[analyzer] lib/StaticAnalyzer/Checkers/ExprEngineExperimentalChecks.cpp -> lib/Static...
[clang.git] / lib / StaticAnalyzer / RegionStore.cpp
blobd5af1c2747be09f476e089632ac8d874ae6a4eb5
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/PathSensitive/GRState.h"
24 #include "clang/StaticAnalyzer/PathSensitive/GRStateTrait.h"
25 #include "clang/StaticAnalyzer/PathSensitive/MemRegion.h"
26 #include "llvm/ADT/ImmutableList.h"
27 #include "llvm/ADT/ImmutableMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/Support/raw_ostream.h"
31 using namespace clang;
32 using namespace ento;
33 using llvm::Optional;
35 //===----------------------------------------------------------------------===//
36 // Representation of binding keys.
37 //===----------------------------------------------------------------------===//
39 namespace {
40 class BindingKey {
41 public:
42 enum Kind { Direct = 0x0, Default = 0x1 };
43 private:
44 llvm ::PointerIntPair<const MemRegion*, 1> P;
45 uint64_t Offset;
47 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
48 : P(r, (unsigned) k), Offset(offset) {}
49 public:
51 bool isDirect() const { return P.getInt() == Direct; }
53 const MemRegion *getRegion() const { return P.getPointer(); }
54 uint64_t getOffset() const { return Offset; }
56 void Profile(llvm::FoldingSetNodeID& ID) const {
57 ID.AddPointer(P.getOpaqueValue());
58 ID.AddInteger(Offset);
61 static BindingKey Make(const MemRegion *R, Kind k);
63 bool operator<(const BindingKey &X) const {
64 if (P.getOpaqueValue() < X.P.getOpaqueValue())
65 return true;
66 if (P.getOpaqueValue() > X.P.getOpaqueValue())
67 return false;
68 return Offset < X.Offset;
71 bool operator==(const BindingKey &X) const {
72 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
73 Offset == X.Offset;
76 bool isValid() const {
77 return getRegion() != NULL;
80 } // end anonymous namespace
82 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
83 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
84 const RegionRawOffset &O = ER->getAsArrayOffset();
86 // FIXME: There are some ElementRegions for which we cannot compute
87 // raw offsets yet, including regions with symbolic offsets. These will be
88 // ignored by the store.
89 return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
92 return BindingKey(R, 0, k);
95 namespace llvm {
96 static inline
97 llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
98 os << '(' << K.getRegion() << ',' << K.getOffset()
99 << ',' << (K.isDirect() ? "direct" : "default")
100 << ')';
101 return os;
103 } // end llvm namespace
105 //===----------------------------------------------------------------------===//
106 // Actual Store type.
107 //===----------------------------------------------------------------------===//
109 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
111 //===----------------------------------------------------------------------===//
112 // Fine-grained control of RegionStoreManager.
113 //===----------------------------------------------------------------------===//
115 namespace {
116 struct minimal_features_tag {};
117 struct maximal_features_tag {};
119 class RegionStoreFeatures {
120 bool SupportsFields;
121 public:
122 RegionStoreFeatures(minimal_features_tag) :
123 SupportsFields(false) {}
125 RegionStoreFeatures(maximal_features_tag) :
126 SupportsFields(true) {}
128 void enableFields(bool t) { SupportsFields = t; }
130 bool supportsFields() const { return SupportsFields; }
134 //===----------------------------------------------------------------------===//
135 // Main RegionStore logic.
136 //===----------------------------------------------------------------------===//
138 namespace {
140 class RegionStoreSubRegionMap : public SubRegionMap {
141 public:
142 typedef llvm::ImmutableSet<const MemRegion*> Set;
143 typedef llvm::DenseMap<const MemRegion*, Set> Map;
144 private:
145 Set::Factory F;
146 Map M;
147 public:
148 bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
149 Map::iterator I = M.find(Parent);
151 if (I == M.end()) {
152 M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
153 return true;
156 I->second = F.add(I->second, SubRegion);
157 return false;
160 void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
162 ~RegionStoreSubRegionMap() {}
164 const Set *getSubRegions(const MemRegion *Parent) const {
165 Map::const_iterator I = M.find(Parent);
166 return I == M.end() ? NULL : &I->second;
169 bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
170 Map::const_iterator I = M.find(Parent);
172 if (I == M.end())
173 return true;
175 Set S = I->second;
176 for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
177 if (!V.Visit(Parent, *SI))
178 return false;
181 return true;
185 void
186 RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
187 const SubRegion *R) {
188 const MemRegion *superR = R->getSuperRegion();
189 if (add(superR, R))
190 if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
191 WL.push_back(sr);
194 class RegionStoreManager : public StoreManager {
195 const RegionStoreFeatures Features;
196 RegionBindings::Factory RBFactory;
198 public:
199 RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
200 : StoreManager(mgr),
201 Features(f),
202 RBFactory(mgr.getAllocator()) {}
204 SubRegionMap *getSubRegionMap(Store store) {
205 return getRegionStoreSubRegionMap(store);
208 RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
210 Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
211 /// getDefaultBinding - Returns an SVal* representing an optional default
212 /// binding associated with a region and its subregions.
213 Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
215 /// setImplicitDefaultValue - Set the default binding for the provided
216 /// MemRegion to the value implicitly defined for compound literals when
217 /// the value is not specified.
218 Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
220 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
221 /// type. 'Array' represents the lvalue of the array being decayed
222 /// to a pointer, and the returned SVal represents the decayed
223 /// version of that lvalue (i.e., a pointer to the first element of
224 /// the array). This is called by ExprEngine when evaluating
225 /// casts from arrays to pointers.
226 SVal ArrayToPointer(Loc Array);
228 /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
229 virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
231 SVal evalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy);
233 Store getInitialStore(const LocationContext *InitLoc) {
234 return RBFactory.getEmptyMap().getRoot();
237 //===-------------------------------------------------------------------===//
238 // Binding values to regions.
239 //===-------------------------------------------------------------------===//
241 Store InvalidateRegions(Store store,
242 const MemRegion * const *Begin,
243 const MemRegion * const *End,
244 const Expr *E, unsigned Count,
245 InvalidatedSymbols *IS,
246 bool invalidateGlobals,
247 InvalidatedRegions *Regions);
249 public: // Made public for helper classes.
251 void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
252 RegionStoreSubRegionMap &M);
254 RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
256 RegionBindings addBinding(RegionBindings B, const MemRegion *R,
257 BindingKey::Kind k, SVal V);
259 const SVal *lookup(RegionBindings B, BindingKey K);
260 const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
262 RegionBindings removeBinding(RegionBindings B, BindingKey K);
263 RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
264 BindingKey::Kind k);
266 RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
267 return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
268 BindingKey::Default);
271 public: // Part of public interface to class.
273 Store Bind(Store store, Loc LV, SVal V);
275 // BindDefault is only used to initialize a region with a default value.
