Keep the source location of the selector in ObjCMessageExpr.
[clang.git] / lib / AST / Expr.cpp
blob93ebb704429a76492be43ccfead43b42b1de65ee
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Lex/LiteralSupport.h"
24 #include "clang/Lex/Lexer.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 using namespace clang;
33 void Expr::ANCHOR() {} // key function for Expr class.
35 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
36 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
37 /// but also int expressions which are produced by things like comparisons in
38 /// C.
39 bool Expr::isKnownToHaveBooleanValue() const {
40 // If this value has _Bool type, it is obvious 0/1.
41 if (getType()->isBooleanType()) return true;
42 // If this is a non-scalar-integer type, we don't care enough to try.
43 if (!getType()->isIntegralOrEnumerationType()) return false;
45 if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
46 return PE->getSubExpr()->isKnownToHaveBooleanValue();
48 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
49 switch (UO->getOpcode()) {
50 case UO_Plus:
51 case UO_Extension:
52 return UO->getSubExpr()->isKnownToHaveBooleanValue();
53 default:
54 return false;
58 // Only look through implicit casts. If the user writes
59 // '(int) (a && b)' treat it as an arbitrary int.
60 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
61 return CE->getSubExpr()->isKnownToHaveBooleanValue();
63 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
64 switch (BO->getOpcode()) {
65 default: return false;
66 case BO_LT: // Relational operators.
67 case BO_GT:
68 case BO_LE:
69 case BO_GE:
70 case BO_EQ: // Equality operators.
71 case BO_NE:
72 case BO_LAnd: // AND operator.
73 case BO_LOr: // Logical OR operator.
74 return true;
76 case BO_And: // Bitwise AND operator.
77 case BO_Xor: // Bitwise XOR operator.
78 case BO_Or: // Bitwise OR operator.
79 // Handle things like (x==2)|(y==12).
80 return BO->getLHS()->isKnownToHaveBooleanValue() &&
81 BO->getRHS()->isKnownToHaveBooleanValue();
83 case BO_Comma:
84 case BO_Assign:
85 return BO->getRHS()->isKnownToHaveBooleanValue();
89 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
90 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
91 CO->getFalseExpr()->isKnownToHaveBooleanValue();
93 return false;
96 //===----------------------------------------------------------------------===//
97 // Primary Expressions.
98 //===----------------------------------------------------------------------===//
100 void ExplicitTemplateArgumentList::initializeFrom(
101 const TemplateArgumentListInfo &Info) {
102 LAngleLoc = Info.getLAngleLoc();
103 RAngleLoc = Info.getRAngleLoc();
104 NumTemplateArgs = Info.size();
106 TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
107 for (unsigned i = 0; i != NumTemplateArgs; ++i)
108 new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
111 void ExplicitTemplateArgumentList::copyInto(
112 TemplateArgumentListInfo &Info) const {
113 Info.setLAngleLoc(LAngleLoc);
114 Info.setRAngleLoc(RAngleLoc);
115 for (unsigned I = 0; I != NumTemplateArgs; ++I)
116 Info.addArgument(getTemplateArgs()[I]);
119 std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
120 return sizeof(ExplicitTemplateArgumentList) +
121 sizeof(TemplateArgumentLoc) * NumTemplateArgs;
124 std::size_t ExplicitTemplateArgumentList::sizeFor(
125 const TemplateArgumentListInfo &Info) {
126 return sizeFor(Info.size());
129 void DeclRefExpr::computeDependence() {
130 ExprBits.TypeDependent = false;
131 ExprBits.ValueDependent = false;
133 NamedDecl *D = getDecl();
135 // (TD) C++ [temp.dep.expr]p3:
136 // An id-expression is type-dependent if it contains:
138 // and
140 // (VD) C++ [temp.dep.constexpr]p2:
141 // An identifier is value-dependent if it is:
143 // (TD) - an identifier that was declared with dependent type
144 // (VD) - a name declared with a dependent type,
145 if (getType()->isDependentType()) {
146 ExprBits.TypeDependent = true;
147 ExprBits.ValueDependent = true;
149 // (TD) - a conversion-function-id that specifies a dependent type
150 else if (D->getDeclName().getNameKind()
151 == DeclarationName::CXXConversionFunctionName &&
152 D->getDeclName().getCXXNameType()->isDependentType()) {
153 ExprBits.TypeDependent = true;
154 ExprBits.ValueDependent = true;
156 // (TD) - a template-id that is dependent,
157 else if (hasExplicitTemplateArgs() &&
158 TemplateSpecializationType::anyDependentTemplateArguments(
159 getTemplateArgs(),
160 getNumTemplateArgs())) {
161 ExprBits.TypeDependent = true;
162 ExprBits.ValueDependent = true;
164 // (VD) - the name of a non-type template parameter,
165 else if (isa<NonTypeTemplateParmDecl>(D))
166 ExprBits.ValueDependent = true;
167 // (VD) - a constant with integral or enumeration type and is
168 // initialized with an expression that is value-dependent.
169 else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
170 if (Var->getType()->isIntegralOrEnumerationType() &&
171 Var->getType().getCVRQualifiers() == Qualifiers::Const) {
172 if (const Expr *Init = Var->getAnyInitializer())
173 if (Init->isValueDependent())
174 ExprBits.ValueDependent = true;
176 // (VD) - FIXME: Missing from the standard:
177 // - a member function or a static data member of the current
178 // instantiation
179 else if (Var->isStaticDataMember() &&
180 Var->getDeclContext()->isDependentContext())
181 ExprBits.ValueDependent = true;
183 // (VD) - FIXME: Missing from the standard:
184 // - a member function or a static data member of the current
185 // instantiation
186 else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
187 ExprBits.ValueDependent = true;
188 // (TD) - a nested-name-specifier or a qualified-id that names a
189 // member of an unknown specialization.
190 // (handled by DependentScopeDeclRefExpr)
193 DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
194 SourceRange QualifierRange,
195 ValueDecl *D, SourceLocation NameLoc,
196 const TemplateArgumentListInfo *TemplateArgs,
197 QualType T, ExprValueKind VK)
198 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false),
199 DecoratedD(D,
200 (Qualifier? HasQualifierFlag : 0) |
201 (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
202 Loc(NameLoc) {
203 if (Qualifier) {
204 NameQualifier *NQ = getNameQualifier();
205 NQ->NNS = Qualifier;
206 NQ->Range = QualifierRange;
209 if (TemplateArgs)
210 getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
212 computeDependence();
215 DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
216 SourceRange QualifierRange,
217 ValueDecl *D, const DeclarationNameInfo &NameInfo,
218 const TemplateArgumentListInfo *TemplateArgs,
219 QualType T, ExprValueKind VK)
220 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false),
221 DecoratedD(D,
222 (Qualifier? HasQualifierFlag : 0) |
223 (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
224 Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
225 if (Qualifier) {
226 NameQualifier *NQ = getNameQualifier();
227 NQ->NNS = Qualifier;
228 NQ->Range = QualifierRange;
231 if (TemplateArgs)
232 getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
234 computeDependence();
237 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
238 NestedNameSpecifier *Qualifier,
239 SourceRange QualifierRange,
240 ValueDecl *D,
241 SourceLocation NameLoc,
242 QualType T,
243 ExprValueKind VK,
244 const TemplateArgumentListInfo *TemplateArgs) {
245 return Create(Context, Qualifier, QualifierRange, D,
246 DeclarationNameInfo(D->getDeclName(), NameLoc),
247 T, VK, TemplateArgs);
250 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
251 NestedNameSpecifier *Qualifier,
252 SourceRange QualifierRange,
253 ValueDecl *D,
254 const DeclarationNameInfo &NameInfo,
255 QualType T,
256 ExprValueKind VK,
257 const TemplateArgumentListInfo *TemplateArgs) {
258 std::size_t Size = sizeof(DeclRefExpr);
259 if (Qualifier != 0)
260 Size += sizeof(NameQualifier);
262 if (TemplateArgs)
263 Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
265 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
266 return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
267 TemplateArgs, T, VK);
270 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier,
271 unsigned NumTemplateArgs) {
272 std::size_t Size = sizeof(DeclRefExpr);
273 if (HasQualifier)
274 Size += sizeof(NameQualifier);
276 if (NumTemplateArgs)
277 Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
279 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
280 return new (Mem) DeclRefExpr(EmptyShell());
283 SourceRange DeclRefExpr::getSourceRange() const {
284 SourceRange R = getNameInfo().getSourceRange();
285 if (hasQualifier())
286 R.setBegin(getQualifierRange().getBegin());
287 if (hasExplicitTemplateArgs())
288 R.setEnd(getRAngleLoc());
289 return R;
292 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
293 // expr" policy instead.
294 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
295 ASTContext &Context = CurrentDecl->getASTContext();
297 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
298 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
299 return FD->getNameAsString();
301 llvm::SmallString<256> Name;
302 llvm::raw_svector_ostream Out(Name);
304 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
305 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
306 Out << "virtual ";
307 if (MD->isStatic())
308 Out << "static ";
311 PrintingPolicy Policy(Context.getLangOptions());
313 std::string Proto = FD->getQualifiedNameAsString(Policy);
315 const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
316 const FunctionProtoType *FT = 0;
317 if (FD->hasWrittenPrototype())
318 FT = dyn_cast<FunctionProtoType>(AFT);
320 Proto += "(";
321 if (FT) {
322 llvm::raw_string_ostream POut(Proto);
323 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
324 if (i) POut << ", ";
325 std::string Param;
326 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
327 POut << Param;
330 if (FT->isVariadic()) {
331 if (FD->getNumParams()) POut << ", ";
332 POut << "...";
335 Proto += ")";
337 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
338 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
339 if (ThisQuals.hasConst())
340 Proto += " const";
341 if (ThisQuals.hasVolatile())
342 Proto += " volatile";
345 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
346 AFT->getResultType().getAsStringInternal(Proto, Policy);
348 Out << Proto;
350 Out.flush();
351 return Name.str().str();
353 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
354 llvm::SmallString<256> Name;
355 llvm::raw_svector_ostream Out(Name);
356 Out << (MD->isInstanceMethod() ? '-' : '+');
357 Out << '[';
359 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
360 // a null check to avoid a crash.
