Devirtualize DeclaratorDecl::getInnerLocStart() and TagDecl::getInnerLocStart().
[clang.git] / include / clang / AST / Decl.h
blob32706d6c9012647f52808c2ac262faece561e1fc
1 //===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Decl subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CLANG_AST_DECL_H
15 #define LLVM_CLANG_AST_DECL_H
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/Redeclarable.h"
20 #include "clang/AST/DeclarationName.h"
21 #include "clang/AST/ExternalASTSource.h"
22 #include "clang/Basic/Linkage.h"
24 namespace clang {
25 class CXXTemporary;
26 class Expr;
27 class FunctionTemplateDecl;
28 class Stmt;
29 class CompoundStmt;
30 class StringLiteral;
31 class NestedNameSpecifier;
32 class TemplateParameterList;
33 class TemplateArgumentList;
34 class MemberSpecializationInfo;
35 class FunctionTemplateSpecializationInfo;
36 class DependentFunctionTemplateSpecializationInfo;
37 class TypeLoc;
38 class UnresolvedSetImpl;
39 class LabelStmt;
41 /// \brief A container of type source information.
42 ///
43 /// A client can read the relevant info using TypeLoc wrappers, e.g:
44 /// @code
45 /// TypeLoc TL = TypeSourceInfo->getTypeLoc();
46 /// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
47 /// PL->getStarLoc().print(OS, SrcMgr);
48 /// @endcode
49 ///
50 class TypeSourceInfo {
51 QualType Ty;
52 // Contains a memory block after the class, used for type source information,
53 // allocated by ASTContext.
54 friend class ASTContext;
55 TypeSourceInfo(QualType ty) : Ty(ty) { }
56 public:
57 /// \brief Return the type wrapped by this type source info.
58 QualType getType() const { return Ty; }
60 /// \brief Return the TypeLoc wrapper for the type source info.
61 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
64 /// TranslationUnitDecl - The top declaration context.
65 class TranslationUnitDecl : public Decl, public DeclContext {
66 ASTContext &Ctx;
68 /// The (most recently entered) anonymous namespace for this
69 /// translation unit, if one has been created.
70 NamespaceDecl *AnonymousNamespace;
72 explicit TranslationUnitDecl(ASTContext &ctx)
73 : Decl(TranslationUnit, 0, SourceLocation()),
74 DeclContext(TranslationUnit),
75 Ctx(ctx), AnonymousNamespace(0) {}
76 public:
77 ASTContext &getASTContext() const { return Ctx; }
79 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
80 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
82 static TranslationUnitDecl *Create(ASTContext &C);
83 // Implement isa/cast/dyncast/etc.
84 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
85 static bool classof(const TranslationUnitDecl *D) { return true; }
86 static bool classofKind(Kind K) { return K == TranslationUnit; }
87 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
88 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
90 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
91 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
95 /// NamedDecl - This represents a decl with a name. Many decls have names such
96 /// as ObjCMethodDecl, but not @class, etc.
97 class NamedDecl : public Decl {
98 /// Name - The name of this declaration, which is typically a normal
99 /// identifier but may also be a special kind of name (C++
100 /// constructor, Objective-C selector, etc.)
101 DeclarationName Name;
103 protected:
104 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
105 : Decl(DK, DC, L), Name(N) { }
107 public:
108 /// getIdentifier - Get the identifier that names this declaration,
109 /// if there is one. This will return NULL if this declaration has
110 /// no name (e.g., for an unnamed class) or if the name is a special
111 /// name (C++ constructor, Objective-C selector, etc.).
112 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
114 /// getName - Get the name of identifier for this declaration as a StringRef.
115 /// This requires that the declaration have a name and that it be a simple
116 /// identifier.
117 llvm::StringRef getName() const {
118 assert(Name.isIdentifier() && "Name is not a simple identifier");
119 return getIdentifier() ? getIdentifier()->getName() : "";
122 /// getNameAsString - Get a human-readable name for the declaration, even if
123 /// it is one of the special kinds of names (C++ constructor, Objective-C
124 /// selector, etc). Creating this name requires expensive string
125 /// manipulation, so it should be called only when performance doesn't matter.
126 /// For simple declarations, getNameAsCString() should suffice.
128 // FIXME: This function should be renamed to indicate that it is not just an
129 // alternate form of getName(), and clients should move as appropriate.
131 // FIXME: Deprecated, move clients to getName().
132 std::string getNameAsString() const { return Name.getAsString(); }
134 void printName(llvm::raw_ostream &os) const { return Name.printName(os); }
136 /// getDeclName - Get the actual, stored name of the declaration,
137 /// which may be a special name.
138 DeclarationName getDeclName() const { return Name; }
140 /// \brief Set the name of this declaration.
141 void setDeclName(DeclarationName N) { Name = N; }
143 /// getQualifiedNameAsString - Returns human-readable qualified name for
144 /// declaration, like A::B::i, for i being member of namespace A::B.
145 /// If declaration is not member of context which can be named (record,
146 /// namespace), it will return same result as getNameAsString().
147 /// Creating this name is expensive, so it should be called only when
148 /// performance doesn't matter.
149 std::string getQualifiedNameAsString() const;
150 std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
152 /// getNameForDiagnostic - Appends a human-readable name for this
153 /// declaration into the given string.
155 /// This is the method invoked by Sema when displaying a NamedDecl
156 /// in a diagnostic. It does not necessarily produce the same
157 /// result as getNameAsString(); for example, class template
158 /// specializations are printed with their template arguments.
160 /// TODO: use an API that doesn't require so many temporary strings
161 void getNameForDiagnostic(std::string &S,
162 const PrintingPolicy &Policy,
163 bool Qualified) const;
165 /// declarationReplaces - Determine whether this declaration, if
166 /// known to be well-formed within its context, will replace the
167 /// declaration OldD if introduced into scope. A declaration will
168 /// replace another declaration if, for example, it is a
169 /// redeclaration of the same variable or function, but not if it is
170 /// a declaration of a different kind (function vs. class) or an
171 /// overloaded function.
172 bool declarationReplaces(NamedDecl *OldD) const;
174 /// \brief Determine whether this declaration has linkage.
175 bool hasLinkage() const;
177 /// \brief Determine whether this declaration is a C++ class member.
178 bool isCXXClassMember() const {
179 const DeclContext *DC = getDeclContext();
181 // C++0x [class.mem]p1:
182 // The enumerators of an unscoped enumeration defined in
183 // the class are members of the class.
184 // FIXME: support C++0x scoped enumerations.
185 if (isa<EnumDecl>(DC))
186 DC = DC->getParent();
188 return DC->isRecord();
191 /// \brief Given that this declaration is a C++ class member,
192 /// determine whether it's an instance member of its class.
193 bool isCXXInstanceMember() const;
195 class LinkageInfo {
196 Linkage linkage_;
197 Visibility visibility_;
198 bool explicit_;
200 public:
201 LinkageInfo() : linkage_(ExternalLinkage), visibility_(DefaultVisibility),
202 explicit_(false) {}
203 LinkageInfo(Linkage L, Visibility V, bool E)
204 : linkage_(L), visibility_(V), explicit_(E) {}
206 static LinkageInfo external() {
207 return LinkageInfo();
209 static LinkageInfo internal() {
210 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
212 static LinkageInfo uniqueExternal() {
213 return LinkageInfo(UniqueExternalLinkage, DefaultVisibility, false);
215 static LinkageInfo none() {
216 return LinkageInfo(NoLinkage, DefaultVisibility, false);
219 Linkage linkage() const { return linkage_; }
220 Visibility visibility() const { return visibility_; }
221 bool visibilityExplicit() const { return explicit_; }
223 void setLinkage(Linkage L) { linkage_ = L; }
224 void setVisibility(Visibility V) { visibility_ = V; }
225 void setVisibility(Visibility V, bool E) { visibility_ = V; explicit_ = E; }
226 void setVisibility(LinkageInfo Other) {
227 setVisibility(Other.visibility(), Other.visibilityExplicit());
230 void mergeLinkage(Linkage L) {
231 setLinkage(minLinkage(linkage(), L));
233 void mergeLinkage(LinkageInfo Other) {
234 setLinkage(minLinkage(linkage(), Other.linkage()));
237 void mergeVisibility(Visibility V) {
238 setVisibility(minVisibility(visibility(), V));
240 void mergeVisibility(Visibility V, bool E) {
241 setVisibility(minVisibility(visibility(), V), visibilityExplicit() || E);
243 void mergeVisibility(LinkageInfo Other) {
244 mergeVisibility(Other.visibility(), Other.visibilityExplicit());
247 void merge(LinkageInfo Other) {
248 mergeLinkage(Other);
249 mergeVisibility(Other);
251 void merge(std::pair<Linkage,Visibility> LV) {
252 mergeLinkage(LV.first);
253 mergeVisibility(LV.second);
256 friend LinkageInfo merge(LinkageInfo L, LinkageInfo R) {
257 L.merge(R);
258 return L;
262 /// \brief Determine what kind of linkage this entity has.
263 Linkage getLinkage() const;
265 /// \brief Determines the visibility of this entity.
266 Visibility getVisibility() const { return getLinkageAndVisibility().visibility(); }
268 /// \brief Determines the linkage and visibility of this entity.
269 LinkageInfo getLinkageAndVisibility() const;
271 /// \brief Clear the linkage cache in response to a change
272 /// to the declaration.
273 void ClearLinkageCache();
275 /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
276 /// the underlying named decl.
277 NamedDecl *getUnderlyingDecl();
278 const NamedDecl *getUnderlyingDecl() const {
279 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
282 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
283 static bool classof(const NamedDecl *D) { return true; }
284 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
287 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
288 const NamedDecl *ND) {
289 ND->getDeclName().printName(OS);
290 return OS;
293 /// LabelDecl - Represents the declaration of a label. Labels also have a
294 /// corresponding LabelStmt, which indicates the position that the label was
295 /// defined at. For normal labels, the location of the decl is the same as the
296 /// location of the statement. For GNU local labels (__label__), the decl
297 /// location is where the __label__ is.
298 class LabelDecl : public NamedDecl {
299 /// HasUnusedAttr - True if the label has __attribute__((unused)) on it.
300 /// FIXME: Just use attributes!
301 unsigned HasUnusedAttr : 1;
303 LabelStmt *TheStmt;
304 LabelDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *II, LabelStmt *S)
305 : NamedDecl(Label, DC, L, II), TheStmt(S) {}
307 public:
308 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
309 SourceLocation L, IdentifierInfo *II);
311 LabelStmt *getStmt() const { return TheStmt; }
312 void setStmt(LabelStmt *T) { TheStmt = T; }
314 bool hasUnusedAttribute() const { return HasUnusedAttr; }
315 void setHasUnusedAttribute() { HasUnusedAttr = true; }
317 // Implement isa/cast/dyncast/etc.
318 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
319 static bool classof(const LabelDecl *D) { return true; }
320 static bool classofKind(Kind K) { return K == Label; }
323 /// NamespaceDecl - Represent a C++ namespace.
324 class NamespaceDecl : public NamedDecl, public DeclContext {
325 bool IsInline : 1;
327 SourceLocation LBracLoc, RBracLoc;
329 // For extended namespace definitions:
331 // namespace A { int x; }
332 // namespace A { int y; }
334 // there will be one NamespaceDecl for each declaration.
335 // NextNamespace points to the next extended declaration.
336 // OrigNamespace points to the original namespace declaration.
