1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Lex/LexDiagnostic.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/StringExtras.h"
21 using namespace clang
;
23 /// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
25 static int HexDigitValue(char C
) {
26 if (C
>= '0' && C
<= '9') return C
-'0';
27 if (C
>= 'a' && C
<= 'f') return C
-'a'+10;
28 if (C
>= 'A' && C
<= 'F') return C
-'A'+10;
32 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33 /// either a character or a string literal.
34 static unsigned ProcessCharEscape(const char *&ThisTokBuf
,
35 const char *ThisTokEnd
, bool &HadError
,
36 FullSourceLoc Loc
, bool IsWide
,
37 Diagnostic
*Diags
, const TargetInfo
&Target
) {
41 // We know that this character can't be off the end of the buffer, because
42 // that would have been \", which would not have been the end of string.
43 unsigned ResultChar
= *ThisTokBuf
++;
45 // These map to themselves.
46 case '\\': case '\'': case '"': case '?': break;
48 // These have fixed mappings.
50 // TODO: K&R: the meaning of '\\a' is different in traditional C
58 Diags
->Report(Loc
, diag::ext_nonstandard_escape
) << "e";
63 Diags
->Report(Loc
, diag::ext_nonstandard_escape
) << "E";
81 case 'x': { // Hex escape.
83 if (ThisTokBuf
== ThisTokEnd
|| !isxdigit(*ThisTokBuf
)) {
85 Diags
->Report(Loc
, diag::err_hex_escape_no_digits
);
90 // Hex escapes are a maximal series of hex digits.
91 bool Overflow
= false;
92 for (; ThisTokBuf
!= ThisTokEnd
; ++ThisTokBuf
) {
93 int CharVal
= HexDigitValue(ThisTokBuf
[0]);
94 if (CharVal
== -1) break;
95 // About to shift out a digit?
96 Overflow
|= (ResultChar
& 0xF0000000) ? true : false;
98 ResultChar
|= CharVal
;
101 // See if any bits will be truncated when evaluated as a character.
103 IsWide
? Target
.getWCharWidth() : Target
.getCharWidth();
105 if (CharWidth
!= 32 && (ResultChar
>> CharWidth
) != 0) {
107 ResultChar
&= ~0U >> (32-CharWidth
);
110 // Check for overflow.
111 if (Overflow
&& Diags
) // Too many digits to fit in
112 Diags
->Report(Loc
, diag::warn_hex_escape_too_large
);
115 case '0': case '1': case '2': case '3':
116 case '4': case '5': case '6': case '7': {
121 // Octal escapes are a series of octal digits with maximum length 3.
122 // "\0123" is a two digit sequence equal to "\012" "3".
123 unsigned NumDigits
= 0;
126 ResultChar
|= *ThisTokBuf
++ - '0';
128 } while (ThisTokBuf
!= ThisTokEnd
&& NumDigits
< 3 &&
129 ThisTokBuf
[0] >= '0' && ThisTokBuf
[0] <= '7');
131 // Check for overflow. Reject '\777', but not L'\777'.
133 IsWide
? Target
.getWCharWidth() : Target
.getCharWidth();
135 if (CharWidth
!= 32 && (ResultChar
>> CharWidth
) != 0) {
137 Diags
->Report(Loc
, diag::warn_octal_escape_too_large
);
138 ResultChar
&= ~0U >> (32-CharWidth
);
143 // Otherwise, these are not valid escapes.
144 case '(': case '{': case '[': case '%':
145 // GCC accepts these as extensions. We warn about them as such though.
147 Diags
->Report(Loc
, diag::ext_nonstandard_escape
)
148 << std::string()+(char)ResultChar
;
154 if (isgraph(ResultChar
))
155 Diags
->Report(Loc
, diag::ext_unknown_escape
)
156 << std::string()+(char)ResultChar
;
158 Diags
->Report(Loc
, diag::ext_unknown_escape
)
159 << "x"+llvm::utohexstr(ResultChar
);
166 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
167 /// return the UTF32.