361 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
362 Out << ID;
364 if (const ObjCCategoryImplDecl *CID =
365 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
366 Out << '(' << CID << ')';
368 Out << ' ';
369 Out << MD->getSelector().getAsString();
370 Out << ']';
372 Out.flush();
373 return Name.str().str();
375 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
376 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
377 return "top level";
379 return "";
382 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
383 if (hasAllocation())
384 C.Deallocate(pVal);
386 BitWidth = Val.getBitWidth();
387 unsigned NumWords = Val.getNumWords();
388 const uint64_t* Words = Val.getRawData();
389 if (NumWords > 1) {
390 pVal = new (C) uint64_t[NumWords];
391 std::copy(Words, Words + NumWords, pVal);
392 } else if (NumWords == 1)
393 VAL = Words[0];
394 else
395 VAL = 0;
398 IntegerLiteral *
399 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
400 QualType type, SourceLocation l) {
401 return new (C) IntegerLiteral(C, V, type, l);
404 IntegerLiteral *
405 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
406 return new (C) IntegerLiteral(Empty);
409 FloatingLiteral *
410 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
411 bool isexact, QualType Type, SourceLocation L) {
412 return new (C) FloatingLiteral(C, V, isexact, Type, L);
415 FloatingLiteral *
416 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
417 return new (C) FloatingLiteral(Empty);
420 /// getValueAsApproximateDouble - This returns the value as an inaccurate
421 /// double. Note that this may cause loss of precision, but is useful for
422 /// debugging dumps, etc.
423 double FloatingLiteral::getValueAsApproximateDouble() const {
424 llvm::APFloat V = getValue();
425 bool ignored;
426 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
427 &ignored);
428 return V.convertToDouble();
431 StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
432 unsigned ByteLength, bool Wide,
433 QualType Ty,
434 const SourceLocation *Loc,
435 unsigned NumStrs) {
436 // Allocate enough space for the StringLiteral plus an array of locations for
437 // any concatenated string tokens.
438 void *Mem = C.Allocate(sizeof(StringLiteral)+
439 sizeof(SourceLocation)*(NumStrs-1),
440 llvm::alignOf<StringLiteral>());
441 StringLiteral *SL = new (Mem) StringLiteral(Ty);
443 // OPTIMIZE: could allocate this appended to the StringLiteral.
444 char *AStrData = new (C, 1) char[ByteLength];
445 memcpy(AStrData, StrData, ByteLength);
446 SL->StrData = AStrData;
447 SL->ByteLength = ByteLength;
448 SL->IsWide = Wide;
449 SL->TokLocs[0] = Loc[0];
450 SL->NumConcatenated = NumStrs;
452 if (NumStrs != 1)
453 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
454 return SL;
457 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
458 void *Mem = C.Allocate(sizeof(StringLiteral)+
459 sizeof(SourceLocation)*(NumStrs-1),
460 llvm::alignOf<StringLiteral>());
461 StringLiteral *SL = new (Mem) StringLiteral(QualType());
462 SL->StrData = 0;
463 SL->ByteLength = 0;
464 SL->NumConcatenated = NumStrs;
465 return SL;
468 void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
469 char *AStrData = new (C, 1) char[Str.size()];
470 memcpy(AStrData, Str.data(), Str.size());
471 StrData = AStrData;
472 ByteLength = Str.size();
475 /// getLocationOfByte - Return a source location that points to the specified
476 /// byte of this string literal.
478 /// Strings are amazingly complex. They can be formed from multiple tokens and
479 /// can have escape sequences in them in addition to the usual trigraph and
480 /// escaped newline business. This routine handles this complexity.
482 SourceLocation StringLiteral::
483 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
484 const LangOptions &Features, const TargetInfo &Target) const {
485 assert(!isWide() && "This doesn't work for wide strings yet");
487 // Loop over all of the tokens in this string until we find the one that
488 // contains the byte we're looking for.
489 unsigned TokNo = 0;
490 while (1) {
491 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
492 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
494 // Get the spelling of the string so that we can get the data that makes up
495 // the string literal, not the identifier for the macro it is potentially
496 // expanded through.
497 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
499 // Re-lex the token to get its length and original spelling.
500 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
501 bool Invalid = false;
502 llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
503 if (Invalid)
504 return StrTokSpellingLoc;
506 const char *StrData = Buffer.data()+LocInfo.second;
508 // Create a langops struct and enable trigraphs. This is sufficient for
509 // relexing tokens.
510 LangOptions LangOpts;
511 LangOpts.Trigraphs = true;
513 // Create a lexer starting at the beginning of this token.
514 Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
515 Buffer.end());
516 Token TheTok;
517 TheLexer.LexFromRawLexer(TheTok);
519 // Use the StringLiteralParser to compute the length of the string in bytes.
520 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
521 unsigned TokNumBytes = SLP.GetStringLength();
523 // If the byte is in this token, return the location of the byte.
524 if (ByteNo < TokNumBytes ||
525 (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
526 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
528 // Now that we know the offset of the token in the spelling, use the
529 // preprocessor to get the offset in the original source.
530 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
533 // Move to the next string token.
534 ++TokNo;
535 ByteNo -= TokNumBytes;
541 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
542 /// corresponds to, e.g. "sizeof" or "[pre]++".
543 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
544 switch (Op) {
545 default: assert(0 && "Unknown unary operator");
546 case UO_PostInc: return "++";
547 case UO_PostDec: return "--";
548 case UO_PreInc: return "++";
549 case UO_PreDec: return "--";
550 case UO_AddrOf: return "&";
551 case UO_Deref: return "*";
552 case UO_Plus: return "+";
553 case UO_Minus: return "-";
554 case UO_Not: return "~";
555 case UO_LNot: return "!";
556 case UO_Real: return "__real";
557 case UO_Imag: return "__imag";
558 case UO_Extension: return "__extension__";
562 UnaryOperatorKind
563 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
564 switch (OO) {
565 default: assert(false && "No unary operator for overloaded function");
566 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
567 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
568 case OO_Amp: return UO_AddrOf;
569 case OO_Star: return UO_Deref;
570 case OO_Plus: return UO_Plus;
571 case OO_Minus: return UO_Minus;
572 case OO_Tilde: return UO_Not;
573 case OO_Exclaim: return UO_LNot;
577 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
578 switch (Opc) {
579 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
580 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
581 case UO_AddrOf: return OO_Amp;
582 case UO_Deref: return OO_Star;
583 case UO_Plus: return OO_Plus;
584 case UO_Minus: return OO_Minus;
585 case UO_Not: return OO_Tilde;
586 case UO_LNot: return OO_Exclaim;
587 default: return OO_None;
592 //===----------------------------------------------------------------------===//
593 // Postfix Operators.
594 //===----------------------------------------------------------------------===//
596 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
597 unsigned numargs, QualType t, ExprValueKind VK,
598 SourceLocation rparenloc)
599 : Expr(SC, t, VK, OK_Ordinary,
600 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
601 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
602 NumArgs(numargs) {
604 SubExprs = new (C) Stmt*[numargs+1];
605 SubExprs[FN] = fn;
606 for (unsigned i = 0; i != numargs; ++i)
607 SubExprs[i+ARGS_START] = args[i];
609 RParenLoc = rparenloc;
612 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
613 QualType t, ExprValueKind VK, SourceLocation rparenloc)
614 : Expr(CallExprClass, t, VK, OK_Ordinary,
615 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
616 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
617 NumArgs(numargs) {
619 SubExprs = new (C) Stmt*[numargs+1];
620 SubExprs[FN] = fn;
621 for (unsigned i = 0; i != numargs; ++i)
622 SubExprs[i+ARGS_START] = args[i];
624 RParenLoc = rparenloc;
627 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
628 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
629 SubExprs = new (C) Stmt*[1];
632 Decl *CallExpr::getCalleeDecl() {
633 Expr *CEE = getCallee()->IgnoreParenCasts();
634 // If we're calling a dereference, look at the pointer instead.
635 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
636 if (BO->isPtrMemOp())
637 CEE = BO->getRHS()->IgnoreParenCasts();
638 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
639 if (UO->getOpcode() == UO_Deref)
640 CEE = UO->getSubExpr()->IgnoreParenCasts();
642 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
643 return DRE->getDecl();
644 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
645 return ME->getMemberDecl();
647 return 0;
650 FunctionDecl *CallExpr::getDirectCallee() {
651 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
654 /// setNumArgs - This changes the number of arguments present in this call.
655 /// Any orphaned expressions are deleted by this, and any new operands are set
656 /// to null.
657 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
658 // No change, just return.
659 if (NumArgs == getNumArgs()) return;
661 // If shrinking # arguments, just delete the extras and forgot them.
662 if (NumArgs < getNumArgs()) {
663 this->NumArgs = NumArgs;
664 return;
667 // Otherwise, we are growing the # arguments. New an bigger argument array.
668 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
669 // Copy over args.
670 for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
671 NewSubExprs[i] = SubExprs[i];
672 // Null out new args.
673 for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
674 NewSubExprs[i] = 0;
676 if (SubExprs) C.Deallocate(SubExprs);
677 SubExprs = NewSubExprs;
678 this->NumArgs = NumArgs;
681 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
682 /// not, return 0.
683 unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
684 // All simple function calls (e.g. func()) are implicitly cast to pointer to
685 // function. As a result, we try and obtain the DeclRefExpr from the
686 // ImplicitCastExpr.