276 Store BindDefault(Store store, const MemRegion *R, SVal V) {
277 RegionBindings B = GetRegionBindings(store);
278 assert(!lookup(B, R, BindingKey::Default));
279 assert(!lookup(B, R, BindingKey::Direct));
280 return addBinding(B, R, BindingKey::Default, V).getRoot();
283 Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
284 const LocationContext *LC, SVal V);
286 Store BindDecl(Store store, const VarRegion *VR, SVal InitVal);
288 Store BindDeclWithNoInit(Store store, const VarRegion *) {
289 return store;
292 /// BindStruct - Bind a compound value to a structure.
293 Store BindStruct(Store store, const TypedRegion* R, SVal V);
295 Store BindArray(Store store, const TypedRegion* R, SVal V);
297 /// KillStruct - Set the entire struct to unknown.
298 Store KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
300 Store Remove(Store store, Loc LV);
303 //===------------------------------------------------------------------===//
304 // Loading values from regions.
305 //===------------------------------------------------------------------===//
307 /// The high level logic for this method is this:
308 /// Retrieve (L)
309 /// if L has binding
310 /// return L's binding
311 /// else if L is in killset
312 /// return unknown
313 /// else
314 /// if L is on stack or heap
315 /// return undefined
316 /// else
317 /// return symbolic
318 SVal Retrieve(Store store, Loc L, QualType T = QualType());
320 SVal RetrieveElement(Store store, const ElementRegion *R);
322 SVal RetrieveField(Store store, const FieldRegion *R);
324 SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
326 SVal RetrieveVar(Store store, const VarRegion *R);
328 SVal RetrieveLazySymbol(const TypedRegion *R);
330 SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
331 QualType Ty, const MemRegion *superR);
333 /// Retrieve the values in a struct and return a CompoundVal, used when doing
334 /// struct copy:
335 /// struct s x, y;
336 /// x = y;
337 /// y's value is retrieved by this method.
338 SVal RetrieveStruct(Store store, const TypedRegion* R);
340 SVal RetrieveArray(Store store, const TypedRegion* R);
342 /// Used to lazily generate derived symbols for bindings that are defined
343 /// implicitly by default bindings in a super region.
344 Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
345 const MemRegion *superR,
346 const TypedRegion *R, QualType Ty);
348 /// Get the state and region whose binding this region R corresponds to.
349 std::pair<Store, const MemRegion*>
350 GetLazyBinding(RegionBindings B, const MemRegion *R);
352 Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
353 const TypedRegion *R);
355 //===------------------------------------------------------------------===//
356 // State pruning.
357 //===------------------------------------------------------------------===//
359 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
360 /// It returns a new Store with these values removed.
361 Store removeDeadBindings(Store store, const StackFrameContext *LCtx,
362 SymbolReaper& SymReaper,
363 llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
365 Store enterStackFrame(const GRState *state, const StackFrameContext *frame);
367 //===------------------------------------------------------------------===//
368 // Region "extents".
369 //===------------------------------------------------------------------===//
371 // FIXME: This method will soon be eliminated; see the note in Store.h.
372 DefinedOrUnknownSVal getSizeInElements(const GRState *state,
373 const MemRegion* R, QualType EleTy);
375 //===------------------------------------------------------------------===//
376 // Utility methods.
377 //===------------------------------------------------------------------===//
379 static inline RegionBindings GetRegionBindings(Store store) {
380 return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
383 void print(Store store, llvm::raw_ostream& Out, const char* nl,
384 const char *sep);
386 void iterBindings(Store store, BindingsHandler& f) {
387 RegionBindings B = GetRegionBindings(store);
388 for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
389 const BindingKey &K = I.getKey();
390 if (!K.isDirect())
391 continue;
392 if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
393 // FIXME: Possibly incorporate the offset?
394 if (!f.HandleBinding(*this, store, R, I.getData()))
395 return;
401 } // end anonymous namespace
403 //===----------------------------------------------------------------------===//
404 // RegionStore creation.
405 //===----------------------------------------------------------------------===//
407 StoreManager *ento::CreateRegionStoreManager(GRStateManager& StMgr) {
408 RegionStoreFeatures F = maximal_features_tag();
409 return new RegionStoreManager(StMgr, F);
412 StoreManager *ento::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
413 RegionStoreFeatures F = minimal_features_tag();
414 F.enableFields(true);
415 return new RegionStoreManager(StMgr, F);
419 RegionStoreSubRegionMap*
420 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
421 RegionBindings B = GetRegionBindings(store);
422 RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
424 llvm::SmallVector<const SubRegion*, 10> WL;
426 for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
427 if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
428 M->process(WL, R);
430 // We also need to record in the subregion map "intermediate" regions that
431 // don't have direct bindings but are super regions of those that do.
432 while (!WL.empty()) {
433 const SubRegion *R = WL.back();
434 WL.pop_back();
435 M->process(WL, R);
438 return M;
441 //===----------------------------------------------------------------------===//
442 // Region Cluster analysis.
443 //===----------------------------------------------------------------------===//
445 namespace {
446 template <typename DERIVED>
447 class ClusterAnalysis {
448 protected:
449 typedef BumpVector<BindingKey> RegionCluster;
450 typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
451 llvm::DenseMap<const RegionCluster*, unsigned> Visited;
452 typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
453 WorkList;
455 BumpVectorContext BVC;
456 ClusterMap ClusterM;
457 WorkList WL;
459 RegionStoreManager &RM;
460 ASTContext &Ctx;
461 SValBuilder &svalBuilder;
463 RegionBindings B;
465 const bool includeGlobals;
467 public:
468 ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr,
469 RegionBindings b, const bool includeGlobals)
470 : RM(rm), Ctx(StateMgr.getContext()),
471 svalBuilder(StateMgr.getSValBuilder()),
472 B(b), includeGlobals(includeGlobals) {}
474 RegionBindings getRegionBindings() const { return B; }
476 RegionCluster &AddToCluster(BindingKey K) {
477 const MemRegion *R = K.getRegion();
478 const MemRegion *baseR = R->getBaseRegion();
479 RegionCluster &C = getCluster(baseR);
480 C.push_back(K, BVC);
481 static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
482 return C;
485 bool isVisited(const MemRegion *R) {
486 return (bool) Visited[&getCluster(R->getBaseRegion())];
489 RegionCluster& getCluster(const MemRegion *R) {
490 RegionCluster *&CRef = ClusterM[R];
491 if (!CRef) {
492 void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
493 CRef = new (Mem) RegionCluster(BVC, 10);
495 return *CRef;
498 void GenerateClusters() {
499 // Scan the entire set of bindings and make the region clusters.
500 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
501 RegionCluster &C = AddToCluster(RI.getKey());
502 if (const MemRegion *R = RI.getData().getAsRegion()) {
503 // Generate a cluster, but don't add the region to the cluster
504 // if there aren't any bindings.
