[analyzer] lib/StaticAnalyzer/Checkers/ExprEngineExperimentalChecks.cpp -> lib/Static...
[clang.git] / lib / StaticAnalyzer / RangeConstraintManager.cpp
blob5f0a386c1afe6b8c318ae124712322818bad34eb
1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines RangeConstraintManager, a class that tracks simple
11 // equality and inequality constraints on symbolic values of GRState.
13 //===----------------------------------------------------------------------===//
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/PathSensitive/GRState.h"
17 #include "clang/StaticAnalyzer/PathSensitive/GRStateTrait.h"
18 #include "clang/StaticAnalyzer/PathSensitive/TransferFuncs.h"
19 #include "clang/StaticAnalyzer/ManagerRegistry.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/ImmutableSet.h"
23 #include "llvm/Support/raw_ostream.h"
25 using namespace clang;
26 using namespace ento;
28 namespace { class ConstraintRange {}; }
29 static int ConstraintRangeIndex = 0;
31 /// A Range represents the closed range [from, to]. The caller must
32 /// guarantee that from <= to. Note that Range is immutable, so as not
33 /// to subvert RangeSet's immutability.
34 namespace {
35 class Range : public std::pair<const llvm::APSInt*,
36 const llvm::APSInt*> {
37 public:
38 Range(const llvm::APSInt &from, const llvm::APSInt &to)
39 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
40 assert(from <= to);
42 bool Includes(const llvm::APSInt &v) const {
43 return *first <= v && v <= *second;
45 const llvm::APSInt &From() const {
46 return *first;
48 const llvm::APSInt &To() const {
49 return *second;
51 const llvm::APSInt *getConcreteValue() const {
52 return &From() == &To() ? &From() : NULL;
55 void Profile(llvm::FoldingSetNodeID &ID) const {
56 ID.AddPointer(&From());
57 ID.AddPointer(&To());
62 class RangeTrait : public llvm::ImutContainerInfo<Range> {
63 public:
64 // When comparing if one Range is less than another, we should compare
65 // the actual APSInt values instead of their pointers. This keeps the order
66 // consistent (instead of comparing by pointer values) and can potentially
67 // be used to speed up some of the operations in RangeSet.
68 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
69 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
70 *lhs.second < *rhs.second);
74 /// RangeSet contains a set of ranges. If the set is empty, then
75 /// there the value of a symbol is overly constrained and there are no
76 /// possible values for that symbol.
77 class RangeSet {
78 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
79 PrimRangeSet ranges; // no need to make const, since it is an
80 // ImmutableSet - this allows default operator=
81 // to work.
82 public:
83 typedef PrimRangeSet::Factory Factory;
84 typedef PrimRangeSet::iterator iterator;
86 RangeSet(PrimRangeSet RS) : ranges(RS) {}
88 iterator begin() const { return ranges.begin(); }
89 iterator end() const { return ranges.end(); }
91 bool isEmpty() const { return ranges.isEmpty(); }
93 /// Construct a new RangeSet representing '{ [from, to] }'.
94 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
95 : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
97 /// Profile - Generates a hash profile of this RangeSet for use
98 /// by FoldingSet.
99 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
101 /// getConcreteValue - If a symbol is contrained to equal a specific integer
102 /// constant then this method returns that value. Otherwise, it returns
103 /// NULL.
104 const llvm::APSInt* getConcreteValue() const {
105 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
108 private:
109 void IntersectInRange(BasicValueFactory &BV, Factory &F,
110 const llvm::APSInt &Lower,
111 const llvm::APSInt &Upper,
112 PrimRangeSet &newRanges,
113 PrimRangeSet::iterator &i,
114 PrimRangeSet::iterator &e) const {
115 // There are six cases for each range R in the set:
116 // 1. R is entirely before the intersection range.
117 // 2. R is entirely after the intersection range.
118 // 3. R contains the entire intersection range.
119 // 4. R starts before the intersection range and ends in the middle.
120 // 5. R starts in the middle of the intersection range and ends after it.
121 // 6. R is entirely contained in the intersection range.
122 // These correspond to each of the conditions below.
123 for (/* i = begin(), e = end() */; i != e; ++i) {
124 if (i->To() < Lower) {
125 continue;
127 if (i->From() > Upper) {
128 break;
131 if (i->Includes(Lower)) {
132 if (i->Includes(Upper)) {
133 newRanges = F.add(newRanges, Range(BV.getValue(Lower),
134 BV.getValue(Upper)));
135 break;
136 } else
137 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
138 } else {
139 if (i->Includes(Upper)) {
140 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
141 break;
142 } else
143 newRanges = F.add(newRanges, *i);
148 public:
149 // Returns a set containing the values in the receiving set, intersected with
150 // the closed range [Lower, Upper]. Unlike the Range type, this range uses
151 // modular arithmetic, corresponding to the common treatment of C integer
152 // overflow. Thus, if the Lower bound is greater than the Upper bound, the
153 // range is taken to wrap around. This is equivalent to taking the
154 // intersection with the two ranges [Min, Upper] and [Lower, Max],
155 // or, alternatively, /removing/ all integers between Upper and Lower.
