POD class type (or
4869 // array thereof), the object shall be default-initialized; if
4870 // the object is of const-qualified type, the underlying class
4871 // type shall have a user-declared default
4872 // constructor. Otherwise, if no initializer is specified for
4873 // a non- static object, the object and its subobjects, if
4874 // any, have an indeterminate initial value); if the object
4875 // or any of its subobjects are of const-qualified type, the
4876 // program is ill-formed.
4877 // FIXME: DPG thinks it is very fishy that C++0x disables this.
4878 } else {
4879 // Check for jumps past the implicit initializer. C++0x
4880 // clarifies that this applies to a "variable with automatic
4881 // storage duration", not a "local variable".
4882 if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4883 getCurFunction()->setHasBranchProtectedScope();
4885 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4886 InitializationKind Kind
4887 = InitializationKind::CreateDefault(Var->getLocation());
4889 InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4890 ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4891 MultiExprArg(*this, 0, 0));
4892 if (Init.isInvalid())
4893 Var->setInvalidDecl();
4894 else if (Init.get())
4895 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4898 CheckCompleteVariableDeclaration(Var);
4902 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4903 if (var->isInvalidDecl()) return;
4905 // All the following checks are C++ only.
4906 if (!getLangOptions().CPlusPlus) return;
4908 QualType baseType = Context.getBaseElementType(var->getType());
4909 if (baseType->isDependentType()) return;
4911 // __block variables might require us to capture a copy-initializer.
4912 if (var->hasAttr<BlocksAttr>()) {
4913 // It's currently invalid to ever have a __block variable with an
4914 // array type; should we diagnose that here?
4916 // Regardless, we don't want to ignore array nesting when
4917 // constructing this copy.
4918 QualType type = var->getType();
4920 if (type->isStructureOrClassType()) {
4921 SourceLocation poi = var->getLocation();
4922 Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
4923 ExprResult result =
4924 PerformCopyInitialization(
4925 InitializedEntity::InitializeBlock(poi, type, false),
4926 poi, Owned(varRef));
4927 if (!result.isInvalid()) {
4928 result = MaybeCreateExprWithCleanups(result);
4929 Expr *init = result.takeAs<Expr>();
4930 Context.setBlockVarCopyInits(var, init);
4935 // Check for global constructors.
4936 if (!var->getDeclContext()->isDependentContext() &&
4937 var->hasGlobalStorage() &&
4938 !var->isStaticLocal() &&
4939 var->getInit() &&
4940 !var->getInit()->isConstantInitializer(Context,
4941 baseType->isReferenceType()))
4942 Diag(var->getLocation(), diag::warn_global_constructor)
4943 << var->getInit()->getSourceRange();
4945 // Require the destructor.
4946 if (const RecordType *recordType = baseType->getAs<RecordType>())
4947 FinalizeVarWithDestructor(var, recordType);
4950 Sema::DeclGroupPtrTy
4951 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4952 Decl **Group, unsigned NumDecls) {
4953 llvm::SmallVector<Decl*, 8> Decls;
4955 if (DS.isTypeSpecOwned())
4956 Decls.push_back(DS.getRepAsDecl());
4958 for (unsigned i = 0; i != NumDecls; ++i)
4959 if (Decl *D = Group[i])
4960 Decls.push_back(D);
4962 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4963 Decls.data(), Decls.size()));
4967 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4968 /// to introduce parameters into function prototype scope.
4969 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4970 const DeclSpec &DS = D.getDeclSpec();
4972 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4973 VarDecl::StorageClass StorageClass = SC_None;
4974 VarDecl::StorageClass StorageClassAsWritten = SC_None;
4975 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4976 StorageClass = SC_Register;
4977 StorageClassAsWritten = SC_Register;
4978 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4979 Diag(DS.getStorageClassSpecLoc(),
4980 diag::err_invalid_storage_class_in_func_decl);
4981 D.getMutableDeclSpec().ClearStorageClassSpecs();
4984 if (D.getDeclSpec().isThreadSpecified())
4985 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4987 DiagnoseFunctionSpecifiers(D);
4989 TagDecl *OwnedDecl = 0;
4990 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4991 QualType parmDeclType = TInfo->getType();
4993 if (getLangOptions().CPlusPlus) {
4994 // Check that there are no default arguments inside the type of this
4995 // parameter.
4996 CheckExtraCXXDefaultArguments(D);
4998 if (OwnedDecl && OwnedDecl->isDefinition()) {
4999 // C++ [dcl.fct]p6:
5000 // Types shall not be defined in return or parameter types.
5001 Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5002 << Context.getTypeDeclType(OwnedDecl);
5005 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5006 if (D.getCXXScopeSpec().isSet()) {
5007 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5008 << D.getCXXScopeSpec().getRange();
5009 D.getCXXScopeSpec().clear();
5013 // Ensure we have a valid name
5014 IdentifierInfo *II = 0;
5015 if (D.hasName()) {
5016 II = D.getIdentifier();
5017 if (!II) {
5018 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5019 << GetNameForDeclarator(D).getName().getAsString();
5020 D.setInvalidType(true);
5024 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5025 if (II) {
5026 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5027 ForRedeclaration);
5028 LookupName(R, S);
5029 if (R.isSingleResult()) {
5030 NamedDecl *PrevDecl = R.getFoundDecl();
5031 if (PrevDecl->isTemplateParameter()) {
5032 // Maybe we will complain about the shadowed template parameter.
5033 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5034 // Just pretend that we didn't see the previous declaration.
5035 PrevDecl = 0;
5036 } else if (S->isDeclScope(PrevDecl)) {
5037 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5038 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5040 // Recover by removing the name
5041 II = 0;
5042 D.SetIdentifier(0, D.getIdentifierLoc());
5043 D.setInvalidType(true);
5048 // Temporarily put parameter variables in the translation unit, not
5049 // the enclosing context. This prevents them from accidentally
5050 // looking like class members in C++.
5051 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5052 TInfo, parmDeclType, II,
5053 D.getIdentifierLoc(),
5054 StorageClass, StorageClassAsWritten);
5056 if (D.isInvalidType())
5057 New->setInvalidDecl();
5059 // Add the parameter declaration into this scope.
5060 S->AddDecl(New);
5061 if (II)
5062 IdResolver.AddDecl(New);
5064 ProcessDeclAttributes(S, New, D);
5066 if (New->hasAttr<BlocksAttr>()) {
5067 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5069 return New;
5072 /// \brief Synthesizes a variable for a parameter arising from a
5073 /// typedef.
5074 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5075 SourceLocation Loc,
5076 QualType T) {
5077 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5078 T, Context.getTrivialTypeSourceInfo(T, Loc),
5079 SC_None, SC_None, 0);
5080 Param->setImplicit();
5081 return Param;
5084 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5085 ParmVarDecl * const *ParamEnd) {
5086 // Don't diagnose unused-parameter errors in template instantiations; we
5087 // will already have done so in the template itself.
5088 if (!ActiveTemplateInstantiations.empty())
5089 return;
5091 for (; Param != ParamEnd; ++Param) {
5092 if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5093 !(*Param)->hasAttr<UnusedAttr>()) {
5094 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5095 << (*Param)->getDeclName();
5100 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5101 ParmVarDecl * const *ParamEnd,
5102 QualType ReturnTy,
5103 NamedDecl *D) {
5104 if (LangOpts.NumLargeByValueCopy == 0) // No check.
5105 return;
5107 // Warn if the return value is pass-by-value and larger than the specified
5108 // threshold.
5109 if (ReturnTy->isPODType()) {
5110 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5111 if (Size > LangOpts.NumLargeByValueCopy)
5112 Diag(D->getLocation(), diag::warn_return_value_size)
5113 << D->getDeclName() << Size;
5116 // Warn if any parameter is pass-by-value and larger than the specified
5117 // threshold.
5118 for (; Param != ParamEnd; ++Param) {
5119 QualType T = (*Param)->getType();
5120 if (!T->isPODType())
5121 continue;
5122 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5123 if (Size > LangOpts.NumLargeByValueCopy)
5124 Diag((*Param)->getLocation(), diag::warn_parameter_size)
5125 << (*Param)->getDeclName() << Size;
5129 ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5130 TypeSourceInfo *TSInfo, QualType T,
5131 IdentifierInfo *Name,
5132 SourceLocation NameLoc,
5133 VarDecl::StorageClass StorageClass,
5134 VarDecl::StorageClass StorageClassAsWritten) {
5135 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5136 adjustParameterType(T), TSInfo,
5137 StorageClass, StorageClassAsWritten,
5140 // Parameters can not be abstract class types.
5141 // For record types, this is done by the AbstractClassUsageDiagnoser once
5142 // the class has been completely parsed.
5143 if (!CurContext->isRecord() &&
5144 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5145 AbstractParamType))
5146 New->setInvalidDecl();
5148 // Parameter declarators cannot be interface types. All ObjC objects are
5149 // passed by reference.
5150 if (T->isObjCObjectType()) {
5151 Diag(NameLoc,
5152 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5153 New->setInvalidDecl();
5156 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5157 // duration shall not be qualified by an address-space qualifier."
5158 // Since all parameters have automatic store duration, they can not have
5159 // an address space.
5160 if (T.getAddressSpace() != 0) {
5161 Diag(NameLoc, diag::err_arg_with_address_space);
5162 New->setInvalidDecl();
5165 return New;
5168 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5169 SourceLocation LocAfterDecls) {
5170 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5172 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5173 // for a K&R function.
5174 if (!FTI.hasPrototype) {
5175 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5176 --i;
5177 if (FTI.ArgInfo[i].Param == 0) {
5178 llvm::SmallString<256> Code;
5179 llvm::raw_svector_ostream(Code) << " int "
5180 << FTI.ArgInfo[i].Ident->getName()
5181 << ";\n";
5182 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5183 << FTI.ArgInfo[i].Ident
5184 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5186 // Implicitly declare the argument as type 'int' for lack of a better
5187 // type.
5188 DeclSpec DS;
5189 const char* PrevSpec; // unused
5190 unsigned DiagID; // unused
5191 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5192 PrevSpec, DiagID);
5193 Declarator ParamD(DS, Declarator::KNRTypeListContext);
5194 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5195 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5201 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5202 Declarator &D) {
5203 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5204 assert(D.isFunctionDeclarator() && "Not a function declarator!");
5205 Scope *ParentScope = FnBodyScope->getParent();
5207 Decl *DP = HandleDeclarator(ParentScope, D,
5208 MultiTemplateParamsArg(*this),
5209 /*IsFunctionDefinition=*/true);
5210 return ActOnStartOfFunctionDef(FnBodyScope, DP);
5213 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5214 // Don't warn about invalid declarations.
5215 if (FD->isInvalidDecl())
5216 return false;
5218 // Or declarations that aren't global.
5219 if (!FD->isGlobal())
5220 return false;
5222 // Don't warn about C++ member functions.
5223 if (isa<CXXMethodDecl>(FD))
5224 return false;
5226 // Don't warn about 'main'.
5227 if (FD->isMain())
5228 return false;
5230 // Don't warn about inline functions.
5231 if (FD->isInlineSpecified())
5232 return false;
5234 // Don't warn about function templates.
5235 if (FD->getDescribedFunctionTemplate())
5236 return false;
5238 // Don't warn about function template specializations.
5239 if (FD->isFunctionTemplateSpecialization())
5240 return false;
5242 bool MissingPrototype = true;
5243 for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5244 Prev; Prev = Prev->getPreviousDeclaration()) {
5245 // Ignore any declarations that occur in function or method
5246 // scope, because they aren't visible from the header.
5247 if (Prev->getDeclContext()->isFunctionOrMethod())
5248 continue;
5250 MissingPrototype = !Prev->getType()->isFunctionProtoType();
5251 break;
5254 return MissingPrototype;
5257 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5258 // Clear the last template instantiation error context.
