rename test
[clang.git] / lib / Sema / SemaTemplateDeduction.cpp
blob5a0359c5fdb50133dd12b324663b8936be8e8a49
1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
11 //===----------------------------------------------------------------------===/
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/SemaDiagnostic.h" // FIXME: temporary!
16 #include "clang/Sema/Template.h"
17 #include "clang/Sema/TemplateDeduction.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "llvm/ADT/BitVector.h"
25 #include <algorithm>
27 namespace clang {
28 using namespace sema;
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10
59 using namespace clang;
61 /// \brief Compare two APSInts, extending and switching the sign as
62 /// necessary to compare their values regardless of underlying type.
63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64 if (Y.getBitWidth() > X.getBitWidth())
65 X = X.extend(Y.getBitWidth());
66 else if (Y.getBitWidth() < X.getBitWidth())
67 Y = Y.extend(X.getBitWidth());
69 // If there is a signedness mismatch, correct it.
70 if (X.isSigned() != Y.isSigned()) {
71 // If the signed value is negative, then the values cannot be the same.
72 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73 return false;
75 Y.setIsSigned(true);
76 X.setIsSigned(true);
79 return X == Y;
82 static Sema::TemplateDeductionResult
83 DeduceTemplateArguments(Sema &S,
84 TemplateParameterList *TemplateParams,
85 const TemplateArgument &Param,
86 TemplateArgument Arg,
87 TemplateDeductionInfo &Info,
88 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
90 /// \brief Whether template argument deduction for two reference parameters
91 /// resulted in the argument type, parameter type, or neither type being more
92 /// qualified than the other.
93 enum DeductionQualifierComparison {
94 NeitherMoreQualified = 0,
95 ParamMoreQualified,
96 ArgMoreQualified
99 /// \brief Stores the result of comparing two reference parameters while
100 /// performing template argument deduction for partial ordering of function
101 /// templates.
102 struct RefParamPartialOrderingComparison {
103 /// \brief Whether the parameter type is an rvalue reference type.
104 bool ParamIsRvalueRef;
105 /// \brief Whether the argument type is an rvalue reference type.
106 bool ArgIsRvalueRef;
108 /// \brief Whether the parameter or argument (or neither) is more qualified.
109 DeductionQualifierComparison Qualifiers;
114 static Sema::TemplateDeductionResult
115 DeduceTemplateArguments(Sema &S,
116 TemplateParameterList *TemplateParams,
117 QualType Param,
118 QualType Arg,
119 TemplateDeductionInfo &Info,
120 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
121 unsigned TDF,
122 bool PartialOrdering = false,
123 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
124 RefParamComparisons = 0);
126 static Sema::TemplateDeductionResult
127 DeduceTemplateArguments(Sema &S,
128 TemplateParameterList *TemplateParams,
129 const TemplateArgument *Params, unsigned NumParams,
130 const TemplateArgument *Args, unsigned NumArgs,
131 TemplateDeductionInfo &Info,
132 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
133 bool NumberOfArgumentsMustMatch = true);
135 /// \brief If the given expression is of a form that permits the deduction
136 /// of a non-type template parameter, return the declaration of that
137 /// non-type template parameter.
138 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
139 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
140 E = IC->getSubExpr();
142 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
143 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
145 return 0;
148 /// \brief Determine whether two declaration pointers refer to the same
149 /// declaration.
150 static bool isSameDeclaration(Decl *X, Decl *Y) {
151 if (!X || !Y)
152 return !X && !Y;
154 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
155 X = NX->getUnderlyingDecl();
156 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
157 Y = NY->getUnderlyingDecl();
159 return X->getCanonicalDecl() == Y->getCanonicalDecl();
162 /// \brief Verify that the given, deduced template arguments are compatible.
164 /// \returns The deduced template argument, or a NULL template argument if
165 /// the deduced template arguments were incompatible.
166 static DeducedTemplateArgument
167 checkDeducedTemplateArguments(ASTContext &Context,
168 const DeducedTemplateArgument &X,
169 const DeducedTemplateArgument &Y) {
170 // We have no deduction for one or both of the arguments; they're compatible.
171 if (X.isNull())
172 return Y;
173 if (Y.isNull())
174 return X;
176 switch (X.getKind()) {
177 case TemplateArgument::Null:
178 llvm_unreachable("Non-deduced template arguments handled above");
180 case TemplateArgument::Type:
181 // If two template type arguments have the same type, they're compatible.