337 // OrigNamespace of the first namespace decl points to its anonymous namespace
338 LazyDeclPtr NextNamespace;
340 /// \brief A pointer to either the original namespace definition for
341 /// this namespace (if the boolean value is false) or the anonymous
342 /// namespace that lives just inside this namespace (if the boolean
343 /// value is true).
345 /// We can combine these two notions because the anonymous namespace
346 /// must only be stored in one of the namespace declarations (so all
347 /// of the namespace declarations can find it). We therefore choose
348 /// the original namespace declaration, since all of the namespace
349 /// declarations have a link directly to it; the original namespace
350 /// declaration itself only needs to know that it is the original
351 /// namespace declaration (which the boolean indicates).
352 llvm::PointerIntPair<NamespaceDecl *, 1, bool> OrigOrAnonNamespace;
354 NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
355 : NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace),
356 IsInline(false), NextNamespace(), OrigOrAnonNamespace(0, true) { }
358 public:
359 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
360 SourceLocation L, IdentifierInfo *Id);
362 /// \brief Returns true if this is an anonymous namespace declaration.
364 /// For example:
365 /// \code
366 /// namespace {
367 /// ...
368 /// };
369 /// \endcode
370 /// q.v. C++ [namespace.unnamed]
371 bool isAnonymousNamespace() const {
372 return !getIdentifier();
375 /// \brief Returns true if this is an inline namespace declaration.
376 bool isInline() const {
377 return IsInline;
380 /// \brief Set whether this is an inline namespace declaration.
381 void setInline(bool Inline) {
382 IsInline = Inline;
385 /// \brief Return the next extended namespace declaration or null if there
386 /// is none.
387 NamespaceDecl *getNextNamespace();
388 const NamespaceDecl *getNextNamespace() const {
389 return const_cast<NamespaceDecl *>(this)->getNextNamespace();
392 /// \brief Set the next extended namespace declaration.
393 void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
395 /// \brief Get the original (first) namespace declaration.
396 NamespaceDecl *getOriginalNamespace() const {
397 if (OrigOrAnonNamespace.getInt())
398 return const_cast<NamespaceDecl *>(this);
400 return OrigOrAnonNamespace.getPointer();
403 /// \brief Return true if this declaration is an original (first) declaration
404 /// of the namespace. This is false for non-original (subsequent) namespace
405 /// declarations and anonymous namespaces.
406 bool isOriginalNamespace() const {
407 return getOriginalNamespace() == this;
410 /// \brief Set the original (first) namespace declaration.
411 void setOriginalNamespace(NamespaceDecl *ND) {
412 if (ND != this) {
413 OrigOrAnonNamespace.setPointer(ND);
414 OrigOrAnonNamespace.setInt(false);
418 NamespaceDecl *getAnonymousNamespace() const {
419 return getOriginalNamespace()->OrigOrAnonNamespace.getPointer();
422 void setAnonymousNamespace(NamespaceDecl *D) {
423 assert(!D || D->isAnonymousNamespace());
424 assert(!D || D->getParent() == this);
425 getOriginalNamespace()->OrigOrAnonNamespace.setPointer(D);
428 NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); }
429 const NamespaceDecl *getCanonicalDecl() const {
430 return getOriginalNamespace();
433 SourceRange getSourceRange() const {
434 return SourceRange(getLocation(), RBracLoc);
437 SourceLocation getLBracLoc() const { return LBracLoc; }
438 SourceLocation getRBracLoc() const { return RBracLoc; }
439 void setLBracLoc(SourceLocation L) { LBracLoc = L; }
440 void setRBracLoc(SourceLocation R) { RBracLoc = R; }
442 // Implement isa/cast/dyncast/etc.
443 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
444 static bool classof(const NamespaceDecl *D) { return true; }
445 static bool classofKind(Kind K) { return K == Namespace; }
446 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
447 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
449 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
450 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
453 friend class ASTDeclReader;
454 friend class ASTDeclWriter;
457 /// ValueDecl - Represent the declaration of a variable (in which case it is
458 /// an lvalue) a function (in which case it is a function designator) or
459 /// an enum constant.
460 class ValueDecl : public NamedDecl {
461 QualType DeclType;
463 protected:
464 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
465 DeclarationName N, QualType T)
466 : NamedDecl(DK, DC, L, N), DeclType(T) {}
467 public:
468 QualType getType() const { return DeclType; }
469 void setType(QualType newType) { DeclType = newType; }
471 // Implement isa/cast/dyncast/etc.
472 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
473 static bool classof(const ValueDecl *D) { return true; }
474 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
477 /// QualifierInfo - A struct with extended info about a syntactic
478 /// name qualifier, to be used for the case of out-of-line declarations.
479 struct QualifierInfo {
480 /// NNS - The syntactic name qualifier.
481 NestedNameSpecifier *NNS;
482 /// NNSRange - The source range for the qualifier.
483 SourceRange NNSRange;
484 /// NumTemplParamLists - The number of template parameter lists
485 /// that were matched against the template-ids occurring into the NNS.
486 unsigned NumTemplParamLists;
487 /// TemplParamLists - A new-allocated array of size NumTemplParamLists,
488 /// containing pointers to the matched template parameter lists.
489 TemplateParameterList** TemplParamLists;
491 /// Default constructor.
492 QualifierInfo()
493 : NNS(0), NNSRange(), NumTemplParamLists(0), TemplParamLists(0) {}
494 /// setTemplateParameterListsInfo - Sets info about matched template
495 /// parameter lists.
496 void setTemplateParameterListsInfo(ASTContext &Context,
497 unsigned NumTPLists,
498 TemplateParameterList **TPLists);
500 private:
501 // Copy constructor and copy assignment are disabled.
502 QualifierInfo(const QualifierInfo&);
503 QualifierInfo& operator=(const QualifierInfo&);
506 /// \brief Represents a ValueDecl that came out of a declarator.
507 /// Contains type source information through TypeSourceInfo.
508 class DeclaratorDecl : public ValueDecl {
509 // A struct representing both a TInfo and a syntactic qualifier,
510 // to be used for the (uncommon) case of out-of-line declarations.
511 struct ExtInfo : public QualifierInfo {
512 TypeSourceInfo *TInfo;
515 llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
517 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
518 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
519 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
521 protected:
522 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
523 DeclarationName N, QualType T, TypeSourceInfo *TInfo)
524 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
526 public:
527 TypeSourceInfo *getTypeSourceInfo() const {
528 return hasExtInfo()
529 ? getExtInfo()->TInfo
530 : DeclInfo.get<TypeSourceInfo*>();
532 void setTypeSourceInfo(TypeSourceInfo *TI) {
533 if (hasExtInfo())
534 getExtInfo()->TInfo = TI;
535 else
536 DeclInfo = TI;
539 /// getInnerLocStart - Return SourceLocation representing start of source
540 /// range ignoring outer template declarations.
541 SourceLocation getInnerLocStart() const;
543 /// getOuterLocStart - Return SourceLocation representing start of source
544 /// range taking into account any outer template declarations.
545 SourceLocation getOuterLocStart() const;
546 SourceRange getSourceRange() const {
547 return SourceRange(getOuterLocStart(), getLocation());
550 NestedNameSpecifier *getQualifier() const {
551 return hasExtInfo() ? getExtInfo()->NNS : 0;
553 SourceRange getQualifierRange() const {
554 return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
556 void setQualifierInfo(NestedNameSpecifier *Qualifier,
557 SourceRange QualifierRange);
559 unsigned getNumTemplateParameterLists() const {
560 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
562 TemplateParameterList *getTemplateParameterList(unsigned index) const {
563 assert(index < getNumTemplateParameterLists());
564 return getExtInfo()->TemplParamLists[index];
566 void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
567 TemplateParameterList **TPLists) {
568 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
571 SourceLocation getTypeSpecStartLoc() const;
573 // Implement isa/cast/dyncast/etc.
574 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
575 static bool classof(const DeclaratorDecl *D) { return true; }
576 static bool classofKind(Kind K) {
577 return K >= firstDeclarator && K <= lastDeclarator;
580 friend class ASTDeclReader;
581 friend class ASTDeclWriter;
584 /// \brief Structure used to store a statement, the constant value to
585 /// which it was evaluated (if any), and whether or not the statement
586 /// is an integral constant expression (if known).
587 struct EvaluatedStmt {
588 EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
589 CheckingICE(false), IsICE(false) { }
591 /// \brief Whether this statement was already evaluated.
592 bool WasEvaluated : 1;
594 /// \brief Whether this statement is being evaluated.
595 bool IsEvaluating : 1;
597 /// \brief Whether we already checked whether this statement was an
598 /// integral constant expression.
599 bool CheckedICE : 1;
601 /// \brief Whether we are checking whether this statement is an
602 /// integral constant expression.
603 bool CheckingICE : 1;
605 /// \brief Whether this statement is an integral constant
606 /// expression. Only valid if CheckedICE is true.
607 bool IsICE : 1;
609 Stmt *Value;
610 APValue Evaluated;
613 /// VarDecl - An instance of this class is created to represent a variable
614 /// declaration or definition.
615 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
616 public:
617 typedef clang::StorageClass StorageClass;
619 /// getStorageClassSpecifierString - Return the string used to
620 /// specify the storage class \arg SC.
622 /// It is illegal to call this function with SC == None.
623 static const char *getStorageClassSpecifierString(StorageClass SC);
625 protected:
626 /// \brief Placeholder type used in Init to denote an unparsed C++ default
627 /// argument.
628 struct UnparsedDefaultArgument;
630 /// \brief Placeholder type used in Init to denote an uninstantiated C++
631 /// default argument.
632 struct UninstantiatedDefaultArgument;
634 typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
635 UnparsedDefaultArgument *,
636 UninstantiatedDefaultArgument *> InitType;
638 /// \brief The initializer for this variable or, for a ParmVarDecl, the
639 /// C++ default argument.
640 mutable InitType Init;
642 private:
643 // FIXME: This can be packed into the bitfields in Decl.
644 unsigned SClass : 3;
645 unsigned SClassAsWritten : 3;
646 bool ThreadSpecified : 1;
647 bool HasCXXDirectInit : 1;
649 /// \brief Whether this variable is the exception variable in a C++ catch
650 /// or an Objective-C @catch statement.
651 bool ExceptionVar : 1;
653 /// \brief Whether this local variable could be allocated in the return
654 /// slot of its function, enabling the named return value optimization (NRVO).
655 bool NRVOVariable : 1;
657 friend class StmtIteratorBase;
658 friend class ASTDeclReader;
660 protected:
661 VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
662 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
663 StorageClass SCAsWritten)
664 : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
665 ThreadSpecified(false), HasCXXDirectInit(false),
666 ExceptionVar(false), NRVOVariable(false) {
667 SClass = SC;
668 SClassAsWritten = SCAsWritten;
671 typedef Redeclarable<VarDecl> redeclarable_base;
672 VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
673 friend class Decl;
675 public:
676 typedef redeclarable_base::redecl_iterator redecl_iterator;
677 redecl_iterator redecls_begin() const {
678 return redeclarable_base::redecls_begin();
680 redecl_iterator redecls_end() const {
681 return redeclarable_base::redecls_end();
684 static VarDecl *Create(ASTContext &C, DeclContext *DC,
685 SourceLocation L, IdentifierInfo *Id,
686 QualType T, TypeSourceInfo *TInfo, StorageClass S,
687 StorageClass SCAsWritten);
689 SourceRange getSourceRange() const;
691 StorageClass getStorageClass() const { return (StorageClass)SClass; }
692 StorageClass getStorageClassAsWritten() const {
693 return (StorageClass) SClassAsWritten;
695 void setStorageClass(StorageClass SC);
696 void setStorageClassAsWritten(StorageClass SC) {
697 assert(isLegalForVariable(SC));
698 SClassAsWritten = SC;
701 void setThreadSpecified(bool T) { ThreadSpecified = T; }
702 bool isThreadSpecified() const {
703 return ThreadSpecified;
706 /// hasLocalStorage - Returns true if a variable with function scope
707 /// is a non-static local variable.