168 static bool ProcessUCNEscape(const char *&ThisTokBuf
, const char *ThisTokEnd
,
169 uint32_t &UcnVal
, unsigned short &UcnLen
,
170 FullSourceLoc Loc
, Diagnostic
*Diags
,
171 const LangOptions
&Features
) {
172 if (!Features
.CPlusPlus
&& !Features
.C99
&& Diags
)
173 Diags
->Report(Loc
, diag::warn_ucn_not_valid_in_c89
);
175 // Save the beginning of the string (for error diagnostics).
176 const char *ThisTokBegin
= ThisTokBuf
;
178 // Skip the '\u' char's.
181 if (ThisTokBuf
== ThisTokEnd
|| !isxdigit(*ThisTokBuf
)) {
183 Diags
->Report(Loc
, diag::err_ucn_escape_no_digits
);
186 UcnLen
= (ThisTokBuf
[-1] == 'u' ? 4 : 8);
187 unsigned short UcnLenSave
= UcnLen
;
188 for (; ThisTokBuf
!= ThisTokEnd
&& UcnLenSave
; ++ThisTokBuf
, UcnLenSave
--) {
189 int CharVal
= HexDigitValue(ThisTokBuf
[0]);
190 if (CharVal
== -1) break;
194 // If we didn't consume the proper number of digits, there is a problem.
198 Lexer::AdvanceToTokenCharacter(Loc
, ThisTokBuf
-ThisTokBegin
,
199 Loc
.getManager(), Features
);
200 Diags
->Report(FullSourceLoc(L
, Loc
.getManager()),
201 diag::err_ucn_escape_incomplete
);
205 // Check UCN constraints (C99 6.4.3p2).
206 if ((UcnVal
< 0xa0 &&
207 (UcnVal
!= 0x24 && UcnVal
!= 0x40 && UcnVal
!= 0x60 )) // $, @, `
208 || (UcnVal
>= 0xD800 && UcnVal
<= 0xDFFF)
209 || (UcnVal
> 0x10FFFF)) /* the maximum legal UTF32 value */ {
211 Diags
->Report(Loc
, diag::err_ucn_escape_invalid
);
217 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
218 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
219 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
220 /// we will likely rework our support for UCN's.
221 static void EncodeUCNEscape(const char *&ThisTokBuf
, const char *ThisTokEnd
,
222 char *&ResultBuf
, bool &HadError
,
223 FullSourceLoc Loc
, bool wide
, Diagnostic
*Diags
,
224 const LangOptions
&Features
) {
225 typedef uint32_t UTF32
;
227 unsigned short UcnLen
= 0;
228 if (!ProcessUCNEscape(ThisTokBuf
, ThisTokEnd
, UcnVal
, UcnLen
, Loc
, Diags
,
236 assert((UcnLen
== 4 || UcnLen
== 8) && "only ucn length of 4 or 8 supported");
238 if (!Features
.ShortWChar
) {
239 // Note: our internal rep of wide char tokens is always little-endian.
240 *ResultBuf
++ = (UcnVal
& 0x000000FF);
241 *ResultBuf
++ = (UcnVal
& 0x0000FF00) >> 8;
242 *ResultBuf
++ = (UcnVal
& 0x00FF0000) >> 16;
243 *ResultBuf
++ = (UcnVal
& 0xFF000000) >> 24;
248 if (UcnVal
< (UTF32
)0xFFFF) {
249 *ResultBuf
++ = (UcnVal
& 0x000000FF);
250 *ResultBuf
++ = (UcnVal
& 0x0000FF00) >> 8;
253 if (Diags
) Diags
->Report(Loc
, diag::warn_ucn_escape_too_large
);
255 typedef uint16_t UTF16
;
257 UTF16 surrogate1
= 0xD800 + (UcnVal
>> 10);
258 UTF16 surrogate2
= 0xDC00 + (UcnVal
& 0x3FF);
259 *ResultBuf
++ = (surrogate1
& 0x000000FF);
260 *ResultBuf
++ = (surrogate1
& 0x0000FF00) >> 8;
261 *ResultBuf
++ = (surrogate2
& 0x000000FF);
262 *ResultBuf
++ = (surrogate2
& 0x0000FF00) >> 8;
265 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
266 // The conversion below was inspired by:
267 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
268 // First, we determine how many bytes the result will require.