182 if (Y.getKind() == TemplateArgument::Type &&
183 Context.hasSameType(X.getAsType(), Y.getAsType()))
184 return X;
186 return DeducedTemplateArgument();
188 case TemplateArgument::Integral:
189 // If we deduced a constant in one case and either a dependent expression or
190 // declaration in another case, keep the integral constant.
191 // If both are integral constants with the same value, keep that value.
192 if (Y.getKind() == TemplateArgument::Expression ||
193 Y.getKind() == TemplateArgument::Declaration ||
194 (Y.getKind() == TemplateArgument::Integral &&
195 hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
196 return DeducedTemplateArgument(X,
197 X.wasDeducedFromArrayBound() &&
198 Y.wasDeducedFromArrayBound());
200 // All other combinations are incompatible.
201 return DeducedTemplateArgument();
203 case TemplateArgument::Template:
204 if (Y.getKind() == TemplateArgument::Template &&
205 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
206 return X;
208 // All other combinations are incompatible.
209 return DeducedTemplateArgument();
211 case TemplateArgument::TemplateExpansion:
212 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
213 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
214 Y.getAsTemplateOrTemplatePattern()))
215 return X;
217 // All other combinations are incompatible.
218 return DeducedTemplateArgument();
220 case TemplateArgument::Expression:
221 // If we deduced a dependent expression in one case and either an integral
222 // constant or a declaration in another case, keep the integral constant
223 // or declaration.
224 if (Y.getKind() == TemplateArgument::Integral ||
225 Y.getKind() == TemplateArgument::Declaration)
226 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
227 Y.wasDeducedFromArrayBound());
229 if (Y.getKind() == TemplateArgument::Expression) {
230 // Compare the expressions for equality
231 llvm::FoldingSetNodeID ID1, ID2;
232 X.getAsExpr()->Profile(ID1, Context, true);
233 Y.getAsExpr()->Profile(ID2, Context, true);
234 if (ID1 == ID2)
235 return X;
238 // All other combinations are incompatible.
239 return DeducedTemplateArgument();
241 case TemplateArgument::Declaration:
242 // If we deduced a declaration and a dependent expression, keep the
243 // declaration.
244 if (Y.getKind() == TemplateArgument::Expression)
245 return X;
247 // If we deduced a declaration and an integral constant, keep the
248 // integral constant.
249 if (Y.getKind() == TemplateArgument::Integral)
250 return Y;
252 // If we deduced two declarations, make sure they they refer to the
253 // same declaration.
254 if (Y.getKind() == TemplateArgument::Declaration &&
255 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
256 return X;
258 // All other combinations are incompatible.
259 return DeducedTemplateArgument();
261 case TemplateArgument::Pack:
262 if (Y.getKind() != TemplateArgument::Pack ||
263 X.pack_size() != Y.pack_size())
264 return DeducedTemplateArgument();
266 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
267 XAEnd = X.pack_end(),
268 YA = Y.pack_begin();
269 XA != XAEnd; ++XA, ++YA) {
270 if (checkDeducedTemplateArguments(Context,
271 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
272 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
273 .isNull())
274 return DeducedTemplateArgument();
277 return X;
280 return DeducedTemplateArgument();
283 /// \brief Deduce the value of the given non-type template parameter
284 /// from the given constant.
285 static Sema::TemplateDeductionResult
286 DeduceNonTypeTemplateArgument(Sema &S,
287 NonTypeTemplateParmDecl *NTTP,
288 llvm::APSInt Value, QualType ValueType,
289 bool DeducedFromArrayBound,
290 TemplateDeductionInfo &Info,
291 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
292 assert(NTTP->getDepth() == 0 &&
293 "Cannot deduce non-type template argument with depth > 0");
295 DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
296 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
297 Deduced[NTTP->getIndex()],
298 NewDeduced);
299 if (Result.isNull()) {
300 Info.Param = NTTP;
301 Info.FirstArg = Deduced[NTTP->getIndex()];
302 Info.SecondArg = NewDeduced;
303 return Sema::TDK_Inconsistent;
306 Deduced[NTTP->getIndex()] = Result;
307 return Sema::TDK_Success;
310 /// \brief Deduce the value of the given non-type template parameter
311 /// from the given type- or value-dependent expression.
313 /// \returns true if deduction succeeded, false otherwise.