5259 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5261 if (!D)
5262 return D;
5263 FunctionDecl *FD = 0;
5265 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5266 FD = FunTmpl->getTemplatedDecl();
5267 else
5268 FD = cast<FunctionDecl>(D);
5270 // Enter a new function scope
5271 PushFunctionScope();
5273 // See if this is a redefinition.
5274 // But don't complain if we're in GNU89 mode and the previous definition
5275 // was an extern inline function.
5276 const FunctionDecl *Definition;
5277 if (FD->hasBody(Definition) &&
5278 !canRedefineFunction(Definition, getLangOptions())) {
5279 if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5280 Definition->getStorageClass() == SC_Extern)
5281 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5282 << FD->getDeclName() << getLangOptions().CPlusPlus;
5283 else
5284 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5285 Diag(Definition->getLocation(), diag::note_previous_definition);
5288 // Builtin functions cannot be defined.
5289 if (unsigned BuiltinID = FD->getBuiltinID()) {
5290 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5291 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5292 FD->setInvalidDecl();
5296 // The return type of a function definition must be complete
5297 // (C99 6.9.1p3, C++ [dcl.fct]p6).
5298 QualType ResultType = FD->getResultType();
5299 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5300 !FD->isInvalidDecl() &&
5301 RequireCompleteType(FD->getLocation(), ResultType,
5302 diag::err_func_def_incomplete_result))
5303 FD->setInvalidDecl();
5305 // GNU warning -Wmissing-prototypes:
5306 // Warn if a global function is defined without a previous
5307 // prototype declaration. This warning is issued even if the
5308 // definition itself provides a prototype. The aim is to detect
5309 // global functions that fail to be declared in header files.
5310 if (ShouldWarnAboutMissingPrototype(FD))
5311 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5313 if (FnBodyScope)
5314 PushDeclContext(FnBodyScope, FD);
5316 // Check the validity of our function parameters
5317 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5318 /*CheckParameterNames=*/true);
5320 // Introduce our parameters into the function scope
5321 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5322 ParmVarDecl *Param = FD->getParamDecl(p);
5323 Param->setOwningFunction(FD);
5325 // If this has an identifier, add it to the scope stack.
5326 if (Param->getIdentifier() && FnBodyScope) {
5327 CheckShadow(FnBodyScope, Param);
5329 PushOnScopeChains(Param, FnBodyScope);
5333 // Checking attributes of current function definition
5334 // dllimport attribute.
5335 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5336 if (DA && (!FD->getAttr<DLLExportAttr>())) {
5337 // dllimport attribute cannot be directly applied to definition.
5338 if (!DA->isInherited()) {
5339 Diag(FD->getLocation(),
5340 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5341 << "dllimport";
5342 FD->setInvalidDecl();
5343 return FD;
5346 // Visual C++ appears to not think this is an issue, so only issue
5347 // a warning when Microsoft extensions are disabled.
5348 if (!LangOpts.Microsoft) {
5349 // If a symbol previously declared dllimport is later defined, the
5350 // attribute is ignored in subsequent references, and a warning is
5351 // emitted.
5352 Diag(FD->getLocation(),
5353 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5354 << FD->getName() << "dllimport";
5357 return FD;
5360 /// \brief Given the set of return statements within a function body,
5361 /// compute the variables that are subject to the named return value
5362 /// optimization.
5364 /// Each of the variables that is subject to the named return value
5365 /// optimization will be marked as NRVO variables in the AST, and any
5366 /// return statement that has a marked NRVO variable as its NRVO candidate can
5367 /// use the named return value optimization.
5369 /// This function applies a very simplistic algorithm for NRVO: if every return
5370 /// statement in the function has the same NRVO candidate, that candidate is
5371 /// the NRVO variable.
5373 /// FIXME: Employ a smarter algorithm that accounts for multiple return
5374 /// statements and the lifetimes of the NRVO candidates. We should be able to
5375 /// find a maximal set of NRVO variables.
5376 static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5377 ReturnStmt **Returns = Scope->Returns.data();
5379 const VarDecl *NRVOCandidate = 0;
5380 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5381 if (!Returns[I]->getNRVOCandidate())
5382 return;
5384 if (!NRVOCandidate)
5385 NRVOCandidate = Returns[I]->getNRVOCandidate();
5386 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5387 return;
5390 if (NRVOCandidate)
5391 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5394 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5395 return ActOnFinishFunctionBody(D, move(BodyArg), false);
5398 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5399 bool IsInstantiation) {
5400 FunctionDecl *FD = 0;
5401 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5402 if (FunTmpl)
5403 FD = FunTmpl->getTemplatedDecl();
5404 else
5405 FD = dyn_cast_or_null<FunctionDecl>(dcl);
5407 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5409 if (FD) {
5410 FD->setBody(Body);
5411 if (FD->isMain()) {
5412 // C and C++ allow for main to automagically return 0.
5413 // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5414 FD->setHasImplicitReturnZero(true);
5415 WP.disableCheckFallThrough();
5418 if (!FD->isInvalidDecl()) {
5419 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5420 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5421 FD->getResultType(), FD);
5423 // If this is a constructor, we need a vtable.
5424 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5425 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5427 ComputeNRVO(Body, getCurFunction());
5430 assert(FD == getCurFunctionDecl() && "Function parsing confused");
5431 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5432 assert(MD == getCurMethodDecl() && "Method parsing confused");
5433 MD->setBody(Body);
5434 if (Body)
5435 MD->setEndLoc(Body->getLocEnd());
5436 if (!MD->isInvalidDecl()) {
5437 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5438 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5439 MD->getResultType(), MD);
5441 } else {
5442 return 0;
5445 // Verify and clean out per-function state.
5447 // Check goto/label use.
5448 FunctionScopeInfo *CurFn = getCurFunction();
5449 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5450 I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5451 LabelStmt *L = I->second;
5453 // Verify that we have no forward references left. If so, there was a goto
5454 // or address of a label taken, but no definition of it. Label fwd
5455 // definitions are indicated with a null substmt.
5456 if (L->getSubStmt() != 0) {
5457 if (!L->isUsed())
5458 Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5459 continue;
5462 // Emit error.
5463 Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5465 // At this point, we have gotos that use the bogus label. Stitch it into
5466 // the function body so that they aren't leaked and that the AST is well
5467 // formed.
5468 if (Body == 0) {
5469 // The whole function wasn't parsed correctly.
5470 continue;
5473 // Otherwise, the body is valid: we want to stitch the label decl into the
5474 // function somewhere so that it is properly owned and so that the goto
5475 // has a valid target. Do this by creating a new compound stmt with the
5476 // label in it.
5478 // Give the label a sub-statement.
5479 L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5481 CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5482 cast<CXXTryStmt>(Body)->getTryBlock() :
5483 cast<CompoundStmt>(Body);
5484 llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5485 Compound->body_end());
5486 Elements.push_back(L);
5487 Compound->setStmts(Context, Elements.data(), Elements.size());
5490 if (Body) {
5491 // C++ constructors that have function-try-blocks can't have return
5492 // statements in the handlers of that block. (C++ [except.handle]p14)
5493 // Verify this.
5494 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5495 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5497 // Verify that that gotos and switch cases don't jump into scopes illegally.
5498 // Verify that that gotos and switch cases don't jump into scopes illegally.
5499 if (getCurFunction()->NeedsScopeChecking() &&
5500 !dcl->isInvalidDecl() &&
5501 !hasAnyErrorsInThisFunction())
5502 DiagnoseInvalidJumps(Body);
5504 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5505 if (!Destructor->getParent()->isDependentType())
5506 CheckDestructor(Destructor);
5508 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5509 Destructor->getParent());
5512 // If any errors have occurred, clear out any temporaries that may have
5513 // been leftover. This ensures that these temporaries won't be picked up for
5514 // deletion in some later function.
5515 if (PP.getDiagnostics().hasErrorOccurred())
5516 ExprTemporaries.clear();
5517 else if (!isa<FunctionTemplateDecl>(dcl)) {
5518 // Since the body is valid, issue any analysis-based warnings that are
5519 // enabled.
5520 QualType ResultType;
5521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5522 AnalysisWarnings.IssueWarnings(WP, FD);
5523 } else {
5524 ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5525 AnalysisWarnings.IssueWarnings(WP, MD);
5529 assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5532 if (!IsInstantiation)
5533 PopDeclContext();
5535 PopFunctionOrBlockScope();
5537 // If any errors have occurred, clear out any temporaries that may have
5538 // been leftover. This ensures that these temporaries won't be picked up for
5539 // deletion in some later function.
5540 if (getDiagnostics().hasErrorOccurred())
5541 ExprTemporaries.clear();
5543 return dcl;
5546 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5547 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5548 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5549 IdentifierInfo &II, Scope *S) {
5550 // Before we produce a declaration for an implicitly defined
5551 // function, see whether there was a locally-scoped declaration of
5552 // this name as a function or variable. If so, use that
5553 // (non-visible) declaration, and complain about it.
5554 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5555 = LocallyScopedExternalDecls.find(&II);
5556 if (Pos != LocallyScopedExternalDecls.end()) {
5557 Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5558 Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5559 return Pos->second;
5562 // Extension in C99. Legal in C90, but warn about it.
5563 if (II.getName().startswith("__builtin_"))
5564 Diag(Loc, diag::warn_builtin_unknown) << &II;
5565 else if (getLangOptions().C99)
5566 Diag(Loc, diag::ext_implicit_function_decl) << &II;
5567 else
5568 Diag(Loc, diag::warn_implicit_function_decl) << &II;
5570 // Set a Declarator for the implicit definition: int foo();
5571 const char *Dummy;
5572 DeclSpec DS;
5573 unsigned DiagID;
5574 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5575 (void)Error; // Silence warning.
5576 assert(!Error && "Error setting up implicit decl!");
5577 Declarator D(DS, Declarator::BlockContext);
5578 D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5579 false, false, SourceLocation(), 0,
5580 0, 0, true, SourceLocation(),
5581 false, SourceLocation(),
5582 false, 0,0,0, Loc, Loc, D),
5583 SourceLocation());
5584 D.SetIdentifier(&II, Loc);
5586 // Insert this function into translation-unit scope.
5588 DeclContext *PrevDC = CurContext;
5589 CurContext = Context.getTranslationUnitDecl();
5591 FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5592 FD->setImplicit();
5594 CurContext = PrevDC;
5596 AddKnownFunctionAttributes(FD);
5598 return FD;
5601 /// \brief Adds any function attributes that we know a priori based on
5602 /// the declaration of this function.
5604 /// These attributes can apply both to implicitly-declared builtins
5605 /// (like __builtin___printf_chk) or to library-declared functions
5606 /// like NSLog or printf.
5607 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5608 if (FD->isInvalidDecl())
5609 return;
5611 // If this is a built-in function, map its builtin attributes to
5612 // actual attributes.
5613 if (unsigned BuiltinID = FD->getBuiltinID()) {
5614 // Handle printf-formatting attributes.
5615 unsigned FormatIdx;
5616 bool HasVAListArg;
5617 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5618 if (!FD->getAttr<FormatAttr>())
5619 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5620 "printf", FormatIdx+1,
5621 HasVAListArg ? 0 : FormatIdx+2));
5623 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5624 HasVAListArg)) {
5625 if (!FD->getAttr<FormatAttr>())
5626 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5627 "scanf", FormatIdx+1,
5628 HasVAListArg ? 0 : FormatIdx+2));
5631 // Mark const if we don't care about errno and that is the only
5632 // thing preventing the function from being const. This allows
5633 // IRgen to use LLVM intrinsics for such functions.
5634 if (!getLangOptions().MathErrno &&
5635 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5636 if (!FD->getAttr<ConstAttr>())
5637 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5640 if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5641 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5642 if (Context.BuiltinInfo.isConst(BuiltinID))
5643 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5646 IdentifierInfo *Name = FD->getIdentifier();
5647 if (!Name)
5648 return;
5649 if ((!getLangOptions().CPlusPlus &&
5650 FD->getDeclContext()->isTranslationUnit()) ||
5651 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5652 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5653 LinkageSpecDecl::lang_c)) {
5654 // Okay: this could be a libc/libm/Objective-C function we know
5655 // about.