269 typedef uint8_t UTF8
;
271 unsigned short bytesToWrite
= 0;
272 if (UcnVal
< (UTF32
)0x80)
274 else if (UcnVal
< (UTF32
)0x800)
276 else if (UcnVal
< (UTF32
)0x10000)
281 const unsigned byteMask
= 0xBF;
282 const unsigned byteMark
= 0x80;
284 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
285 // into the first byte, depending on how many bytes follow.
286 static const UTF8 firstByteMark
[5] = {
287 0x00, 0x00, 0xC0, 0xE0, 0xF0
289 // Finally, we write the bytes into ResultBuf.
290 ResultBuf
+= bytesToWrite
;
291 switch (bytesToWrite
) { // note: everything falls through.
292 case 4: *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
293 case 3: *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
294 case 2: *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
295 case 1: *--ResultBuf
= (UTF8
) (UcnVal
| firstByteMark
[bytesToWrite
]);
297 // Update the buffer.
298 ResultBuf
+= bytesToWrite
;
302 /// integer-constant: [C99 6.4.4.1]
303 /// decimal-constant integer-suffix
304 /// octal-constant integer-suffix
305 /// hexadecimal-constant integer-suffix
306 /// decimal-constant:
308 /// decimal-constant digit
311 /// octal-constant octal-digit
312 /// hexadecimal-constant:
313 /// hexadecimal-prefix hexadecimal-digit
314 /// hexadecimal-constant hexadecimal-digit
315 /// hexadecimal-prefix: one of
318 /// unsigned-suffix [long-suffix]
319 /// unsigned-suffix [long-long-suffix]
320 /// long-suffix [unsigned-suffix]
321 /// long-long-suffix [unsigned-sufix]
323 /// 1 2 3 4 5 6 7 8 9
326 /// hexadecimal-digit:
327 /// 0 1 2 3 4 5 6 7 8 9
330 /// unsigned-suffix: one of
332 /// long-suffix: one of
334 /// long-long-suffix: one of
337 /// floating-constant: [C99 6.4.4.2]
338 /// TODO: add rules...
340 NumericLiteralParser::
341 NumericLiteralParser(const char *begin
, const char *end
,
342 SourceLocation TokLoc
, Preprocessor
&pp
)
343 : PP(pp
), ThisTokBegin(begin
), ThisTokEnd(end
) {
345 // This routine assumes that the range begin/end matches the regex for integer
346 // and FP constants (specifically, the 'pp-number' regex), and assumes that
347 // the byte at "*end" is both valid and not part of the regex. Because of
348 // this, it doesn't have to check for 'overscan' in various places.
349 assert(!isalnum(*end
) && *end
!= '.' && *end
!= '_' &&
350 "Lexer didn't maximally munch?");
352 s
= DigitsBegin
= begin
;
353 saw_exponent
= false;
360 isMicrosoftInteger
= false;
363 if (*s
== '0') { // parse radix
364 ParseNumberStartingWithZero(TokLoc
);
367 } else { // the first digit is non-zero
370 if (s
== ThisTokEnd
) {
372 } else if (isxdigit(*s
) && !(*s
== 'e' || *s
== 'E')) {
373 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-begin
),
374 diag::err_invalid_decimal_digit
) << llvm::StringRef(s
, 1);
377 } else if (*s
== '.') {
382 if ((*s
== 'e' || *s
== 'E')) { // exponent
383 const char *Exponent
= s
;
386 if (*s
== '+' || *s
== '-') s
++; // sign
387 const char *first_non_digit
= SkipDigits(s
);
388 if (first_non_digit
!= s
) {
391 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, Exponent
-begin
),
392 diag::err_exponent_has_no_digits
);
401 // Parse the suffix. At this point we can classify whether we have an FP or
403 bool isFPConstant
= isFloatingLiteral();
405 // Loop over all of the characters of the suffix. If we see something bad,
406 // we break out of the loop.
407 for (; s
!= ThisTokEnd
; ++s
) {
409 case 'f': // FP Suffix for "float"
411 if (!isFPConstant
) break; // Error for integer constant.
412 if (isFloat
|| isLong
) break; // FF, LF invalid.
414 continue; // Success.
417 if (isFPConstant
) break; // Error for floating constant.
418 if (isUnsigned
) break; // Cannot be repeated.
420 continue; // Success.
423 if (isLong
|| isLongLong
) break; // Cannot be repeated.
424 if (isFloat
) break; // LF invalid.