687 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
688 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
689 return 0;
691 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
692 if (!DRE)
693 return 0;
695 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
696 if (!FDecl)
697 return 0;
699 if (!FDecl->getIdentifier())
700 return 0;
702 return FDecl->getBuiltinID();
705 QualType CallExpr::getCallReturnType() const {
706 QualType CalleeType = getCallee()->getType();
707 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
708 CalleeType = FnTypePtr->getPointeeType();
709 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
710 CalleeType = BPT->getPointeeType();
711 else if (const MemberPointerType *MPT
712 = CalleeType->getAs<MemberPointerType>())
713 CalleeType = MPT->getPointeeType();
715 const FunctionType *FnType = CalleeType->getAs<FunctionType>();
716 return FnType->getResultType();
719 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
720 SourceLocation OperatorLoc,
721 TypeSourceInfo *tsi,
722 OffsetOfNode* compsPtr, unsigned numComps,
723 Expr** exprsPtr, unsigned numExprs,
724 SourceLocation RParenLoc) {
725 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
726 sizeof(OffsetOfNode) * numComps +
727 sizeof(Expr*) * numExprs);
729 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
730 exprsPtr, numExprs, RParenLoc);
733 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
734 unsigned numComps, unsigned numExprs) {
735 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
736 sizeof(OffsetOfNode) * numComps +
737 sizeof(Expr*) * numExprs);
738 return new (Mem) OffsetOfExpr(numComps, numExprs);
741 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
742 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
743 OffsetOfNode* compsPtr, unsigned numComps,
744 Expr** exprsPtr, unsigned numExprs,
745 SourceLocation RParenLoc)
746 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
747 /*TypeDependent=*/false,
748 /*ValueDependent=*/tsi->getType()->isDependentType() ||
749 hasAnyTypeDependentArguments(exprsPtr, numExprs) ||
750 hasAnyValueDependentArguments(exprsPtr, numExprs)),
751 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
752 NumComps(numComps), NumExprs(numExprs)
754 for(unsigned i = 0; i < numComps; ++i) {
755 setComponent(i, compsPtr[i]);
758 for(unsigned i = 0; i < numExprs; ++i) {
759 setIndexExpr(i, exprsPtr[i]);
763 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
764 assert(getKind() == Field || getKind() == Identifier);
765 if (getKind() == Field)
766 return getField()->getIdentifier();
768 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
771 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
772 NestedNameSpecifier *qual,
773 SourceRange qualrange,
774 ValueDecl *memberdecl,
775 DeclAccessPair founddecl,
776 DeclarationNameInfo nameinfo,
777 const TemplateArgumentListInfo *targs,
778 QualType ty,
779 ExprValueKind vk,
780 ExprObjectKind ok) {
781 std::size_t Size = sizeof(MemberExpr);
783 bool hasQualOrFound = (qual != 0 ||
784 founddecl.getDecl() != memberdecl ||
785 founddecl.getAccess() != memberdecl->getAccess());
786 if (hasQualOrFound)
787 Size += sizeof(MemberNameQualifier);
789 if (targs)
790 Size += ExplicitTemplateArgumentList::sizeFor(*targs);
792 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
793 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
794 ty, vk, ok);
796 if (hasQualOrFound) {
797 if (qual && qual->isDependent()) {
798 E->setValueDependent(true);
799 E->setTypeDependent(true);
801 E->HasQualifierOrFoundDecl = true;
803 MemberNameQualifier *NQ = E->getMemberQualifier();
804 NQ->NNS = qual;
805 NQ->Range = qualrange;
806 NQ->FoundDecl = founddecl;
809 if (targs) {
810 E->HasExplicitTemplateArgumentList = true;
811 E->getExplicitTemplateArgs().initializeFrom(*targs);
814 return E;
817 const char *CastExpr::getCastKindName() const {
818 switch (getCastKind()) {
819 case CK_Dependent:
820 return "Dependent";
821 case CK_BitCast:
822 return "BitCast";
823 case CK_LValueBitCast:
824 return "LValueBitCast";
825 case CK_LValueToRValue:
826 return "LValueToRValue";
827 case CK_GetObjCProperty:
828 return "GetObjCProperty";
829 case CK_NoOp:
830 return "NoOp";
831 case CK_BaseToDerived:
832 return "BaseToDerived";
833 case CK_DerivedToBase:
834 return "DerivedToBase";
835 case CK_UncheckedDerivedToBase:
836 return "UncheckedDerivedToBase";
837 case CK_Dynamic:
838 return "Dynamic";
839 case CK_ToUnion:
840 return "ToUnion";
841 case CK_ArrayToPointerDecay:
842 return "ArrayToPointerDecay";
843 case CK_FunctionToPointerDecay:
844 return "FunctionToPointerDecay";
845 case CK_NullToMemberPointer:
846 return "NullToMemberPointer";
847 case CK_NullToPointer:
848 return "NullToPointer";
849 case CK_BaseToDerivedMemberPointer:
850 return "BaseToDerivedMemberPointer";
851 case CK_DerivedToBaseMemberPointer:
852 return "DerivedToBaseMemberPointer";
853 case CK_UserDefinedConversion:
854 return "UserDefinedConversion";
855 case CK_ConstructorConversion:
856 return "ConstructorConversion";
857 case CK_IntegralToPointer:
858 return "IntegralToPointer";
859 case CK_PointerToIntegral:
860 return "PointerToIntegral";
861 case CK_PointerToBoolean:
862 return "PointerToBoolean";
863 case CK_ToVoid:
864 return "ToVoid";
865 case CK_VectorSplat:
866 return "VectorSplat";
867 case CK_IntegralCast:
868 return "IntegralCast";
869 case CK_IntegralToBoolean:
870 return "IntegralToBoolean";
871 case CK_IntegralToFloating:
872 return "IntegralToFloating";
873 case CK_FloatingToIntegral:
874 return "FloatingToIntegral";
875 case CK_FloatingCast:
876 return "FloatingCast";
877 case CK_FloatingToBoolean:
878 return "FloatingToBoolean";
879 case CK_MemberPointerToBoolean:
880 return "MemberPointerToBoolean";
881 case CK_AnyPointerToObjCPointerCast:
882 return "AnyPointerToObjCPointerCast";
883 case CK_AnyPointerToBlockPointerCast:
884 return "AnyPointerToBlockPointerCast";
885 case CK_ObjCObjectLValueCast:
886 return "ObjCObjectLValueCast";
887 case CK_FloatingRealToComplex:
888 return "FloatingRealToComplex";
889 case CK_FloatingComplexToReal:
890 return "FloatingComplexToReal";
891 case CK_FloatingComplexToBoolean:
892 return "FloatingComplexToBoolean";
893 case CK_FloatingComplexCast:
894 return "FloatingComplexCast";
895 case CK_FloatingComplexToIntegralComplex:
896 return "FloatingComplexToIntegralComplex";
897 case CK_IntegralRealToComplex:
898 return "IntegralRealToComplex";
899 case CK_IntegralComplexToReal:
900 return "IntegralComplexToReal";
901 case CK_IntegralComplexToBoolean:
902 return "IntegralComplexToBoolean";
903 case CK_IntegralComplexCast:
904 return "IntegralComplexCast";
905 case CK_IntegralComplexToFloatingComplex:
906 return "IntegralComplexToFloatingComplex";
909 llvm_unreachable("Unhandled cast kind!");
910 return 0;
913 Expr *CastExpr::getSubExprAsWritten() {
914 Expr *SubExpr = 0;
915 CastExpr *E = this;
916 do {
917 SubExpr = E->getSubExpr();
919 // Skip any temporary bindings; they're implicit.
920 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
921 SubExpr = Binder->getSubExpr();
923 // Conversions by constructor and conversion functions have a
924 // subexpression describing the call; strip it off.
925 if (E->getCastKind() == CK_ConstructorConversion)
926 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
927 else if (E->getCastKind() == CK_UserDefinedConversion)
928 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
930 // If the subexpression we're left with is an implicit cast, look
931 // through that, too.
932 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
934 return SubExpr;
937 CXXBaseSpecifier **CastExpr::path_buffer() {
938 switch (getStmtClass()) {
939 #define ABSTRACT_STMT(x)
940 #define CASTEXPR(Type, Base) \
941 case Stmt::Type##Class: \
942 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
943 #define STMT(Type, Base)
944 #include "clang/AST/StmtNodes.inc"
945 default:
946 llvm_unreachable("non-cast expressions not possible here");
947 return 0;
951 void CastExpr::setCastPath(const CXXCastPath &Path) {
952 assert(Path.size() == path_size());
953 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
956 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
957 CastKind Kind, Expr *Operand,
958 const CXXCastPath *BasePath,
959 ExprValueKind VK) {
960 unsigned PathSize = (BasePath ? BasePath->size() : 0);
961 void *Buffer =
962 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
963 ImplicitCastExpr *E =
964 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
965 if (PathSize) E->setCastPath(*BasePath);
966 return E;
969 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
970 unsigned PathSize) {
971 void *Buffer =
972 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
973 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
977 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
978 ExprValueKind VK, CastKind K, Expr *Op,
979 const CXXCastPath *BasePath,
980 TypeSourceInfo *WrittenTy,
981 SourceLocation L, SourceLocation R) {
982 unsigned PathSize = (BasePath ? BasePath->size() : 0);
983 void *Buffer =
984 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
985 CStyleCastExpr *E =
986 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
987 if (PathSize) E->setCastPath(*BasePath);
988 return E;
991 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
992 void *Buffer =
993 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
994 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
997 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
998 /// corresponds to, e.g. "<<=".