708 bool hasLocalStorage() const {
709 if (getStorageClass() == SC_None)
710 return !isFileVarDecl();
712 // Return true for: Auto, Register.
713 // Return false for: Extern, Static, PrivateExtern.
715 return getStorageClass() >= SC_Auto;
718 /// isStaticLocal - Returns true if a variable with function scope is a
719 /// static local variable.
720 bool isStaticLocal() const {
721 return getStorageClass() == SC_Static && !isFileVarDecl();
724 /// hasExternStorage - Returns true if a variable has extern or
725 /// __private_extern__ storage.
726 bool hasExternalStorage() const {
727 return getStorageClass() == SC_Extern ||
728 getStorageClass() == SC_PrivateExtern;
731 /// hasGlobalStorage - Returns true for all variables that do not
732 /// have local storage. This includs all global variables as well
733 /// as static variables declared within a function.
734 bool hasGlobalStorage() const { return !hasLocalStorage(); }
736 /// \brief Determines whether this variable is a variable with
737 /// external, C linkage.
738 bool isExternC() const;
740 /// isLocalVarDecl - Returns true for local variable declarations
741 /// other than parameters. Note that this includes static variables
742 /// inside of functions. It also includes variables inside blocks.
744 /// void foo() { int x; static int y; extern int z; }
746 bool isLocalVarDecl() const {
747 if (getKind() != Decl::Var)
748 return false;
749 if (const DeclContext *DC = getDeclContext())
750 return DC->getRedeclContext()->isFunctionOrMethod();
751 return false;
754 /// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
755 /// excludes variables declared in blocks.
756 bool isFunctionOrMethodVarDecl() const {
757 if (getKind() != Decl::Var)
758 return false;
759 const DeclContext *DC = getDeclContext()->getRedeclContext();
760 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
763 /// \brief Determines whether this is a static data member.
765 /// This will only be true in C++, and applies to, e.g., the
766 /// variable 'x' in:
767 /// \code
768 /// struct S {
769 /// static int x;
770 /// };
771 /// \endcode
772 bool isStaticDataMember() const {
773 // If it wasn't static, it would be a FieldDecl.
774 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
777 VarDecl *getCanonicalDecl();
778 const VarDecl *getCanonicalDecl() const {
779 return const_cast<VarDecl*>(this)->getCanonicalDecl();
782 enum DefinitionKind {
783 DeclarationOnly, ///< This declaration is only a declaration.
784 TentativeDefinition, ///< This declaration is a tentative definition.
785 Definition ///< This declaration is definitely a definition.
788 /// \brief Check whether this declaration is a definition. If this could be
789 /// a tentative definition (in C), don't check whether there's an overriding
790 /// definition.
791 DefinitionKind isThisDeclarationADefinition() const;
793 /// \brief Check whether this variable is defined in this
794 /// translation unit.
795 DefinitionKind hasDefinition() const;
797 /// \brief Get the tentative definition that acts as the real definition in
798 /// a TU. Returns null if there is a proper definition available.
799 VarDecl *getActingDefinition();
800 const VarDecl *getActingDefinition() const {
801 return const_cast<VarDecl*>(this)->getActingDefinition();
804 /// \brief Determine whether this is a tentative definition of a
805 /// variable in C.
806 bool isTentativeDefinitionNow() const;
808 /// \brief Get the real (not just tentative) definition for this declaration.
809 VarDecl *getDefinition();
810 const VarDecl *getDefinition() const {
811 return const_cast<VarDecl*>(this)->getDefinition();
814 /// \brief Determine whether this is or was instantiated from an out-of-line
815 /// definition of a static data member.
816 bool isOutOfLine() const;
818 /// \brief If this is a static data member, find its out-of-line definition.
819 VarDecl *getOutOfLineDefinition();
821 /// isFileVarDecl - Returns true for file scoped variable declaration.
822 bool isFileVarDecl() const {
823 if (getKind() != Decl::Var)
824 return false;
826 if (getDeclContext()->getRedeclContext()->isFileContext())
827 return true;
829 if (isStaticDataMember())
830 return true;
832 return false;
835 /// getAnyInitializer - Get the initializer for this variable, no matter which
836 /// declaration it is attached to.
837 const Expr *getAnyInitializer() const {
838 const VarDecl *D;
839 return getAnyInitializer(D);
842 /// getAnyInitializer - Get the initializer for this variable, no matter which
843 /// declaration it is attached to. Also get that declaration.
844 const Expr *getAnyInitializer(const VarDecl *&D) const;
846 bool hasInit() const {
847 return !Init.isNull() && (Init.is<Stmt *>() || Init.is<EvaluatedStmt *>());
849 const Expr *getInit() const {
850 if (Init.isNull())
851 return 0;
853 const Stmt *S = Init.dyn_cast<Stmt *>();
854 if (!S) {
855 if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
856 S = ES->Value;
858 return (const Expr*) S;
860 Expr *getInit() {
861 if (Init.isNull())
862 return 0;
864 Stmt *S = Init.dyn_cast<Stmt *>();
865 if (!S) {
866 if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
867 S = ES->Value;
870 return (Expr*) S;
873 /// \brief Retrieve the address of the initializer expression.
874 Stmt **getInitAddress() {
875 if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
876 return &ES->Value;
878 // This union hack tip-toes around strict-aliasing rules.
879 union {
880 InitType *InitPtr;
881 Stmt **StmtPtr;
884 InitPtr = &Init;
885 return StmtPtr;
888 void setInit(Expr *I);
890 EvaluatedStmt *EnsureEvaluatedStmt() const {
891 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
892 if (!Eval) {
893 Stmt *S = Init.get<Stmt *>();
894 Eval = new (getASTContext()) EvaluatedStmt;
895 Eval->Value = S;
896 Init = Eval;
898 return Eval;
901 /// \brief Check whether we are in the process of checking whether the
902 /// initializer can be evaluated.
903 bool isEvaluatingValue() const {
904 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
905 return Eval->IsEvaluating;
907 return false;
910 /// \brief Note that we now are checking whether the initializer can be
911 /// evaluated.
912 void setEvaluatingValue() const {
913 EvaluatedStmt *Eval = EnsureEvaluatedStmt();
914 Eval->IsEvaluating = true;
917 /// \brief Note that constant evaluation has computed the given
918 /// value for this variable's initializer.
919 void setEvaluatedValue(const APValue &Value) const {
920 EvaluatedStmt *Eval = EnsureEvaluatedStmt();
921 Eval->IsEvaluating = false;
922 Eval->WasEvaluated = true;
923 Eval->Evaluated = Value;
926 /// \brief Return the already-evaluated value of this variable's
927 /// initializer, or NULL if the value is not yet known. Returns pointer
928 /// to untyped APValue if the value could not be evaluated.
929 APValue *getEvaluatedValue() const {
930 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
931 if (Eval->WasEvaluated)
932 return &Eval->Evaluated;
934 return 0;
937 /// \brief Determines whether it is already known whether the
938 /// initializer is an integral constant expression or not.
939 bool isInitKnownICE() const {
940 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
941 return Eval->CheckedICE;
943 return false;
946 /// \brief Determines whether the initializer is an integral
947 /// constant expression.
949 /// \pre isInitKnownICE()
950 bool isInitICE() const {
951 assert(isInitKnownICE() &&
952 "Check whether we already know that the initializer is an ICE");
953 return Init.get<EvaluatedStmt *>()->IsICE;
956 /// \brief Check whether we are in the process of checking the initializer
957 /// is an integral constant expression.
958 bool isCheckingICE() const {
959 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
960 return Eval->CheckingICE;
962 return false;
965 /// \brief Note that we now are checking whether the initializer is an
966 /// integral constant expression.
967 void setCheckingICE() const {
968 EvaluatedStmt *Eval = EnsureEvaluatedStmt();
969 Eval->CheckingICE = true;
972 /// \brief Note that we now know whether the initializer is an
973 /// integral constant expression.
974 void setInitKnownICE(bool IsICE) const {
975 EvaluatedStmt *Eval = EnsureEvaluatedStmt();
976 Eval->CheckingICE = false;
977 Eval->CheckedICE = true;
978 Eval->IsICE = IsICE;
981 void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
983 /// hasCXXDirectInitializer - If true, the initializer was a direct
984 /// initializer, e.g: "int x(1);". The Init expression will be the expression
985 /// inside the parens or a "ClassType(a,b,c)" class constructor expression for
986 /// class types. Clients can distinguish between "int x(1);" and "int x=1;"
987 /// by checking hasCXXDirectInitializer.
989 bool hasCXXDirectInitializer() const {
990 return HasCXXDirectInit;
993 /// \brief Determine whether this variable is the exception variable in a
994 /// C++ catch statememt or an Objective-C @catch statement.
995 bool isExceptionVariable() const {
996 return ExceptionVar;
998 void setExceptionVariable(bool EV) { ExceptionVar = EV; }
1000 /// \brief Determine whether this local variable can be used with the named
1001 /// return value optimization (NRVO).
1003 /// The named return value optimization (NRVO) works by marking certain
1004 /// non-volatile local variables of class type as NRVO objects. These
1005 /// locals can be allocated within the return slot of their containing
1006 /// function, in which case there is no need to copy the object to the
1007 /// return slot when returning from the function. Within the function body,
1008 /// each return that returns the NRVO object will have this variable as its
1009 /// NRVO candidate.
1010 bool isNRVOVariable() const { return NRVOVariable; }
1011 void setNRVOVariable(bool NRVO) { NRVOVariable = NRVO; }
1013 /// \brief If this variable is an instantiated static data member of a
1014 /// class template specialization, returns the templated static data member
1015 /// from which it was instantiated.
1016 VarDecl *getInstantiatedFromStaticDataMember() const;
1018 /// \brief If this variable is a static data member, determine what kind of
1019 /// template specialization or instantiation this is.
1020 TemplateSpecializationKind getTemplateSpecializationKind() const;
1022 /// \brief If this variable is an instantiation of a static data member of a
1023 /// class template specialization, retrieves the member specialization
1024 /// information.
1025 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1027 /// \brief For a static data member that was instantiated from a static
1028 /// data member of a class template, set the template specialiation kind.
1029 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1030 SourceLocation PointOfInstantiation = SourceLocation());
1032 // Implement isa/cast/dyncast/etc.
1033 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1034 static bool classof(const VarDecl *D) { return true; }
1035 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1038 class ImplicitParamDecl : public VarDecl {
1039 protected:
1040 ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
1041 IdentifierInfo *Id, QualType Tw)
1042 : VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, SC_None, SC_None) {
1043 setImplicit();
1045 public:
1046 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1047 SourceLocation L, IdentifierInfo *Id,
1048 QualType T);
1049 // Implement isa/cast/dyncast/etc.