426 // Check for long long. The L's need to be adjacent and the same case.
427 if (s
+1 != ThisTokEnd
&& s
[1] == s
[0]) {
428 if (isFPConstant
) break; // long long invalid for floats.
430 ++s
; // Eat both of them.
434 continue; // Success.
437 if (PP
.getLangOptions().Microsoft
) {
438 if (isFPConstant
|| isLong
|| isLongLong
) break;
440 // Allow i8, i16, i32, i64, and i128.
441 if (s
+ 1 != ThisTokEnd
) {
445 isMicrosoftInteger
= true;
448 if (s
+ 2 == ThisTokEnd
) break;
449 if (s
[2] == '6') s
+= 3; // i16 suffix
450 else if (s
[2] == '2') {
451 if (s
+ 3 == ThisTokEnd
) break;
452 if (s
[3] == '8') s
+= 4; // i128 suffix
454 isMicrosoftInteger
= true;
457 if (s
+ 2 == ThisTokEnd
) break;
458 if (s
[2] == '2') s
+= 3; // i32 suffix
459 isMicrosoftInteger
= true;
462 if (s
+ 2 == ThisTokEnd
) break;
463 if (s
[2] == '4') s
+= 3; // i64 suffix
464 isMicrosoftInteger
= true;
475 if (isImaginary
) break; // Cannot be repeated.
476 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-begin
),
477 diag::ext_imaginary_constant
);
479 continue; // Success.
481 // If we reached here, there was an error.
485 // Report an error if there are any.
486 if (s
!= ThisTokEnd
) {
487 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-begin
),
488 isFPConstant
? diag::err_invalid_suffix_float_constant
:
489 diag::err_invalid_suffix_integer_constant
)
490 << llvm::StringRef(SuffixBegin
, ThisTokEnd
-SuffixBegin
);
496 /// ParseNumberStartingWithZero - This method is called when the first character
497 /// of the number is found to be a zero. This means it is either an octal
498 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
499 /// a floating point number (01239.123e4). Eat the prefix, determining the
501 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc
) {
502 assert(s
[0] == '0' && "Invalid method call");
505 // Handle a hex number like 0x1234.
506 if ((*s
== 'x' || *s
== 'X') && (isxdigit(s
[1]) || s
[1] == '.')) {
510 s
= SkipHexDigits(s
);
511 if (s
== ThisTokEnd
) {
513 } else if (*s
== '.') {
516 s
= SkipHexDigits(s
);
518 // A binary exponent can appear with or with a '.'. If dotted, the
519 // binary exponent is required.
520 if ((*s
== 'p' || *s
== 'P') && !PP
.getLangOptions().CPlusPlus0x
) {
521 const char *Exponent
= s
;
524 if (*s
== '+' || *s
== '-') s
++; // sign
525 const char *first_non_digit
= SkipDigits(s
);
526 if (first_non_digit
== s
) {
527 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, Exponent
-ThisTokBegin
),
528 diag::err_exponent_has_no_digits
);
534 // In C++0x, we cannot support hexadecmial floating literals because
535 // they conflict with user-defined literals, so we warn in previous
536 // versions of C++ by default.
537 if (PP
.getLangOptions().CPlusPlus
)
538 PP
.Diag(TokLoc
, diag::ext_hexconstant_cplusplus
);
539 else if (!PP
.getLangOptions().HexFloats
)
540 PP
.Diag(TokLoc
, diag::ext_hexconstant_invalid
);
541 } else if (saw_period
) {
542 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-ThisTokBegin
),
543 diag::err_hexconstant_requires_exponent
);
549 // Handle simple binary numbers 0b01010
550 if (*s
== 'b' || *s
== 'B') {
551 // 0b101010 is a GCC extension.
552 PP
.Diag(TokLoc
, diag::ext_binary_literal
);
556 s
= SkipBinaryDigits(s
);
557 if (s
== ThisTokEnd
) {
559 } else if (isxdigit(*s
)) {
560 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-ThisTokBegin
),
561 diag::err_invalid_binary_digit
) << llvm::StringRef(s
, 1);
564 // Other suffixes will be diagnosed by the caller.
568 // For now, the radix is set to 8. If we discover that we have a
569 // floating point constant, the radix will change to 10. Octal floating
570 // point constants are not permitted (only decimal and hexadecimal).