5656 } else
5657 return;
5659 if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5660 // FIXME: NSLog and NSLogv should be target specific
5661 if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5662 // FIXME: We known better than our headers.
5663 const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5664 } else
5665 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5666 "printf", 1,
5667 Name->isStr("NSLogv") ? 0 : 2));
5668 } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5669 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5670 // target-specific builtins, perhaps?
5671 if (!FD->getAttr<FormatAttr>())
5672 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5673 "printf", 2,
5674 Name->isStr("vasprintf") ? 0 : 3));
5678 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5679 TypeSourceInfo *TInfo) {
5680 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5681 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5683 if (!TInfo) {
5684 assert(D.isInvalidType() && "no declarator info for valid type");
5685 TInfo = Context.getTrivialTypeSourceInfo(T);
5688 // Scope manipulation handled by caller.
5689 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5690 D.getIdentifierLoc(),
5691 D.getIdentifier(),
5692 TInfo);
5694 if (const TagType *TT = T->getAs<TagType>()) {
5695 TagDecl *TD = TT->getDecl();
5697 // If the TagDecl that the TypedefDecl points to is an anonymous decl
5698 // keep track of the TypedefDecl.
5699 if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5700 TD->setTypedefForAnonDecl(NewTD);
5703 if (D.isInvalidType())
5704 NewTD->setInvalidDecl();
5705 return NewTD;
5709 /// \brief Determine whether a tag with a given kind is acceptable
5710 /// as a redeclaration of the given tag declaration.
5712 /// \returns true if the new tag kind is acceptable, false otherwise.
5713 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5714 TagTypeKind NewTag,
5715 SourceLocation NewTagLoc,
5716 const IdentifierInfo &Name) {
5717 // C++ [dcl.type.elab]p3:
5718 // The class-key or enum keyword present in the
5719 // elaborated-type-specifier shall agree in kind with the
5720 // declaration to which the name in the elaborated-type-specifier
5721 // refers. This rule also applies to the form of
5722 // elaborated-type-specifier that declares a class-name or
5723 // friend class since it can be construed as referring to the
5724 // definition of the class. Thus, in any
5725 // elaborated-type-specifier, the enum keyword shall be used to
5726 // refer to an enumeration (7.2), the union class-key shall be
5727 // used to refer to a union (clause 9), and either the class or
5728 // struct class-key shall be used to refer to a class (clause 9)
5729 // declared using the class or struct class-key.
5730 TagTypeKind OldTag = Previous->getTagKind();
5731 if (OldTag == NewTag)
5732 return true;
5734 if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5735 (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5736 // Warn about the struct/class tag mismatch.
5737 bool isTemplate = false;
5738 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5739 isTemplate = Record->getDescribedClassTemplate();
5741 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5742 << (NewTag == TTK_Class)
5743 << isTemplate << &Name
5744 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5745 OldTag == TTK_Class? "class" : "struct");
5746 Diag(Previous->getLocation(), diag::note_previous_use);
5747 return true;
5749 return false;
5752 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
5753 /// former case, Name will be non-null. In the later case, Name will be null.
5754 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5755 /// reference/declaration/definition of a tag.
5756 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5757 SourceLocation KWLoc, CXXScopeSpec &SS,
5758 IdentifierInfo *Name, SourceLocation NameLoc,
5759 AttributeList *Attr, AccessSpecifier AS,
5760 MultiTemplateParamsArg TemplateParameterLists,
5761 bool &OwnedDecl, bool &IsDependent,
5762 bool ScopedEnum, bool ScopedEnumUsesClassTag,
5763 TypeResult UnderlyingType) {
5764 // If this is not a definition, it must have a name.
5765 assert((Name != 0 || TUK == TUK_Definition) &&
5766 "Nameless record must be a definition!");
5767 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5769 OwnedDecl = false;
5770 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5772 // FIXME: Check explicit specializations more carefully.
5773 bool isExplicitSpecialization = false;
5774 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5775 bool Invalid = false;
5777 // We only need to do this matching if we have template parameters
5778 // or a scope specifier, which also conveniently avoids this work
5779 // for non-C++ cases.
5780 if (NumMatchedTemplateParamLists ||
5781 (SS.isNotEmpty() && TUK != TUK_Reference)) {
5782 if (TemplateParameterList *TemplateParams
5783 = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5784 TemplateParameterLists.get(),
5785 TemplateParameterLists.size(),
5786 TUK == TUK_Friend,
5787 isExplicitSpecialization,
5788 Invalid)) {
5789 // All but one template parameter lists have been matching.
5790 --NumMatchedTemplateParamLists;
5792 if (TemplateParams->size() > 0) {
5793 // This is a declaration or definition of a class template (which may
5794 // be a member of another template).
5795 if (Invalid)
5796 return 0;
5798 OwnedDecl = false;
5799 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5800 SS, Name, NameLoc, Attr,
5801 TemplateParams,
5802 AS);
5803 TemplateParameterLists.release();
5804 return Result.get();
5805 } else {
5806 // The "template<>" header is extraneous.
5807 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5808 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5809 isExplicitSpecialization = true;
5814 // Figure out the underlying type if this a enum declaration. We need to do
5815 // this early, because it's needed to detect if this is an incompatible
5816 // redeclaration.
5817 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5819 if (Kind == TTK_Enum) {
5820 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5821 // No underlying type explicitly specified, or we failed to parse the
5822 // type, default to int.
5823 EnumUnderlying = Context.IntTy.getTypePtr();
5824 else if (UnderlyingType.get()) {
5825 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5826 // integral type; any cv-qualification is ignored.
5827 TypeSourceInfo *TI = 0;
5828 QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5829 EnumUnderlying = TI;
5831 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5833 if (!T->isDependentType() && !T->isIntegralType(Context)) {
5834 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5835 << T;
5836 // Recover by falling back to int.
5837 EnumUnderlying = Context.IntTy.getTypePtr();
5840 if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5841 UPPC_FixedUnderlyingType))
5842 EnumUnderlying = Context.IntTy.getTypePtr();
5844 } else if (getLangOptions().Microsoft)
5845 // Microsoft enums are always of int type.
5846 EnumUnderlying = Context.IntTy.getTypePtr();
5849 DeclContext *SearchDC = CurContext;
5850 DeclContext *DC = CurContext;
5851 bool isStdBadAlloc = false;
5853 RedeclarationKind Redecl = ForRedeclaration;
5854 if (TUK == TUK_Friend || TUK == TUK_Reference)
5855 Redecl = NotForRedeclaration;
5857 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5859 if (Name && SS.isNotEmpty()) {
5860 // We have a nested-name tag ('struct foo::bar').
5862 // Check for invalid 'foo::'.
5863 if (SS.isInvalid()) {
5864 Name = 0;
5865 goto CreateNewDecl;
5868 // If this is a friend or a reference to a class in a dependent
5869 // context, don't try to make a decl for it.
5870 if (TUK == TUK_Friend || TUK == TUK_Reference) {
5871 DC = computeDeclContext(SS, false);
5872 if (!DC) {
5873 IsDependent = true;
5874 return 0;
5876 } else {
5877 DC = computeDeclContext(SS, true);
5878 if (!DC) {
5879 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5880 << SS.getRange();
5881 return 0;
5885 if (RequireCompleteDeclContext(SS, DC))
5886 return 0;
5888 SearchDC = DC;
5889 // Look-up name inside 'foo::'.
5890 LookupQualifiedName(Previous, DC);
5892 if (Previous.isAmbiguous())
5893 return 0;
5895 if (Previous.empty()) {
5896 // Name lookup did not find anything. However, if the
5897 // nested-name-specifier refers to the current instantiation,
5898 // and that current instantiation has any dependent base
5899 // classes, we might find something at instantiation time: treat
5900 // this as a dependent elaborated-type-specifier.
5901 // But this only makes any sense for reference-like lookups.
5902 if (Previous.wasNotFoundInCurrentInstantiation() &&
5903 (TUK == TUK_Reference || TUK == TUK_Friend)) {
5904 IsDependent = true;
5905 return 0;
5908 // A tag 'foo::bar' must already exist.
5909 Diag(NameLoc, diag::err_not_tag_in_scope)
5910 << Kind << Name << DC << SS.getRange();
5911 Name = 0;
5912 Invalid = true;
5913 goto CreateNewDecl;
5915 } else if (Name) {
5916 // If this is a named struct, check to see if there was a previous forward
5917 // declaration or definition.
5918 // FIXME: We're looking into outer scopes here, even when we
5919 // shouldn't be. Doing so can result in ambiguities that we
5920 // shouldn't be diagnosing.
5921 LookupName(Previous, S);
5923 // Note: there used to be some attempt at recovery here.
5924 if (Previous.isAmbiguous())
5925 return 0;
5927 if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5928 // FIXME: This makes sure that we ignore the contexts associated
5929 // with C structs, unions, and enums when looking for a matching
5930 // tag declaration or definition. See the similar lookup tweak
5931 // in Sema::LookupName; is there a better way to deal with this?
5932 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5933 SearchDC = SearchDC->getParent();
5935 } else if (S->isFunctionPrototypeScope()) {
5936 // If this is an enum declaration in function prototype scope, set its
5937 // initial context to the translation unit.
5938 SearchDC = Context.getTranslationUnitDecl();
5941 if (Previous.isSingleResult() &&
5942 Previous.getFoundDecl()->isTemplateParameter()) {
5943 // Maybe we will complain about the shadowed template parameter.
5944 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5945 // Just pretend that we didn't see the previous declaration.
5946 Previous.clear();
5949 if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5950 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5951 // This is a declaration of or a reference to "std::bad_alloc".
5952 isStdBadAlloc = true;
5954 if (Previous.empty() && StdBadAlloc) {
5955 // std::bad_alloc has been implicitly declared (but made invisible to
5956 // name lookup). Fill in this implicit declaration as the previous
5957 // declaration, so that the declarations get chained appropriately.
5958 Previous.addDecl(getStdBadAlloc());
5962 // If we didn't find a previous declaration, and this is a reference
5963 // (or friend reference), move to the correct scope. In C++, we
5964 // also need to do a redeclaration lookup there, just in case
5965 // there's a shadow friend decl.
5966 if (Name && Previous.empty() &&
5967 (TUK == TUK_Reference || TUK == TUK_Friend)) {
5968 if (Invalid) goto CreateNewDecl;
5969 assert(SS.isEmpty());
5971 if (TUK == TUK_Reference) {
5972 // C++ [basic.scope.pdecl]p5:
5973 // -- for an elaborated-type-specifier of the form
5975 // class-key identifier
5977 // if the elaborated-type-specifier is used in the
5978 // decl-specifier-seq or parameter-declaration-clause of a
5979 // function defined in namespace scope, the identifier is
5980 // declared as a class-name in the namespace that contains
5981 // the declaration; otherwise, except as a friend
5982 // declaration, the identifier is declared in the smallest
5983 // non-class, non-function-prototype scope that contains the
5984 // declaration.
5986 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5987 // C structs and unions.
5989 // It is an error in C++ to declare (rather than define) an enum
5990 // type, including via an elaborated type specifier. We'll
5991 // diagnose that later; for now, declare the enum in the same
5992 // scope as we would have picked for any other tag type.
5994 // GNU C also supports this behavior as part of its incomplete
5995 // enum types extension, while GNU C++ does not.
5997 // Find the context where we'll be declaring the tag.
5998 // FIXME: We would like to maintain the current DeclContext as the
5999 // lexical context,
6000 while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6001 SearchDC = SearchDC->getParent();
6003 // Find the scope where we'll be declaring the tag.
6004 while (S->isClassScope() ||
6005 (getLangOptions().CPlusPlus &&
6006 S->isFunctionPrototypeScope()) ||
6007 ((S->getFlags() & Scope::DeclScope) == 0) ||
6008 (S->getEntity() &&
6009 ((DeclContext *)S->getEntity())->isTransparentContext()))
6010 S = S->getParent();
6011 } else {
6012 assert(TUK == TUK_Friend);
6013 // C++ [namespace.memdef]p3:
6014 // If a friend declaration in a non-local class first declares a
6015 // class or function, the friend class or function is a member of
6016 // the innermost enclosing namespace.