505 getCluster(R->getBaseRegion());
507 if (includeGlobals) {
508 const MemRegion *R = RI.getKey().getRegion();
509 if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
510 AddToWorkList(R, C);
515 bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
516 if (unsigned &visited = Visited[&C])
517 return false;
518 else
519 visited = 1;
521 WL.push_back(std::make_pair(R, &C));
522 return true;
525 bool AddToWorkList(BindingKey K) {
526 return AddToWorkList(K.getRegion());
529 bool AddToWorkList(const MemRegion *R) {
530 const MemRegion *baseR = R->getBaseRegion();
531 return AddToWorkList(baseR, getCluster(baseR));
534 void RunWorkList() {
535 while (!WL.empty()) {
536 const MemRegion *baseR;
537 RegionCluster *C;
538 llvm::tie(baseR, C) = WL.back();
539 WL.pop_back();
541 // First visit the cluster.
542 static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
544 // Next, visit the base region.
545 static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
549 public:
550 void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
551 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
552 void VisitBaseRegion(const MemRegion *baseR) {}
556 //===----------------------------------------------------------------------===//
557 // Binding invalidation.
558 //===----------------------------------------------------------------------===//
560 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
561 const MemRegion *R,
562 RegionStoreSubRegionMap &M) {
564 if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
565 for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
566 I != E; ++I)
567 RemoveSubRegionBindings(B, *I, M);
569 B = removeBinding(B, R);
572 namespace {
573 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
575 const Expr *Ex;
576 unsigned Count;
577 StoreManager::InvalidatedSymbols *IS;
578 StoreManager::InvalidatedRegions *Regions;
579 public:
580 InvalidateRegionsWorker(RegionStoreManager &rm,
581 GRStateManager &stateMgr,
582 RegionBindings b,
583 const Expr *ex, unsigned count,
584 StoreManager::InvalidatedSymbols *is,
585 StoreManager::InvalidatedRegions *r,
586 bool includeGlobals)
587 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
588 Ex(ex), Count(count), IS(is), Regions(r) {}
590 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
591 void VisitBaseRegion(const MemRegion *baseR);
593 private:
594 void VisitBinding(SVal V);
598 void InvalidateRegionsWorker::VisitBinding(SVal V) {
599 // A symbol? Mark it touched by the invalidation.
600 if (IS)
601 if (SymbolRef Sym = V.getAsSymbol())
602 IS->insert(Sym);
604 if (const MemRegion *R = V.getAsRegion()) {
605 AddToWorkList(R);
606 return;
609 // Is it a LazyCompoundVal? All references get invalidated as well.
610 if (const nonloc::LazyCompoundVal *LCS =
611 dyn_cast<nonloc::LazyCompoundVal>(&V)) {
613 const MemRegion *LazyR = LCS->getRegion();
614 RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
616 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
617 const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
618 if (baseR && baseR->isSubRegionOf(LazyR))
619 VisitBinding(RI.getData());
622 return;
626 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
627 BindingKey *I, BindingKey *E) {
628 for ( ; I != E; ++I) {
629 // Get the old binding. Is it a region? If so, add it to the worklist.
630 const BindingKey &K = *I;
631 if (const SVal *V = RM.lookup(B, K))
632 VisitBinding(*V);
634 B = RM.removeBinding(B, K);
638 void InvalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
639 if (IS) {
640 // Symbolic region? Mark that symbol touched by the invalidation.
641 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
642 IS->insert(SR->getSymbol());
645 // BlockDataRegion? If so, invalidate captured variables that are passed
646 // by reference.
647 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
648 for (BlockDataRegion::referenced_vars_iterator
649 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
650 BI != BE; ++BI) {
651 const VarRegion *VR = *BI;
652 const VarDecl *VD = VR->getDecl();
653 if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
654 AddToWorkList(VR);
656 return;
659 // Otherwise, we have a normal data region. Record that we touched the region.
660 if (Regions)
661 Regions->push_back(baseR);
663 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
664 // Invalidate the region by setting its default value to
665 // conjured symbol. The type of the symbol is irrelavant.
666 DefinedOrUnknownSVal V =
667 svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
668 B = RM.addBinding(B, baseR, BindingKey::Default, V);
669 return;
672 if (!baseR->isBoundable())
673 return;
675 const TypedRegion *TR = cast<TypedRegion>(baseR);
676 QualType T = TR->getValueType();
678 // Invalidate the binding.
679 if (T->isStructureType()) {
680 // Invalidate the region by setting its default value to
681 // conjured symbol. The type of the symbol is irrelavant.
682 DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
683 Count);
684 B = RM.addBinding(B, baseR, BindingKey::Default, V);
685 return;
688 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
689 // Set the default value of the array to conjured symbol.
690 DefinedOrUnknownSVal V =
691 svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
692 B = RM.addBinding(B, baseR, BindingKey::Default, V);
693 return;
696 if (includeGlobals &&
697 isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
698 // If the region is a global and we are invalidating all globals,
699 // just erase the entry. This causes all globals to be lazily
700 // symbolicated from the same base symbol.
701 B = RM.removeBinding(B, baseR);
702 return;
706 DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
707 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
708 B = RM.addBinding(B, baseR, BindingKey::Direct, V);
711 Store RegionStoreManager::InvalidateRegions(Store store,
712 const MemRegion * const *I,
713 const MemRegion * const *E,
714 const Expr *Ex, unsigned Count,
715 InvalidatedSymbols *IS,
716 bool invalidateGlobals,
717 InvalidatedRegions *Regions) {
718 InvalidateRegionsWorker W(*this, StateMgr,
719 RegionStoreManager::GetRegionBindings(store),
720 Ex, Count, IS, Regions, invalidateGlobals);
722 // Scan the bindings and generate the clusters.
723 W.GenerateClusters();
725 // Add I .. E to the worklist.
726 for ( ; I != E; ++I)
727 W.AddToWorkList(*I);
729 W.RunWorkList();
731 // Return the new bindings.
732 RegionBindings B = W.getRegionBindings();
734 if (invalidateGlobals) {
735 // Bind the non-static globals memory space to a new symbol that we will
736 // use to derive the bindings for all non-static globals.
737 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
738 SVal V =
739 svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
740 /* symbol type, doesn't matter */ Ctx.IntTy,
741 Count);
742 B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
744 // Even if there are no bindings in the global scope, we still need to
745 // record that we touched it.
746 if (Regions)
747 Regions->push_back(GS);
750 return B.getRoot();
753 //===----------------------------------------------------------------------===//
754 // Extents for regions.
755 //===----------------------------------------------------------------------===//
757 DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
758 const MemRegion *R,
759 QualType EleTy) {
760 SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
761 const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
762 if (!SizeInt)
763 return UnknownVal();
765 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
767 if (Ctx.getAsVariableArrayType(EleTy)) {
768 // FIXME: We need to track extra state to properly record the size
769 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
770 // we don't have a divide-by-zero below.