573 s
= SkipOctalDigits(s
);
575 return; // Done, simple octal number like 01234
577 // If we have some other non-octal digit that *is* a decimal digit, see if
578 // this is part of a floating point number like 094.123 or 09e1.
580 const char *EndDecimal
= SkipDigits(s
);
581 if (EndDecimal
[0] == '.' || EndDecimal
[0] == 'e' || EndDecimal
[0] == 'E') {
587 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
588 // the code is using an incorrect base.
589 if (isxdigit(*s
) && *s
!= 'e' && *s
!= 'E') {
590 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, s
-ThisTokBegin
),
591 diag::err_invalid_octal_digit
) << llvm::StringRef(s
, 1);
600 s
= SkipDigits(s
); // Skip suffix.
602 if (*s
== 'e' || *s
== 'E') { // exponent
603 const char *Exponent
= s
;
607 if (*s
== '+' || *s
== '-') s
++; // sign
608 const char *first_non_digit
= SkipDigits(s
);
609 if (first_non_digit
!= s
) {
612 PP
.Diag(PP
.AdvanceToTokenCharacter(TokLoc
, Exponent
-ThisTokBegin
),
613 diag::err_exponent_has_no_digits
);
621 /// GetIntegerValue - Convert this numeric literal value to an APInt that
622 /// matches Val's input width. If there is an overflow, set Val to the low bits
623 /// of the result and return true. Otherwise, return false.
624 bool NumericLiteralParser::GetIntegerValue(llvm::APInt
&Val
) {
625 // Fast path: Compute a conservative bound on the maximum number of
626 // bits per digit in this radix. If we can't possibly overflow a
627 // uint64 based on that bound then do the simple conversion to
628 // integer. This avoids the expensive overflow checking below, and
629 // handles the common cases that matter (small decimal integers and
630 // hex/octal values which don't overflow).
631 unsigned MaxBitsPerDigit
= 1;
632 while ((1U << MaxBitsPerDigit
) < radix
)
633 MaxBitsPerDigit
+= 1;
634 if ((SuffixBegin
- DigitsBegin
) * MaxBitsPerDigit
<= 64) {
636 for (s
= DigitsBegin
; s
!= SuffixBegin
; ++s
)
637 N
= N
*radix
+ HexDigitValue(*s
);
639 // This will truncate the value to Val's input width. Simply check
640 // for overflow by comparing.
642 return Val
.getZExtValue() != N
;
648 llvm::APInt
RadixVal(Val
.getBitWidth(), radix
);
649 llvm::APInt
CharVal(Val
.getBitWidth(), 0);
650 llvm::APInt OldVal
= Val
;
652 bool OverflowOccurred
= false;
653 while (s
< SuffixBegin
) {
654 unsigned C
= HexDigitValue(*s
++);
656 // If this letter is out of bound for this radix, reject it.
657 assert(C
< radix
&& "NumericLiteralParser ctor should have rejected this");
661 // Add the digit to the value in the appropriate radix. If adding in digits
662 // made the value smaller, then this overflowed.
665 // Multiply by radix, did overflow occur on the multiply?
667 OverflowOccurred
|= Val
.udiv(RadixVal
) != OldVal
;
669 // Add value, did overflow occur on the value?
670 // (a + b) ult b <=> overflow
672 OverflowOccurred
|= Val
.ult(CharVal
);
674 return OverflowOccurred
;
677 llvm::APFloat::opStatus
678 NumericLiteralParser::GetFloatValue(llvm::APFloat
&Result
) {
680 using llvm::StringRef
;
682 unsigned n
= std::min(SuffixBegin
- ThisTokBegin
, ThisTokEnd
- ThisTokBegin
);
683 return Result
.convertFromString(StringRef(ThisTokBegin
, n
),
684 APFloat::rmNearestTiesToEven
);
688 CharLiteralParser::CharLiteralParser(const char *begin
, const char *end
,
689 SourceLocation Loc
, Preprocessor
&PP
) {
690 // At this point we know that the character matches the regex "L?'.*'".
693 // Determine if this is a wide character.
694 IsWide
= begin
[0] == 'L';
697 // Skip over the entry quote.