6017 SearchDC = SearchDC->getEnclosingNamespaceContext();
6020 // In C++, we need to do a redeclaration lookup to properly
6021 // diagnose some problems.
6022 if (getLangOptions().CPlusPlus) {
6023 Previous.setRedeclarationKind(ForRedeclaration);
6024 LookupQualifiedName(Previous, SearchDC);
6028 if (!Previous.empty()) {
6029 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6031 // It's okay to have a tag decl in the same scope as a typedef
6032 // which hides a tag decl in the same scope. Finding this
6033 // insanity with a redeclaration lookup can only actually happen
6034 // in C++.
6036 // This is also okay for elaborated-type-specifiers, which is
6037 // technically forbidden by the current standard but which is
6038 // okay according to the likely resolution of an open issue;
6039 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6040 if (getLangOptions().CPlusPlus) {
6041 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6042 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6043 TagDecl *Tag = TT->getDecl();
6044 if (Tag->getDeclName() == Name &&
6045 Tag->getDeclContext()->getRedeclContext()
6046 ->Equals(TD->getDeclContext()->getRedeclContext())) {
6047 PrevDecl = Tag;
6048 Previous.clear();
6049 Previous.addDecl(Tag);
6050 Previous.resolveKind();
6056 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6057 // If this is a use of a previous tag, or if the tag is already declared
6058 // in the same scope (so that the definition/declaration completes or
6059 // rementions the tag), reuse the decl.
6060 if (TUK == TUK_Reference || TUK == TUK_Friend ||
6061 isDeclInScope(PrevDecl, SearchDC, S)) {
6062 // Make sure that this wasn't declared as an enum and now used as a
6063 // struct or something similar.
6064 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6065 bool SafeToContinue
6066 = (PrevTagDecl->getTagKind() != TTK_Enum &&
6067 Kind != TTK_Enum);
6068 if (SafeToContinue)
6069 Diag(KWLoc, diag::err_use_with_wrong_tag)
6070 << Name
6071 << FixItHint::CreateReplacement(SourceRange(KWLoc),
6072 PrevTagDecl->getKindName());
6073 else
6074 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6075 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6077 if (SafeToContinue)
6078 Kind = PrevTagDecl->getTagKind();
6079 else {
6080 // Recover by making this an anonymous redefinition.
6081 Name = 0;
6082 Previous.clear();
6083 Invalid = true;
6087 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6088 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6090 // All conflicts with previous declarations are recovered by
6091 // returning the previous declaration.
6092 if (ScopedEnum != PrevEnum->isScoped()) {
6093 Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6094 << PrevEnum->isScoped();
6095 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6096 return PrevTagDecl;
6098 else if (EnumUnderlying && PrevEnum->isFixed()) {
6099 QualType T;
6100 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6101 T = TI->getType();
6102 else
6103 T = QualType(EnumUnderlying.get<const Type*>(), 0);
6105 if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6106 Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6107 diag::err_enum_redeclare_type_mismatch)
6108 << T
6109 << PrevEnum->getIntegerType();
6110 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6111 return PrevTagDecl;
6114 else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6115 Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6116 << PrevEnum->isFixed();
6117 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6118 return PrevTagDecl;
6122 if (!Invalid) {
6123 // If this is a use, just return the declaration we found.
6125 // FIXME: In the future, return a variant or some other clue
6126 // for the consumer of this Decl to know it doesn't own it.
6127 // For our current ASTs this shouldn't be a problem, but will
6128 // need to be changed with DeclGroups.
6129 if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6130 TUK == TUK_Friend)
6131 return PrevTagDecl;
6133 // Diagnose attempts to redefine a tag.
6134 if (TUK == TUK_Definition) {
6135 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6136 // If we're defining a specialization and the previous definition
6137 // is from an implicit instantiation, don't emit an error
6138 // here; we'll catch this in the general case below.
6139 if (!isExplicitSpecialization ||
6140 !isa<CXXRecordDecl>(Def) ||
6141 cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6142 == TSK_ExplicitSpecialization) {
6143 Diag(NameLoc, diag::err_redefinition) << Name;
6144 Diag(Def->getLocation(), diag::note_previous_definition);
6145 // If this is a redefinition, recover by making this
6146 // struct be anonymous, which will make any later
6147 // references get the previous definition.
6148 Name = 0;
6149 Previous.clear();
6150 Invalid = true;
6152 } else {
6153 // If the type is currently being defined, complain
6154 // about a nested redefinition.
6155 const TagType *Tag
6156 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6157 if (Tag->isBeingDefined()) {
6158 Diag(NameLoc, diag::err_nested_redefinition) << Name;
6159 Diag(PrevTagDecl->getLocation(),
6160 diag::note_previous_definition);
6161 Name = 0;
6162 Previous.clear();
6163 Invalid = true;
6167 // Okay, this is definition of a previously declared or referenced
6168 // tag PrevDecl. We're going to create a new Decl for it.
6171 // If we get here we have (another) forward declaration or we
6172 // have a definition. Just create a new decl.
6174 } else {
6175 // If we get here, this is a definition of a new tag type in a nested
6176 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6177 // new decl/type. We set PrevDecl to NULL so that the entities
6178 // have distinct types.
6179 Previous.clear();
6181 // If we get here, we're going to create a new Decl. If PrevDecl
6182 // is non-NULL, it's a definition of the tag declared by
6183 // PrevDecl. If it's NULL, we have a new definition.
6186 // Otherwise, PrevDecl is not a tag, but was found with tag
6187 // lookup. This is only actually possible in C++, where a few
6188 // things like templates still live in the tag namespace.
6189 } else {
6190 assert(getLangOptions().CPlusPlus);
6192 // Use a better diagnostic if an elaborated-type-specifier
6193 // found the wrong kind of type on the first
6194 // (non-redeclaration) lookup.
6195 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6196 !Previous.isForRedeclaration()) {
6197 unsigned Kind = 0;
6198 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6199 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6200 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6201 Diag(PrevDecl->getLocation(), diag::note_declared_at);
6202 Invalid = true;
6204 // Otherwise, only diagnose if the declaration is in scope.
6205 } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6206 // do nothing
6208 // Diagnose implicit declarations introduced by elaborated types.
6209 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6210 unsigned Kind = 0;
6211 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6212 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6213 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6214 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6215 Invalid = true;
6217 // Otherwise it's a declaration. Call out a particularly common
6218 // case here.
6219 } else if (isa<TypedefDecl>(PrevDecl)) {
6220 Diag(NameLoc, diag::err_tag_definition_of_typedef)
6221 << Name
6222 << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6223 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6224 Invalid = true;
6226 // Otherwise, diagnose.
6227 } else {
6228 // The tag name clashes with something else in the target scope,
6229 // issue an error and recover by making this tag be anonymous.
6230 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6231 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6232 Name = 0;
6233 Invalid = true;
6236 // The existing declaration isn't relevant to us; we're in a
6237 // new scope, so clear out the previous declaration.
6238 Previous.clear();
6242 CreateNewDecl:
6244 TagDecl *PrevDecl = 0;
6245 if (Previous.isSingleResult())
6246 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6248 // If there is an identifier, use the location of the identifier as the
6249 // location of the decl, otherwise use the location of the struct/union
6250 // keyword.
6251 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6253 // Otherwise, create a new declaration. If there is a previous
6254 // declaration of the same entity, the two will be linked via
6255 // PrevDecl.
6256 TagDecl *New;
6258 bool IsForwardReference = false;
6259 if (Kind == TTK_Enum) {
6260 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6261 // enum X { A, B, C } D; D should chain to X.
6262 New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6263 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6264 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6265 // If this is an undefined enum, warn.
6266 if (TUK != TUK_Definition && !Invalid) {
6267 TagDecl *Def;
6268 if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6269 // C++0x: 7.2p2: opaque-enum-declaration.
6270 // Conflicts are diagnosed above. Do nothing.
6272 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6273 Diag(Loc, diag::ext_forward_ref_enum_def)
6274 << New;
6275 Diag(Def->getLocation(), diag::note_previous_definition);
6276 } else {
6277 unsigned DiagID = diag::ext_forward_ref_enum;
6278 if (getLangOptions().Microsoft)
6279 DiagID = diag::ext_ms_forward_ref_enum;
6280 else if (getLangOptions().CPlusPlus)
6281 DiagID = diag::err_forward_ref_enum;
6282 Diag(Loc, DiagID);
6284 // If this is a forward-declared reference to an enumeration, make a
6285 // note of it; we won't actually be introducing the declaration into
6286 // the declaration context.
6287 if (TUK == TUK_Reference)
6288 IsForwardReference = true;
6292 if (EnumUnderlying) {
6293 EnumDecl *ED = cast<EnumDecl>(New);
6294 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6295 ED->setIntegerTypeSourceInfo(TI);
6296 else
6297 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6298 ED->setPromotionType(ED->getIntegerType());
6301 } else {
6302 // struct/union/class
6304 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6305 // struct X { int A; } D; D should chain to X.
6306 if (getLangOptions().CPlusPlus) {
6307 // FIXME: Look for a way to use RecordDecl for simple structs.
6308 New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6309 cast_or_null<CXXRecordDecl>(PrevDecl));
6311 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6312 StdBadAlloc = cast<CXXRecordDecl>(New);
6313 } else
6314 New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6315 cast_or_null<RecordDecl>(PrevDecl));
6318 // Maybe add qualifier info.
6319 if (SS.isNotEmpty()) {
6320 if (SS.isSet()) {
6321 NestedNameSpecifier *NNS
6322 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6323 New->setQualifierInfo(NNS, SS.getRange());
6324 if (NumMatchedTemplateParamLists > 0) {
6325 New->setTemplateParameterListsInfo(Context,
6326 NumMatchedTemplateParamLists,
6327 (TemplateParameterList**) TemplateParameterLists.release());
6330 else
6331 Invalid = true;
6334 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6335 // Add alignment attributes if necessary; these attributes are checked when
6336 // the ASTContext lays out the structure.
6338 // It is important for implementing the correct semantics that this
6339 // happen here (in act on tag decl). The #pragma pack stack is
6340 // maintained as a result of parser callbacks which can occur at
6341 // many points during the parsing of a struct declaration (because
6342 // the #pragma tokens are effectively skipped over during the
6343 // parsing of the struct).
6344 AddAlignmentAttributesForRecord(RD);
6347 // If this is a specialization of a member class (of a class template),
6348 // check the specialization.
6349 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6350 Invalid = true;
6352 if (Invalid)
6353 New->setInvalidDecl();
6355 if (Attr)
6356 ProcessDeclAttributeList(S, New, Attr);
6358 // If we're declaring or defining a tag in function prototype scope
6359 // in C, note that this type can only be used within the function.
6360 if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6361 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6363 // Set the lexical context. If the tag has a C++ scope specifier, the
6364 // lexical context will be different from the semantic context.
6365 New->setLexicalDeclContext(CurContext);
6367 // Mark this as a friend decl if applicable.
6368 if (TUK == TUK_Friend)
6369 New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6371 // Set the access specifier.
6372 if (!Invalid && SearchDC->isRecord())
6373 SetMemberAccessSpecifier(New, PrevDecl, AS);
6375 if (TUK == TUK_Definition)
6376 New->startDefinition();
6378 // If this has an identifier, add it to the scope stack.
6379 if (TUK == TUK_Friend) {
6380 // We might be replacing an existing declaration in the lookup tables;
6381 // if so, borrow its access specifier.
6382 if (PrevDecl)
6383 New->setAccess(PrevDecl->getAccess());
6385 DeclContext *DC = New->getDeclContext()->getRedeclContext();
6386 DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6387 if (Name) // can be null along some error paths
6388 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6389 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6390 } else if (Name) {
6391 S = getNonFieldDeclScope(S);
6392 PushOnScopeChains(New, S, !IsForwardReference);
6393 if (IsForwardReference)
6394 SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6396 } else {
6397 CurContext->addDecl(New);
6400 // If this is the C FILE type, notify the AST context.