999 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1000 switch (Op) {
1001 case BO_PtrMemD: return ".*";
1002 case BO_PtrMemI: return "->*";
1003 case BO_Mul: return "*";
1004 case BO_Div: return "/";
1005 case BO_Rem: return "%";
1006 case BO_Add: return "+";
1007 case BO_Sub: return "-";
1008 case BO_Shl: return "<<";
1009 case BO_Shr: return ">>";
1010 case BO_LT: return "<";
1011 case BO_GT: return ">";
1012 case BO_LE: return "<=";
1013 case BO_GE: return ">=";
1014 case BO_EQ: return "==";
1015 case BO_NE: return "!=";
1016 case BO_And: return "&";
1017 case BO_Xor: return "^";
1018 case BO_Or: return "|";
1019 case BO_LAnd: return "&&";
1020 case BO_LOr: return "||";
1021 case BO_Assign: return "=";
1022 case BO_MulAssign: return "*=";
1023 case BO_DivAssign: return "/=";
1024 case BO_RemAssign: return "%=";
1025 case BO_AddAssign: return "+=";
1026 case BO_SubAssign: return "-=";
1027 case BO_ShlAssign: return "<<=";
1028 case BO_ShrAssign: return ">>=";
1029 case BO_AndAssign: return "&=";
1030 case BO_XorAssign: return "^=";
1031 case BO_OrAssign: return "|=";
1032 case BO_Comma: return ",";
1035 return "";
1038 BinaryOperatorKind
1039 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1040 switch (OO) {
1041 default: assert(false && "Not an overloadable binary operator");
1042 case OO_Plus: return BO_Add;
1043 case OO_Minus: return BO_Sub;
1044 case OO_Star: return BO_Mul;
1045 case OO_Slash: return BO_Div;
1046 case OO_Percent: return BO_Rem;
1047 case OO_Caret: return BO_Xor;
1048 case OO_Amp: return BO_And;
1049 case OO_Pipe: return BO_Or;
1050 case OO_Equal: return BO_Assign;
1051 case OO_Less: return BO_LT;
1052 case OO_Greater: return BO_GT;
1053 case OO_PlusEqual: return BO_AddAssign;
1054 case OO_MinusEqual: return BO_SubAssign;
1055 case OO_StarEqual: return BO_MulAssign;
1056 case OO_SlashEqual: return BO_DivAssign;
1057 case OO_PercentEqual: return BO_RemAssign;
1058 case OO_CaretEqual: return BO_XorAssign;
1059 case OO_AmpEqual: return BO_AndAssign;
1060 case OO_PipeEqual: return BO_OrAssign;
1061 case OO_LessLess: return BO_Shl;
1062 case OO_GreaterGreater: return BO_Shr;
1063 case OO_LessLessEqual: return BO_ShlAssign;
1064 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1065 case OO_EqualEqual: return BO_EQ;
1066 case OO_ExclaimEqual: return BO_NE;
1067 case OO_LessEqual: return BO_LE;
1068 case OO_GreaterEqual: return BO_GE;
1069 case OO_AmpAmp: return BO_LAnd;
1070 case OO_PipePipe: return BO_LOr;
1071 case OO_Comma: return BO_Comma;
1072 case OO_ArrowStar: return BO_PtrMemI;
1076 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1077 static const OverloadedOperatorKind OverOps[] = {
1078 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1079 OO_Star, OO_Slash, OO_Percent,
1080 OO_Plus, OO_Minus,
1081 OO_LessLess, OO_GreaterGreater,
1082 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1083 OO_EqualEqual, OO_ExclaimEqual,
1084 OO_Amp,
1085 OO_Caret,
1086 OO_Pipe,
1087 OO_AmpAmp,
1088 OO_PipePipe,
1089 OO_Equal, OO_StarEqual,
1090 OO_SlashEqual, OO_PercentEqual,
1091 OO_PlusEqual, OO_MinusEqual,
1092 OO_LessLessEqual, OO_GreaterGreaterEqual,
1093 OO_AmpEqual, OO_CaretEqual,
1094 OO_PipeEqual,
1095 OO_Comma
1097 return OverOps[Opc];
1100 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1101 Expr **initExprs, unsigned numInits,
1102 SourceLocation rbraceloc)
1103 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false),
1104 InitExprs(C, numInits),
1105 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1106 UnionFieldInit(0), HadArrayRangeDesignator(false)
1108 for (unsigned I = 0; I != numInits; ++I) {
1109 if (initExprs[I]->isTypeDependent())
1110 ExprBits.TypeDependent = true;
1111 if (initExprs[I]->isValueDependent())
1112 ExprBits.ValueDependent = true;
1115 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1118 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1119 if (NumInits > InitExprs.size())
1120 InitExprs.reserve(C, NumInits);
1123 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1124 InitExprs.resize(C, NumInits, 0);
1127 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1128 if (Init >= InitExprs.size()) {
1129 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1130 InitExprs.back() = expr;
1131 return 0;
1134 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1135 InitExprs[Init] = expr;
1136 return Result;
1139 SourceRange InitListExpr::getSourceRange() const {
1140 if (SyntacticForm)
1141 return SyntacticForm->getSourceRange();
1142 SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1143 if (Beg.isInvalid()) {
1144 // Find the first non-null initializer.
1145 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1146 E = InitExprs.end();
1147 I != E; ++I) {
1148 if (Stmt *S = *I) {
1149 Beg = S->getLocStart();
1150 break;
1154 if (End.isInvalid()) {
1155 // Find the first non-null initializer from the end.
1156 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1157 E = InitExprs.rend();
1158 I != E; ++I) {
1159 if (Stmt *S = *I) {
1160 End = S->getSourceRange().getEnd();
1161 break;
1165 return SourceRange(Beg, End);
1168 /// getFunctionType - Return the underlying function type for this block.
1170 const FunctionType *BlockExpr::getFunctionType() const {
1171 return getType()->getAs<BlockPointerType>()->
1172 getPointeeType()->getAs<FunctionType>();
1175 SourceLocation BlockExpr::getCaretLocation() const {
1176 return TheBlock->getCaretLocation();
1178 const Stmt *BlockExpr::getBody() const {
1179 return TheBlock->getBody();
1181 Stmt *BlockExpr::getBody() {
1182 return TheBlock->getBody();
1186 //===----------------------------------------------------------------------===//
1187 // Generic Expression Routines
1188 //===----------------------------------------------------------------------===//
1190 /// isUnusedResultAWarning - Return true if this immediate expression should
1191 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1192 /// with location to warn on and the source range[s] to report with the
1193 /// warning.
1194 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1195 SourceRange &R2, ASTContext &Ctx) const {
1196 // Don't warn if the expr is type dependent. The type could end up
1197 // instantiating to void.
1198 if (isTypeDependent())
1199 return false;
1201 switch (getStmtClass()) {
1202 default:
1203 if (getType()->isVoidType())
1204 return false;
1205 Loc = getExprLoc();
1206 R1 = getSourceRange();
1207 return true;
1208 case ParenExprClass:
1209 return cast<ParenExpr>(this)->getSubExpr()->
1210 isUnusedResultAWarning(Loc, R1, R2, Ctx);
1211 case UnaryOperatorClass: {
1212 const UnaryOperator *UO = cast<UnaryOperator>(this);
1214 switch (UO->getOpcode()) {
1215 default: break;
1216 case UO_PostInc:
1217 case UO_PostDec:
1218 case UO_PreInc:
1219 case UO_PreDec: // ++/--
1220 return false; // Not a warning.
1221 case UO_Deref:
1222 // Dereferencing a volatile pointer is a side-effect.
1223 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1224 return false;
1225 break;
1226 case UO_Real:
1227 case UO_Imag:
1228 // accessing a piece of a volatile complex is a side-effect.
1229 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1230 .isVolatileQualified())
1231 return false;
1232 break;
1233 case UO_Extension:
1234 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1236 Loc = UO->getOperatorLoc();
1237 R1 = UO->getSubExpr()->getSourceRange();
1238 return true;
1240 case BinaryOperatorClass: {
1241 const BinaryOperator *BO = cast<BinaryOperator>(this);
1242 switch (BO->getOpcode()) {
1243 default:
1244 break;
1245 // Consider the RHS of comma for side effects. LHS was checked by
1246 // Sema::CheckCommaOperands.
1247 case BO_Comma:
1248 // ((foo = <blah>), 0) is an idiom for hiding the result (and
1249 // lvalue-ness) of an assignment written in a macro.
1250 if (IntegerLiteral *IE =
1251 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1252 if (IE->getValue() == 0)
1253 return false;
1254 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1255 // Consider '||', '&&' to have side effects if the LHS or RHS does.
1256 case BO_LAnd:
1257 case BO_LOr:
1258 if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1259 !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1260 return false;
1261 break;
1263 if (BO->isAssignmentOp())
1264 return false;
1265 Loc = BO->getOperatorLoc();
1266 R1 = BO->getLHS()->getSourceRange();
1267 R2 = BO->getRHS()->getSourceRange();
1268 return true;
1270 case CompoundAssignOperatorClass:
1271 case VAArgExprClass:
1272 return false;
1274 case ConditionalOperatorClass: {
1275 // The condition must be evaluated, but if either the LHS or RHS is a
1276 // warning, warn about them.
1277 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1278 if (Exp->getLHS() &&
1279 Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1280 return true;
1281 return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1284 case MemberExprClass:
1285 // If the base pointer or element is to a volatile pointer/field, accessing
1286 // it is a side effect.
1287 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1288 return false;
1289 Loc = cast<MemberExpr>(this)->getMemberLoc();
1290 R1 = SourceRange(Loc, Loc);
1291 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1292 return true;
1294 case ArraySubscriptExprClass:
1295 // If the base pointer or element is to a volatile pointer/field, accessing
1296 // it is a side effect.
1297 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1298 return false;
1299 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1300 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1301 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1302 return true;
1304 case CallExprClass:
1305 case CXXOperatorCallExprClass:
1306 case CXXMemberCallExprClass: {
1307 // If this is a direct call, get the callee.
1308 const CallExpr *CE = cast<CallExpr>(this);
1309 if (const Decl *FD = CE->getCalleeDecl()) {
1310 // If the callee has attribute pure, const, or warn_unused_result, warn
1311 // about it. void foo() { strlen("bar"); } should warn.
1313 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1314 // updated to match for QoI.
1315 if (FD->getAttr<WarnUnusedResultAttr>() ||
1316 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1317 Loc = CE->getCallee()->getLocStart();
1318 R1 = CE->getCallee()->getSourceRange();
1320 if (unsigned NumArgs = CE->getNumArgs())
1321 R2 = SourceRange(CE->getArg(0)->getLocStart(),
1322 CE->getArg(NumArgs-1)->getLocEnd());
1323 return true;
1326 return false;
1329 case CXXTemporaryObjectExprClass:
1330 case CXXConstructExprClass:
1331 return false;
1333 case ObjCMessageExprClass: {
1334 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1335 const ObjCMethodDecl *MD = ME->getMethodDecl();
1336 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1337 Loc = getExprLoc();
1338 return true;
1340 return false;
1343 case ObjCPropertyRefExprClass:
1344 Loc = getExprLoc();
1345 R1 = getSourceRange();
1346 return true;
1348 case StmtExprClass: {
1349 // Statement exprs don't logically have side effects themselves, but are
1350 // sometimes used in macros in ways that give them a type that is unused.