156 RangeSet Intersect(BasicValueFactory &BV, Factory &F,
157 const llvm::APSInt &Lower,
158 const llvm::APSInt &Upper) const {
159 PrimRangeSet newRanges = F.getEmptySet();
161 PrimRangeSet::iterator i = begin(), e = end();
162 if (Lower <= Upper)
163 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
164 else {
165 // The order of the next two statements is important!
166 // IntersectInRange() does not reset the iteration state for i and e.
167 // Therefore, the lower range most be handled first.
168 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
169 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
171 return newRanges;
174 void print(llvm::raw_ostream &os) const {
175 bool isFirst = true;
176 os << "{ ";
177 for (iterator i = begin(), e = end(); i != e; ++i) {
178 if (isFirst)
179 isFirst = false;
180 else
181 os << ", ";
183 os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
184 << ']';
186 os << " }";
189 bool operator==(const RangeSet &other) const {
190 return ranges == other.ranges;
193 } // end anonymous namespace
195 typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
197 namespace clang {
198 namespace ento {
199 template<>
200 struct GRStateTrait<ConstraintRange>
201 : public GRStatePartialTrait<ConstraintRangeTy> {
202 static inline void* GDMIndex() { return &ConstraintRangeIndex; }
207 namespace {
208 class RangeConstraintManager : public SimpleConstraintManager{
209 RangeSet GetRange(const GRState *state, SymbolRef sym);
210 public:
211 RangeConstraintManager(SubEngine &subengine)
212 : SimpleConstraintManager(subengine) {}
214 const GRState *assumeSymNE(const GRState* state, SymbolRef sym,
215 const llvm::APSInt& Int,
216 const llvm::APSInt& Adjustment);
218 const GRState *assumeSymEQ(const GRState* state, SymbolRef sym,
219 const llvm::APSInt& Int,
220 const llvm::APSInt& Adjustment);
222 const GRState *assumeSymLT(const GRState* state, SymbolRef sym,
223 const llvm::APSInt& Int,
224 const llvm::APSInt& Adjustment);
226 const GRState *assumeSymGT(const GRState* state, SymbolRef sym,
227 const llvm::APSInt& Int,
228 const llvm::APSInt& Adjustment);
230 const GRState *assumeSymGE(const GRState* state, SymbolRef sym,
231 const llvm::APSInt& Int,
232 const llvm::APSInt& Adjustment);
234 const GRState *assumeSymLE(const GRState* state, SymbolRef sym,
235 const llvm::APSInt& Int,
236 const llvm::APSInt& Adjustment);
238 const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
240 // FIXME: Refactor into SimpleConstraintManager?
241 bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const {
242 const llvm::APSInt *i = getSymVal(St, sym);
243 return i ? *i == V : false;
246 const GRState* removeDeadBindings(const GRState* St, SymbolReaper& SymReaper);
248 void print(const GRState* St, llvm::raw_ostream& Out,
249 const char* nl, const char *sep);
251 private:
252 RangeSet::Factory F;
255 } // end anonymous namespace
257 ConstraintManager* ento::CreateRangeConstraintManager(GRStateManager&,
258 SubEngine &subeng) {
259 return new RangeConstraintManager(subeng);
262 const llvm::APSInt* RangeConstraintManager::getSymVal(const GRState* St,
263 SymbolRef sym) const {
264 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
265 return T ? T->getConcreteValue() : NULL;
268 /// Scan all symbols referenced by the constraints. If the symbol is not alive
269 /// as marked in LSymbols, mark it as dead in DSymbols.
270 const GRState*
271 RangeConstraintManager::removeDeadBindings(const GRState* state,
272 SymbolReaper& SymReaper) {
274 ConstraintRangeTy CR = state->get<ConstraintRange>();
275 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
277 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
278 SymbolRef sym = I.getKey();
279 if (SymReaper.maybeDead(sym))
280 CR = CRFactory.remove(CR, sym);
283 return state->set<ConstraintRange>(CR);
286 RangeSet
287 RangeConstraintManager::GetRange(const GRState *state, SymbolRef sym) {
288 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
289 return *V;
291 // Lazily generate a new RangeSet representing all possible values for the
292 // given symbol type.