1050 static bool classof(const ImplicitParamDecl *D) { return true; }
1051 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1052 static bool classofKind(Kind K) { return K == ImplicitParam; }
1055 /// ParmVarDecl - Represent a parameter to a function.
1056 class ParmVarDecl : public VarDecl {
1057 // NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
1058 /// FIXME: Also can be paced into the bitfields in Decl.
1059 /// in, inout, etc.
1060 unsigned objcDeclQualifier : 6;
1061 bool HasInheritedDefaultArg : 1;
1063 protected:
1064 ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
1065 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1066 StorageClass S, StorageClass SCAsWritten, Expr *DefArg)
1067 : VarDecl(DK, DC, L, Id, T, TInfo, S, SCAsWritten),
1068 objcDeclQualifier(OBJC_TQ_None), HasInheritedDefaultArg(false) {
1069 setDefaultArg(DefArg);
1072 public:
1073 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1074 SourceLocation L,IdentifierInfo *Id,
1075 QualType T, TypeSourceInfo *TInfo,
1076 StorageClass S, StorageClass SCAsWritten,
1077 Expr *DefArg);
1079 ObjCDeclQualifier getObjCDeclQualifier() const {
1080 return ObjCDeclQualifier(objcDeclQualifier);
1082 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1083 objcDeclQualifier = QTVal;
1086 Expr *getDefaultArg();
1087 const Expr *getDefaultArg() const {
1088 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1091 void setDefaultArg(Expr *defarg) {
1092 Init = reinterpret_cast<Stmt *>(defarg);
1095 unsigned getNumDefaultArgTemporaries() const;
1096 CXXTemporary *getDefaultArgTemporary(unsigned i);
1097 const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
1098 return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
1101 /// \brief Retrieve the source range that covers the entire default
1102 /// argument.
1103 SourceRange getDefaultArgRange() const;
1104 void setUninstantiatedDefaultArg(Expr *arg) {
1105 Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
1107 Expr *getUninstantiatedDefaultArg() {
1108 return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
1110 const Expr *getUninstantiatedDefaultArg() const {
1111 return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
1114 /// hasDefaultArg - Determines whether this parameter has a default argument,
1115 /// either parsed or not.
1116 bool hasDefaultArg() const {
1117 return getInit() || hasUnparsedDefaultArg() ||
1118 hasUninstantiatedDefaultArg();
1121 /// hasUnparsedDefaultArg - Determines whether this parameter has a
1122 /// default argument that has not yet been parsed. This will occur
1123 /// during the processing of a C++ class whose member functions have
1124 /// default arguments, e.g.,
1125 /// @code
1126 /// class X {
1127 /// public:
1128 /// void f(int x = 17); // x has an unparsed default argument now
1129 /// }; // x has a regular default argument now
1130 /// @endcode
1131 bool hasUnparsedDefaultArg() const {
1132 return Init.is<UnparsedDefaultArgument*>();
1135 bool hasUninstantiatedDefaultArg() const {
1136 return Init.is<UninstantiatedDefaultArgument*>();
1139 /// setUnparsedDefaultArg - Specify that this parameter has an
1140 /// unparsed default argument. The argument will be replaced with a
1141 /// real default argument via setDefaultArg when the class
1142 /// definition enclosing the function declaration that owns this
1143 /// default argument is completed.
1144 void setUnparsedDefaultArg() {
1145 Init = (UnparsedDefaultArgument *)0;
1148 bool hasInheritedDefaultArg() const {
1149 return HasInheritedDefaultArg;
1152 void setHasInheritedDefaultArg(bool I = true) {
1153 HasInheritedDefaultArg = I;
1156 QualType getOriginalType() const {
1157 if (getTypeSourceInfo())
1158 return getTypeSourceInfo()->getType();
1159 return getType();
1162 /// \brief Determine whether this parameter is actually a function
1163 /// parameter pack.
1164 bool isParameterPack() const;
1166 /// setOwningFunction - Sets the function declaration that owns this
1167 /// ParmVarDecl. Since ParmVarDecls are often created before the
1168 /// FunctionDecls that own them, this routine is required to update
1169 /// the DeclContext appropriately.
1170 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1172 // Implement isa/cast/dyncast/etc.
1173 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1174 static bool classof(const ParmVarDecl *D) { return true; }
1175 static bool classofKind(Kind K) { return K == ParmVar; }
1178 /// FunctionDecl - An instance of this class is created to represent a
1179 /// function declaration or definition.
1181 /// Since a given function can be declared several times in a program,
1182 /// there may be several FunctionDecls that correspond to that
1183 /// function. Only one of those FunctionDecls will be found when
1184 /// traversing the list of declarations in the context of the
1185 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1186 /// contains all of the information known about the function. Other,
1187 /// previous declarations of the function are available via the
1188 /// getPreviousDeclaration() chain.
1189 class FunctionDecl : public DeclaratorDecl, public DeclContext,
1190 public Redeclarable<FunctionDecl> {
1191 public:
1192 typedef clang::StorageClass StorageClass;
1194 /// \brief The kind of templated function a FunctionDecl can be.
1195 enum TemplatedKind {
1196 TK_NonTemplate,
1197 TK_FunctionTemplate,
1198 TK_MemberSpecialization,
1199 TK_FunctionTemplateSpecialization,
1200 TK_DependentFunctionTemplateSpecialization
1203 private:
1204 /// ParamInfo - new[]'d array of pointers to VarDecls for the formal
1205 /// parameters of this function. This is null if a prototype or if there are
1206 /// no formals.
1207 ParmVarDecl **ParamInfo;
1209 LazyDeclStmtPtr Body;
1211 // FIXME: This can be packed into the bitfields in Decl.
1212 // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
1213 unsigned SClass : 2;
1214 unsigned SClassAsWritten : 2;
1215 bool IsInline : 1;
1216 bool IsInlineSpecified : 1;
1217 bool IsVirtualAsWritten : 1;
1218 bool IsPure : 1;
1219 bool HasInheritedPrototype : 1;
1220 bool HasWrittenPrototype : 1;
1221 bool IsDeleted : 1;
1222 bool IsTrivial : 1; // sunk from CXXMethodDecl
1223 bool HasImplicitReturnZero : 1;
1225 /// \brief End part of this FunctionDecl's source range.
1227 /// We could compute the full range in getSourceRange(). However, when we're
1228 /// dealing with a function definition deserialized from a PCH/AST file,
1229 /// we can only compute the full range once the function body has been
1230 /// de-serialized, so it's far better to have the (sometimes-redundant)
1231 /// EndRangeLoc.
1232 SourceLocation EndRangeLoc;
1234 /// \brief The template or declaration that this declaration
1235 /// describes or was instantiated from, respectively.
1237 /// For non-templates, this value will be NULL. For function
1238 /// declarations that describe a function template, this will be a
1239 /// pointer to a FunctionTemplateDecl. For member functions
1240 /// of class template specializations, this will be a MemberSpecializationInfo
1241 /// pointer containing information about the specialization.
1242 /// For function template specializations, this will be a
1243 /// FunctionTemplateSpecializationInfo, which contains information about
1244 /// the template being specialized and the template arguments involved in
1245 /// that specialization.
1246 llvm::PointerUnion4<FunctionTemplateDecl *,
1247 MemberSpecializationInfo *,
1248 FunctionTemplateSpecializationInfo *,
1249 DependentFunctionTemplateSpecializationInfo *>
1250 TemplateOrSpecialization;
1252 /// DNLoc - Provides source/type location info for the
1253 /// declaration name embedded in the DeclaratorDecl base class.
1254 DeclarationNameLoc DNLoc;
1256 /// \brief Specify that this function declaration is actually a function
1257 /// template specialization.
1259 /// \param C the ASTContext.
1261 /// \param Template the function template that this function template
1262 /// specialization specializes.
1264 /// \param TemplateArgs the template arguments that produced this
1265 /// function template specialization from the template.
1267 /// \param InsertPos If non-NULL, the position in the function template
1268 /// specialization set where the function template specialization data will
1269 /// be inserted.
1271 /// \param TSK the kind of template specialization this is.
1273 /// \param TemplateArgsAsWritten location info of template arguments.
1275 /// \param PointOfInstantiation point at which the function template
1276 /// specialization was first instantiated.
1277 void setFunctionTemplateSpecialization(ASTContext &C,
1278 FunctionTemplateDecl *Template,
1279 const TemplateArgumentList *TemplateArgs,
1280 void *InsertPos,
1281 TemplateSpecializationKind TSK,
1282 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1283 SourceLocation PointOfInstantiation);
1285 /// \brief Specify that this record is an instantiation of the
1286 /// member function FD.
1287 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1288 TemplateSpecializationKind TSK);
1290 void setParams(ASTContext &C, ParmVarDecl **NewParamInfo, unsigned NumParams);
1292 protected:
1293 FunctionDecl(Kind DK, DeclContext *DC, const DeclarationNameInfo &NameInfo,
1294 QualType T, TypeSourceInfo *TInfo,
1295 StorageClass S, StorageClass SCAsWritten, bool isInlineSpecified)
1296 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo),
1297 DeclContext(DK),
1298 ParamInfo(0), Body(),
1299 SClass(S), SClassAsWritten(SCAsWritten),
1300 IsInline(isInlineSpecified), IsInlineSpecified(isInlineSpecified),
1301 IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
1302 HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
1303 HasImplicitReturnZero(false), EndRangeLoc(NameInfo.getEndLoc()),
1304 TemplateOrSpecialization(),
1305 DNLoc(NameInfo.getInfo()) {}
1307 typedef Redeclarable<FunctionDecl> redeclarable_base;
1308 FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1310 friend class Decl;
1312 public:
1314 typedef redeclarable_base::redecl_iterator redecl_iterator;
1315 redecl_iterator redecls_begin() const {
1316 return redeclarable_base::redecls_begin();
1318 redecl_iterator redecls_end() const {
1319 return redeclarable_base::redecls_end();
1322 static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1323 DeclarationName N, QualType T,
1324 TypeSourceInfo *TInfo,
1325 StorageClass S = SC_None,
1326 StorageClass SCAsWritten = SC_None,
1327 bool isInlineSpecified = false,
1328 bool hasWrittenPrototype = true) {
1329 DeclarationNameInfo NameInfo(N, L);
1330 return FunctionDecl::Create(C, DC, NameInfo, T, TInfo, S, SCAsWritten,
1331 isInlineSpecified, hasWrittenPrototype);
1334 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1335 const DeclarationNameInfo &NameInfo,
1336 QualType T, TypeSourceInfo *TInfo,
1337 StorageClass S = SC_None,
1338 StorageClass SCAsWritten = SC_None,
1339 bool isInlineSpecified = false,
1340 bool hasWrittenPrototype = true);
1342 DeclarationNameInfo getNameInfo() const {
1343 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1346 SourceRange getSourceRange() const {
1347 return SourceRange(getOuterLocStart(), EndRangeLoc);
1349 void setLocEnd(SourceLocation E) {
1350 EndRangeLoc = E;
1353 /// \brief Returns true if the function has a body (definition). The
1354 /// function body might be in any of the (re-)declarations of this
1355 /// function. The variant that accepts a FunctionDecl pointer will
1356 /// set that function declaration to the actual declaration
1357 /// containing the body (if there is one).
1358 bool hasBody(const FunctionDecl *&Definition) const;
1360 bool hasBody() const {
1361 const FunctionDecl* Definition;
1362 return hasBody(Definition);
1365 /// getBody - Retrieve the body (definition) of the function. The
1366 /// function body might be in any of the (re-)declarations of this
1367 /// function. The variant that accepts a FunctionDecl pointer will
1368 /// set that function declaration to the actual declaration
1369 /// containing the body (if there is one).