1351 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1352 // however, if the result of the stmt expr is dead, we don't want to emit a
1353 // warning.
1354 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1355 if (!CS->body_empty()) {
1356 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1357 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1358 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1359 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1360 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1363 if (getType()->isVoidType())
1364 return false;
1365 Loc = cast<StmtExpr>(this)->getLParenLoc();
1366 R1 = getSourceRange();
1367 return true;
1369 case CStyleCastExprClass:
1370 // If this is an explicit cast to void, allow it. People do this when they
1371 // think they know what they're doing :).
1372 if (getType()->isVoidType())
1373 return false;
1374 Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1375 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1376 return true;
1377 case CXXFunctionalCastExprClass: {
1378 if (getType()->isVoidType())
1379 return false;
1380 const CastExpr *CE = cast<CastExpr>(this);
1382 // If this is a cast to void or a constructor conversion, check the operand.
1383 // Otherwise, the result of the cast is unused.
1384 if (CE->getCastKind() == CK_ToVoid ||
1385 CE->getCastKind() == CK_ConstructorConversion)
1386 return (cast<CastExpr>(this)->getSubExpr()
1387 ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1388 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1389 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1390 return true;
1393 case ImplicitCastExprClass:
1394 // Check the operand, since implicit casts are inserted by Sema
1395 return (cast<ImplicitCastExpr>(this)
1396 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1398 case CXXDefaultArgExprClass:
1399 return (cast<CXXDefaultArgExpr>(this)
1400 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1402 case CXXNewExprClass:
1403 // FIXME: In theory, there might be new expressions that don't have side
1404 // effects (e.g. a placement new with an uninitialized POD).
1405 case CXXDeleteExprClass:
1406 return false;
1407 case CXXBindTemporaryExprClass:
1408 return (cast<CXXBindTemporaryExpr>(this)
1409 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1410 case ExprWithCleanupsClass:
1411 return (cast<ExprWithCleanups>(this)
1412 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1416 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
1417 /// returns true, if it is; false otherwise.
1418 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1419 switch (getStmtClass()) {
1420 default:
1421 return false;
1422 case ObjCIvarRefExprClass:
1423 return true;
1424 case Expr::UnaryOperatorClass:
1425 return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1426 case ParenExprClass:
1427 return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1428 case ImplicitCastExprClass:
1429 return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1430 case CStyleCastExprClass:
1431 return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1432 case DeclRefExprClass: {
1433 const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1434 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1435 if (VD->hasGlobalStorage())
1436 return true;
1437 QualType T = VD->getType();
1438 // dereferencing to a pointer is always a gc'able candidate,
1439 // unless it is __weak.
1440 return T->isPointerType() &&
1441 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1443 return false;
1445 case MemberExprClass: {
1446 const MemberExpr *M = cast<MemberExpr>(this);
1447 return M->getBase()->isOBJCGCCandidate(Ctx);
1449 case ArraySubscriptExprClass:
1450 return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1454 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1455 if (isTypeDependent())
1456 return false;
1457 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1460 static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1461 Expr::CanThrowResult CT2) {
1462 // CanThrowResult constants are ordered so that the maximum is the correct
1463 // merge result.
1464 return CT1 > CT2 ? CT1 : CT2;
1467 static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1468 Expr *E = const_cast<Expr*>(CE);
1469 Expr::CanThrowResult R = Expr::CT_Cannot;
1470 for (Expr::child_iterator I = E->child_begin(), IE = E->child_end();
1471 I != IE && R != Expr::CT_Can; ++I) {
1472 R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1474 return R;
1477 static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1478 bool NullThrows = true) {
1479 if (!D)
1480 return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1482 // See if we can get a function type from the decl somehow.
1483 const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1484 if (!VD) // If we have no clue what we're calling, assume the worst.
1485 return Expr::CT_Can;
1487 // As an extension, we assume that __attribute__((nothrow)) functions don't
1488 // throw.
1489 if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1490 return Expr::CT_Cannot;
1492 QualType T = VD->getType();
1493 const FunctionProtoType *FT;
1494 if ((FT = T->getAs<FunctionProtoType>())) {
1495 } else if (const PointerType *PT = T->getAs<PointerType>())
1496 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1497 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1498 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1499 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1500 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1501 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1502 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1504 if (!FT)
1505 return Expr::CT_Can;
1507 return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1510 static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1511 if (DC->isTypeDependent())
1512 return Expr::CT_Dependent;
1514 if (!DC->getTypeAsWritten()->isReferenceType())
1515 return Expr::CT_Cannot;
1517 return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1520 static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1521 const CXXTypeidExpr *DC) {
1522 if (DC->isTypeOperand())
1523 return Expr::CT_Cannot;
1525 Expr *Op = DC->getExprOperand();
1526 if (Op->isTypeDependent())
1527 return Expr::CT_Dependent;
1529 const RecordType *RT = Op->getType()->getAs<RecordType>();
1530 if (!RT)
1531 return Expr::CT_Cannot;
1533 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1534 return Expr::CT_Cannot;
1536 if (Op->Classify(C).isPRValue())
1537 return Expr::CT_Cannot;
1539 return Expr::CT_Can;
1542 Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1543 // C++ [expr.unary.noexcept]p3:
1544 // [Can throw] if in a potentially-evaluated context the expression would
1545 // contain:
1546 switch (getStmtClass()) {
1547 case CXXThrowExprClass:
1548 // - a potentially evaluated throw-expression
1549 return CT_Can;
1551 case CXXDynamicCastExprClass: {
1552 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1553 // where T is a reference type, that requires a run-time check
1554 CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1555 if (CT == CT_Can)
1556 return CT;
1557 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1560 case CXXTypeidExprClass:
1561 // - a potentially evaluated typeid expression applied to a glvalue
1562 // expression whose type is a polymorphic class type
1563 return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1565 // - a potentially evaluated call to a function, member function, function
1566 // pointer, or member function pointer that does not have a non-throwing
1567 // exception-specification
1568 case CallExprClass:
1569 case CXXOperatorCallExprClass:
1570 case CXXMemberCallExprClass: {
1571 CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1572 if (CT == CT_Can)
1573 return CT;
1574 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1577 case CXXConstructExprClass:
1578 case CXXTemporaryObjectExprClass: {
1579 CanThrowResult CT = CanCalleeThrow(
1580 cast<CXXConstructExpr>(this)->getConstructor());
1581 if (CT == CT_Can)
1582 return CT;
1583 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1586 case CXXNewExprClass: {
1587 CanThrowResult CT = MergeCanThrow(
1588 CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1589 CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1590 /*NullThrows*/false));
1591 if (CT == CT_Can)
1592 return CT;
1593 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1596 case CXXDeleteExprClass: {
1597 CanThrowResult CT = CanCalleeThrow(
1598 cast<CXXDeleteExpr>(this)->getOperatorDelete());
1599 if (CT == CT_Can)
1600 return CT;
1601 const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1602 // Unwrap exactly one implicit cast, which converts all pointers to void*.
1603 if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1604 Arg = Cast->getSubExpr();
1605 if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1606 if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1607 CanThrowResult CT2 = CanCalleeThrow(
1608 cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1609 if (CT2 == CT_Can)
1610 return CT2;
1611 CT = MergeCanThrow(CT, CT2);
1614 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1617 case CXXBindTemporaryExprClass: {
1618 // The bound temporary has to be destroyed again, which might throw.
1619 CanThrowResult CT = CanCalleeThrow(
1620 cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1621 if (CT == CT_Can)
1622 return CT;
1623 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1626 // ObjC message sends are like function calls, but never have exception
1627 // specs.
1628 case ObjCMessageExprClass:
1629 case ObjCPropertyRefExprClass:
1630 return CT_Can;
1632 // Many other things have subexpressions, so we have to test those.
1633 // Some are simple:
1634 case ParenExprClass:
1635 case MemberExprClass:
1636 case CXXReinterpretCastExprClass:
1637 case CXXConstCastExprClass:
1638 case ConditionalOperatorClass:
1639 case CompoundLiteralExprClass:
1640 case ExtVectorElementExprClass:
1641 case InitListExprClass:
1642 case DesignatedInitExprClass:
1643 case ParenListExprClass:
1644 case VAArgExprClass:
1645 case CXXDefaultArgExprClass:
1646 case ExprWithCleanupsClass:
1647 case ObjCIvarRefExprClass:
1648 case ObjCIsaExprClass:
1649 case ShuffleVectorExprClass:
1650 return CanSubExprsThrow(C, this);
1652 // Some might be dependent for other reasons.
1653 case UnaryOperatorClass:
1654 case ArraySubscriptExprClass:
1655 case ImplicitCastExprClass:
1656 case CStyleCastExprClass:
1657 case CXXStaticCastExprClass:
1658 case CXXFunctionalCastExprClass:
1659 case BinaryOperatorClass:
1660 case CompoundAssignOperatorClass: {
1661 CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1662 return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1665 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1666 case StmtExprClass:
1667 return CT_Can;
1669 case ChooseExprClass:
1670 if (isTypeDependent() || isValueDependent())
1671 return CT_Dependent;
1672 return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1674 // Some expressions are always dependent.
1675 case DependentScopeDeclRefExprClass:
1676 case CXXUnresolvedConstructExprClass:
1677 case CXXDependentScopeMemberExprClass:
1678 return CT_Dependent;
1680 default:
1681 // All other expressions don't have subexpressions, or else they are
1682 // unevaluated.
1683 return CT_Cannot;
1687 Expr* Expr::IgnoreParens() {
1688 Expr* E = this;
1689 while (true) {
1690 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1691 E = P->getSubExpr();
1692 continue;
1694 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1695 if (P->getOpcode() == UO_Extension) {
1696 E = P->getSubExpr();
1697 continue;
1700 return E;
1704 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
1705 /// or CastExprs or ImplicitCastExprs, returning their operand.
1706 Expr *Expr::IgnoreParenCasts() {
1707 Expr *E = this;
1708 while (true) {
1709 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1710 E = P->getSubExpr();
1711 continue;
1713 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1714 E = P->getSubExpr();
1715 continue;
1717 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1718 if (P->getOpcode() == UO_Extension) {
1719 E = P->getSubExpr();
1720 continue;
1723 return E;
1727 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
1728 /// casts. This is intended purely as a temporary workaround for code
1729 /// that hasn't yet been rewritten to do the right thing about those
1730 /// casts, and may disappear along with the last internal use.