314 static Sema::TemplateDeductionResult
315 DeduceNonTypeTemplateArgument(Sema &S,
316 NonTypeTemplateParmDecl *NTTP,
317 Expr *Value,
318 TemplateDeductionInfo &Info,
319 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
320 assert(NTTP->getDepth() == 0 &&
321 "Cannot deduce non-type template argument with depth > 0");
322 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
323 "Expression template argument must be type- or value-dependent.");
325 DeducedTemplateArgument NewDeduced(Value);
326 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
327 Deduced[NTTP->getIndex()],
328 NewDeduced);
330 if (Result.isNull()) {
331 Info.Param = NTTP;
332 Info.FirstArg = Deduced[NTTP->getIndex()];
333 Info.SecondArg = NewDeduced;
334 return Sema::TDK_Inconsistent;
337 Deduced[NTTP->getIndex()] = Result;
338 return Sema::TDK_Success;
341 /// \brief Deduce the value of the given non-type template parameter
342 /// from the given declaration.
344 /// \returns true if deduction succeeded, false otherwise.
345 static Sema::TemplateDeductionResult
346 DeduceNonTypeTemplateArgument(Sema &S,
347 NonTypeTemplateParmDecl *NTTP,
348 Decl *D,
349 TemplateDeductionInfo &Info,
350 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351 assert(NTTP->getDepth() == 0 &&
352 "Cannot deduce non-type template argument with depth > 0");
354 DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
355 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
356 Deduced[NTTP->getIndex()],
357 NewDeduced);
358 if (Result.isNull()) {
359 Info.Param = NTTP;
360 Info.FirstArg = Deduced[NTTP->getIndex()];
361 Info.SecondArg = NewDeduced;
362 return Sema::TDK_Inconsistent;
365 Deduced[NTTP->getIndex()] = Result;
366 return Sema::TDK_Success;
369 static Sema::TemplateDeductionResult
370 DeduceTemplateArguments(Sema &S,
371 TemplateParameterList *TemplateParams,
372 TemplateName Param,
373 TemplateName Arg,
374 TemplateDeductionInfo &Info,
375 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
376 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
377 if (!ParamDecl) {
378 // The parameter type is dependent and is not a template template parameter,
379 // so there is nothing that we can deduce.
380 return Sema::TDK_Success;
383 if (TemplateTemplateParmDecl *TempParam
384 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
385 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
386 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
387 Deduced[TempParam->getIndex()],
388 NewDeduced);
389 if (Result.isNull()) {
390 Info.Param = TempParam;
391 Info.FirstArg = Deduced[TempParam->getIndex()];
392 Info.SecondArg = NewDeduced;
393 return Sema::TDK_Inconsistent;
396 Deduced[TempParam->getIndex()] = Result;
397 return Sema::TDK_Success;
400 // Verify that the two template names are equivalent.
401 if (S.Context.hasSameTemplateName(Param, Arg))
402 return Sema::TDK_Success;
404 // Mismatch of non-dependent template parameter to argument.
405 Info.FirstArg = TemplateArgument(Param);
406 Info.SecondArg = TemplateArgument(Arg);
407 return Sema::TDK_NonDeducedMismatch;
410 /// \brief Deduce the template arguments by comparing the template parameter
411 /// type (which is a template-id) with the template argument type.
413 /// \param S the Sema
415 /// \param TemplateParams the template parameters that we are deducing
417 /// \param Param the parameter type
419 /// \param Arg the argument type
421 /// \param Info information about the template argument deduction itself
423 /// \param Deduced the deduced template arguments
425 /// \returns the result of template argument deduction so far. Note that a
426 /// "success" result means that template argument deduction has not yet failed,
427 /// but it may still fail, later, for other reasons.
428 static Sema::TemplateDeductionResult
429 DeduceTemplateArguments(Sema &S,
430 TemplateParameterList *TemplateParams,
431 const TemplateSpecializationType *Param,
432 QualType Arg,
433 TemplateDeductionInfo &Info,
434 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
435 assert(Arg.isCanonical() && "Argument type must be canonical");
437 // Check whether the template argument is a dependent template-id.
438 if (const TemplateSpecializationType *SpecArg
439 = dyn_cast<TemplateSpecializationType>(Arg)) {
440 // Perform template argument deduction for the template name.
441 if (Sema::TemplateDeductionResult Result
442 = DeduceTemplateArguments(S, TemplateParams,
443 Param->getTemplateName(),
444 SpecArg->getTemplateName(),
445 Info, Deduced))
446 return Result;
449 // Perform template argument deduction on each template
450 // argument. Ignore any missing/extra arguments, since they could be
451 // filled in by default arguments.