1370 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1371 /// unnecessary AST de-serialization of the body.
1372 Stmt *getBody(const FunctionDecl *&Definition) const;
1374 Stmt *getBody() const {
1375 const FunctionDecl* Definition;
1376 return getBody(Definition);
1379 /// isThisDeclarationADefinition - Returns whether this specific
1380 /// declaration of the function is also a definition. This does not
1381 /// determine whether the function has been defined (e.g., in a
1382 /// previous definition); for that information, use getBody.
1383 /// FIXME: Should return true if function is deleted or defaulted. However,
1384 /// CodeGenModule.cpp uses it, and I don't know if this would break it.
1385 bool isThisDeclarationADefinition() const { return Body; }
1387 void setBody(Stmt *B);
1388 void setLazyBody(uint64_t Offset) { Body = Offset; }
1390 /// Whether this function is variadic.
1391 bool isVariadic() const;
1393 /// Whether this function is marked as virtual explicitly.
1394 bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
1395 void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
1397 /// Whether this virtual function is pure, i.e. makes the containing class
1398 /// abstract.
1399 bool isPure() const { return IsPure; }
1400 void setPure(bool P = true);
1402 /// Whether this function is "trivial" in some specialized C++ senses.
1403 /// Can only be true for default constructors, copy constructors,
1404 /// copy assignment operators, and destructors. Not meaningful until
1405 /// the class has been fully built by Sema.
1406 bool isTrivial() const { return IsTrivial; }
1407 void setTrivial(bool IT) { IsTrivial = IT; }
1409 /// Whether falling off this function implicitly returns null/zero.
1410 /// If a more specific implicit return value is required, front-ends
1411 /// should synthesize the appropriate return statements.
1412 bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
1413 void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
1415 /// \brief Whether this function has a prototype, either because one
1416 /// was explicitly written or because it was "inherited" by merging
1417 /// a declaration without a prototype with a declaration that has a
1418 /// prototype.
1419 bool hasPrototype() const {
1420 return HasWrittenPrototype || HasInheritedPrototype;
1423 bool hasWrittenPrototype() const { return HasWrittenPrototype; }
1425 /// \brief Whether this function inherited its prototype from a
1426 /// previous declaration.
1427 bool hasInheritedPrototype() const { return HasInheritedPrototype; }
1428 void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
1430 /// \brief Whether this function has been deleted.
1432 /// A function that is "deleted" (via the C++0x "= delete" syntax)
1433 /// acts like a normal function, except that it cannot actually be
1434 /// called or have its address taken. Deleted functions are
1435 /// typically used in C++ overload resolution to attract arguments
1436 /// whose type or lvalue/rvalue-ness would permit the use of a
1437 /// different overload that would behave incorrectly. For example,
1438 /// one might use deleted functions to ban implicit conversion from
1439 /// a floating-point number to an Integer type:
1441 /// @code
1442 /// struct Integer {
1443 /// Integer(long); // construct from a long
1444 /// Integer(double) = delete; // no construction from float or double
1445 /// Integer(long double) = delete; // no construction from long double
1446 /// };
1447 /// @endcode
1448 bool isDeleted() const { return IsDeleted; }
1449 void setDeleted(bool D = true) { IsDeleted = D; }
1451 /// \brief Determines whether this is a function "main", which is
1452 /// the entry point into an executable program.
1453 bool isMain() const;
1455 /// \brief Determines whether this function is a function with
1456 /// external, C linkage.
1457 bool isExternC() const;
1459 /// \brief Determines whether this is a global function.
1460 bool isGlobal() const;
1462 void setPreviousDeclaration(FunctionDecl * PrevDecl);
1464 const FunctionDecl *getCanonicalDecl() const;
1465 FunctionDecl *getCanonicalDecl();
1467 unsigned getBuiltinID() const;
1469 // Iterator access to formal parameters.
1470 unsigned param_size() const { return getNumParams(); }
1471 typedef ParmVarDecl **param_iterator;
1472 typedef ParmVarDecl * const *param_const_iterator;
1474 param_iterator param_begin() { return ParamInfo; }
1475 param_iterator param_end() { return ParamInfo+param_size(); }
1477 param_const_iterator param_begin() const { return ParamInfo; }
1478 param_const_iterator param_end() const { return ParamInfo+param_size(); }
1480 /// getNumParams - Return the number of parameters this function must have
1481 /// based on its FunctionType. This is the length of the ParamInfo array
1482 /// after it has been created.
1483 unsigned getNumParams() const;
1485 const ParmVarDecl *getParamDecl(unsigned i) const {
1486 assert(i < getNumParams() && "Illegal param #");
1487 return ParamInfo[i];
1489 ParmVarDecl *getParamDecl(unsigned i) {
1490 assert(i < getNumParams() && "Illegal param #");
1491 return ParamInfo[i];
1493 void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
1494 setParams(getASTContext(), NewParamInfo, NumParams);
1497 /// getMinRequiredArguments - Returns the minimum number of arguments
1498 /// needed to call this function. This may be fewer than the number of
1499 /// function parameters, if some of the parameters have default
1500 /// arguments (in C++).
1501 unsigned getMinRequiredArguments() const;
1503 QualType getResultType() const {
1504 return getType()->getAs<FunctionType>()->getResultType();
1507 /// \brief Determine the type of an expression that calls this function.
1508 QualType getCallResultType() const {
1509 return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
1512 StorageClass getStorageClass() const { return StorageClass(SClass); }
1513 void setStorageClass(StorageClass SC);
1515 StorageClass getStorageClassAsWritten() const {
1516 return StorageClass(SClassAsWritten);
1519 /// \brief Determine whether the "inline" keyword was specified for this
1520 /// function.
1521 bool isInlineSpecified() const { return IsInlineSpecified; }
1523 /// Set whether the "inline" keyword was specified for this function.
1524 void setInlineSpecified(bool I) {
1525 IsInlineSpecified = I;
1526 IsInline = I;
1529 /// Flag that this function is implicitly inline.
1530 void setImplicitlyInline() {
1531 IsInline = true;
1534 /// \brief Determine whether this function should be inlined, because it is
1535 /// either marked "inline" or is a member function of a C++ class that
1536 /// was defined in the class body.
1537 bool isInlined() const;
1539 bool isInlineDefinitionExternallyVisible() const;
1541 /// isOverloadedOperator - Whether this function declaration
1542 /// represents an C++ overloaded operator, e.g., "operator+".
1543 bool isOverloadedOperator() const {
1544 return getOverloadedOperator() != OO_None;
1547 OverloadedOperatorKind getOverloadedOperator() const;
1549 const IdentifierInfo *getLiteralIdentifier() const;
1551 /// \brief If this function is an instantiation of a member function
1552 /// of a class template specialization, retrieves the function from
1553 /// which it was instantiated.
1555 /// This routine will return non-NULL for (non-templated) member
1556 /// functions of class templates and for instantiations of function
1557 /// templates. For example, given:
1559 /// \code
1560 /// template<typename T>
1561 /// struct X {
1562 /// void f(T);
1563 /// };
1564 /// \endcode
1566 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
1567 /// whose parent is the class template specialization X<int>. For
1568 /// this declaration, getInstantiatedFromFunction() will return
1569 /// the FunctionDecl X<T>::A. When a complete definition of
1570 /// X<int>::A is required, it will be instantiated from the
1571 /// declaration returned by getInstantiatedFromMemberFunction().
1572 FunctionDecl *getInstantiatedFromMemberFunction() const;
1574 /// \brief What kind of templated function this is.
1575 TemplatedKind getTemplatedKind() const;
1577 /// \brief If this function is an instantiation of a member function of a
1578 /// class template specialization, retrieves the member specialization
1579 /// information.
1580 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1582 /// \brief Specify that this record is an instantiation of the
1583 /// member function FD.
1584 void setInstantiationOfMemberFunction(FunctionDecl *FD,
1585 TemplateSpecializationKind TSK) {
1586 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
1589 /// \brief Retrieves the function template that is described by this
1590 /// function declaration.
1592 /// Every function template is represented as a FunctionTemplateDecl
1593 /// and a FunctionDecl (or something derived from FunctionDecl). The
1594 /// former contains template properties (such as the template
1595 /// parameter lists) while the latter contains the actual
1596 /// description of the template's
1597 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
1598 /// FunctionDecl that describes the function template,
1599 /// getDescribedFunctionTemplate() retrieves the
1600 /// FunctionTemplateDecl from a FunctionDecl.
1601 FunctionTemplateDecl *getDescribedFunctionTemplate() const {
1602 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
1605 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
1606 TemplateOrSpecialization = Template;
1609 /// \brief Determine whether this function is a function template
1610 /// specialization.
1611 bool isFunctionTemplateSpecialization() const {
1612 return getPrimaryTemplate() != 0;
1615 /// \brief If this function is actually a function template specialization,
1616 /// retrieve information about this function template specialization.
1617 /// Otherwise, returns NULL.
1618 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
1619 return TemplateOrSpecialization.
1620 dyn_cast<FunctionTemplateSpecializationInfo*>();
1623 /// \brief Determines whether this function is a function template
1624 /// specialization or a member of a class template specialization that can
1625 /// be implicitly instantiated.
1626 bool isImplicitlyInstantiable() const;
1628 /// \brief Retrieve the function declaration from which this function could
1629 /// be instantiated, if it is an instantiation (rather than a non-template
1630 /// or a specialization, for example).
1631 FunctionDecl *getTemplateInstantiationPattern() const;
1633 /// \brief Retrieve the primary template that this function template
1634 /// specialization either specializes or was instantiated from.
1636 /// If this function declaration is not a function template specialization,
1637 /// returns NULL.
1638 FunctionTemplateDecl *getPrimaryTemplate() const;
1640 /// \brief Retrieve the template arguments used to produce this function
1641 /// template specialization from the primary template.
1643 /// If this function declaration is not a function template specialization,
1644 /// returns NULL.
1645 const TemplateArgumentList *getTemplateSpecializationArgs() const;
1647 /// \brief Retrieve the template argument list as written in the sources,
1648 /// if any.
1650 /// If this function declaration is not a function template specialization
1651 /// or if it had no explicit template argument list, returns NULL.
1652 /// Note that it an explicit template argument list may be written empty,
1653 /// e.g., template<> void foo<>(char* s);
1654 const TemplateArgumentListInfo*
1655 getTemplateSpecializationArgsAsWritten() const;
1657 /// \brief Specify that this function declaration is actually a function
1658 /// template specialization.
1660 /// \param Template the function template that this function template
1661 /// specialization specializes.
1663 /// \param TemplateArgs the template arguments that produced this
1664 /// function template specialization from the template.
1666 /// \param InsertPos If non-NULL, the position in the function template
1667 /// specialization set where the function template specialization data will
1668 /// be inserted.
1670 /// \param TSK the kind of template specialization this is.
1672 /// \param TemplateArgsAsWritten location info of template arguments.
1674 /// \param PointOfInstantiation point at which the function template
1675 /// specialization was first instantiated.
1676 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
1677 const TemplateArgumentList *TemplateArgs,
1678 void *InsertPos,
1679 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
1680 const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
1681 SourceLocation PointOfInstantiation = SourceLocation()) {
1682 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
1683 InsertPos, TSK, TemplateArgsAsWritten,
1684 PointOfInstantiation);
1687 /// \brief Specifies that this function declaration is actually a
1688 /// dependent function template specialization.