1731 Expr *Expr::IgnoreParenLValueCasts() {
1732 Expr *E = this;
1733 while (true) {
1734 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1735 E = P->getSubExpr();
1736 continue;
1737 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1738 if (P->getCastKind() == CK_LValueToRValue) {
1739 E = P->getSubExpr();
1740 continue;
1742 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1743 if (P->getOpcode() == UO_Extension) {
1744 E = P->getSubExpr();
1745 continue;
1748 break;
1750 return E;
1753 Expr *Expr::IgnoreParenImpCasts() {
1754 Expr *E = this;
1755 while (true) {
1756 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1757 E = P->getSubExpr();
1758 continue;
1760 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1761 E = P->getSubExpr();
1762 continue;
1764 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1765 if (P->getOpcode() == UO_Extension) {
1766 E = P->getSubExpr();
1767 continue;
1770 return E;
1774 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1775 /// value (including ptr->int casts of the same size). Strip off any
1776 /// ParenExpr or CastExprs, returning their operand.
1777 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1778 Expr *E = this;
1779 while (true) {
1780 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1781 E = P->getSubExpr();
1782 continue;
1785 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1786 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1787 // ptr<->int casts of the same width. We also ignore all identity casts.
1788 Expr *SE = P->getSubExpr();
1790 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1791 E = SE;
1792 continue;
1795 if ((E->getType()->isPointerType() ||
1796 E->getType()->isIntegralType(Ctx)) &&
1797 (SE->getType()->isPointerType() ||
1798 SE->getType()->isIntegralType(Ctx)) &&
1799 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1800 E = SE;
1801 continue;
1805 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1806 if (P->getOpcode() == UO_Extension) {
1807 E = P->getSubExpr();
1808 continue;
1812 return E;
1816 bool Expr::isDefaultArgument() const {
1817 const Expr *E = this;
1818 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1819 E = ICE->getSubExprAsWritten();
1821 return isa<CXXDefaultArgExpr>(E);
1824 /// \brief Skip over any no-op casts and any temporary-binding
1825 /// expressions.
1826 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
1827 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1828 if (ICE->getCastKind() == CK_NoOp)
1829 E = ICE->getSubExpr();
1830 else
1831 break;
1834 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1835 E = BE->getSubExpr();
1837 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1838 if (ICE->getCastKind() == CK_NoOp)
1839 E = ICE->getSubExpr();
1840 else
1841 break;
1844 return E->IgnoreParens();
1847 /// isTemporaryObject - Determines if this expression produces a
1848 /// temporary of the given class type.
1849 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1850 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1851 return false;
1853 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
1855 // Temporaries are by definition pr-values of class type.
1856 if (!E->Classify(C).isPRValue()) {
1857 // In this context, property reference is a message call and is pr-value.
1858 if (!isa<ObjCPropertyRefExpr>(E))
1859 return false;
1862 // Black-list a few cases which yield pr-values of class type that don't
1863 // refer to temporaries of that type:
1865 // - implicit derived-to-base conversions
1866 if (isa<ImplicitCastExpr>(E)) {
1867 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
1868 case CK_DerivedToBase:
1869 case CK_UncheckedDerivedToBase:
1870 return false;
1871 default:
1872 break;
1876 // - member expressions (all)
1877 if (isa<MemberExpr>(E))
1878 return false;
1880 return true;
1883 /// hasAnyTypeDependentArguments - Determines if any of the expressions
1884 /// in Exprs is type-dependent.
1885 bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1886 for (unsigned I = 0; I < NumExprs; ++I)
1887 if (Exprs[I]->isTypeDependent())
1888 return true;
1890 return false;
1893 /// hasAnyValueDependentArguments - Determines if any of the expressions
1894 /// in Exprs is value-dependent.
1895 bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1896 for (unsigned I = 0; I < NumExprs; ++I)
1897 if (Exprs[I]->isValueDependent())
1898 return true;
1900 return false;
1903 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
1904 // This function is attempting whether an expression is an initializer
1905 // which can be evaluated at compile-time. isEvaluatable handles most
1906 // of the cases, but it can't deal with some initializer-specific
1907 // expressions, and it can't deal with aggregates; we deal with those here,
1908 // and fall back to isEvaluatable for the other cases.
1910 // If we ever capture reference-binding directly in the AST, we can
1911 // kill the second parameter.
1913 if (IsForRef) {
1914 EvalResult Result;
1915 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
1918 switch (getStmtClass()) {
1919 default: break;
1920 case StringLiteralClass:
1921 case ObjCStringLiteralClass:
1922 case ObjCEncodeExprClass:
1923 return true;
1924 case CXXTemporaryObjectExprClass:
1925 case CXXConstructExprClass: {
1926 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
1928 // Only if it's
1929 // 1) an application of the trivial default constructor or
1930 if (!CE->getConstructor()->isTrivial()) return false;
1931 if (!CE->getNumArgs()) return true;
1933 // 2) an elidable trivial copy construction of an operand which is
1934 // itself a constant initializer. Note that we consider the
1935 // operand on its own, *not* as a reference binding.
1936 return CE->isElidable() &&
1937 CE->getArg(0)->isConstantInitializer(Ctx, false);
1939 case CompoundLiteralExprClass: {
1940 // This handles gcc's extension that allows global initializers like
1941 // "struct x {int x;} x = (struct x) {};".
1942 // FIXME: This accepts other cases it shouldn't!
1943 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1944 return Exp->isConstantInitializer(Ctx, false);
1946 case InitListExprClass: {
1947 // FIXME: This doesn't deal with fields with reference types correctly.
1948 // FIXME: This incorrectly allows pointers cast to integers to be assigned
1949 // to bitfields.
1950 const InitListExpr *Exp = cast<InitListExpr>(this);
1951 unsigned numInits = Exp->getNumInits();
1952 for (unsigned i = 0; i < numInits; i++) {
1953 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
1954 return false;
1956 return true;
1958 case ImplicitValueInitExprClass:
1959 return true;
1960 case ParenExprClass:
1961 return cast<ParenExpr>(this)->getSubExpr()
1962 ->isConstantInitializer(Ctx, IsForRef);
1963 case ChooseExprClass:
1964 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
1965 ->isConstantInitializer(Ctx, IsForRef);
1966 case UnaryOperatorClass: {
1967 const UnaryOperator* Exp = cast<UnaryOperator>(this);
1968 if (Exp->getOpcode() == UO_Extension)
1969 return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
1970 break;
1972 case BinaryOperatorClass: {
1973 // Special case &&foo - &&bar. It would be nice to generalize this somehow
1974 // but this handles the common case.
1975 const BinaryOperator *Exp = cast<BinaryOperator>(this);
1976 if (Exp->getOpcode() == BO_Sub &&
1977 isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1978 isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1979 return true;
1980 break;
1982 case CXXFunctionalCastExprClass:
1983 case CXXStaticCastExprClass:
1984 case ImplicitCastExprClass:
1985 case CStyleCastExprClass:
1986 // Handle casts with a destination that's a struct or union; this
1987 // deals with both the gcc no-op struct cast extension and the
1988 // cast-to-union extension.
1989 if (getType()->isRecordType())
1990 return cast<CastExpr>(this)->getSubExpr()
1991 ->isConstantInitializer(Ctx, false);
1993 // Integer->integer casts can be handled here, which is important for
1994 // things like (int)(&&x-&&y). Scary but true.
1995 if (getType()->isIntegerType() &&
1996 cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1997 return cast<CastExpr>(this)->getSubExpr()
1998 ->isConstantInitializer(Ctx, false);
2000 break;
2002 return isEvaluatable(Ctx);
2005 /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
2006 /// integer constant expression with the value zero, or if this is one that is
2007 /// cast to void*.
2008 bool Expr::isNullPointerConstant(ASTContext &Ctx,
2009 NullPointerConstantValueDependence NPC) const {
2010 if (isValueDependent()) {
2011 switch (NPC) {
2012 case NPC_NeverValueDependent:
2013 assert(false && "Unexpected value dependent expression!");
2014 // If the unthinkable happens, fall through to the safest alternative.
2016 case NPC_ValueDependentIsNull:
2017 return isTypeDependent() || getType()->isIntegralType(Ctx);
2019 case NPC_ValueDependentIsNotNull:
2020 return false;
2024 // Strip off a cast to void*, if it exists. Except in C++.
2025 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2026 if (!Ctx.getLangOptions().CPlusPlus) {
2027 // Check that it is a cast to void*.
2028 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2029 QualType Pointee = PT->getPointeeType();
2030 if (!Pointee.hasQualifiers() &&
2031 Pointee->isVoidType() && // to void*
2032 CE->getSubExpr()->getType()->isIntegerType()) // from int.
2033 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2036 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2037 // Ignore the ImplicitCastExpr type entirely.
2038 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2039 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2040 // Accept ((void*)0) as a null pointer constant, as many other
2041 // implementations do.
2042 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2043 } else if (const CXXDefaultArgExpr *DefaultArg
2044 = dyn_cast<CXXDefaultArgExpr>(this)) {
2045 // See through default argument expressions
2046 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2047 } else if (isa<GNUNullExpr>(this)) {
2048 // The GNU __null extension is always a null pointer constant.
2049 return true;
2052 // C++0x nullptr_t is always a null pointer constant.
2053 if (getType()->isNullPtrType())
2054 return true;
2056 if (const RecordType *UT = getType()->getAsUnionType())
2057 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2058 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2059 const Expr *InitExpr = CLE->getInitializer();
2060 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2061 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2063 // This expression must be an integer type.
2064 if (!getType()->isIntegerType() ||
2065 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2066 return false;
2068 // If we have an integer constant expression, we need to *evaluate* it and
2069 // test for the value 0.
2070 llvm::APSInt Result;
2071 return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2074 /// \brief If this expression is an l-value for an Objective C
2075 /// property, find the underlying property reference expression.