771 return UnknownVal();
774 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
776 // If a variable is reinterpreted as a type that doesn't fit into a larger
777 // type evenly, round it down.
778 // This is a signed value, since it's used in arithmetic with signed indices.
779 return svalBuilder.makeIntVal(RegionSize / EleSize, false);
782 //===----------------------------------------------------------------------===//
783 // Location and region casting.
784 //===----------------------------------------------------------------------===//
786 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
787 /// type. 'Array' represents the lvalue of the array being decayed
788 /// to a pointer, and the returned SVal represents the decayed
789 /// version of that lvalue (i.e., a pointer to the first element of
790 /// the array). This is called by ExprEngine when evaluating casts
791 /// from arrays to pointers.
792 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
793 if (!isa<loc::MemRegionVal>(Array))
794 return UnknownVal();
796 const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
797 const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
799 if (!ArrayR)
800 return UnknownVal();
802 // Strip off typedefs from the ArrayRegion's ValueType.
803 QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
804 const ArrayType *AT = cast<ArrayType>(T);
805 T = AT->getElementType();
807 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
808 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
811 SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
812 const CXXRecordDecl *baseDecl;
813 if (baseType->isPointerType())
814 baseDecl = baseType->getCXXRecordDeclForPointerType();
815 else
816 baseDecl = baseType->getAsCXXRecordDecl();
818 assert(baseDecl && "not a CXXRecordDecl?");
820 loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
821 if (!derivedRegVal)
822 return derived;
824 const MemRegion *baseReg =
825 MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
827 return loc::MemRegionVal(baseReg);
829 //===----------------------------------------------------------------------===//
830 // Pointer arithmetic.
831 //===----------------------------------------------------------------------===//
833 SVal RegionStoreManager::evalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R,
834 QualType resultTy) {
835 // Assume the base location is MemRegionVal.
836 if (!isa<loc::MemRegionVal>(L))
837 return UnknownVal();
839 // Special case for zero RHS.
840 if (R.isZeroConstant()) {
841 switch (Op) {
842 default:
843 // Handle it normally.
844 break;
845 case BO_Add:
846 case BO_Sub:
847 // FIXME: does this need to be casted to match resultTy?
848 return L;
852 const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
853 const ElementRegion *ER = 0;
855 switch (MR->getKind()) {
856 case MemRegion::SymbolicRegionKind: {
857 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
858 SymbolRef Sym = SR->getSymbol();
859 QualType T = Sym->getType(Ctx);
860 QualType EleTy;
862 if (const PointerType *PT = T->getAs<PointerType>())
863 EleTy = PT->getPointeeType();
864 else
865 EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();
867 const NonLoc &ZeroIdx = svalBuilder.makeZeroArrayIndex();
868 ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, Ctx);
869 break;
871 case MemRegion::AllocaRegionKind: {
872 const AllocaRegion *AR = cast<AllocaRegion>(MR);
873 QualType EleTy = Ctx.CharTy; // Create an ElementRegion of bytes.
874 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
875 ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, Ctx);
876 break;
879 case MemRegion::ElementRegionKind: {
880 ER = cast<ElementRegion>(MR);
881 break;
884 // Not yet handled.
885 case MemRegion::VarRegionKind:
886 case MemRegion::StringRegionKind: {
889 // Fall-through.
890 case MemRegion::CompoundLiteralRegionKind:
891 case MemRegion::FieldRegionKind:
892 case MemRegion::ObjCIvarRegionKind:
893 case MemRegion::CXXTempObjectRegionKind:
894 case MemRegion::CXXBaseObjectRegionKind:
895 return UnknownVal();
897 case MemRegion::FunctionTextRegionKind:
898 case MemRegion::BlockTextRegionKind:
899 case MemRegion::BlockDataRegionKind:
900 // Technically this can happen if people do funny things with casts.
901 return UnknownVal();
903 case MemRegion::CXXThisRegionKind:
904 assert(0 &&
905 "Cannot perform pointer arithmetic on implicit argument 'this'");
906 case MemRegion::GenericMemSpaceRegionKind:
907 case MemRegion::StackLocalsSpaceRegionKind:
908 case MemRegion::StackArgumentsSpaceRegionKind:
909 case MemRegion::HeapSpaceRegionKind:
910 case MemRegion::NonStaticGlobalSpaceRegionKind:
911 case MemRegion::StaticGlobalSpaceRegionKind:
912 case MemRegion::UnknownSpaceRegionKind:
913 assert(0 && "Cannot perform pointer arithmetic on a MemSpace");
914 return UnknownVal();
917 SVal Idx = ER->getIndex();
918 nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
920 // For now, only support:
921 // (a) concrete integer indices that can easily be resolved
922 // (b) 0 + symbolic index
923 if (Base) {
924 if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) {
925 // FIXME: Should use SValBuilder here.
926 SVal NewIdx =
927 Base->evalBinOp(svalBuilder, Op,
928 cast<nonloc::ConcreteInt>(svalBuilder.convertToArrayIndex(*Offset)));
930 if (!isa<NonLoc>(NewIdx))
931 return UnknownVal();
933 const MemRegion* NewER =
934 MRMgr.getElementRegion(ER->getElementType(), cast<NonLoc>(NewIdx),
935 ER->getSuperRegion(), Ctx);
936 return svalBuilder.makeLoc(NewER);
938 if (0 == Base->getValue()) {
939 const MemRegion* NewER =
940 MRMgr.getElementRegion(ER->getElementType(), R,
941 ER->getSuperRegion(), Ctx);
942 return svalBuilder.makeLoc(NewER);
946 return UnknownVal();
949 //===----------------------------------------------------------------------===//
950 // Loading values from regions.
951 //===----------------------------------------------------------------------===//
953 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
954 const MemRegion *R) {
956 if (const SVal *V = lookup(B, R, BindingKey::Direct))
957 return *V;
959 return Optional<SVal>();
962 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
963 const MemRegion *R) {
964 if (R->isBoundable())
965 if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
966 if (TR->getValueType()->isUnionType())
967 return UnknownVal();
969 if (const SVal *V = lookup(B, R, BindingKey::Default))
970 return *V;
972 return Optional<SVal>();
975 SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
976 assert(!isa<UnknownVal>(L) && "location unknown");
977 assert(!isa<UndefinedVal>(L) && "location undefined");
979 // For access to concrete addresses, return UnknownVal. Checks
980 // for null dereferences (and similar errors) are done by checkers, not
981 // the Store.
982 // FIXME: We can consider lazily symbolicating such memory, but we really
983 // should defer this when we can reason easily about symbolicating arrays
984 // of bytes.