698 assert(begin
[0] == '\'' && "Invalid token lexed");
701 // FIXME: The "Value" is an uint64_t so we can handle char literals of
703 // FIXME: This extensively assumes that 'char' is 8-bits.
704 assert(PP
.getTargetInfo().getCharWidth() == 8 &&
705 "Assumes char is 8 bits");
706 assert(PP
.getTargetInfo().getIntWidth() <= 64 &&
707 (PP
.getTargetInfo().getIntWidth() & 7) == 0 &&
708 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
709 assert(PP
.getTargetInfo().getWCharWidth() <= 64 &&
710 "Assumes sizeof(wchar) on target is <= 64");
712 // This is what we will use for overflow detection
713 llvm::APInt
LitVal(PP
.getTargetInfo().getIntWidth(), 0);
715 unsigned NumCharsSoFar
= 0;
717 while (begin
[0] != '\'') {
720 // Is this a Universal Character Name escape?
721 if (begin
[0] != '\\') // If this is a normal character, consume it.
722 ResultChar
= *begin
++;
723 else { // Otherwise, this is an escape character.
725 if (begin
[1] == 'u' || begin
[1] == 'U') {
727 unsigned short UcnLen
= 0;
728 if (!ProcessUCNEscape(begin
, end
, utf32
, UcnLen
,
729 FullSourceLoc(Loc
, PP
.getSourceManager()),
730 &PP
.getDiagnostics(), PP
.getLangOptions())) {
735 // Otherwise, this is a non-UCN escape character. Process it.
736 ResultChar
= ProcessCharEscape(begin
, end
, HadError
,
737 FullSourceLoc(Loc
,PP
.getSourceManager()),
739 &PP
.getDiagnostics(), PP
.getTargetInfo());
743 // If this is a multi-character constant (e.g. 'abc'), handle it. These are
744 // implementation defined (C99 6.4.4.4p10).
747 // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
750 // Narrow character literals act as though their value is concatenated
751 // in this implementation, but warn on overflow.
752 if (LitVal
.countLeadingZeros() < 8 && !Warned
) {
753 PP
.Diag(Loc
, diag::warn_char_constant_too_large
);
760 LitVal
= LitVal
+ ResultChar
;
764 // If this is the second character being processed, do special handling.
765 if (NumCharsSoFar
> 1) {
766 // Warn about discarding the top bits for multi-char wide-character
767 // constants (L'abcd').
769 PP
.Diag(Loc
, diag::warn_extraneous_wide_char_constant
);
770 else if (NumCharsSoFar
!= 4)
771 PP
.Diag(Loc
, diag::ext_multichar_character_literal
);
773 PP
.Diag(Loc
, diag::ext_four_char_character_literal
);
778 // Transfer the value from APInt to uint64_t
779 Value
= LitVal
.getZExtValue();
781 if (IsWide
&& PP
.getLangOptions().ShortWChar
&& Value
> 0xFFFF)
782 PP
.Diag(Loc
, diag::warn_ucn_escape_too_large
);
784 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
785 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
786 // character constants are not sign extended in the this implementation:
787 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
788 if (!IsWide
&& NumCharsSoFar
== 1 && (Value
& 128) &&
789 PP
.getLangOptions().CharIsSigned
)
790 Value
= (signed char)Value
;
794 /// string-literal: [C99 6.4.5]
795 /// " [s-char-sequence] "
796 /// L" [s-char-sequence] "
799 /// s-char-sequence s-char
801 /// any source character except the double quote ",
802 /// backslash \, or newline character
804 /// universal-character-name
805 /// escape-character: [C99 6.4.4.4]
807 /// universal-character-name
809 /// character-escape-code
810 /// octal-escape-code
812 /// character-escape-code: one of
815 /// octal-escape-code:
817 /// octal-digit octal-digit
818 /// octal-digit octal-digit octal-digit
821 /// hex-escape-code hex-digit
822 /// universal-character-name:
824 /// \U hex-quad hex-quad
826 /// hex-digit hex-digit hex-digit hex-digit
828 StringLiteralParser::
829 StringLiteralParser(const Token
*StringToks
, unsigned NumStringToks
,
830 Preprocessor
&PP
, bool Complain
)
831 : SM(PP
.getSourceManager()), Features(PP
.getLangOptions()),
832 Target(PP
.getTargetInfo()), Diags(Complain
? &PP
.getDiagnostics() : 0) {
833 init(StringToks
, NumStringToks
);
836 void StringLiteralParser::init(const Token
*StringToks
, unsigned NumStringToks
){
837 // Scan all of the string portions, remember the max individual token length,
838 // computing a bound on the concatenated string length, and see whether any
839 // piece is a wide-string. If any of the string portions is a wide-string
840 // literal, the result is a wide-string literal [C99 6.4.5p4].