1689 void setDependentTemplateSpecialization(ASTContext &Context,
1690 const UnresolvedSetImpl &Templates,
1691 const TemplateArgumentListInfo &TemplateArgs);
1693 DependentFunctionTemplateSpecializationInfo *
1694 getDependentSpecializationInfo() const {
1695 return TemplateOrSpecialization.
1696 dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
1699 /// \brief Determine what kind of template instantiation this function
1700 /// represents.
1701 TemplateSpecializationKind getTemplateSpecializationKind() const;
1703 /// \brief Determine what kind of template instantiation this function
1704 /// represents.
1705 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1706 SourceLocation PointOfInstantiation = SourceLocation());
1708 /// \brief Retrieve the (first) point of instantiation of a function template
1709 /// specialization or a member of a class template specialization.
1711 /// \returns the first point of instantiation, if this function was
1712 /// instantiated from a template; otherwie, returns an invalid source
1713 /// location.
1714 SourceLocation getPointOfInstantiation() const;
1716 /// \brief Determine whether this is or was instantiated from an out-of-line
1717 /// definition of a member function.
1718 bool isOutOfLine() const;
1720 // Implement isa/cast/dyncast/etc.
1721 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1722 static bool classof(const FunctionDecl *D) { return true; }
1723 static bool classofKind(Kind K) {
1724 return K >= firstFunction && K <= lastFunction;
1726 static DeclContext *castToDeclContext(const FunctionDecl *D) {
1727 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
1729 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
1730 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
1733 friend class ASTDeclReader;
1734 friend class ASTDeclWriter;
1738 /// FieldDecl - An instance of this class is created by Sema::ActOnField to
1739 /// represent a member of a struct/union/class.
1740 class FieldDecl : public DeclaratorDecl {
1741 // FIXME: This can be packed into the bitfields in Decl.
1742 bool Mutable : 1;
1743 mutable unsigned CachedFieldIndex : 31;
1745 Expr *BitWidth;
1746 protected:
1747 FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
1748 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1749 Expr *BW, bool Mutable)
1750 : DeclaratorDecl(DK, DC, L, Id, T, TInfo),
1751 Mutable(Mutable), CachedFieldIndex(0), BitWidth(BW) {
1754 public:
1755 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
1756 SourceLocation L, IdentifierInfo *Id, QualType T,
1757 TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
1759 /// getFieldIndex - Returns the index of this field within its record,
1760 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
1761 unsigned getFieldIndex() const;
1763 /// isMutable - Determines whether this field is mutable (C++ only).
1764 bool isMutable() const { return Mutable; }
1766 /// \brief Set whether this field is mutable (C++ only).
1767 void setMutable(bool M) { Mutable = M; }
1769 /// isBitfield - Determines whether this field is a bitfield.
1770 bool isBitField() const { return BitWidth != NULL; }
1772 /// @brief Determines whether this is an unnamed bitfield.
1773 bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
1775 /// isAnonymousStructOrUnion - Determines whether this field is a
1776 /// representative for an anonymous struct or union. Such fields are
1777 /// unnamed and are implicitly generated by the implementation to
1778 /// store the data for the anonymous union or struct.
1779 bool isAnonymousStructOrUnion() const;
1781 Expr *getBitWidth() const { return BitWidth; }
1782 void setBitWidth(Expr *BW) { BitWidth = BW; }
1784 /// getParent - Returns the parent of this field declaration, which
1785 /// is the struct in which this method is defined.
1786 const RecordDecl *getParent() const {
1787 return cast<RecordDecl>(getDeclContext());
1790 RecordDecl *getParent() {
1791 return cast<RecordDecl>(getDeclContext());
1794 // Implement isa/cast/dyncast/etc.
1795 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1796 static bool classof(const FieldDecl *D) { return true; }
1797 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
1800 /// EnumConstantDecl - An instance of this object exists for each enum constant
1801 /// that is defined. For example, in "enum X {a,b}", each of a/b are
1802 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
1803 /// TagType for the X EnumDecl.
1804 class EnumConstantDecl : public ValueDecl {
1805 Stmt *Init; // an integer constant expression
1806 llvm::APSInt Val; // The value.
1807 protected:
1808 EnumConstantDecl(DeclContext *DC, SourceLocation L,
1809 IdentifierInfo *Id, QualType T, Expr *E,
1810 const llvm::APSInt &V)
1811 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
1813 public:
1815 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
1816 SourceLocation L, IdentifierInfo *Id,
1817 QualType T, Expr *E,
1818 const llvm::APSInt &V);
1820 const Expr *getInitExpr() const { return (const Expr*) Init; }
1821 Expr *getInitExpr() { return (Expr*) Init; }
1822 const llvm::APSInt &getInitVal() const { return Val; }
1824 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
1825 void setInitVal(const llvm::APSInt &V) { Val = V; }
1827 SourceRange getSourceRange() const;
1829 // Implement isa/cast/dyncast/etc.
1830 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1831 static bool classof(const EnumConstantDecl *D) { return true; }
1832 static bool classofKind(Kind K) { return K == EnumConstant; }
1834 friend class StmtIteratorBase;
1837 /// IndirectFieldDecl - An instance of this class is created to represent a
1838 /// field injected from an anonymous union/struct into the parent scope.
1839 /// IndirectFieldDecl are always implicit.
1840 class IndirectFieldDecl : public ValueDecl {
1841 NamedDecl **Chaining;
1842 unsigned ChainingSize;
1844 IndirectFieldDecl(DeclContext *DC, SourceLocation L,
1845 DeclarationName N, QualType T,
1846 NamedDecl **CH, unsigned CHS)
1847 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {}
1849 public:
1850 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
1851 SourceLocation L, IdentifierInfo *Id,
1852 QualType T, NamedDecl **CH, unsigned CHS);
1854 typedef NamedDecl * const *chain_iterator;
1855 chain_iterator chain_begin() const { return Chaining; }
1856 chain_iterator chain_end() const { return Chaining+ChainingSize; }
1858 unsigned getChainingSize() const { return ChainingSize; }
1860 FieldDecl *getAnonField() const {
1861 assert(ChainingSize >= 2);
1862 return cast<FieldDecl>(Chaining[ChainingSize - 1]);
1865 VarDecl *getVarDecl() const {
1866 assert(ChainingSize >= 2);
1867 return dyn_cast<VarDecl>(*chain_begin());
1870 // Implement isa/cast/dyncast/etc.
1871 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1872 static bool classof(const IndirectFieldDecl *D) { return true; }
1873 static bool classofKind(Kind K) { return K == IndirectField; }
1874 friend class ASTDeclReader;
1877 /// TypeDecl - Represents a declaration of a type.
1879 class TypeDecl : public NamedDecl {
1880 /// TypeForDecl - This indicates the Type object that represents
1881 /// this TypeDecl. It is a cache maintained by
1882 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
1883 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
1884 mutable const Type *TypeForDecl;
1885 friend class ASTContext;
1886 friend class DeclContext;
1887 friend class TagDecl;
1888 friend class TemplateTypeParmDecl;
1889 friend class TagType;
1891 protected:
1892 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
1893 IdentifierInfo *Id)
1894 : NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
1896 public:
1897 // Low-level accessor
1898 const Type *getTypeForDecl() const { return TypeForDecl; }
1899 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
1901 // Implement isa/cast/dyncast/etc.
1902 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1903 static bool classof(const TypeDecl *D) { return true; }
1904 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
1908 class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
1909 /// UnderlyingType - This is the type the typedef is set to.
1910 TypeSourceInfo *TInfo;
1912 TypedefDecl(DeclContext *DC, SourceLocation L,
1913 IdentifierInfo *Id, TypeSourceInfo *TInfo)
1914 : TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
1916 protected:
1917 typedef Redeclarable<TypedefDecl> redeclarable_base;
1918 TypedefDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1920 friend class Decl;
1922 public:
1923 typedef redeclarable_base::redecl_iterator redecl_iterator;
1924 redecl_iterator redecls_begin() const {
1925 return redeclarable_base::redecls_begin();
1927 redecl_iterator redecls_end() const {
1928 return redeclarable_base::redecls_end();
1931 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
1932 SourceLocation L, IdentifierInfo *Id,
1933 TypeSourceInfo *TInfo);
1935 TypeSourceInfo *getTypeSourceInfo() const {
1936 return TInfo;
1939 /// Retrieves the canonical declaration of this typedef.
1940 TypedefDecl *getCanonicalDecl() {
1941 return getFirstDeclaration();
1943 const TypedefDecl *getCanonicalDecl() const {
1944 return getFirstDeclaration();
1947 QualType getUnderlyingType() const {
1948 return TInfo->getType();
1950 void setTypeSourceInfo(TypeSourceInfo *newType) {
1951 TInfo = newType;
1954 // Implement isa/cast/dyncast/etc.
1955 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1956 static bool classof(const TypedefDecl *D) { return true; }
1957 static bool classofKind(Kind K) { return K == Typedef; }
1960 class TypedefDecl;
1962 /// TagDecl - Represents the declaration of a struct/union/class/enum.
1963 class TagDecl
1964 : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
1965 public:
1966 // This is really ugly.
1967 typedef TagTypeKind TagKind;
1969 private:
1970 // FIXME: This can be packed into the bitfields in Decl.
1971 /// TagDeclKind - The TagKind enum.
1972 unsigned TagDeclKind : 2;
1974 /// IsDefinition - True if this is a definition ("struct foo {};"), false if
1975 /// it is a declaration ("struct foo;").
1976 bool IsDefinition : 1;
1978 /// IsBeingDefined - True if this is currently being defined.
1979 bool IsBeingDefined : 1;
1981 /// IsEmbeddedInDeclarator - True if this tag declaration is
1982 /// "embedded" (i.e., defined or declared for the very first time)
1983 /// in the syntax of a declarator.
1984 bool IsEmbeddedInDeclarator : 1;
1986 protected:
1987 // These are used by (and only defined for) EnumDecl.
1988 unsigned NumPositiveBits : 8;
1989 unsigned NumNegativeBits : 8;
1991 /// IsScoped - True if this tag declaration is a scoped enumeration. Only
1992 /// possible in C++0x mode.
1993 bool IsScoped : 1;
1994 /// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
1995 /// then this is true if the scoped enum was declared using the class
1996 /// tag, false if it was declared with the struct tag. No meaning is
1997 /// associated if this tag declaration is not a scoped enum.
1998 bool IsScopedUsingClassTag : 1;
2000 /// IsFixed - True if this is an enumeration with fixed underlying type. Only
2001 /// possible in C++0x mode.
2002 bool IsFixed : 1;
2004 private:
2005 SourceLocation TagKeywordLoc;
2006 SourceLocation RBraceLoc;
2008 // A struct representing syntactic qualifier info,
2009 // to be used for the (uncommon) case of out-of-line declarations.
2010 typedef QualifierInfo ExtInfo;
2012 /// TypedefDeclOrQualifier - If the (out-of-line) tag declaration name
2013 /// is qualified, it points to the qualifier info (nns and range);
2014 /// otherwise, if the tag declaration is anonymous and it is part of
2015 /// a typedef, it points to the TypedefDecl (used for mangling);
2016 /// otherwise, it is a null (TypedefDecl) pointer.