6401 if (IdentifierInfo *II = New->getIdentifier())
6402 if (!New->isInvalidDecl() &&
6403 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6404 II->isStr("FILE"))
6405 Context.setFILEDecl(New);
6407 OwnedDecl = true;
6408 return New;
6411 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6412 AdjustDeclIfTemplate(TagD);
6413 TagDecl *Tag = cast<TagDecl>(TagD);
6415 // Enter the tag context.
6416 PushDeclContext(S, Tag);
6419 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6420 ClassVirtSpecifiers &CVS,
6421 SourceLocation LBraceLoc) {
6422 AdjustDeclIfTemplate(TagD);
6423 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6425 FieldCollector->StartClass();
6427 if (!Record->getIdentifier())
6428 return;
6430 if (CVS.isFinalSpecified())
6431 Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6432 if (CVS.isExplicitSpecified())
6433 Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6435 // C++ [class]p2:
6436 // [...] The class-name is also inserted into the scope of the
6437 // class itself; this is known as the injected-class-name. For
6438 // purposes of access checking, the injected-class-name is treated
6439 // as if it were a public member name.
6440 CXXRecordDecl *InjectedClassName
6441 = CXXRecordDecl::Create(Context, Record->getTagKind(),
6442 CurContext, Record->getLocation(),
6443 Record->getIdentifier(),
6444 Record->getTagKeywordLoc(),
6445 /*PrevDecl=*/0,
6446 /*DelayTypeCreation=*/true);
6447 Context.getTypeDeclType(InjectedClassName, Record);
6448 InjectedClassName->setImplicit();
6449 InjectedClassName->setAccess(AS_public);
6450 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6451 InjectedClassName->setDescribedClassTemplate(Template);
6452 PushOnScopeChains(InjectedClassName, S);
6453 assert(InjectedClassName->isInjectedClassName() &&
6454 "Broken injected-class-name");
6457 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6458 SourceLocation RBraceLoc) {
6459 AdjustDeclIfTemplate(TagD);
6460 TagDecl *Tag = cast<TagDecl>(TagD);
6461 Tag->setRBraceLoc(RBraceLoc);
6463 if (isa<CXXRecordDecl>(Tag))
6464 FieldCollector->FinishClass();
6466 // Exit this scope of this tag's definition.
6467 PopDeclContext();
6469 // Notify the consumer that we've defined a tag.
6470 Consumer.HandleTagDeclDefinition(Tag);
6473 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6474 AdjustDeclIfTemplate(TagD);
6475 TagDecl *Tag = cast<TagDecl>(TagD);
6476 Tag->setInvalidDecl();
6478 // We're undoing ActOnTagStartDefinition here, not
6479 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6480 // the FieldCollector.
6482 PopDeclContext();
6485 // Note that FieldName may be null for anonymous bitfields.
6486 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6487 QualType FieldTy, const Expr *BitWidth,
6488 bool *ZeroWidth) {
6489 // Default to true; that shouldn't confuse checks for emptiness
6490 if (ZeroWidth)
6491 *ZeroWidth = true;
6493 // C99 6.7.2.1p4 - verify the field type.
6494 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6495 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6496 // Handle incomplete types with specific error.
6497 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6498 return true;
6499 if (FieldName)
6500 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6501 << FieldName << FieldTy << BitWidth->getSourceRange();
6502 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6503 << FieldTy << BitWidth->getSourceRange();
6504 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6505 UPPC_BitFieldWidth))
6506 return true;
6508 // If the bit-width is type- or value-dependent, don't try to check
6509 // it now.
6510 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6511 return false;
6513 llvm::APSInt Value;
6514 if (VerifyIntegerConstantExpression(BitWidth, &Value))
6515 return true;
6517 if (Value != 0 && ZeroWidth)
6518 *ZeroWidth = false;
6520 // Zero-width bitfield is ok for anonymous field.
6521 if (Value == 0 && FieldName)
6522 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6524 if (Value.isSigned() && Value.isNegative()) {
6525 if (FieldName)
6526 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6527 << FieldName << Value.toString(10);
6528 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6529 << Value.toString(10);
6532 if (!FieldTy->isDependentType()) {
6533 uint64_t TypeSize = Context.getTypeSize(FieldTy);
6534 if (Value.getZExtValue() > TypeSize) {
6535 if (!getLangOptions().CPlusPlus) {
6536 if (FieldName)
6537 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6538 << FieldName << (unsigned)Value.getZExtValue()
6539 << (unsigned)TypeSize;
6541 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6542 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6545 if (FieldName)
6546 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6547 << FieldName << (unsigned)Value.getZExtValue()
6548 << (unsigned)TypeSize;
6549 else
6550 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6551 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6555 return false;
6558 /// ActOnField - Each field of a struct/union/class is passed into this in order
6559 /// to create a FieldDecl object for it.
6560 Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6561 SourceLocation DeclStart,
6562 Declarator &D, ExprTy *BitfieldWidth) {
6563 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6564 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6565 AS_public);
6566 return Res;
6569 /// HandleField - Analyze a field of a C struct or a C++ data member.
6571 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6572 SourceLocation DeclStart,
6573 Declarator &D, Expr *BitWidth,
6574 AccessSpecifier AS) {
6575 IdentifierInfo *II = D.getIdentifier();
6576 SourceLocation Loc = DeclStart;
6577 if (II) Loc = D.getIdentifierLoc();
6579 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6580 QualType T = TInfo->getType();
6581 if (getLangOptions().CPlusPlus) {
6582 CheckExtraCXXDefaultArguments(D);
6584 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6585 UPPC_DataMemberType)) {
6586 D.setInvalidType();
6587 T = Context.IntTy;
6588 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6592 DiagnoseFunctionSpecifiers(D);
6594 if (D.getDeclSpec().isThreadSpecified())
6595 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6597 // Check to see if this name was declared as a member previously
6598 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6599 LookupName(Previous, S);
6600 assert((Previous.empty() || Previous.isOverloadedResult() ||
6601 Previous.isSingleResult())
6602 && "Lookup of member name should be either overloaded, single or null");
6604 // If the name is overloaded then get any declaration else get the single result
6605 NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6606 Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6608 if (PrevDecl && PrevDecl->isTemplateParameter()) {
6609 // Maybe we will complain about the shadowed template parameter.
6610 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6611 // Just pretend that we didn't see the previous declaration.
6612 PrevDecl = 0;
6615 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6616 PrevDecl = 0;
6618 bool Mutable
6619 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6620 SourceLocation TSSL = D.getSourceRange().getBegin();
6621 FieldDecl *NewFD
6622 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6623 AS, PrevDecl, &D);
6625 if (NewFD->isInvalidDecl())
6626 Record->setInvalidDecl();
6628 if (NewFD->isInvalidDecl() && PrevDecl) {
6629 // Don't introduce NewFD into scope; there's already something
6630 // with the same name in the same scope.
6631 } else if (II) {
6632 PushOnScopeChains(NewFD, S);
6633 } else
6634 Record->addDecl(NewFD);
6636 return NewFD;
6639 /// \brief Build a new FieldDecl and check its well-formedness.
6641 /// This routine builds a new FieldDecl given the fields name, type,
6642 /// record, etc. \p PrevDecl should refer to any previous declaration
6643 /// with the same name and in the same scope as the field to be
6644 /// created.
6646 /// \returns a new FieldDecl.
6648 /// \todo The Declarator argument is a hack. It will be removed once
6649 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6650 TypeSourceInfo *TInfo,
6651 RecordDecl *Record, SourceLocation Loc,
6652 bool Mutable, Expr *BitWidth,
6653 SourceLocation TSSL,
6654 AccessSpecifier AS, NamedDecl *PrevDecl,
6655 Declarator *D) {
6656 IdentifierInfo *II = Name.getAsIdentifierInfo();
6657 bool InvalidDecl = false;
6658 if (D) InvalidDecl = D->isInvalidType();
6660 // If we receive a broken type, recover by assuming 'int' and
6661 // marking this declaration as invalid.
6662 if (T.isNull()) {
6663 InvalidDecl = true;
6664 T = Context.IntTy;
6667 QualType EltTy = Context.getBaseElementType(T);
6668 if (!EltTy->isDependentType() &&
6669 RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6670 // Fields of incomplete type force their record to be invalid.
6671 Record->setInvalidDecl();
6672 InvalidDecl = true;
6675 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6676 // than a variably modified type.
6677 if (!InvalidDecl && T->isVariablyModifiedType()) {
6678 bool SizeIsNegative;
6679 llvm::APSInt Oversized;
6680 QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6681 SizeIsNegative,
6682 Oversized);
6683 if (!FixedTy.isNull()) {
6684 Diag(Loc, diag::warn_illegal_constant_array_size);
6685 T = FixedTy;
6686 } else {
6687 if (SizeIsNegative)
6688 Diag(Loc, diag::err_typecheck_negative_array_size);
6689 else if (Oversized.getBoolValue())
6690 Diag(Loc, diag::err_array_too_large)
6691 << Oversized.toString(10);
6692 else
6693 Diag(Loc, diag::err_typecheck_field_variable_size);
6694 InvalidDecl = true;
6698 // Fields can not have abstract class types
6699 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6700 diag::err_abstract_type_in_decl,
6701 AbstractFieldType))
6702 InvalidDecl = true;
6704 bool ZeroWidth = false;
6705 // If this is declared as a bit-field, check the bit-field.
6706 if (!InvalidDecl && BitWidth &&
6707 VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6708 InvalidDecl = true;
6709 BitWidth = 0;
6710 ZeroWidth = false;
6713 // Check that 'mutable' is consistent with the type of the declaration.
6714 if (!InvalidDecl && Mutable) {
6715 unsigned DiagID = 0;
6716 if (T->isReferenceType())
6717 DiagID = diag::err_mutable_reference;
6718 else if (T.isConstQualified())
6719 DiagID = diag::err_mutable_const;
6721 if (DiagID) {
6722 SourceLocation ErrLoc = Loc;
6723 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6724 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6725 Diag(ErrLoc, DiagID);
6726 Mutable = false;
6727 InvalidDecl = true;
6731 FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6732 BitWidth, Mutable);
6733 if (InvalidDecl)
6734 NewFD->setInvalidDecl();
6736 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6737 Diag(Loc, diag::err_duplicate_member) << II;
6738 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6739 NewFD->setInvalidDecl();
6742 if (!InvalidDecl && getLangOptions().CPlusPlus) {
6743 if (Record->isUnion()) {
6744 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6745 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6746 if (RDecl->getDefinition()) {
6747 // C++ [class.union]p1: An object of a class with a non-trivial
6748 // constructor, a non-trivial copy constructor, a non-trivial
6749 // destructor, or a non-trivial copy assignment operator
6750 // cannot be a member of a union, nor can an array of such
6751 // objects.
6752 // TODO: C++0x alters this restriction significantly.
6753 if (CheckNontrivialField(NewFD))
6754 NewFD->setInvalidDecl();
6758 // C++ [class.union]p1: If a union contains a member of reference type,
6759 // the program is ill-formed.
6760 if (EltTy->isReferenceType()) {
6761 Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6762 << NewFD->getDeclName() << EltTy;
6763 NewFD->setInvalidDecl();
6768 // FIXME: We need to pass in the attributes given an AST
6769 // representation, not a parser representation.
6770 if (D)
6771 // FIXME: What to pass instead of TUScope?
6772 ProcessDeclAttributes(TUScope, NewFD, *D);
6774 if (T.isObjCGCWeak())
6775 Diag(Loc, diag::warn_attribute_weak_on_field);
6777 NewFD->setAccess(AS);
6778 return NewFD;
6781 bool Sema::CheckNontrivialField(FieldDecl *FD) {
6782 assert(FD);
6783 assert(getLangOptions().CPlusPlus && "valid check only for C++");
6785 if (FD->isInvalidDecl())
6786 return true;
6788 QualType EltTy = Context.getBaseElementType(FD->getType());
6789 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6790 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6791 if (RDecl->getDefinition()) {
6792 // We check for copy constructors before constructors
6793 // because otherwise we'll never get complaints about
6794 // copy constructors.