841 MaxTokenLength
= StringToks
[0].getLength();
842 SizeBound
= StringToks
[0].getLength()-2; // -2 for "".
843 AnyWide
= StringToks
[0].is(tok::wide_string_literal
);
847 // Implement Translation Phase #6: concatenation of string literals
848 /// (C99 5.1.1.2p1). The common case is only one string fragment.
849 for (unsigned i
= 1; i
!= NumStringToks
; ++i
) {
850 // The string could be shorter than this if it needs cleaning, but this is a
851 // reasonable bound, which is all we need.
852 SizeBound
+= StringToks
[i
].getLength()-2; // -2 for "".
854 // Remember maximum string piece length.
855 if (StringToks
[i
].getLength() > MaxTokenLength
)
856 MaxTokenLength
= StringToks
[i
].getLength();
858 // Remember if we see any wide strings.
859 AnyWide
|= StringToks
[i
].is(tok::wide_string_literal
);
862 // Include space for the null terminator.
865 // TODO: K&R warning: "traditional C rejects string constant concatenation"
867 // Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
868 // query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
869 wchar_tByteWidth
= ~0U;
871 wchar_tByteWidth
= Target
.getWCharWidth();
872 assert((wchar_tByteWidth
& 7) == 0 && "Assumes wchar_t is byte multiple!");
873 wchar_tByteWidth
/= 8;
876 // The output buffer size needs to be large enough to hold wide characters.
877 // This is a worst-case assumption which basically corresponds to L"" "long".
879 SizeBound
*= wchar_tByteWidth
;
881 // Size the temporary buffer to hold the result string data.
882 ResultBuf
.resize(SizeBound
);
884 // Likewise, but for each string piece.
885 llvm::SmallString
<512> TokenBuf
;
886 TokenBuf
.resize(MaxTokenLength
);
888 // Loop over all the strings, getting their spelling, and expanding them to
889 // wide strings as appropriate.
890 ResultPtr
= &ResultBuf
[0]; // Next byte to fill in.
894 for (unsigned i
= 0, e
= NumStringToks
; i
!= e
; ++i
) {
895 const char *ThisTokBuf
= &TokenBuf
[0];
896 // Get the spelling of the token, which eliminates trigraphs, etc. We know
897 // that ThisTokBuf points to a buffer that is big enough for the whole token
898 // and 'spelled' tokens can only shrink.
899 bool StringInvalid
= false;
900 unsigned ThisTokLen
=
901 Lexer::getSpelling(StringToks
[i
], ThisTokBuf
, SM
, Features
,
908 const char *ThisTokEnd
= ThisTokBuf
+ThisTokLen
-1; // Skip end quote.
910 // TODO: Input character set mapping support.
912 // Skip L marker for wide strings.
913 if (ThisTokBuf
[0] == 'L') {
918 assert(ThisTokBuf
[0] == '"' && "Expected quote, lexer broken?");
921 // Check if this is a pascal string
922 if (Features
.PascalStrings
&& ThisTokBuf
+ 1 != ThisTokEnd
&&
923 ThisTokBuf
[0] == '\\' && ThisTokBuf
[1] == 'p') {
925 // If the \p sequence is found in the first token, we have a pascal string
926 // Otherwise, if we already have a pascal string, ignore the first \p
934 while (ThisTokBuf
!= ThisTokEnd
) {
935 // Is this a span of non-escape characters?
936 if (ThisTokBuf
[0] != '\\') {
937 const char *InStart
= ThisTokBuf
;
940 } while (ThisTokBuf
!= ThisTokEnd
&& ThisTokBuf
[0] != '\\');
942 // Copy the character span over.
943 unsigned Len
= ThisTokBuf
-InStart
;
945 memcpy(ResultPtr
, InStart
, Len
);
948 // Note: our internal rep of wide char tokens is always little-endian.