2017 llvm::PointerUnion<TypedefDecl*, ExtInfo*> TypedefDeclOrQualifier;
2019 bool hasExtInfo() const { return TypedefDeclOrQualifier.is<ExtInfo*>(); }
2020 ExtInfo *getExtInfo() { return TypedefDeclOrQualifier.get<ExtInfo*>(); }
2021 const ExtInfo *getExtInfo() const {
2022 return TypedefDeclOrQualifier.get<ExtInfo*>();
2025 protected:
2026 TagDecl(Kind DK, TagKind TK, DeclContext *DC,
2027 SourceLocation L, IdentifierInfo *Id,
2028 TagDecl *PrevDecl, SourceLocation TKL = SourceLocation())
2029 : TypeDecl(DK, DC, L, Id), DeclContext(DK), TagKeywordLoc(TKL),
2030 TypedefDeclOrQualifier((TypedefDecl*) 0) {
2031 assert((DK != Enum || TK == TTK_Enum) &&
2032 "EnumDecl not matched with TTK_Enum");
2033 TagDeclKind = TK;
2034 IsDefinition = false;
2035 IsBeingDefined = false;
2036 IsEmbeddedInDeclarator = false;
2037 setPreviousDeclaration(PrevDecl);
2040 typedef Redeclarable<TagDecl> redeclarable_base;
2041 TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
2043 /// @brief Completes the definition of this tag declaration.
2045 /// This is a helper function for derived classes.
2046 void completeDefinition();
2048 friend class Decl;
2050 public:
2051 typedef redeclarable_base::redecl_iterator redecl_iterator;
2052 redecl_iterator redecls_begin() const {
2053 return redeclarable_base::redecls_begin();
2055 redecl_iterator redecls_end() const {
2056 return redeclarable_base::redecls_end();
2059 SourceLocation getRBraceLoc() const { return RBraceLoc; }
2060 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
2062 SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
2063 void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
2065 /// getInnerLocStart - Return SourceLocation representing start of source
2066 /// range ignoring outer template declarations.
2067 SourceLocation getInnerLocStart() const;
2069 /// getOuterLocStart - Return SourceLocation representing start of source
2070 /// range taking into account any outer template declarations.
2071 SourceLocation getOuterLocStart() const;
2072 SourceRange getSourceRange() const;
2074 TagDecl* getCanonicalDecl();
2075 const TagDecl* getCanonicalDecl() const {
2076 return const_cast<TagDecl*>(this)->getCanonicalDecl();
2079 /// isThisDeclarationADefinition() - Return true if this declaration
2080 /// defines the type. Provided for consistency.
2081 bool isThisDeclarationADefinition() const {
2082 return isDefinition();
2085 /// isDefinition - Return true if this decl has its body specified.
2086 bool isDefinition() const {
2087 return IsDefinition;
2090 /// isBeingDefined - Return true if this decl is currently being defined.
2091 bool isBeingDefined() const {
2092 return IsBeingDefined;
2095 bool isEmbeddedInDeclarator() const {
2096 return IsEmbeddedInDeclarator;
2098 void setEmbeddedInDeclarator(bool isInDeclarator) {
2099 IsEmbeddedInDeclarator = isInDeclarator;
2102 /// \brief Whether this declaration declares a type that is
2103 /// dependent, i.e., a type that somehow depends on template
2104 /// parameters.
2105 bool isDependentType() const { return isDependentContext(); }
2107 /// @brief Starts the definition of this tag declaration.
2109 /// This method should be invoked at the beginning of the definition
2110 /// of this tag declaration. It will set the tag type into a state
2111 /// where it is in the process of being defined.
2112 void startDefinition();
2114 /// getDefinition - Returns the TagDecl that actually defines this
2115 /// struct/union/class/enum. When determining whether or not a
2116 /// struct/union/class/enum is completely defined, one should use this method
2117 /// as opposed to 'isDefinition'. 'isDefinition' indicates whether or not a
2118 /// specific TagDecl is defining declaration, not whether or not the
2119 /// struct/union/class/enum type is defined. This method returns NULL if
2120 /// there is no TagDecl that defines the struct/union/class/enum.
2121 TagDecl* getDefinition() const;
2123 void setDefinition(bool V) { IsDefinition = V; }
2125 const char *getKindName() const {
2126 return TypeWithKeyword::getTagTypeKindName(getTagKind());
2129 TagKind getTagKind() const {
2130 return TagKind(TagDeclKind);
2133 void setTagKind(TagKind TK) { TagDeclKind = TK; }
2135 bool isStruct() const { return getTagKind() == TTK_Struct; }
2136 bool isClass() const { return getTagKind() == TTK_Class; }
2137 bool isUnion() const { return getTagKind() == TTK_Union; }
2138 bool isEnum() const { return getTagKind() == TTK_Enum; }
2140 TypedefDecl *getTypedefForAnonDecl() const {
2141 return hasExtInfo() ? 0 : TypedefDeclOrQualifier.get<TypedefDecl*>();
2144 void setTypedefForAnonDecl(TypedefDecl *TDD);
2146 NestedNameSpecifier *getQualifier() const {
2147 return hasExtInfo() ? getExtInfo()->NNS : 0;
2149 SourceRange getQualifierRange() const {
2150 return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
2152 void setQualifierInfo(NestedNameSpecifier *Qualifier,
2153 SourceRange QualifierRange);
2155 unsigned getNumTemplateParameterLists() const {
2156 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
2158 TemplateParameterList *getTemplateParameterList(unsigned i) const {
2159 assert(i < getNumTemplateParameterLists());
2160 return getExtInfo()->TemplParamLists[i];
2162 void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
2163 TemplateParameterList **TPLists) {
2164 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2167 // Implement isa/cast/dyncast/etc.
2168 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2169 static bool classof(const TagDecl *D) { return true; }
2170 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
2172 static DeclContext *castToDeclContext(const TagDecl *D) {
2173 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
2175 static TagDecl *castFromDeclContext(const DeclContext *DC) {
2176 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
2179 friend class ASTDeclReader;
2180 friend class ASTDeclWriter;
2183 /// EnumDecl - Represents an enum. As an extension, we allow forward-declared
2184 /// enums.
2185 class EnumDecl : public TagDecl {
2186 /// IntegerType - This represent the integer type that the enum corresponds
2187 /// to for code generation purposes. Note that the enumerator constants may
2188 /// have a different type than this does.
2190 /// If the underlying integer type was explicitly stated in the source
2191 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
2192 /// was automatically deduced somehow, and this is a Type*.
2194 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
2195 /// some cases it won't.
2197 /// The underlying type of an enumeration never has any qualifiers, so
2198 /// we can get away with just storing a raw Type*, and thus save an
2199 /// extra pointer when TypeSourceInfo is needed.
2201 llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
2203 /// PromotionType - The integer type that values of this type should
2204 /// promote to. In C, enumerators are generally of an integer type
2205 /// directly, but gcc-style large enumerators (and all enumerators
2206 /// in C++) are of the enum type instead.
2207 QualType PromotionType;
2209 /// \brief If the enumeration was instantiated from an enumeration
2210 /// within a class or function template, this pointer refers to the
2211 /// enumeration declared within the template.
2212 EnumDecl *InstantiatedFrom;
2214 // The number of positive and negative bits required by the
2215 // enumerators are stored in the SubclassBits field.
2216 enum {
2217 NumBitsWidth = 8,
2218 NumBitsMask = (1 << NumBitsWidth) - 1
2221 EnumDecl(DeclContext *DC, SourceLocation L,
2222 IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL,
2223 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
2224 : TagDecl(Enum, TTK_Enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
2225 assert(Scoped || !ScopedUsingClassTag);
2226 IntegerType = (const Type*)0;
2227 NumNegativeBits = 0;
2228 NumPositiveBits = 0;
2229 IsScoped = Scoped;
2230 IsScopedUsingClassTag = ScopedUsingClassTag;
2231 IsFixed = Fixed;
2233 public:
2234 EnumDecl *getCanonicalDecl() {
2235 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2237 const EnumDecl *getCanonicalDecl() const {
2238 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2241 const EnumDecl *getPreviousDeclaration() const {
2242 return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2244 EnumDecl *getPreviousDeclaration() {
2245 return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2248 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
2249 SourceLocation L, IdentifierInfo *Id,
2250 SourceLocation TKL, EnumDecl *PrevDecl,
2251 bool IsScoped, bool IsScopedUsingClassTag,
2252 bool IsFixed);
2253 static EnumDecl *Create(ASTContext &C, EmptyShell Empty);
2255 /// completeDefinition - When created, the EnumDecl corresponds to a
2256 /// forward-declared enum. This method is used to mark the
2257 /// declaration as being defined; it's enumerators have already been
2258 /// added (via DeclContext::addDecl). NewType is the new underlying
2259 /// type of the enumeration type.
2260 void completeDefinition(QualType NewType,
2261 QualType PromotionType,
2262 unsigned NumPositiveBits,
2263 unsigned NumNegativeBits);
2265 // enumerator_iterator - Iterates through the enumerators of this
2266 // enumeration.
2267 typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
2269 enumerator_iterator enumerator_begin() const {
2270 const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2271 if (!E)
2272 E = this;
2273 return enumerator_iterator(E->decls_begin());
2276 enumerator_iterator enumerator_end() const {
2277 const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2278 if (!E)
2279 E = this;
2280 return enumerator_iterator(E->decls_end());
2283 /// getPromotionType - Return the integer type that enumerators
2284 /// should promote to.
2285 QualType getPromotionType() const { return PromotionType; }
2287 /// \brief Set the promotion type.
2288 void setPromotionType(QualType T) { PromotionType = T; }
2290 /// getIntegerType - Return the integer type this enum decl corresponds to.
2291 /// This returns a null qualtype for an enum forward definition.
2292 QualType getIntegerType() const {
2293 if (!IntegerType)
2294 return QualType();
2295 if (const Type* T = IntegerType.dyn_cast<const Type*>())
2296 return QualType(T, 0);
2297 return IntegerType.get<TypeSourceInfo*>()->getType();
2300 /// \brief Set the underlying integer type.
2301 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
2303 /// \brief Set the underlying integer type source info.
2304 void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
2306 /// \brief Return the type source info for the underlying integer type,
2307 /// if no type source info exists, return 0.
2308 TypeSourceInfo* getIntegerTypeSourceInfo() const {
2309 return IntegerType.dyn_cast<TypeSourceInfo*>();
2312 /// \brief Returns the width in bits requred to store all the
2313 /// non-negative enumerators of this enum.
2314 unsigned getNumPositiveBits() const {
2315 return NumPositiveBits;
2317 void setNumPositiveBits(unsigned Num) {
2318 NumPositiveBits = Num;
2319 assert(NumPositiveBits == Num && "can't store this bitcount");
2322 /// \brief Returns the width in bits requred to store all the
2323 /// negative enumerators of this enum. These widths include
2324 /// the rightmost leading 1; that is:
2325 ///
2326 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
2327 /// ------------------------ ------- -----------------
2328 /// -1 1111111 1
2329 /// -10 1110110 5
2330 /// -101 1001011 8
2331 unsigned getNumNegativeBits() const {
2332 return NumNegativeBits;
2334 void setNumNegativeBits(unsigned Num) {
2335 NumNegativeBits = Num;
2338 /// \brief Returns true if this is a C++0x scoped enumeration.
2339 bool isScoped() const {
2340 return IsScoped;
2343 /// \brief Returns true if this is a C++0x scoped enumeration.