985 if (isa<loc::ConcreteInt>(L)) {
986 return UnknownVal();
988 if (!isa<loc::MemRegionVal>(L)) {
989 return UnknownVal();
992 const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
994 if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
995 if (T.isNull()) {
996 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
997 T = SR->getSymbol()->getType(Ctx);
999 MR = GetElementZeroRegion(MR, T);
1002 if (isa<CodeTextRegion>(MR)) {
1003 assert(0 && "Why load from a code text region?");
1004 return UnknownVal();
1007 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1008 // instead of 'Loc', and have the other Loc cases handled at a higher level.
1009 const TypedRegion *R = cast<TypedRegion>(MR);
1010 QualType RTy = R->getValueType();
1012 // FIXME: We should eventually handle funny addressing. e.g.:
1014 // int x = ...;
1015 // int *p = &x;
1016 // char *q = (char*) p;
1017 // char c = *q; // returns the first byte of 'x'.
1019 // Such funny addressing will occur due to layering of regions.
1021 if (RTy->isStructureOrClassType())
1022 return RetrieveStruct(store, R);
1024 // FIXME: Handle unions.
1025 if (RTy->isUnionType())
1026 return UnknownVal();
1028 if (RTy->isArrayType())
1029 return RetrieveArray(store, R);
1031 // FIXME: handle Vector types.
1032 if (RTy->isVectorType())
1033 return UnknownVal();
1035 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1036 return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
1038 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1039 // FIXME: Here we actually perform an implicit conversion from the loaded
1040 // value to the element type. Eventually we want to compose these values
1041 // more intelligently. For example, an 'element' can encompass multiple
1042 // bound regions (e.g., several bound bytes), or could be a subset of
1043 // a larger value.
1044 return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
1047 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1048 // FIXME: Here we actually perform an implicit conversion from the loaded
1049 // value to the ivar type. What we should model is stores to ivars
1050 // that blow past the extent of the ivar. If the address of the ivar is
1051 // reinterpretted, it is possible we stored a different value that could
1052 // fit within the ivar. Either we need to cast these when storing them
1053 // or reinterpret them lazily (as we do here).
1054 return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
1057 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1058 // FIXME: Here we actually perform an implicit conversion from the loaded
1059 // value to the variable type. What we should model is stores to variables
1060 // that blow past the extent of the variable. If the address of the
1061 // variable is reinterpretted, it is possible we stored a different value
1062 // that could fit within the variable. Either we need to cast these when
1063 // storing them or reinterpret them lazily (as we do here).
1064 return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
1067 RegionBindings B = GetRegionBindings(store);
1068 const SVal *V = lookup(B, R, BindingKey::Direct);
1070 // Check if the region has a binding.
1071 if (V)
1072 return *V;
1074 // The location does not have a bound value. This means that it has
1075 // the value it had upon its creation and/or entry to the analyzed
1076 // function/method. These are either symbolic values or 'undefined'.
1077 if (R->hasStackNonParametersStorage()) {
1078 // All stack variables are considered to have undefined values
1079 // upon creation. All heap allocated blocks are considered to
1080 // have undefined values as well unless they are explicitly bound
1081 // to specific values.
1082 return UndefinedVal();
1085 // All other values are symbolic.
1086 return svalBuilder.getRegionValueSymbolVal(R);
1089 std::pair<Store, const MemRegion *>
1090 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) {
1091 if (Optional<SVal> OV = getDirectBinding(B, R))
1092 if (const nonloc::LazyCompoundVal *V =
1093 dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1094 return std::make_pair(V->getStore(), V->getRegion());
1096 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1097 const std::pair<Store, const MemRegion *> &X =
1098 GetLazyBinding(B, ER->getSuperRegion());
1100 if (X.second)
1101 return std::make_pair(X.first,
1102 MRMgr.getElementRegionWithSuper(ER, X.second));
1104 else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1105 const std::pair<Store, const MemRegion *> &X =
1106 GetLazyBinding(B, FR->getSuperRegion());
1108 if (X.second)
1109 return std::make_pair(X.first,
1110 MRMgr.getFieldRegionWithSuper(FR, X.second));
1112 // C++ base object region is another kind of region that we should blast
1113 // through to look for lazy compound value. It is like a field region.
1114 else if (const CXXBaseObjectRegion *baseReg =
1115 dyn_cast<CXXBaseObjectRegion>(R)) {
1116 const std::pair<Store, const MemRegion *> &X =
1117 GetLazyBinding(B, baseReg->getSuperRegion());
1119 if (X.second)
1120 return std::make_pair(X.first,
1121 MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1123 // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1124 // possible for a valid lazy binding.
1125 return std::make_pair((Store) 0, (const MemRegion *) 0);
1128 SVal RegionStoreManager::RetrieveElement(Store store,
1129 const ElementRegion* R) {
1130 // Check if the region has a binding.
1131 RegionBindings B = GetRegionBindings(store);
1132 if (const Optional<SVal> &V = getDirectBinding(B, R))
1133 return *V;
1135 const MemRegion* superR = R->getSuperRegion();
1137 // Check if the region is an element region of a string literal.
1138 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1139 // FIXME: Handle loads from strings where the literal is treated as
1140 // an integer, e.g., *((unsigned int*)"hello")
1141 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1142 if (T != Ctx.getCanonicalType(R->getElementType()))
1143 return UnknownVal();
1145 const StringLiteral *Str = StrR->getStringLiteral();
1146 SVal Idx = R->getIndex();
1147 if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1148 int64_t i = CI->getValue().getSExtValue();
1149 int64_t byteLength = Str->getByteLength();
1150 // Technically, only i == byteLength is guaranteed to be null.
1151 // However, such overflows should be caught before reaching this point;
1152 // the only time such an access would be made is if a string literal was
1153 // used to initialize a larger array.
1154 char c = (i >= byteLength) ? '\0' : Str->getString()[i];
1155 return svalBuilder.makeIntVal(c, T);
1159 // Check for loads from a code text region. For such loads, just give up.
1160 if (isa<CodeTextRegion>(superR))
1161 return UnknownVal();
1163 // Handle the case where we are indexing into a larger scalar object.
1164 // For example, this handles:
1165 // int x = ...
1166 // char *y = &x;
1167 // return *y;
1168 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1169 const RegionRawOffset &O = R->getAsArrayOffset();
1170 if (const TypedRegion *baseR = dyn_cast_or_null<TypedRegion>(O.getRegion())) {
1171 QualType baseT = baseR->getValueType();
1172 if (baseT->isScalarType()) {
1173 QualType elemT = R->getElementType();
1174 if (elemT->isScalarType()) {
1175 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1176 if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1177 if (SymbolRef parentSym = V->getAsSymbol())
1178 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1180 if (V->isUnknownOrUndef())
1181 return *V;
1182 // Other cases: give up. We are indexing into a larger object
1183 // that has some value, but we don't know how to handle that yet.
1184 return UnknownVal();
1190 return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1193 SVal RegionStoreManager::RetrieveField(Store store,
1194 const FieldRegion* R) {
1196 // Check if the region has a binding.