949 for (; Len
; --Len
, ++InStart
) {
950 *ResultPtr
++ = InStart
[0];
951 // Add zeros at the end.
952 for (unsigned i
= 1, e
= wchar_tByteWidth
; i
!= e
; ++i
)
958 // Is this a Universal Character Name escape?
959 if (ThisTokBuf
[1] == 'u' || ThisTokBuf
[1] == 'U') {
960 EncodeUCNEscape(ThisTokBuf
, ThisTokEnd
, ResultPtr
,
961 hadError
, FullSourceLoc(StringToks
[i
].getLocation(),SM
),
962 wide
, Diags
, Features
);
965 // Otherwise, this is a non-UCN escape character. Process it.
966 unsigned ResultChar
=
967 ProcessCharEscape(ThisTokBuf
, ThisTokEnd
, hadError
,
968 FullSourceLoc(StringToks
[i
].getLocation(), SM
),
969 AnyWide
, Diags
, Target
);
971 // Note: our internal rep of wide char tokens is always little-endian.
972 *ResultPtr
++ = ResultChar
& 0xFF;
975 for (unsigned i
= 1, e
= wchar_tByteWidth
; i
!= e
; ++i
)
976 *ResultPtr
++ = ResultChar
>> i
*8;
982 ResultBuf
[0] = ResultPtr
-&ResultBuf
[0]-1;
984 ResultBuf
[0] /= wchar_tByteWidth
;
986 // Verify that pascal strings aren't too large.
987 if (GetStringLength() > 256) {
989 Diags
->Report(FullSourceLoc(StringToks
[0].getLocation(), SM
),
990 diag::err_pascal_string_too_long
)
991 << SourceRange(StringToks
[0].getLocation(),
992 StringToks
[NumStringToks
-1].getLocation());
997 // Complain if this string literal has too many characters.
998 unsigned MaxChars
= Features
.CPlusPlus
? 65536 : Features
.C99
? 4095 : 509;
1000 if (GetNumStringChars() > MaxChars
)
1001 Diags
->Report(FullSourceLoc(StringToks
[0].getLocation(), SM
),
1002 diag::ext_string_too_long
)
1003 << GetNumStringChars() << MaxChars
1004 << (Features
.CPlusPlus
? 2 : Features
.C99
? 1 : 0)
1005 << SourceRange(StringToks
[0].getLocation(),
1006 StringToks
[NumStringToks
-1].getLocation());
1011 /// getOffsetOfStringByte - This function returns the offset of the
1012 /// specified byte of the string data represented by Token. This handles
1013 /// advancing over escape sequences in the string.
1014 unsigned StringLiteralParser::getOffsetOfStringByte(const Token
&Tok
,
1015 unsigned ByteNo
) const {
1016 // Get the spelling of the token.
1017 llvm::SmallString
<32> SpellingBuffer
;
1018 SpellingBuffer
.resize(Tok
.getLength());
1020 bool StringInvalid
= false;
1021 const char *SpellingPtr
= &SpellingBuffer
[0];
1022 unsigned TokLen
= Lexer::getSpelling(Tok
, SpellingPtr
, SM
, Features
,
1027 assert(SpellingPtr
[0] != 'L' && "Doesn't handle wide strings yet");
1030 const char *SpellingStart
= SpellingPtr
;
1031 const char *SpellingEnd
= SpellingPtr
+TokLen
;
1033 // Skip over the leading quote.
1034 assert(SpellingPtr
[0] == '"' && "Should be a string literal!");
1037 // Skip over bytes until we find the offset we're looking for.
1039 assert(SpellingPtr
< SpellingEnd
&& "Didn't find byte offset!");
1041 // Step over non-escapes simply.
1042 if (*SpellingPtr
!= '\\') {
1048 // Otherwise, this is an escape character. Advance over it.
1049 bool HadError
= false;
1050 ProcessCharEscape(SpellingPtr
, SpellingEnd
, HadError
,
1051 FullSourceLoc(Tok
.getLocation(), SM
),
1052 false, Diags
, Target
);
1053 assert(!HadError
&& "This method isn't valid on erroneous strings");
1057 return SpellingPtr
-SpellingStart
;