6796 CXXSpecialMember member = CXXInvalid;
6797 if (!RDecl->hasTrivialCopyConstructor())
6798 member = CXXCopyConstructor;
6799 else if (!RDecl->hasTrivialConstructor())
6800 member = CXXConstructor;
6801 else if (!RDecl->hasTrivialCopyAssignment())
6802 member = CXXCopyAssignment;
6803 else if (!RDecl->hasTrivialDestructor())
6804 member = CXXDestructor;
6806 if (member != CXXInvalid) {
6807 Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6808 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6809 DiagnoseNontrivial(RT, member);
6810 return true;
6815 return false;
6818 /// DiagnoseNontrivial - Given that a class has a non-trivial
6819 /// special member, figure out why.
6820 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6821 QualType QT(T, 0U);
6822 CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6824 // Check whether the member was user-declared.
6825 switch (member) {
6826 case CXXInvalid:
6827 break;
6829 case CXXConstructor:
6830 if (RD->hasUserDeclaredConstructor()) {
6831 typedef CXXRecordDecl::ctor_iterator ctor_iter;
6832 for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6833 const FunctionDecl *body = 0;
6834 ci->hasBody(body);
6835 if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6836 SourceLocation CtorLoc = ci->getLocation();
6837 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6838 return;
6842 assert(0 && "found no user-declared constructors");
6843 return;
6845 break;
6847 case CXXCopyConstructor:
6848 if (RD->hasUserDeclaredCopyConstructor()) {
6849 SourceLocation CtorLoc =
6850 RD->getCopyConstructor(Context, 0)->getLocation();
6851 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6852 return;
6854 break;
6856 case CXXCopyAssignment:
6857 if (RD->hasUserDeclaredCopyAssignment()) {
6858 // FIXME: this should use the location of the copy
6859 // assignment, not the type.
6860 SourceLocation TyLoc = RD->getSourceRange().getBegin();
6861 Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6862 return;
6864 break;
6866 case CXXDestructor:
6867 if (RD->hasUserDeclaredDestructor()) {
6868 SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6869 Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6870 return;
6872 break;
6875 typedef CXXRecordDecl::base_class_iterator base_iter;
6877 // Virtual bases and members inhibit trivial copying/construction,
6878 // but not trivial destruction.
6879 if (member != CXXDestructor) {
6880 // Check for virtual bases. vbases includes indirect virtual bases,
6881 // so we just iterate through the direct bases.
6882 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6883 if (bi->isVirtual()) {
6884 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6885 Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6886 return;
6889 // Check for virtual methods.
6890 typedef CXXRecordDecl::method_iterator meth_iter;
6891 for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6892 ++mi) {
6893 if (mi->isVirtual()) {
6894 SourceLocation MLoc = mi->getSourceRange().getBegin();
6895 Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6896 return;
6901 bool (CXXRecordDecl::*hasTrivial)() const;
6902 switch (member) {
6903 case CXXConstructor:
6904 hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6905 case CXXCopyConstructor:
6906 hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6907 case CXXCopyAssignment:
6908 hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6909 case CXXDestructor:
6910 hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6911 default:
6912 assert(0 && "unexpected special member"); return;
6915 // Check for nontrivial bases (and recurse).
6916 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6917 const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6918 assert(BaseRT && "Don't know how to handle dependent bases");
6919 CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6920 if (!(BaseRecTy->*hasTrivial)()) {
6921 SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6922 Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6923 DiagnoseNontrivial(BaseRT, member);
6924 return;
6928 // Check for nontrivial members (and recurse).
6929 typedef RecordDecl::field_iterator field_iter;
6930 for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6931 ++fi) {
6932 QualType EltTy = Context.getBaseElementType((*fi)->getType());
6933 if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6934 CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6936 if (!(EltRD->*hasTrivial)()) {
6937 SourceLocation FLoc = (*fi)->getLocation();
6938 Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6939 DiagnoseNontrivial(EltRT, member);
6940 return;
6945 assert(0 && "found no explanation for non-trivial member");
6948 /// TranslateIvarVisibility - Translate visibility from a token ID to an
6949 /// AST enum value.
6950 static ObjCIvarDecl::AccessControl
6951 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6952 switch (ivarVisibility) {
6953 default: assert(0 && "Unknown visitibility kind");
6954 case tok::objc_private: return ObjCIvarDecl::Private;
6955 case tok::objc_public: return ObjCIvarDecl::Public;
6956 case tok::objc_protected: return ObjCIvarDecl::Protected;
6957 case tok::objc_package: return ObjCIvarDecl::Package;
6961 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
6962 /// in order to create an IvarDecl object for it.
6963 Decl *Sema::ActOnIvar(Scope *S,
6964 SourceLocation DeclStart,
6965 Decl *IntfDecl,
6966 Declarator &D, ExprTy *BitfieldWidth,
6967 tok::ObjCKeywordKind Visibility) {
6969 IdentifierInfo *II = D.getIdentifier();
6970 Expr *BitWidth = (Expr*)BitfieldWidth;
6971 SourceLocation Loc = DeclStart;
6972 if (II) Loc = D.getIdentifierLoc();
6974 // FIXME: Unnamed fields can be handled in various different ways, for
6975 // example, unnamed unions inject all members into the struct namespace!
6977 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6978 QualType T = TInfo->getType();
6980 if (BitWidth) {
6981 // 6.7.2.1p3, 6.7.2.1p4
6982 if (VerifyBitField(Loc, II, T, BitWidth)) {
6983 D.setInvalidType();
6984 BitWidth = 0;
6986 } else {
6987 // Not a bitfield.
6989 // validate II.
6992 if (T->isReferenceType()) {
6993 Diag(Loc, diag::err_ivar_reference_type);
6994 D.setInvalidType();
6996 // C99 6.7.2.1p8: A member of a structure or union may have any type other
6997 // than a variably modified type.
6998 else if (T->isVariablyModifiedType()) {
6999 Diag(Loc, diag::err_typecheck_ivar_variable_size);
7000 D.setInvalidType();
7003 // Get the visibility (access control) for this ivar.
7004 ObjCIvarDecl::AccessControl ac =
7005 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7006 : ObjCIvarDecl::None;
7007 // Must set ivar's DeclContext to its enclosing interface.
7008 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7009 ObjCContainerDecl *EnclosingContext;
7010 if (ObjCImplementationDecl *IMPDecl =
7011 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7012 if (!LangOpts.ObjCNonFragileABI2) {
7013 // Case of ivar declared in an implementation. Context is that of its class.
7014 EnclosingContext = IMPDecl->getClassInterface();
7015 assert(EnclosingContext && "Implementation has no class interface!");
7017 else
7018 EnclosingContext = EnclosingDecl;
7019 } else {
7020 if (ObjCCategoryDecl *CDecl =
7021 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7022 if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7023 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7024 return 0;
7027 EnclosingContext = EnclosingDecl;
7030 // Construct the decl.
7031 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7032 EnclosingContext, Loc, II, T,
7033 TInfo, ac, (Expr *)BitfieldWidth);
7035 if (II) {
7036 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7037 ForRedeclaration);
7038 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7039 && !isa<TagDecl>(PrevDecl)) {
7040 Diag(Loc, diag::err_duplicate_member) << II;
7041 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7042 NewID->setInvalidDecl();
7046 // Process attributes attached to the ivar.
7047 ProcessDeclAttributes(S, NewID, D);
7049 if (D.isInvalidType())
7050 NewID->setInvalidDecl();
7052 if (II) {
7053 // FIXME: When interfaces are DeclContexts, we'll need to add
7054 // these to the interface.
7055 S->AddDecl(NewID);
7056 IdResolver.AddDecl(NewID);
7059 return NewID;
7062 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7063 /// class and class extensions. For every class @interface and class
7064 /// extension @interface, if the last ivar is a bitfield of any type,
7065 /// then add an implicit `char :0` ivar to the end of that interface.
7066 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7067 llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7068 if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7069 return;
7071 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7072 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7074 if (!Ivar->isBitField())
7075 return;
7076 uint64_t BitFieldSize =
7077 Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7078 if (BitFieldSize == 0)
7079 return;
7080 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7081 if (!ID) {
7082 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7083 if (!CD->IsClassExtension())
7084 return;
7086 // No need to add this to end of @implementation.
7087 else
7088 return;
7090 // All conditions are met. Add a new bitfield to the tail end of ivars.
7091 llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7092 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7094 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7095 DeclLoc, 0,
7096 Context.CharTy,
7097 Context.CreateTypeSourceInfo(Context.CharTy),
7098 ObjCIvarDecl::Private, BW,
7099 true);
7100 AllIvarDecls.push_back(Ivar);
7103 void Sema::ActOnFields(Scope* S,
7104 SourceLocation RecLoc, Decl *EnclosingDecl,
7105 Decl **Fields, unsigned NumFields,
7106 SourceLocation LBrac, SourceLocation RBrac,
7107 AttributeList *Attr) {
7108 assert(EnclosingDecl && "missing record or interface decl");
7110 // If the decl this is being inserted into is invalid, then it may be a
7111 // redeclaration or some other bogus case. Don't try to add fields to it.
7112 if (EnclosingDecl->isInvalidDecl()) {
7113 // FIXME: Deallocate fields?
7114 return;
7118 // Verify that all the fields are okay.
7119 unsigned NumNamedMembers = 0;
7120 llvm::SmallVector<FieldDecl*, 32> RecFields;
7122 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7123 for (unsigned i = 0; i != NumFields; ++i) {
7124 FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7126 // Get the type for the field.
7127 const Type *FDTy = FD->getType().getTypePtr();
7129 if (!FD->isAnonymousStructOrUnion()) {
7130 // Remember all fields written by the user.
7131 RecFields.push_back(FD);
7134 // If the field is already invalid for some reason, don't emit more
7135 // diagnostics about it.
7136 if (FD->isInvalidDecl()) {
7137 EnclosingDecl->setInvalidDecl();
7138 continue;
7141 // C99 6.7.2.1p2:
7142 // A structure or union shall not contain a member with
7143 // incomplete or function type (hence, a structure shall not
7144 // contain an instance of itself, but may contain a pointer to
7145 // an instance of itself), except that the last member of a
7146 // structure with more than one named member may have incomplete
7147 // array type; such a structure (and any union containing,
7148 // possibly recursively, a member that is such a structure)
7149 // shall not be a member of a structure or an element of an
7150 // array.
7151 if (FDTy->isFunctionType()) {
7152 // Field declared as a function.
7153 Diag(FD->getLocation(), diag::err_field_declared_as_function)
7154 << FD->getDeclName();
7155 FD->setInvalidDecl();
7156 EnclosingDecl->setInvalidDecl();
7157 continue;
7158 } else if (FDTy->isIncompleteArrayType() && Record &&
7159 ((i == NumFields - 1 && !Record->isUnion()) ||
7160 (getLangOptions().Microsoft &&
7161 (i == NumFields - 1 || Record->isUnion())))) {
7162 // Flexible array member.
7163 // Microsoft is more permissive regarding flexible array.
7164 // It will accept flexible array in union and also
7165 // as the sole element of a struct/class.
7166 if (getLangOptions().Microsoft) {
7167 if (Record->isUnion())
7168 Diag(FD->getLocation(), diag::ext_flexible_array_union)
7169 << FD->getDeclName();
7170 else if (NumFields == 1)
7171 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7172 << FD->getDeclName() << Record->getTagKind();
7173 } else if (NumNamedMembers < 1) {
7174 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7175 << FD->getDeclName();
7176 FD->setInvalidDecl();
7177 EnclosingDecl->setInvalidDecl();
7178 continue;
7180 if (!FD->getType()->isDependentType() &&
7181 !Context.getBaseElementType(FD->getType())->isPODType()) {
7182 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7183 << FD->getDeclName() << FD->getType();
7184 FD->setInvalidDecl();
7185 EnclosingDecl->setInvalidDecl();
7186 continue;
7188 // Okay, we have a legal flexible array member at the end of the struct.