1197 RegionBindings B = GetRegionBindings(store);
1198 if (const Optional<SVal> &V = getDirectBinding(B, R))
1199 return *V;
1201 QualType Ty = R->getValueType();
1202 return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1205 Optional<SVal>
1206 RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1207 const MemRegion *superR,
1208 const TypedRegion *R,
1209 QualType Ty) {
1211 if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1212 if (SymbolRef parentSym = D->getAsSymbol())
1213 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1215 if (D->isZeroConstant())
1216 return svalBuilder.makeZeroVal(Ty);
1218 if (D->isUnknownOrUndef())
1219 return *D;
1221 assert(0 && "Unknown default value");
1224 return Optional<SVal>();
1227 SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1228 const TypedRegion *R,
1229 QualType Ty,
1230 const MemRegion *superR) {
1232 // At this point we have already checked in either RetrieveElement or
1233 // RetrieveField if 'R' has a direct binding.
1235 RegionBindings B = GetRegionBindings(store);
1237 while (superR) {
1238 if (const Optional<SVal> &D =
1239 RetrieveDerivedDefaultValue(B, superR, R, Ty))
1240 return *D;
1242 // If our super region is a field or element itself, walk up the region
1243 // hierarchy to see if there is a default value installed in an ancestor.
1244 if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1245 superR = SR->getSuperRegion();
1246 continue;
1248 break;
1251 // Lazy binding?
1252 Store lazyBindingStore = NULL;
1253 const MemRegion *lazyBindingRegion = NULL;
1254 llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R);
1256 if (lazyBindingRegion) {
1257 if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1258 return RetrieveElement(lazyBindingStore, ER);
1259 return RetrieveField(lazyBindingStore,
1260 cast<FieldRegion>(lazyBindingRegion));
1263 if (R->hasStackNonParametersStorage()) {
1264 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1265 // Currently we don't reason specially about Clang-style vectors. Check
1266 // if superR is a vector and if so return Unknown.
1267 if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
1268 if (typedSuperR->getValueType()->isVectorType())
1269 return UnknownVal();
1272 // FIXME: We also need to take ElementRegions with symbolic indexes into
1273 // account.
1274 if (!ER->getIndex().isConstant())
1275 return UnknownVal();
1278 return UndefinedVal();
1281 // All other values are symbolic.
1282 return svalBuilder.getRegionValueSymbolVal(R);
1285 SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1287 // Check if the region has a binding.
1288 RegionBindings B = GetRegionBindings(store);
1290 if (const Optional<SVal> &V = getDirectBinding(B, R))
1291 return *V;
1293 const MemRegion *superR = R->getSuperRegion();
1295 // Check if the super region has a default binding.
1296 if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1297 if (SymbolRef parentSym = V->getAsSymbol())
1298 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1300 // Other cases: give up.
1301 return UnknownVal();
1304 return RetrieveLazySymbol(R);
1307 SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1309 // Check if the region has a binding.
1310 RegionBindings B = GetRegionBindings(store);
1312 if (const Optional<SVal> &V = getDirectBinding(B, R))
1313 return *V;
1315 // Lazily derive a value for the VarRegion.
1316 const VarDecl *VD = R->getDecl();
1317 QualType T = VD->getType();
1318 const MemSpaceRegion *MS = R->getMemorySpace();
1320 if (isa<UnknownSpaceRegion>(MS) ||
1321 isa<StackArgumentsSpaceRegion>(MS))
1322 return svalBuilder.getRegionValueSymbolVal(R);
1324 if (isa<GlobalsSpaceRegion>(MS)) {
1325 if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1326 // Is 'VD' declared constant? If so, retrieve the constant value.
1327 QualType CT = Ctx.getCanonicalType(T);
1328 if (CT.isConstQualified()) {
1329 const Expr *Init = VD->getInit();
1330 // Do the null check first, as we want to call 'IgnoreParenCasts'.
1331 if (Init)
1332 if (const IntegerLiteral *IL =
1333 dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1334 const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1335 return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1339 if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1340 return V.getValue();
1342 return svalBuilder.getRegionValueSymbolVal(R);
1345 if (T->isIntegerType())
1346 return svalBuilder.makeIntVal(0, T);
1347 if (T->isPointerType())
1348 return svalBuilder.makeNull();
1350 return UnknownVal();
1353 return UndefinedVal();
1356 SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {
1357 // All other values are symbolic.
1358 return svalBuilder.getRegionValueSymbolVal(R);
1361 SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
1362 QualType T = R->getValueType();
1363 assert(T->isStructureOrClassType());
1364 return svalBuilder.makeLazyCompoundVal(store, R);
1367 SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
1368 assert(Ctx.getAsConstantArrayType(R->getValueType()));
1369 return svalBuilder.makeLazyCompoundVal(store, R);
1372 //===----------------------------------------------------------------------===//
1373 // Binding values to regions.
1374 //===----------------------------------------------------------------------===//
1376 Store RegionStoreManager::Remove(Store store, Loc L) {
1377 if (isa<loc::MemRegionVal>(L))
1378 if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1379 return removeBinding(GetRegionBindings(store), R).getRoot();
1381 return store;
1384 Store RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1385 if (isa<loc::ConcreteInt>(L))
1386 return store;
1388 // If we get here, the location should be a region.
1389 const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1391 // Check if the region is a struct region.
1392 if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
1393 if (TR->getValueType()->isStructureOrClassType())
1394 return BindStruct(store, TR, V);
1396 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1397 if (ER->getIndex().isZeroConstant()) {
1398 if (const TypedRegion *superR =
1399 dyn_cast<TypedRegion>(ER->getSuperRegion())) {
1400 QualType superTy = superR->getValueType();
1401 // For now, just invalidate the fields of the struct/union/class.
1402 // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1403 // FIXME: Precisely handle the fields of the record.
1404 if (superTy->isStructureOrClassType())
1405 return KillStruct(store, superR, UnknownVal());
1409 else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1410 // Binding directly to a symbolic region should be treated as binding
1411 // to element 0.
1412 QualType T = SR->getSymbol()->getType(Ctx);
1414 // FIXME: Is this the right way to handle symbols that are references?
1415 if (const PointerType *PT = T->getAs<PointerType>())
1416 T = PT->getPointeeType();
1417 else
1418 T = T->getAs<ReferenceType>()->getPointeeType();
1420 R = GetElementZeroRegion(SR, T);
1423 // Perform the binding.
1424 RegionBindings B = GetRegionBindings(store);
1425 return addBinding(B, R, BindingKey::Direct, V).getRoot();
1428 Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1429 SVal InitVal) {
1431 QualType T = VR->getDecl()->getType();
1433 if (T->isArrayType())
1434 return BindArray(store, VR, InitVal);
1435 if (T->isStructureOrClassType())
1436 return BindStruct(store, VR, InitVal);
1438 return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1441 // FIXME: this method should be merged into Bind().