2076 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2077 const Expr *E = this;
2078 while (true) {
2079 assert((E->getValueKind() == VK_LValue &&
2080 E->getObjectKind() == OK_ObjCProperty) &&
2081 "expression is not a property reference");
2082 E = E->IgnoreParenCasts();
2083 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2084 if (BO->getOpcode() == BO_Comma) {
2085 E = BO->getRHS();
2086 continue;
2090 break;
2093 return cast<ObjCPropertyRefExpr>(E);
2096 FieldDecl *Expr::getBitField() {
2097 Expr *E = this->IgnoreParens();
2099 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2100 if (ICE->getCastKind() == CK_LValueToRValue ||
2101 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2102 E = ICE->getSubExpr()->IgnoreParens();
2103 else
2104 break;
2107 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2108 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2109 if (Field->isBitField())
2110 return Field;
2112 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2113 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2114 if (Field->isBitField())
2115 return Field;
2117 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2118 if (BinOp->isAssignmentOp() && BinOp->getLHS())
2119 return BinOp->getLHS()->getBitField();
2121 return 0;
2124 bool Expr::refersToVectorElement() const {
2125 const Expr *E = this->IgnoreParens();
2127 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2128 if (ICE->getValueKind() != VK_RValue &&
2129 ICE->getCastKind() == CK_NoOp)
2130 E = ICE->getSubExpr()->IgnoreParens();
2131 else
2132 break;
2135 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2136 return ASE->getBase()->getType()->isVectorType();
2138 if (isa<ExtVectorElementExpr>(E))
2139 return true;
2141 return false;
2144 /// isArrow - Return true if the base expression is a pointer to vector,
2145 /// return false if the base expression is a vector.
2146 bool ExtVectorElementExpr::isArrow() const {
2147 return getBase()->getType()->isPointerType();
2150 unsigned ExtVectorElementExpr::getNumElements() const {
2151 if (const VectorType *VT = getType()->getAs<VectorType>())
2152 return VT->getNumElements();
2153 return 1;
2156 /// containsDuplicateElements - Return true if any element access is repeated.
2157 bool ExtVectorElementExpr::containsDuplicateElements() const {
2158 // FIXME: Refactor this code to an accessor on the AST node which returns the
2159 // "type" of component access, and share with code below and in Sema.
2160 llvm::StringRef Comp = Accessor->getName();
2162 // Halving swizzles do not contain duplicate elements.
2163 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2164 return false;
2166 // Advance past s-char prefix on hex swizzles.
2167 if (Comp[0] == 's' || Comp[0] == 'S')
2168 Comp = Comp.substr(1);
2170 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2171 if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2172 return true;
2174 return false;
2177 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2178 void ExtVectorElementExpr::getEncodedElementAccess(
2179 llvm::SmallVectorImpl<unsigned> &Elts) const {
2180 llvm::StringRef Comp = Accessor->getName();
2181 if (Comp[0] == 's' || Comp[0] == 'S')
2182 Comp = Comp.substr(1);
2184 bool isHi = Comp == "hi";
2185 bool isLo = Comp == "lo";
2186 bool isEven = Comp == "even";
2187 bool isOdd = Comp == "odd";
2189 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2190 uint64_t Index;
2192 if (isHi)
2193 Index = e + i;
2194 else if (isLo)
2195 Index = i;
2196 else if (isEven)
2197 Index = 2 * i;
2198 else if (isOdd)
2199 Index = 2 * i + 1;
2200 else
2201 Index = ExtVectorType::getAccessorIdx(Comp[i]);
2203 Elts.push_back(Index);
2207 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2208 ExprValueKind VK,
2209 SourceLocation LBracLoc,
2210 SourceLocation SuperLoc,
2211 bool IsInstanceSuper,
2212 QualType SuperType,
2213 Selector Sel,
2214 SourceLocation SelLoc,
2215 ObjCMethodDecl *Method,
2216 Expr **Args, unsigned NumArgs,
2217 SourceLocation RBracLoc)
2218 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2219 /*TypeDependent=*/false, /*ValueDependent=*/false),
2220 NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2221 HasMethod(Method != 0), SuperLoc(SuperLoc),
2222 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2223 : Sel.getAsOpaquePtr())),
2224 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2226 setReceiverPointer(SuperType.getAsOpaquePtr());
2227 if (NumArgs)
2228 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2231 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2232 ExprValueKind VK,
2233 SourceLocation LBracLoc,
2234 TypeSourceInfo *Receiver,
2235 Selector Sel,
2236 SourceLocation SelLoc,
2237 ObjCMethodDecl *Method,
2238 Expr **Args, unsigned NumArgs,
2239 SourceLocation RBracLoc)
2240 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2241 (T->isDependentType() ||
2242 hasAnyValueDependentArguments(Args, NumArgs))),
2243 NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2244 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2245 : Sel.getAsOpaquePtr())),
2246 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2248 setReceiverPointer(Receiver);
2249 if (NumArgs)
2250 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2253 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2254 ExprValueKind VK,
2255 SourceLocation LBracLoc,
2256 Expr *Receiver,
2257 Selector Sel,
2258 SourceLocation SelLoc,
2259 ObjCMethodDecl *Method,
2260 Expr **Args, unsigned NumArgs,
2261 SourceLocation RBracLoc)
2262 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2263 (Receiver->isTypeDependent() ||
2264 hasAnyValueDependentArguments(Args, NumArgs))),
2265 NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2266 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2267 : Sel.getAsOpaquePtr())),
2268 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2270 setReceiverPointer(Receiver);
2271 if (NumArgs)
2272 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2275 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2276 ExprValueKind VK,
2277 SourceLocation LBracLoc,
2278 SourceLocation SuperLoc,
2279 bool IsInstanceSuper,
2280 QualType SuperType,
2281 Selector Sel,
2282 SourceLocation SelLoc,
2283 ObjCMethodDecl *Method,
2284 Expr **Args, unsigned NumArgs,
2285 SourceLocation RBracLoc) {
2286 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2287 NumArgs * sizeof(Expr *);
2288 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2289 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2290 SuperType, Sel, SelLoc, Method, Args,NumArgs,
2291 RBracLoc);
2294 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2295 ExprValueKind VK,
2296 SourceLocation LBracLoc,
2297 TypeSourceInfo *Receiver,
2298 Selector Sel,
2299 SourceLocation SelLoc,
2300 ObjCMethodDecl *Method,
2301 Expr **Args, unsigned NumArgs,
2302 SourceLocation RBracLoc) {
2303 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2304 NumArgs * sizeof(Expr *);
2305 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2306 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2307 Method, Args, NumArgs, RBracLoc);
2310 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2311 ExprValueKind VK,
2312 SourceLocation LBracLoc,
2313 Expr *Receiver,
2314 Selector Sel,
2315 SourceLocation SelLoc,
2316 ObjCMethodDecl *Method,
2317 Expr **Args, unsigned NumArgs,
2318 SourceLocation RBracLoc) {
2319 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2320 NumArgs * sizeof(Expr *);
2321 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2322 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2323 Method, Args, NumArgs, RBracLoc);
2326 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2327 unsigned NumArgs) {
2328 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2329 NumArgs * sizeof(Expr *);
2330 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2331 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2334 Selector ObjCMessageExpr::getSelector() const {
2335 if (HasMethod)
2336 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2337 ->getSelector();
2338 return Selector(SelectorOrMethod);
2341 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2342 switch (getReceiverKind()) {
2343 case Instance:
2344 if (const ObjCObjectPointerType *Ptr
2345 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2346 return Ptr->getInterfaceDecl();
2347 break;
2349 case Class:
2350 if (const ObjCObjectType *Ty
2351 = getClassReceiver()->getAs<ObjCObjectType>())
2352 return Ty->getInterface();
2353 break;
2355 case SuperInstance:
2356 if (const ObjCObjectPointerType *Ptr
2357 = getSuperType()->getAs<ObjCObjectPointerType>())
2358 return Ptr->getInterfaceDecl();
2359 break;
2361 case SuperClass:
2362 if (const ObjCObjectPointerType *Iface
2363 = getSuperType()->getAs<ObjCObjectPointerType>())
2364 return Iface->getInterfaceDecl();
2365 break;
2368 return 0;
2371 bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2372 return getCond()->EvaluateAsInt(C) != 0;
2375 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2376 unsigned NumExprs) {
2377 if (SubExprs) C.Deallocate(SubExprs);
2379 SubExprs = new (C) Stmt* [NumExprs];
2380 this->NumExprs = NumExprs;
2381 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2384 //===----------------------------------------------------------------------===//
2385 // DesignatedInitExpr
2386 //===----------------------------------------------------------------------===//
2388 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2389 assert(Kind == FieldDesignator && "Only valid on a field designator");
2390 if (Field.NameOrField & 0x01)
2391 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2392 else
2393 return getField()->getIdentifier();
2396 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2397 unsigned NumDesignators,
2398 const Designator *Designators,
2399 SourceLocation EqualOrColonLoc,
2400 bool GNUSyntax,
2401 Expr **IndexExprs,
2402 unsigned NumIndexExprs,
2403 Expr *Init)
2404 : Expr(DesignatedInitExprClass, Ty,
2405 Init->getValueKind(), Init->getObjectKind(),
2406 Init->isTypeDependent(), Init->isValueDependent()),
2407 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2408 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2409 this->Designators = new (C) Designator[NumDesignators];
2411 // Record the initializer itself.
2412 child_iterator Child = child_begin();
2413 *Child++ = Init;
2415 // Copy the designators and their subexpressions, computing
2416 // value-dependence along the way.
2417 unsigned IndexIdx = 0;
2418 for (unsigned I = 0; I != NumDesignators; ++I) {
2419 this->Designators[I] = Designators[I];
2421 if (this->Designators[I].isArrayDesignator()) {
2422 // Compute type- and value-dependence.
2423 Expr *Index = IndexExprs[IndexIdx];
2424 ExprBits.ValueDependent = ExprBits.ValueDependent ||
2425 Index->isTypeDependent() || Index->isValueDependent();
2427 // Copy the index expressions into permanent storage.
2428 *Child++ = IndexExprs[IndexIdx++];
2429 } else if (this->Designators[I].isArrayRangeDesignator()) {
2430 // Compute type- and value-dependence.