2344 bool isScopedUsingClassTag() const {
2345 return IsScopedUsingClassTag;
2348 /// \brief Returns true if this is a C++0x enumeration with fixed underlying
2349 /// type.
2350 bool isFixed() const {
2351 return IsFixed;
2354 /// \brief Returns true if this can be considered a complete type.
2355 bool isComplete() const {
2356 return isDefinition() || isFixed();
2359 /// \brief Returns the enumeration (declared within the template)
2360 /// from which this enumeration type was instantiated, or NULL if
2361 /// this enumeration was not instantiated from any template.
2362 EnumDecl *getInstantiatedFromMemberEnum() const {
2363 return InstantiatedFrom;
2366 void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
2368 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2369 static bool classof(const EnumDecl *D) { return true; }
2370 static bool classofKind(Kind K) { return K == Enum; }
2372 friend class ASTDeclReader;
2376 /// RecordDecl - Represents a struct/union/class. For example:
2377 /// struct X; // Forward declaration, no "body".
2378 /// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
2379 /// This decl will be marked invalid if *any* members are invalid.
2381 class RecordDecl : public TagDecl {
2382 // FIXME: This can be packed into the bitfields in Decl.
2383 /// HasFlexibleArrayMember - This is true if this struct ends with a flexible
2384 /// array member (e.g. int X[]) or if this union contains a struct that does.
2385 /// If so, this cannot be contained in arrays or other structs as a member.
2386 bool HasFlexibleArrayMember : 1;
2388 /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
2389 /// or union.
2390 bool AnonymousStructOrUnion : 1;
2392 /// HasObjectMember - This is true if this struct has at least one member
2393 /// containing an object.
2394 bool HasObjectMember : 1;
2396 /// \brief Whether the field declarations of this record have been loaded
2397 /// from external storage. To avoid unnecessary deserialization of
2398 /// methods/nested types we allow deserialization of just the fields
2399 /// when needed.
2400 mutable bool LoadedFieldsFromExternalStorage : 1;
2401 friend class DeclContext;
2403 protected:
2404 RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2405 SourceLocation L, IdentifierInfo *Id,
2406 RecordDecl *PrevDecl, SourceLocation TKL);
2408 public:
2409 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
2410 SourceLocation L, IdentifierInfo *Id,
2411 SourceLocation TKL = SourceLocation(),
2412 RecordDecl* PrevDecl = 0);
2413 static RecordDecl *Create(const ASTContext &C, EmptyShell Empty);
2415 const RecordDecl *getPreviousDeclaration() const {
2416 return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2418 RecordDecl *getPreviousDeclaration() {
2419 return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2422 bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
2423 void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
2425 /// isAnonymousStructOrUnion - Whether this is an anonymous struct
2426 /// or union. To be an anonymous struct or union, it must have been
2427 /// declared without a name and there must be no objects of this
2428 /// type declared, e.g.,
2429 /// @code
2430 /// union { int i; float f; };
2431 /// @endcode
2432 /// is an anonymous union but neither of the following are:
2433 /// @code
2434 /// union X { int i; float f; };
2435 /// union { int i; float f; } obj;
2436 /// @endcode
2437 bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
2438 void setAnonymousStructOrUnion(bool Anon) {
2439 AnonymousStructOrUnion = Anon;
2442 bool hasObjectMember() const { return HasObjectMember; }
2443 void setHasObjectMember (bool val) { HasObjectMember = val; }
2445 /// \brief Determines whether this declaration represents the
2446 /// injected class name.
2448 /// The injected class name in C++ is the name of the class that
2449 /// appears inside the class itself. For example:
2451 /// \code
2452 /// struct C {
2453 /// // C is implicitly declared here as a synonym for the class name.
2454 /// };
2456 /// C::C c; // same as "C c;"
2457 /// \endcode
2458 bool isInjectedClassName() const;
2460 /// getDefinition - Returns the RecordDecl that actually defines this
2461 /// struct/union/class. When determining whether or not a struct/union/class
2462 /// is completely defined, one should use this method as opposed to
2463 /// 'isDefinition'. 'isDefinition' indicates whether or not a specific
2464 /// RecordDecl is defining declaration, not whether or not the record
2465 /// type is defined. This method returns NULL if there is no RecordDecl
2466 /// that defines the struct/union/tag.
2467 RecordDecl* getDefinition() const {
2468 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
2471 // Iterator access to field members. The field iterator only visits
2472 // the non-static data members of this class, ignoring any static
2473 // data members, functions, constructors, destructors, etc.
2474 typedef specific_decl_iterator<FieldDecl> field_iterator;
2476 field_iterator field_begin() const;
2478 field_iterator field_end() const {
2479 return field_iterator(decl_iterator());
2482 // field_empty - Whether there are any fields (non-static data
2483 // members) in this record.
2484 bool field_empty() const {
2485 return field_begin() == field_end();
2488 /// completeDefinition - Notes that the definition of this type is
2489 /// now complete.
2490 virtual void completeDefinition();
2492 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2493 static bool classof(const RecordDecl *D) { return true; }
2494 static bool classofKind(Kind K) {
2495 return K >= firstRecord && K <= lastRecord;
2498 private:
2499 /// \brief Deserialize just the fields.
2500 void LoadFieldsFromExternalStorage() const;
2503 class FileScopeAsmDecl : public Decl {
2504 StringLiteral *AsmString;
2505 FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
2506 : Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
2507 public:
2508 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
2509 SourceLocation L, StringLiteral *Str);
2511 const StringLiteral *getAsmString() const { return AsmString; }
2512 StringLiteral *getAsmString() { return AsmString; }
2513 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
2515 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2516 static bool classof(const FileScopeAsmDecl *D) { return true; }
2517 static bool classofKind(Kind K) { return K == FileScopeAsm; }
2520 /// BlockDecl - This represents a block literal declaration, which is like an
2521 /// unnamed FunctionDecl. For example:
2522 /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
2524 class BlockDecl : public Decl, public DeclContext {
2525 public:
2526 /// A class which contains all the information about a particular
2527 /// captured value.
2528 class Capture {
2529 enum {
2530 flag_isByRef = 0x1,
2531 flag_isNested = 0x2
2534 /// The variable being captured.
2535 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
2537 /// The copy expression, expressed in terms of a DeclRef (or
2538 /// BlockDeclRef) to the captured variable. Only required if the
2539 /// variable has a C++ class type.
2540 Expr *CopyExpr;
2542 public:
2543 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
2544 : VariableAndFlags(variable,
2545 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
2546 CopyExpr(copy) {}
2548 /// The variable being captured.
2549 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
2551 /// Whether this is a "by ref" capture, i.e. a capture of a __block
2552 /// variable.
2553 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
2555 /// Whether this is a nested capture, i.e. the variable captured
2556 /// is not from outside the immediately enclosing function/block.
2557 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
2559 bool hasCopyExpr() const { return CopyExpr != 0; }
2560 Expr *getCopyExpr() const { return CopyExpr; }
2561 void setCopyExpr(Expr *e) { CopyExpr = e; }
2564 private:
2565 // FIXME: This can be packed into the bitfields in Decl.
2566 bool IsVariadic : 1;
2567 bool CapturesCXXThis : 1;
2568 /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
2569 /// parameters of this function. This is null if a prototype or if there are
2570 /// no formals.
2571 ParmVarDecl **ParamInfo;
2572 unsigned NumParams;
2574 Stmt *Body;
2575 TypeSourceInfo *SignatureAsWritten;
2577 Capture *Captures;
2578 unsigned NumCaptures;
2580 protected:
2581 BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
2582 : Decl(Block, DC, CaretLoc), DeclContext(Block),
2583 IsVariadic(false), CapturesCXXThis(false),
2584 ParamInfo(0), NumParams(0), Body(0),
2585 SignatureAsWritten(0), Captures(0), NumCaptures(0) {}
2587 public:
2588 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
2590 SourceLocation getCaretLocation() const { return getLocation(); }
2592 bool isVariadic() const { return IsVariadic; }
2593 void setIsVariadic(bool value) { IsVariadic = value; }
2595 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
2596 Stmt *getBody() const { return (Stmt*) Body; }
2597 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
2599 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
2600 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
2602 // Iterator access to formal parameters.
2603 unsigned param_size() const { return getNumParams(); }
2604 typedef ParmVarDecl **param_iterator;
2605 typedef ParmVarDecl * const *param_const_iterator;
2607 bool param_empty() const { return NumParams == 0; }
2608 param_iterator param_begin() { return ParamInfo; }
2609 param_iterator param_end() { return ParamInfo+param_size(); }
2611 param_const_iterator param_begin() const { return ParamInfo; }
2612 param_const_iterator param_end() const { return ParamInfo+param_size(); }
2614 unsigned getNumParams() const { return NumParams; }
2615 const ParmVarDecl *getParamDecl(unsigned i) const {
2616 assert(i < getNumParams() && "Illegal param #");
2617 return ParamInfo[i];
2619 ParmVarDecl *getParamDecl(unsigned i) {
2620 assert(i < getNumParams() && "Illegal param #");
2621 return ParamInfo[i];
2623 void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
2625 /// hasCaptures - True if this block (or its nested blocks) captures
2626 /// anything of local storage from its enclosing scopes.
2627 bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; }
2629 /// getNumCaptures - Returns the number of captured variables.
2630 /// Does not include an entry for 'this'.
2631 unsigned getNumCaptures() const { return NumCaptures; }
2633 typedef const Capture *capture_iterator;
2634 typedef const Capture *capture_const_iterator;
2635 capture_iterator capture_begin() { return Captures; }
2636 capture_iterator capture_end() { return Captures + NumCaptures; }
2637 capture_const_iterator capture_begin() const { return Captures; }
2638 capture_const_iterator capture_end() const { return Captures + NumCaptures; }
2640 bool capturesCXXThis() const { return CapturesCXXThis; }
2642 void setCaptures(ASTContext &Context,
2643 const Capture *begin,
2644 const Capture *end,
2645 bool capturesCXXThis);
2647 SourceRange getSourceRange() const;
2649 // Implement isa/cast/dyncast/etc.
2650 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2651 static bool classof(const BlockDecl *D) { return true; }
2652 static bool classofKind(Kind K) { return K == Block; }
2653 static DeclContext *castToDeclContext(const BlockDecl *D) {
2654 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
2656 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
2657 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
2661 /// Insertion operator for diagnostics. This allows sending NamedDecl's
2662 /// into a diagnostic with <<.
2663 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2664 NamedDecl* ND) {
2665 DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
2666 return DB;
2669 template<typename decl_type>
2670 void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {
2671 // Note: This routine is implemented here because we need both NamedDecl
2672 // and Redeclarable to be defined.
2674 decl_type *First;
2676 if (PrevDecl) {
2677 // Point to previous. Make sure that this is actually the most recent
2678 // redeclaration, or we can build invalid chains. If the most recent
2679 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
2680 RedeclLink = PreviousDeclLink(llvm::cast<decl_type>(
2681 PrevDecl->getMostRecentDeclaration()));
2682 First = PrevDecl->getFirstDeclaration();
2683 assert(First->RedeclLink.NextIsLatest() && "Expected first");
2684 } else {
2685 // Make this first.
2686 First = static_cast<decl_type*>(this);
2689 // First one will point to this one as latest.
2690 First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this));
2691 if (NamedDecl *ND = dyn_cast<NamedDecl>(static_cast<decl_type*>(this)))
2692 ND->ClearLinkageCache();
2695 } // end namespace clang
2697 #endif