1442 Store RegionStoreManager::BindCompoundLiteral(Store store,
1443 const CompoundLiteralExpr *CL,
1444 const LocationContext *LC,
1445 SVal V) {
1446 return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1451 Store RegionStoreManager::setImplicitDefaultValue(Store store,
1452 const MemRegion *R,
1453 QualType T) {
1454 RegionBindings B = GetRegionBindings(store);
1455 SVal V;
1457 if (Loc::IsLocType(T))
1458 V = svalBuilder.makeNull();
1459 else if (T->isIntegerType())
1460 V = svalBuilder.makeZeroVal(T);
1461 else if (T->isStructureOrClassType() || T->isArrayType()) {
1462 // Set the default value to a zero constant when it is a structure
1463 // or array. The type doesn't really matter.
1464 V = svalBuilder.makeZeroVal(Ctx.IntTy);
1466 else {
1467 return store;
1470 return addBinding(B, R, BindingKey::Default, V).getRoot();
1473 Store RegionStoreManager::BindArray(Store store, const TypedRegion* R,
1474 SVal Init) {
1476 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1477 QualType ElementTy = AT->getElementType();
1478 Optional<uint64_t> Size;
1480 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1481 Size = CAT->getSize().getZExtValue();
1483 // Check if the init expr is a string literal.
1484 if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1485 const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1487 // Treat the string as a lazy compound value.
1488 nonloc::LazyCompoundVal LCV =
1489 cast<nonloc::LazyCompoundVal>(svalBuilder.makeLazyCompoundVal(store, S));
1490 return CopyLazyBindings(LCV, store, R);
1493 // Handle lazy compound values.
1494 if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1495 return CopyLazyBindings(*LCV, store, R);
1497 // Remaining case: explicit compound values.
1499 if (Init.isUnknown())
1500 return setImplicitDefaultValue(store, R, ElementTy);
1502 nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1503 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1504 uint64_t i = 0;
1506 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1507 // The init list might be shorter than the array length.
1508 if (VI == VE)
1509 break;
1511 const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1512 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1514 if (ElementTy->isStructureOrClassType())
1515 store = BindStruct(store, ER, *VI);
1516 else if (ElementTy->isArrayType())
1517 store = BindArray(store, ER, *VI);
1518 else
1519 store = Bind(store, svalBuilder.makeLoc(ER), *VI);
1522 // If the init list is shorter than the array length, set the
1523 // array default value.
1524 if (Size.hasValue() && i < Size.getValue())
1525 store = setImplicitDefaultValue(store, R, ElementTy);
1527 return store;
1530 Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
1531 SVal V) {
1533 if (!Features.supportsFields())
1534 return store;
1536 QualType T = R->getValueType();
1537 assert(T->isStructureOrClassType());
1539 const RecordType* RT = T->getAs<RecordType>();
1540 RecordDecl* RD = RT->getDecl();
1542 if (!RD->isDefinition())
1543 return store;
1545 // Handle lazy compound values.
1546 if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1547 return CopyLazyBindings(*LCV, store, R);
1549 // We may get non-CompoundVal accidentally due to imprecise cast logic or
1550 // that we are binding symbolic struct value. Kill the field values, and if
1551 // the value is symbolic go and bind it as a "default" binding.
1552 if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1553 SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1554 return KillStruct(store, R, SV);
1557 nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1558 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1560 RecordDecl::field_iterator FI, FE;
1562 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
1564 if (VI == VE)
1565 break;
1567 QualType FTy = (*FI)->getType();
1568 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1570 if (FTy->isArrayType())
1571 store = BindArray(store, FR, *VI);
1572 else if (FTy->isStructureOrClassType())
1573 store = BindStruct(store, FR, *VI);
1574 else
1575 store = Bind(store, svalBuilder.makeLoc(FR), *VI);
1578 // There may be fewer values in the initialize list than the fields of struct.
1579 if (FI != FE) {
1580 RegionBindings B = GetRegionBindings(store);
1581 B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1582 store = B.getRoot();
1585 return store;
1588 Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1589 SVal DefaultVal) {
1590 BindingKey key = BindingKey::Make(R, BindingKey::Default);
1592 // The BindingKey may be "invalid" if we cannot handle the region binding
1593 // explicitly. One example is something like array[index], where index
1594 // is a symbolic value. In such cases, we want to invalidate the entire
1595 // array, as the index assignment could have been to any element. In
1596 // the case of nested symbolic indices, we need to march up the region
1597 // hierarchy untile we reach a region whose binding we can reason about.
1598 const SubRegion *subReg = R;
1600 while (!key.isValid()) {
1601 if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1602 subReg = tmp;
1603 key = BindingKey::Make(tmp, BindingKey::Default);
1605 else
1606 break;
1609 // Remove the old bindings, using 'subReg' as the root of all regions
1610 // we will invalidate.
1611 RegionBindings B = GetRegionBindings(store);
1612 llvm::OwningPtr<RegionStoreSubRegionMap>
1613 SubRegions(getRegionStoreSubRegionMap(store));
1614 RemoveSubRegionBindings(B, subReg, *SubRegions);
1616 // Set the default value of the struct region to "unknown".
1617 if (!key.isValid())
1618 return B.getRoot();
1620 return addBinding(B, key, DefaultVal).getRoot();
1623 Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1624 Store store, const TypedRegion *R) {
1626 // Nuke the old bindings stemming from R.
1627 RegionBindings B = GetRegionBindings(store);
1629 llvm::OwningPtr<RegionStoreSubRegionMap>
1630 SubRegions(getRegionStoreSubRegionMap(store));
1632 // B and DVM are updated after the call to RemoveSubRegionBindings.
1633 RemoveSubRegionBindings(B, R, *SubRegions.get());
1635 // Now copy the bindings. This amounts to just binding 'V' to 'R'. This
1636 // results in a zero-copy algorithm.
1637 return addBinding(B, R, BindingKey::Direct, V).getRoot();
1640 //===----------------------------------------------------------------------===//
1641 // "Raw" retrievals and bindings.
1642 //===----------------------------------------------------------------------===//
1645 RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1646 SVal V) {
1647 if (!K.isValid())
1648 return B;
1649 return RBFactory.add(B, K, V);
1652 RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1653 const MemRegion *R,
1654 BindingKey::Kind k, SVal V) {
1655 return addBinding(B, BindingKey::Make(R, k), V);
1658 const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1659 if (!K.isValid())
1660 return NULL;
1661 return B.lookup(K);
1664 const SVal *RegionStoreManager::lookup(RegionBindings B,
1665 const MemRegion *R,
1666 BindingKey::Kind k) {
1667 return lookup(B, BindingKey::Make(R, k));
1670 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1671 BindingKey K) {
1672 if (!K.isValid())
1673 return B;
1674 return RBFactory.remove(B, K);
1677 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1678 const MemRegion *R,
1679 BindingKey::Kind k){
1680 return removeBinding(B, BindingKey::Make(R, k));
1683 //===----------------------------------------------------------------------===//
1684 // State pruning.