293 QualType T = state->getSymbolManager().getType(sym);
294 BasicValueFactory& BV = state->getBasicVals();
295 return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
298 //===------------------------------------------------------------------------===
299 // assumeSymX methods: public interface for RangeConstraintManager.
300 //===------------------------------------------------------------------------===/
302 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
303 // and (x, y) for open ranges. These ranges are modular, corresponding with
304 // a common treatment of C integer overflow. This means that these methods
305 // do not have to worry about overflow; RangeSet::Intersect can handle such a
306 // "wraparound" range.
307 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
308 // UINT_MAX, 0, 1, and 2.
310 const GRState*
311 RangeConstraintManager::assumeSymNE(const GRState* state, SymbolRef sym,
312 const llvm::APSInt& Int,
313 const llvm::APSInt& Adjustment) {
314 BasicValueFactory &BV = state->getBasicVals();
316 llvm::APSInt Lower = Int-Adjustment;
317 llvm::APSInt Upper = Lower;
318 --Lower;
319 ++Upper;
321 // [Int-Adjustment+1, Int-Adjustment-1]
322 // Notice that the lower bound is greater than the upper bound.
323 RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
324 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
327 const GRState*
328 RangeConstraintManager::assumeSymEQ(const GRState* state, SymbolRef sym,
329 const llvm::APSInt& Int,
330 const llvm::APSInt& Adjustment) {
331 // [Int-Adjustment, Int-Adjustment]
332 BasicValueFactory &BV = state->getBasicVals();
333 llvm::APSInt AdjInt = Int-Adjustment;
334 RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
335 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
338 const GRState*
339 RangeConstraintManager::assumeSymLT(const GRState* state, SymbolRef sym,
340 const llvm::APSInt& Int,
341 const llvm::APSInt& Adjustment) {
342 BasicValueFactory &BV = state->getBasicVals();
344 QualType T = state->getSymbolManager().getType(sym);
345 const llvm::APSInt &Min = BV.getMinValue(T);
347 // Special case for Int == Min. This is always false.
348 if (Int == Min)
349 return NULL;
351 llvm::APSInt Lower = Min-Adjustment;
352 llvm::APSInt Upper = Int-Adjustment;
353 --Upper;
355 RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
356 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
359 const GRState*
360 RangeConstraintManager::assumeSymGT(const GRState* state, SymbolRef sym,
361 const llvm::APSInt& Int,
362 const llvm::APSInt& Adjustment) {
363 BasicValueFactory &BV = state->getBasicVals();
365 QualType T = state->getSymbolManager().getType(sym);
366 const llvm::APSInt &Max = BV.getMaxValue(T);
368 // Special case for Int == Max. This is always false.
369 if (Int == Max)
370 return NULL;
372 llvm::APSInt Lower = Int-Adjustment;
373 llvm::APSInt Upper = Max-Adjustment;
374 ++Lower;
376 RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
377 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
380 const GRState*
381 RangeConstraintManager::assumeSymGE(const GRState* state, SymbolRef sym,
382 const llvm::APSInt& Int,
383 const llvm::APSInt& Adjustment) {
384 BasicValueFactory &BV = state->getBasicVals();
386 QualType T = state->getSymbolManager().getType(sym);
387 const llvm::APSInt &Min = BV.getMinValue(T);
389 // Special case for Int == Min. This is always feasible.
390 if (Int == Min)
391 return state;
393 const llvm::APSInt &Max = BV.getMaxValue(T);
395 llvm::APSInt Lower = Int-Adjustment;
396 llvm::APSInt Upper = Max-Adjustment;
398 RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
399 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
402 const GRState*
403 RangeConstraintManager::assumeSymLE(const GRState* state, SymbolRef sym,
404 const llvm::APSInt& Int,
405 const llvm::APSInt& Adjustment) {
406 BasicValueFactory &BV = state->getBasicVals();
408 QualType T = state->getSymbolManager().getType(sym);
409 const llvm::APSInt &Max = BV.getMaxValue(T);
411 // Special case for Int == Max. This is always feasible.
412 if (Int == Max)
413 return state;
415 const llvm::APSInt &Min = BV.getMinValue(T);
417 llvm::APSInt Lower = Min-Adjustment;
418 llvm::APSInt Upper = Int-Adjustment;
420 RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
421 return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
424 //===------------------------------------------------------------------------===
425 // Pretty-printing.
426 //===------------------------------------------------------------------------===/
428 void RangeConstraintManager::print(const GRState* St, llvm::raw_ostream& Out,
429 const char* nl, const char *sep) {
431 ConstraintRangeTy Ranges = St->get<ConstraintRange>();
433 if (Ranges.isEmpty())
434 return;
436 Out << nl << sep << "ranges of symbol values:";
438 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
439 Out << nl << ' ' << I.getKey() << " : ";
440 I.getData().print(Out);