452 return DeduceTemplateArguments(S, TemplateParams,
453 Param->getArgs(), Param->getNumArgs(),
454 SpecArg->getArgs(), SpecArg->getNumArgs(),
455 Info, Deduced,
456 /*NumberOfArgumentsMustMatch=*/false);
459 // If the argument type is a class template specialization, we
460 // perform template argument deduction using its template
461 // arguments.
462 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
463 if (!RecordArg)
464 return Sema::TDK_NonDeducedMismatch;
466 ClassTemplateSpecializationDecl *SpecArg
467 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
468 if (!SpecArg)
469 return Sema::TDK_NonDeducedMismatch;
471 // Perform template argument deduction for the template name.
472 if (Sema::TemplateDeductionResult Result
473 = DeduceTemplateArguments(S,
474 TemplateParams,
475 Param->getTemplateName(),
476 TemplateName(SpecArg->getSpecializedTemplate()),
477 Info, Deduced))
478 return Result;
480 // Perform template argument deduction for the template arguments.
481 return DeduceTemplateArguments(S, TemplateParams,
482 Param->getArgs(), Param->getNumArgs(),
483 SpecArg->getTemplateArgs().data(),
484 SpecArg->getTemplateArgs().size(),
485 Info, Deduced);
488 /// \brief Determines whether the given type is an opaque type that
489 /// might be more qualified when instantiated.
490 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
491 switch (T->getTypeClass()) {
492 case Type::TypeOfExpr:
493 case Type::TypeOf:
494 case Type::DependentName:
495 case Type::Decltype:
496 case Type::UnresolvedUsing:
497 case Type::TemplateTypeParm:
498 return true;
500 case Type::ConstantArray:
501 case Type::IncompleteArray:
502 case Type::VariableArray:
503 case Type::DependentSizedArray:
504 return IsPossiblyOpaquelyQualifiedType(
505 cast<ArrayType>(T)->getElementType());
507 default:
508 return false;
512 /// \brief Retrieve the depth and index of a template parameter.
513 static std::pair<unsigned, unsigned>
514 getDepthAndIndex(NamedDecl *ND) {
515 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
516 return std::make_pair(TTP->getDepth(), TTP->getIndex());
518 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
519 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
521 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
522 return std::make_pair(TTP->getDepth(), TTP->getIndex());
525 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
526 static std::pair<unsigned, unsigned>
527 getDepthAndIndex(UnexpandedParameterPack UPP) {
528 if (const TemplateTypeParmType *TTP
529 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
530 return std::make_pair(TTP->getDepth(), TTP->getIndex());
532 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
535 /// \brief Helper function to build a TemplateParameter when we don't
536 /// know its type statically.
537 static TemplateParameter makeTemplateParameter(Decl *D) {
538 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
539 return TemplateParameter(TTP);
540 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
541 return TemplateParameter(NTTP);
543 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
546 /// \brief Prepare to perform template argument deduction for all of the
547 /// arguments in a set of argument packs.
548 static void PrepareArgumentPackDeduction(Sema &S,
549 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
550 const llvm::SmallVectorImpl<unsigned> &PackIndices,
551 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
552 llvm::SmallVectorImpl<
553 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
554 // Save the deduced template arguments for each parameter pack expanded
555 // by this pack expansion, then clear out the deduction.
556 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
557 // Save the previously-deduced argument pack, then clear it out so that we
558 // can deduce a new argument pack.
559 SavedPacks[I] = Deduced[PackIndices[I]];
560 Deduced[PackIndices[I]] = TemplateArgument();
562 // If the template arugment pack was explicitly specified, add that to
563 // the set of deduced arguments.
564 const TemplateArgument *ExplicitArgs;
565 unsigned NumExplicitArgs;
566 if (NamedDecl *PartiallySubstitutedPack
567 = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
568 &ExplicitArgs,
569 &NumExplicitArgs)) {
570 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
571 NewlyDeducedPacks[I].append(ExplicitArgs,
572 ExplicitArgs + NumExplicitArgs);
577 /// \brief Finish template argument deduction for a set of argument packs,
578 /// producing the argument packs and checking for consistency with prior
579 /// deductions.