7189 if (Record)
7190 Record->setHasFlexibleArrayMember(true);
7191 } else if (!FDTy->isDependentType() &&
7192 RequireCompleteType(FD->getLocation(), FD->getType(),
7193 diag::err_field_incomplete)) {
7194 // Incomplete type
7195 FD->setInvalidDecl();
7196 EnclosingDecl->setInvalidDecl();
7197 continue;
7198 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7199 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7200 // If this is a member of a union, then entire union becomes "flexible".
7201 if (Record && Record->isUnion()) {
7202 Record->setHasFlexibleArrayMember(true);
7203 } else {
7204 // If this is a struct/class and this is not the last element, reject
7205 // it. Note that GCC supports variable sized arrays in the middle of
7206 // structures.
7207 if (i != NumFields-1)
7208 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7209 << FD->getDeclName() << FD->getType();
7210 else {
7211 // We support flexible arrays at the end of structs in
7212 // other structs as an extension.
7213 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7214 << FD->getDeclName();
7215 if (Record)
7216 Record->setHasFlexibleArrayMember(true);
7220 if (Record && FDTTy->getDecl()->hasObjectMember())
7221 Record->setHasObjectMember(true);
7222 } else if (FDTy->isObjCObjectType()) {
7223 /// A field cannot be an Objective-c object
7224 Diag(FD->getLocation(), diag::err_statically_allocated_object);
7225 FD->setInvalidDecl();
7226 EnclosingDecl->setInvalidDecl();
7227 continue;
7228 } else if (getLangOptions().ObjC1 &&
7229 getLangOptions().getGCMode() != LangOptions::NonGC &&
7230 Record &&
7231 (FD->getType()->isObjCObjectPointerType() ||
7232 FD->getType().isObjCGCStrong()))
7233 Record->setHasObjectMember(true);
7234 else if (Context.getAsArrayType(FD->getType())) {
7235 QualType BaseType = Context.getBaseElementType(FD->getType());
7236 if (Record && BaseType->isRecordType() &&
7237 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7238 Record->setHasObjectMember(true);
7240 // Keep track of the number of named members.
7241 if (FD->getIdentifier())
7242 ++NumNamedMembers;
7245 // Okay, we successfully defined 'Record'.
7246 if (Record) {
7247 bool Completed = false;
7248 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7249 if (!CXXRecord->isInvalidDecl()) {
7250 // Set access bits correctly on the directly-declared conversions.
7251 UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7252 for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7253 I != E; ++I)
7254 Convs->setAccess(I, (*I)->getAccess());
7256 if (!CXXRecord->isDependentType()) {
7257 // Add any implicitly-declared members to this class.
7258 AddImplicitlyDeclaredMembersToClass(CXXRecord);
7260 // If we have virtual base classes, we may end up finding multiple
7261 // final overriders for a given virtual function. Check for this
7262 // problem now.
7263 if (CXXRecord->getNumVBases()) {
7264 CXXFinalOverriderMap FinalOverriders;
7265 CXXRecord->getFinalOverriders(FinalOverriders);
7267 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7268 MEnd = FinalOverriders.end();
7269 M != MEnd; ++M) {
7270 for (OverridingMethods::iterator SO = M->second.begin(),
7271 SOEnd = M->second.end();
7272 SO != SOEnd; ++SO) {
7273 assert(SO->second.size() > 0 &&
7274 "Virtual function without overridding functions?");
7275 if (SO->second.size() == 1)
7276 continue;
7278 // C++ [class.virtual]p2:
7279 // In a derived class, if a virtual member function of a base
7280 // class subobject has more than one final overrider the
7281 // program is ill-formed.
7282 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7283 << (NamedDecl *)M->first << Record;
7284 Diag(M->first->getLocation(),
7285 diag::note_overridden_virtual_function);
7286 for (OverridingMethods::overriding_iterator
7287 OM = SO->second.begin(),
7288 OMEnd = SO->second.end();
7289 OM != OMEnd; ++OM)
7290 Diag(OM->Method->getLocation(), diag::note_final_overrider)
7291 << (NamedDecl *)M->first << OM->Method->getParent();
7293 Record->setInvalidDecl();
7296 CXXRecord->completeDefinition(&FinalOverriders);
7297 Completed = true;
7303 if (!Completed)
7304 Record->completeDefinition();
7305 } else {
7306 ObjCIvarDecl **ClsFields =
7307 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7308 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7309 ID->setLocEnd(RBrac);
7310 // Add ivar's to class's DeclContext.
7311 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7312 ClsFields[i]->setLexicalDeclContext(ID);
7313 ID->addDecl(ClsFields[i]);
7315 // Must enforce the rule that ivars in the base classes may not be
7316 // duplicates.
7317 if (ID->getSuperClass())
7318 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7319 } else if (ObjCImplementationDecl *IMPDecl =
7320 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7321 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7322 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7323 // Ivar declared in @implementation never belongs to the implementation.
7324 // Only it is in implementation's lexical context.
7325 ClsFields[I]->setLexicalDeclContext(IMPDecl);
7326 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7327 } else if (ObjCCategoryDecl *CDecl =
7328 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7329 // case of ivars in class extension; all other cases have been
7330 // reported as errors elsewhere.
7331 // FIXME. Class extension does not have a LocEnd field.
7332 // CDecl->setLocEnd(RBrac);
7333 // Add ivar's to class extension's DeclContext.
7334 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7335 ClsFields[i]->setLexicalDeclContext(CDecl);
7336 CDecl->addDecl(ClsFields[i]);
7341 if (Attr)
7342 ProcessDeclAttributeList(S, Record, Attr);
7344 // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7345 // set the visibility of this record.
7346 if (Record && !Record->getDeclContext()->isRecord())
7347 AddPushedVisibilityAttribute(Record);
7350 /// \brief Determine whether the given integral value is representable within
7351 /// the given type T.
7352 static bool isRepresentableIntegerValue(ASTContext &Context,
7353 llvm::APSInt &Value,
7354 QualType T) {
7355 assert(T->isIntegralType(Context) && "Integral type required!");
7356 unsigned BitWidth = Context.getIntWidth(T);
7358 if (Value.isUnsigned() || Value.isNonNegative()) {
7359 if (T->isSignedIntegerType())
7360 --BitWidth;
7361 return Value.getActiveBits() <= BitWidth;
7363 return Value.getMinSignedBits() <= BitWidth;
7366 // \brief Given an integral type, return the next larger integral type
7367 // (or a NULL type of no such type exists).
7368 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7369 // FIXME: Int128/UInt128 support, which also needs to be introduced into
7370 // enum checking below.
7371 assert(T->isIntegralType(Context) && "Integral type required!");
7372 const unsigned NumTypes = 4;
7373 QualType SignedIntegralTypes[NumTypes] = {
7374 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7376 QualType UnsignedIntegralTypes[NumTypes] = {
7377 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7378 Context.UnsignedLongLongTy
7381 unsigned BitWidth = Context.getTypeSize(T);
7382 QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7383 : UnsignedIntegralTypes;
7384 for (unsigned I = 0; I != NumTypes; ++I)
7385 if (Context.getTypeSize(Types[I]) > BitWidth)
7386 return Types[I];
7388 return QualType();
7391 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7392 EnumConstantDecl *LastEnumConst,
7393 SourceLocation IdLoc,
7394 IdentifierInfo *Id,
7395 Expr *Val) {
7396 unsigned IntWidth = Context.Target.getIntWidth();
7397 llvm::APSInt EnumVal(IntWidth);
7398 QualType EltTy;
7400 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7401 Val = 0;
7403 if (Val) {
7404 if (Enum->isDependentType() || Val->isTypeDependent())
7405 EltTy = Context.DependentTy;
7406 else {
7407 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7408 SourceLocation ExpLoc;
7409 if (!Val->isValueDependent() &&
7410 VerifyIntegerConstantExpression(Val, &EnumVal)) {
7411 Val = 0;
7412 } else {
7413 if (!getLangOptions().CPlusPlus) {
7414 // C99 6.7.2.2p2:
7415 // The expression that defines the value of an enumeration constant
7416 // shall be an integer constant expression that has a value
7417 // representable as an int.
7419 // Complain if the value is not representable in an int.
7420 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7421 Diag(IdLoc, diag::ext_enum_value_not_int)
7422 << EnumVal.toString(10) << Val->getSourceRange()
7423 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7424 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7425 // Force the type of the expression to 'int'.
7426 ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7430 if (Enum->isFixed()) {
7431 EltTy = Enum->getIntegerType();
7433 // C++0x [dcl.enum]p5:
7434 // ... if the initializing value of an enumerator cannot be
7435 // represented by the underlying type, the program is ill-formed.
7436 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7437 if (getLangOptions().Microsoft) {
7438 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7439 ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7440 } else
7441 Diag(IdLoc, diag::err_enumerator_too_large)
7442 << EltTy;
7443 } else
7444 ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7446 else {
7447 // C++0x [dcl.enum]p5:
7448 // If the underlying type is not fixed, the type of each enumerator
7449 // is the type of its initializing value:
7450 // - If an initializer is specified for an enumerator, the
7451 // initializing value has the same type as the expression.
7452 EltTy = Val->getType();
7458 if (!Val) {
7459 if (Enum->isDependentType())
7460 EltTy = Context.DependentTy;
7461 else if (!LastEnumConst) {
7462 // C++0x [dcl.enum]p5:
7463 // If the underlying type is not fixed, the type of each enumerator
7464 // is the type of its initializing value:
7465 // - If no initializer is specified for the first enumerator, the
7466 // initializing value has an unspecified integral type.
7468 // GCC uses 'int' for its unspecified integral type, as does
7469 // C99 6.7.2.2p3.
7470 if (Enum->isFixed()) {
7471 EltTy = Enum->getIntegerType();
7473 else {
7474 EltTy = Context.IntTy;
7476 } else {
7477 // Assign the last value + 1.
7478 EnumVal = LastEnumConst->getInitVal();
7479 ++EnumVal;
7480 EltTy = LastEnumConst->getType();
7482 // Check for overflow on increment.
7483 if (EnumVal < LastEnumConst->getInitVal()) {
7484 // C++0x [dcl.enum]p5:
7485 // If the underlying type is not fixed, the type of each enumerator
7486 // is the type of its initializing value:
7488 // - Otherwise the type of the initializing value is the same as
7489 // the type of the initializing value of the preceding enumerator
7490 // unless the incremented value is not representable in that type,
7491 // in which case the type is an unspecified integral type
7492 // sufficient to contain the incremented value. If no such type
7493 // exists, the program is ill-formed.
7494 QualType T = getNextLargerIntegralType(Context, EltTy);
7495 if (T.isNull() || Enum->isFixed()) {
7496 // There is no integral type larger enough to represent this
7497 // value. Complain, then allow the value to wrap around.
7498 EnumVal = LastEnumConst->getInitVal();
7499 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7500 ++EnumVal;
7501 if (Enum->isFixed())
7502 // When the underlying type is fixed, this is ill-formed.
7503 Diag(IdLoc, diag::err_enumerator_wrapped)
7504 << EnumVal.toString(10)
7505 << EltTy;
7506 else
7507 Diag(IdLoc, diag::warn_enumerator_too_large)
7508 << EnumVal.toString(10);
7509 } else {
7510 EltTy = T;
7513 // Retrieve the last enumerator's value, extent that type to the
7514 // type that is supposed to be large enough to represent the incremented
7515 // value, then increment.
7516 EnumVal = LastEnumConst->getInitVal();
7517 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7518 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7519 ++EnumVal;
7521 // If we're not in C++, diagnose the overflow of enumerator values,
7522 // which in C99 means that the enumerator value is not representable in
7523 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7524 // permits enumerator values that are representable in some larger
7525 // integral type.