2431 Expr *Start = IndexExprs[IndexIdx];
2432 Expr *End = IndexExprs[IndexIdx + 1];
2433 ExprBits.ValueDependent = ExprBits.ValueDependent ||
2434 Start->isTypeDependent() || Start->isValueDependent() ||
2435 End->isTypeDependent() || End->isValueDependent();
2437 // Copy the start/end expressions into permanent storage.
2438 *Child++ = IndexExprs[IndexIdx++];
2439 *Child++ = IndexExprs[IndexIdx++];
2443 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2446 DesignatedInitExpr *
2447 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2448 unsigned NumDesignators,
2449 Expr **IndexExprs, unsigned NumIndexExprs,
2450 SourceLocation ColonOrEqualLoc,
2451 bool UsesColonSyntax, Expr *Init) {
2452 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2453 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2454 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2455 ColonOrEqualLoc, UsesColonSyntax,
2456 IndexExprs, NumIndexExprs, Init);
2459 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2460 unsigned NumIndexExprs) {
2461 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2462 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2463 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2466 void DesignatedInitExpr::setDesignators(ASTContext &C,
2467 const Designator *Desigs,
2468 unsigned NumDesigs) {
2469 Designators = new (C) Designator[NumDesigs];
2470 NumDesignators = NumDesigs;
2471 for (unsigned I = 0; I != NumDesigs; ++I)
2472 Designators[I] = Desigs[I];
2475 SourceRange DesignatedInitExpr::getSourceRange() const {
2476 SourceLocation StartLoc;
2477 Designator &First =
2478 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2479 if (First.isFieldDesignator()) {
2480 if (GNUSyntax)
2481 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2482 else
2483 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2484 } else
2485 StartLoc =
2486 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2487 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2490 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2491 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2492 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2493 Ptr += sizeof(DesignatedInitExpr);
2494 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2495 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2498 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2499 assert(D.Kind == Designator::ArrayRangeDesignator &&
2500 "Requires array range designator");
2501 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2502 Ptr += sizeof(DesignatedInitExpr);
2503 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2504 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2507 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2508 assert(D.Kind == Designator::ArrayRangeDesignator &&
2509 "Requires array range designator");
2510 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2511 Ptr += sizeof(DesignatedInitExpr);
2512 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2513 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2516 /// \brief Replaces the designator at index @p Idx with the series
2517 /// of designators in [First, Last).
2518 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2519 const Designator *First,
2520 const Designator *Last) {
2521 unsigned NumNewDesignators = Last - First;
2522 if (NumNewDesignators == 0) {
2523 std::copy_backward(Designators + Idx + 1,
2524 Designators + NumDesignators,
2525 Designators + Idx);
2526 --NumNewDesignators;
2527 return;
2528 } else if (NumNewDesignators == 1) {
2529 Designators[Idx] = *First;
2530 return;
2533 Designator *NewDesignators
2534 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2535 std::copy(Designators, Designators + Idx, NewDesignators);
2536 std::copy(First, Last, NewDesignators + Idx);
2537 std::copy(Designators + Idx + 1, Designators + NumDesignators,
2538 NewDesignators + Idx + NumNewDesignators);
2539 Designators = NewDesignators;
2540 NumDesignators = NumDesignators - 1 + NumNewDesignators;
2543 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2544 Expr **exprs, unsigned nexprs,
2545 SourceLocation rparenloc)
2546 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
2547 hasAnyTypeDependentArguments(exprs, nexprs),
2548 hasAnyValueDependentArguments(exprs, nexprs)),
2549 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2551 Exprs = new (C) Stmt*[nexprs];
2552 for (unsigned i = 0; i != nexprs; ++i)
2553 Exprs[i] = exprs[i];
2556 //===----------------------------------------------------------------------===//
2557 // ExprIterator.
2558 //===----------------------------------------------------------------------===//
2560 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2561 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2562 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2563 const Expr* ConstExprIterator::operator[](size_t idx) const {
2564 return cast<Expr>(I[idx]);
2566 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2567 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2569 //===----------------------------------------------------------------------===//
2570 // Child Iterators for iterating over subexpressions/substatements
2571 //===----------------------------------------------------------------------===//
2573 // DeclRefExpr
2574 Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2575 Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2577 // ObjCIvarRefExpr
2578 Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2579 Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2581 // ObjCPropertyRefExpr
2582 Stmt::child_iterator ObjCPropertyRefExpr::child_begin()
2584 if (Receiver.is<Stmt*>()) {
2585 // Hack alert!
2586 return reinterpret_cast<Stmt**> (&Receiver);
2588 return child_iterator();
2591 Stmt::child_iterator ObjCPropertyRefExpr::child_end()
2592 { return Receiver.is<Stmt*>() ?
2593 reinterpret_cast<Stmt**> (&Receiver)+1 :
2594 child_iterator();
2597 // ObjCIsaExpr
2598 Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2599 Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2601 // PredefinedExpr
2602 Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2603 Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2605 // IntegerLiteral
2606 Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2607 Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2609 // CharacterLiteral
2610 Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2611 Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2613 // FloatingLiteral
2614 Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2615 Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2617 // ImaginaryLiteral
2618 Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2619 Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2621 // StringLiteral
2622 Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2623 Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2625 // ParenExpr
2626 Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2627 Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2629 // UnaryOperator
2630 Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2631 Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2633 // OffsetOfExpr
2634 Stmt::child_iterator OffsetOfExpr::child_begin() {
2635 return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2636 + NumComps);
2638 Stmt::child_iterator OffsetOfExpr::child_end() {
2639 return child_iterator(&*child_begin() + NumExprs);
2642 // SizeOfAlignOfExpr
2643 Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2644 // If this is of a type and the type is a VLA type (and not a typedef), the
2645 // size expression of the VLA needs to be treated as an executable expression.
2646 // Why isn't this weirdness documented better in StmtIterator?
2647 if (isArgumentType()) {
2648 if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2649 getArgumentType().getTypePtr()))
2650 return child_iterator(T);
2651 return child_iterator();
2653 return child_iterator(&Argument.Ex);
2655 Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2656 if (isArgumentType())
2657 return child_iterator();
2658 return child_iterator(&Argument.Ex + 1);
2661 // ArraySubscriptExpr
2662 Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2663 return &SubExprs[0];
2665 Stmt::child_iterator ArraySubscriptExpr::child_end() {
2666 return &SubExprs[0]+END_EXPR;
2669 // CallExpr
2670 Stmt::child_iterator CallExpr::child_begin() {
2671 return &SubExprs[0];
2673 Stmt::child_iterator CallExpr::child_end() {
2674 return &SubExprs[0]+NumArgs+ARGS_START;
2677 // MemberExpr
2678 Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2679 Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2681 // ExtVectorElementExpr
2682 Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2683 Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2685 // CompoundLiteralExpr
2686 Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2687 Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2689 // CastExpr
2690 Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2691 Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2693 // BinaryOperator
2694 Stmt::child_iterator BinaryOperator::child_begin() {
2695 return &SubExprs[0];
2697 Stmt::child_iterator BinaryOperator::child_end() {
2698 return &SubExprs[0]+END_EXPR;
2701 // ConditionalOperator
2702 Stmt::child_iterator ConditionalOperator::child_begin() {
2703 return &SubExprs[0];
2705 Stmt::child_iterator ConditionalOperator::child_end() {
2706 return &SubExprs[0]+END_EXPR;
2709 // AddrLabelExpr
2710 Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2711 Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2713 // StmtExpr
2714 Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2715 Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2718 // ChooseExpr
2719 Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2720 Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2722 // GNUNullExpr
2723 Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2724 Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2726 // ShuffleVectorExpr
2727 Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2728 return &SubExprs[0];
2730 Stmt::child_iterator ShuffleVectorExpr::child_end() {
2731 return &SubExprs[0]+NumExprs;
2734 // VAArgExpr
2735 Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2736 Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2738 // InitListExpr
2739 Stmt::child_iterator InitListExpr::child_begin() {
2740 return InitExprs.size() ? &InitExprs[0] : 0;
2742 Stmt::child_iterator InitListExpr::child_end() {
2743 return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2746 // DesignatedInitExpr
2747 Stmt::child_iterator DesignatedInitExpr::child_begin() {
2748 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2749 Ptr += sizeof(DesignatedInitExpr);
2750 return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2752 Stmt::child_iterator DesignatedInitExpr::child_end() {
2753 return child_iterator(&*child_begin() + NumSubExprs);
2756 // ImplicitValueInitExpr
2757 Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2758 return child_iterator();
2761 Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2762 return child_iterator();
2765 // ParenListExpr
2766 Stmt::child_iterator ParenListExpr::child_begin() {
2767 return &Exprs[0];
2769 Stmt::child_iterator ParenListExpr::child_end() {
2770 return &Exprs[0]+NumExprs;
2773 // ObjCStringLiteral
2774 Stmt::child_iterator ObjCStringLiteral::child_begin() {
2775 return &String;
2777 Stmt::child_iterator ObjCStringLiteral::child_end() {
2778 return &String+1;
2781 // ObjCEncodeExpr
2782 Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2783 Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2785 // ObjCSelectorExpr
2786 Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2787 return child_iterator();
2789 Stmt::child_iterator ObjCSelectorExpr::child_end() {
2790 return child_iterator();
2793 // ObjCProtocolExpr
2794 Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2795 return child_iterator();
2797 Stmt::child_iterator ObjCProtocolExpr::child_end() {
2798 return child_iterator();
2801 // ObjCMessageExpr
2802 Stmt::child_iterator ObjCMessageExpr::child_begin() {
2803 if (getReceiverKind() == Instance)
2804 return reinterpret_cast<Stmt **>(this + 1);
2805 return getArgs();
2807 Stmt::child_iterator ObjCMessageExpr::child_end() {
2808 return getArgs() + getNumArgs();
2811 // Blocks
2812 Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2813 Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2815 Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2816 Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2818 // OpaqueValueExpr
2819 SourceRange OpaqueValueExpr::getSourceRange() const { return SourceRange(); }
2820 Stmt::child_iterator OpaqueValueExpr::child_begin() { return child_iterator(); }
2821 Stmt::child_iterator OpaqueValueExpr::child_end() { return child_iterator(); }