1685 //===----------------------------------------------------------------------===//
1687 namespace {
1688 class removeDeadBindingsWorker :
1689 public ClusterAnalysis<removeDeadBindingsWorker> {
1690 llvm::SmallVector<const SymbolicRegion*, 12> Postponed;
1691 SymbolReaper &SymReaper;
1692 const StackFrameContext *CurrentLCtx;
1694 public:
1695 removeDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr,
1696 RegionBindings b, SymbolReaper &symReaper,
1697 const StackFrameContext *LCtx)
1698 : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1699 /* includeGlobals = */ false),
1700 SymReaper(symReaper), CurrentLCtx(LCtx) {}
1702 // Called by ClusterAnalysis.
1703 void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1704 void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1706 void VisitBindingKey(BindingKey K);
1707 bool UpdatePostponed();
1708 void VisitBinding(SVal V);
1712 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1713 RegionCluster &C) {
1715 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1716 if (SymReaper.isLive(VR))
1717 AddToWorkList(baseR, C);
1719 return;
1722 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1723 if (SymReaper.isLive(SR->getSymbol()))
1724 AddToWorkList(SR, C);
1725 else
1726 Postponed.push_back(SR);
1728 return;
1731 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1732 AddToWorkList(baseR, C);
1733 return;
1736 // CXXThisRegion in the current or parent location context is live.
1737 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1738 const StackArgumentsSpaceRegion *StackReg =
1739 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1740 const StackFrameContext *RegCtx = StackReg->getStackFrame();
1741 if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1742 AddToWorkList(TR, C);
1746 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1747 BindingKey *I, BindingKey *E) {
1748 for ( ; I != E; ++I)
1749 VisitBindingKey(*I);
1752 void removeDeadBindingsWorker::VisitBinding(SVal V) {
1753 // Is it a LazyCompoundVal? All referenced regions are live as well.
1754 if (const nonloc::LazyCompoundVal *LCS =
1755 dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1757 const MemRegion *LazyR = LCS->getRegion();
1758 RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1759 for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1760 const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1761 if (baseR && baseR->isSubRegionOf(LazyR))
1762 VisitBinding(RI.getData());
1764 return;
1767 // If V is a region, then add it to the worklist.
1768 if (const MemRegion *R = V.getAsRegion())
1769 AddToWorkList(R);
1771 // Update the set of live symbols.
1772 for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
1773 SI!=SE;++SI)
1774 SymReaper.markLive(*SI);
1777 void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1778 const MemRegion *R = K.getRegion();
1780 // Mark this region "live" by adding it to the worklist. This will cause
1781 // use to visit all regions in the cluster (if we haven't visited them
1782 // already).
1783 if (AddToWorkList(R)) {
1784 // Mark the symbol for any live SymbolicRegion as "live". This means we
1785 // should continue to track that symbol.
1786 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1787 SymReaper.markLive(SymR->getSymbol());
1789 // For BlockDataRegions, enqueue the VarRegions for variables marked
1790 // with __block (passed-by-reference).
1791 // via BlockDeclRefExprs.
1792 if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1793 for (BlockDataRegion::referenced_vars_iterator
1794 RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1795 RI != RE; ++RI) {
1796 if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1797 AddToWorkList(*RI);
1800 // No possible data bindings on a BlockDataRegion.
1801 return;
1805 // Visit the data binding for K.
1806 if (const SVal *V = RM.lookup(B, K))
1807 VisitBinding(*V);
1810 bool removeDeadBindingsWorker::UpdatePostponed() {
1811 // See if any postponed SymbolicRegions are actually live now, after
1812 // having done a scan.
1813 bool changed = false;
1815 for (llvm::SmallVectorImpl<const SymbolicRegion*>::iterator
1816 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1817 if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1818 if (SymReaper.isLive(SR->getSymbol())) {
1819 changed |= AddToWorkList(SR);
1820 *I = NULL;
1825 return changed;
1828 Store RegionStoreManager::removeDeadBindings(Store store,
1829 const StackFrameContext *LCtx,
1830 SymbolReaper& SymReaper,
1831 llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
1833 RegionBindings B = GetRegionBindings(store);
1834 removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1835 W.GenerateClusters();
1837 // Enqueue the region roots onto the worklist.
1838 for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
1839 E=RegionRoots.end(); I!=E; ++I)
1840 W.AddToWorkList(*I);
1842 do W.RunWorkList(); while (W.UpdatePostponed());
1844 // We have now scanned the store, marking reachable regions and symbols
1845 // as live. We now remove all the regions that are dead from the store
1846 // as well as update DSymbols with the set symbols that are now dead.
1847 for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1848 const BindingKey &K = I.getKey();
1850 // If the cluster has been visited, we know the region has been marked.
1851 if (W.isVisited(K.getRegion()))
1852 continue;
1854 // Remove the dead entry.
1855 B = removeBinding(B, K);
1857 // Mark all non-live symbols that this binding references as dead.
1858 if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1859 SymReaper.maybeDead(SymR->getSymbol());
1861 SVal X = I.getData();
1862 SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1863 for (; SI != SE; ++SI)
1864 SymReaper.maybeDead(*SI);
1867 return B.getRoot();
1871 Store RegionStoreManager::enterStackFrame(const GRState *state,
1872 const StackFrameContext *frame) {
1873 FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1874 FunctionDecl::param_const_iterator PI = FD->param_begin(),
1875 PE = FD->param_end();
1876 Store store = state->getStore();
1878 if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1879 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1881 // Copy the arg expression value to the arg variables. We check that
1882 // PI != PE because the actual number of arguments may be different than
1883 // the function declaration.
1884 for (; AI != AE && PI != PE; ++AI, ++PI) {
1885 SVal ArgVal = state->getSVal(*AI);
1886 store = Bind(store,
1887 svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1889 } else if (const CXXConstructExpr *CE =
1890 dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1891 CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1892 AE = CE->arg_end();
1894 // Copy the arg expression value to the arg variables.
1895 for (; AI != AE; ++AI, ++PI) {
1896 SVal ArgVal = state->getSVal(*AI);
1897 store = Bind(store,
1898 svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1900 } else
1901 assert(isa<CXXDestructorDecl>(frame->getDecl()));
1903 return store;
1906 //===----------------------------------------------------------------------===//
1907 // Utility methods.
1908 //===----------------------------------------------------------------------===//
1910 void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
1911 const char* nl, const char *sep) {
1912 RegionBindings B = GetRegionBindings(store);
1913 OS << "Store (direct and default bindings):" << nl;
1915 for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1916 OS << ' ' << I.getKey() << " : " << I.getData() << nl;