7526 if (!getLangOptions().CPlusPlus && !T.isNull())
7527 Diag(IdLoc, diag::warn_enum_value_overflow);
7528 } else if (!getLangOptions().CPlusPlus &&
7529 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7530 // Enforce C99 6.7.2.2p2 even when we compute the next value.
7531 Diag(IdLoc, diag::ext_enum_value_not_int)
7532 << EnumVal.toString(10) << 1;
7537 if (!EltTy->isDependentType()) {
7538 // Make the enumerator value match the signedness and size of the
7539 // enumerator's type.
7540 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7541 EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7544 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7545 Val, EnumVal);
7549 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7550 SourceLocation IdLoc, IdentifierInfo *Id,
7551 AttributeList *Attr,
7552 SourceLocation EqualLoc, ExprTy *val) {
7553 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7554 EnumConstantDecl *LastEnumConst =
7555 cast_or_null<EnumConstantDecl>(lastEnumConst);
7556 Expr *Val = static_cast<Expr*>(val);
7558 // The scope passed in may not be a decl scope. Zip up the scope tree until
7559 // we find one that is.
7560 S = getNonFieldDeclScope(S);
7562 // Verify that there isn't already something declared with this name in this
7563 // scope.
7564 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7565 ForRedeclaration);
7566 if (PrevDecl && PrevDecl->isTemplateParameter()) {
7567 // Maybe we will complain about the shadowed template parameter.
7568 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7569 // Just pretend that we didn't see the previous declaration.
7570 PrevDecl = 0;
7573 if (PrevDecl) {
7574 // When in C++, we may get a TagDecl with the same name; in this case the
7575 // enum constant will 'hide' the tag.
7576 assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7577 "Received TagDecl when not in C++!");
7578 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7579 if (isa<EnumConstantDecl>(PrevDecl))
7580 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7581 else
7582 Diag(IdLoc, diag::err_redefinition) << Id;
7583 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7584 return 0;
7588 // C++ [class.mem]p13:
7589 // If T is the name of a class, then each of the following shall have a
7590 // name different from T:
7591 // - every enumerator of every member of class T that is an enumerated
7592 // type
7593 if (CXXRecordDecl *Record
7594 = dyn_cast<CXXRecordDecl>(
7595 TheEnumDecl->getDeclContext()->getRedeclContext()))
7596 if (Record->getIdentifier() && Record->getIdentifier() == Id)
7597 Diag(IdLoc, diag::err_member_name_of_class) << Id;
7599 EnumConstantDecl *New =
7600 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7602 if (New) {
7603 // Process attributes.
7604 if (Attr) ProcessDeclAttributeList(S, New, Attr);
7606 // Register this decl in the current scope stack.
7607 New->setAccess(TheEnumDecl->getAccess());
7608 PushOnScopeChains(New, S);
7611 return New;
7614 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7615 SourceLocation RBraceLoc, Decl *EnumDeclX,
7616 Decl **Elements, unsigned NumElements,
7617 Scope *S, AttributeList *Attr) {
7618 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7619 QualType EnumType = Context.getTypeDeclType(Enum);
7621 if (Attr)
7622 ProcessDeclAttributeList(S, Enum, Attr);
7624 if (Enum->isDependentType()) {
7625 for (unsigned i = 0; i != NumElements; ++i) {
7626 EnumConstantDecl *ECD =
7627 cast_or_null<EnumConstantDecl>(Elements[i]);
7628 if (!ECD) continue;
7630 ECD->setType(EnumType);
7633 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7634 return;
7637 // TODO: If the result value doesn't fit in an int, it must be a long or long
7638 // long value. ISO C does not support this, but GCC does as an extension,
7639 // emit a warning.
7640 unsigned IntWidth = Context.Target.getIntWidth();
7641 unsigned CharWidth = Context.Target.getCharWidth();
7642 unsigned ShortWidth = Context.Target.getShortWidth();
7644 // Verify that all the values are okay, compute the size of the values, and
7645 // reverse the list.
7646 unsigned NumNegativeBits = 0;
7647 unsigned NumPositiveBits = 0;
7649 // Keep track of whether all elements have type int.
7650 bool AllElementsInt = true;
7652 for (unsigned i = 0; i != NumElements; ++i) {
7653 EnumConstantDecl *ECD =
7654 cast_or_null<EnumConstantDecl>(Elements[i]);
7655 if (!ECD) continue; // Already issued a diagnostic.
7657 const llvm::APSInt &InitVal = ECD->getInitVal();
7659 // Keep track of the size of positive and negative values.
7660 if (InitVal.isUnsigned() || InitVal.isNonNegative())
7661 NumPositiveBits = std::max(NumPositiveBits,
7662 (unsigned)InitVal.getActiveBits());
7663 else
7664 NumNegativeBits = std::max(NumNegativeBits,
7665 (unsigned)InitVal.getMinSignedBits());
7667 // Keep track of whether every enum element has type int (very commmon).
7668 if (AllElementsInt)
7669 AllElementsInt = ECD->getType() == Context.IntTy;
7672 // Figure out the type that should be used for this enum.
7673 QualType BestType;
7674 unsigned BestWidth;
7676 // C++0x N3000 [conv.prom]p3:
7677 // An rvalue of an unscoped enumeration type whose underlying
7678 // type is not fixed can be converted to an rvalue of the first
7679 // of the following types that can represent all the values of
7680 // the enumeration: int, unsigned int, long int, unsigned long
7681 // int, long long int, or unsigned long long int.
7682 // C99 6.4.4.3p2:
7683 // An identifier declared as an enumeration constant has type int.
7684 // The C99 rule is modified by a gcc extension
7685 QualType BestPromotionType;
7687 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7688 // -fshort-enums is the equivalent to specifying the packed attribute on all
7689 // enum definitions.
7690 if (LangOpts.ShortEnums)
7691 Packed = true;
7693 if (Enum->isFixed()) {
7694 BestType = BestPromotionType = Enum->getIntegerType();
7695 // We don't need to set BestWidth, because BestType is going to be the type
7696 // of the enumerators, but we do anyway because otherwise some compilers
7697 // warn that it might be used uninitialized.
7698 BestWidth = CharWidth;
7700 else if (NumNegativeBits) {
7701 // If there is a negative value, figure out the smallest integer type (of
7702 // int/long/longlong) that fits.
7703 // If it's packed, check also if it fits a char or a short.
7704 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7705 BestType = Context.SignedCharTy;
7706 BestWidth = CharWidth;
7707 } else if (Packed && NumNegativeBits <= ShortWidth &&
7708 NumPositiveBits < ShortWidth) {
7709 BestType = Context.ShortTy;
7710 BestWidth = ShortWidth;
7711 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7712 BestType = Context.IntTy;
7713 BestWidth = IntWidth;
7714 } else {
7715 BestWidth = Context.Target.getLongWidth();
7717 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7718 BestType = Context.LongTy;
7719 } else {
7720 BestWidth = Context.Target.getLongLongWidth();
7722 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7723 Diag(Enum->getLocation(), diag::warn_enum_too_large);
7724 BestType = Context.LongLongTy;
7727 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7728 } else {
7729 // If there is no negative value, figure out the smallest type that fits
7730 // all of the enumerator values.
7731 // If it's packed, check also if it fits a char or a short.
7732 if (Packed && NumPositiveBits <= CharWidth) {
7733 BestType = Context.UnsignedCharTy;
7734 BestPromotionType = Context.IntTy;
7735 BestWidth = CharWidth;
7736 } else if (Packed && NumPositiveBits <= ShortWidth) {
7737 BestType = Context.UnsignedShortTy;
7738 BestPromotionType = Context.IntTy;
7739 BestWidth = ShortWidth;
7740 } else if (NumPositiveBits <= IntWidth) {
7741 BestType = Context.UnsignedIntTy;
7742 BestWidth = IntWidth;
7743 BestPromotionType
7744 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7745 ? Context.UnsignedIntTy : Context.IntTy;
7746 } else if (NumPositiveBits <=
7747 (BestWidth = Context.Target.getLongWidth())) {
7748 BestType = Context.UnsignedLongTy;
7749 BestPromotionType
7750 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7751 ? Context.UnsignedLongTy : Context.LongTy;
7752 } else {
7753 BestWidth = Context.Target.getLongLongWidth();
7754 assert(NumPositiveBits <= BestWidth &&
7755 "How could an initializer get larger than ULL?");
7756 BestType = Context.UnsignedLongLongTy;
7757 BestPromotionType
7758 = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7759 ? Context.UnsignedLongLongTy : Context.LongLongTy;
7763 // Loop over all of the enumerator constants, changing their types to match
7764 // the type of the enum if needed.
7765 for (unsigned i = 0; i != NumElements; ++i) {
7766 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7767 if (!ECD) continue; // Already issued a diagnostic.
7769 // Standard C says the enumerators have int type, but we allow, as an
7770 // extension, the enumerators to be larger than int size. If each
7771 // enumerator value fits in an int, type it as an int, otherwise type it the
7772 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
7773 // that X has type 'int', not 'unsigned'.
7775 // Determine whether the value fits into an int.
7776 llvm::APSInt InitVal = ECD->getInitVal();
7778 // If it fits into an integer type, force it. Otherwise force it to match
7779 // the enum decl type.
7780 QualType NewTy;
7781 unsigned NewWidth;
7782 bool NewSign;
7783 if (!getLangOptions().CPlusPlus &&
7784 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7785 NewTy = Context.IntTy;
7786 NewWidth = IntWidth;
7787 NewSign = true;
7788 } else if (ECD->getType() == BestType) {
7789 // Already the right type!
7790 if (getLangOptions().CPlusPlus)
7791 // C++ [dcl.enum]p4: Following the closing brace of an
7792 // enum-specifier, each enumerator has the type of its
7793 // enumeration.
7794 ECD->setType(EnumType);
7795 continue;
7796 } else {
7797 NewTy = BestType;
7798 NewWidth = BestWidth;
7799 NewSign = BestType->isSignedIntegerType();
7802 // Adjust the APSInt value.
7803 InitVal = InitVal.extOrTrunc(NewWidth);
7804 InitVal.setIsSigned(NewSign);
7805 ECD->setInitVal(InitVal);
7807 // Adjust the Expr initializer and type.
7808 if (ECD->getInitExpr() &&
7809 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7810 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7811 CK_IntegralCast,
7812 ECD->getInitExpr(),
7813 /*base paths*/ 0,
7814 VK_RValue));
7815 if (getLangOptions().CPlusPlus)
7816 // C++ [dcl.enum]p4: Following the closing brace of an
7817 // enum-specifier, each enumerator has the type of its
7818 // enumeration.
7819 ECD->setType(EnumType);
7820 else
7821 ECD->setType(NewTy);
7824 Enum->completeDefinition(BestType, BestPromotionType,
7825 NumPositiveBits, NumNegativeBits);
7828 Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7829 StringLiteral *AsmString = cast<StringLiteral>(expr);
7831 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7832 Loc, AsmString);
7833 CurContext->addDecl(New);
7834 return New;
7837 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7838 SourceLocation PragmaLoc,
7839 SourceLocation NameLoc) {
7840 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7842 if (PrevDecl) {
7843 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7844 } else {
7845 (void)WeakUndeclaredIdentifiers.insert(
7846 std::pair<IdentifierInfo*,WeakInfo>
7847 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7851 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7852 IdentifierInfo* AliasName,
7853 SourceLocation PragmaLoc,
7854 SourceLocation NameLoc,
7855 SourceLocation AliasNameLoc) {
7856 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7857 LookupOrdinaryName);
7858 WeakInfo W = WeakInfo(Name, NameLoc);
7860 if (PrevDecl) {
7861 if (!PrevDecl->hasAttr<AliasAttr>())
7862 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7863 DeclApplyPragmaWeak(TUScope, ND, W);
7864 } else {
7865 (void)WeakUndeclaredIdentifiers.insert(
7866 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));