580 static Sema::TemplateDeductionResult
581 FinishArgumentPackDeduction(Sema &S,
582 TemplateParameterList *TemplateParams,
583 bool HasAnyArguments,
584 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
585 const llvm::SmallVectorImpl<unsigned> &PackIndices,
586 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
587 llvm::SmallVectorImpl<
588 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
589 TemplateDeductionInfo &Info) {
590 // Build argument packs for each of the parameter packs expanded by this
591 // pack expansion.
592 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
593 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
594 // We were not able to deduce anything for this parameter pack,
595 // so just restore the saved argument pack.
596 Deduced[PackIndices[I]] = SavedPacks[I];
597 continue;
600 DeducedTemplateArgument NewPack;
602 if (NewlyDeducedPacks[I].empty()) {
603 // If we deduced an empty argument pack, create it now.
604 NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
605 } else {
606 TemplateArgument *ArgumentPack
607 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
608 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
609 ArgumentPack);
610 NewPack
611 = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
612 NewlyDeducedPacks[I].size()),
613 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
616 DeducedTemplateArgument Result
617 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
618 if (Result.isNull()) {
619 Info.Param
620 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
621 Info.FirstArg = SavedPacks[I];
622 Info.SecondArg = NewPack;
623 return Sema::TDK_Inconsistent;
626 Deduced[PackIndices[I]] = Result;
629 return Sema::TDK_Success;
632 /// \brief Deduce the template arguments by comparing the list of parameter
633 /// types to the list of argument types, as in the parameter-type-lists of
634 /// function types (C++ [temp.deduct.type]p10).
636 /// \param S The semantic analysis object within which we are deducing
638 /// \param TemplateParams The template parameters that we are deducing
640 /// \param Params The list of parameter types
642 /// \param NumParams The number of types in \c Params
644 /// \param Args The list of argument types
646 /// \param NumArgs The number of types in \c Args
648 /// \param Info information about the template argument deduction itself
650 /// \param Deduced the deduced template arguments
652 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
653 /// how template argument deduction is performed.
655 /// \param PartialOrdering If true, we are performing template argument
656 /// deduction for during partial ordering for a call
657 /// (C++0x [temp.deduct.partial]).
659 /// \param RefParamComparisons If we're performing template argument deduction
660 /// in the context of partial ordering, the set of qualifier comparisons.
662 /// \returns the result of template argument deduction so far. Note that a
663 /// "success" result means that template argument deduction has not yet failed,
664 /// but it may still fail, later, for other reasons.
665 static Sema::TemplateDeductionResult
666 DeduceTemplateArguments(Sema &S,
667 TemplateParameterList *TemplateParams,
668 const QualType *Params, unsigned NumParams,
669 const QualType *Args, unsigned NumArgs,
670 TemplateDeductionInfo &Info,
671 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
672 unsigned TDF,
673 bool PartialOrdering = false,
674 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
675 RefParamComparisons = 0) {
676 // Fast-path check to see if we have too many/too few arguments.
677 if (NumParams != NumArgs &&
678 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
679 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
680 return Sema::TDK_NonDeducedMismatch;
682 // C++0x [temp.deduct.type]p10:
683 // Similarly, if P has a form that contains (T), then each parameter type
684 // Pi of the respective parameter-type- list of P is compared with the
685 // corresponding parameter type Ai of the corresponding parameter-type-list
686 // of A. [...]
687 unsigned ArgIdx = 0, ParamIdx = 0;
688 for (; ParamIdx != NumParams; ++ParamIdx) {
689 // Check argument types.
690 const PackExpansionType *Expansion
691 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
692 if (!Expansion) {
693 // Simple case: compare the parameter and argument types at this point.
695 // Make sure we have an argument.
696 if (ArgIdx >= NumArgs)
697 return Sema::TDK_NonDeducedMismatch;
699 if (isa<PackExpansionType>(Args[ArgIdx])) {
700 // C++0x [temp.deduct.type]p22:
701 // If the original function parameter associated with A is a function
702 // parameter pack and the function parameter associated with P is not
703 // a function parameter pack, then template argument deduction fails.
704 return Sema::TDK_NonDeducedMismatch;
707 if (Sema::TemplateDeductionResult Result
708 = DeduceTemplateArguments(S, TemplateParams,
709 Params[ParamIdx],
710 Args[ArgIdx],
711 Info, Deduced, TDF,
712 PartialOrdering,
713 RefParamComparisons))
714 return Result;
716 ++ArgIdx;
717 continue;
720 // C++0x [temp.deduct.type]p5:
721 // The non-deduced contexts are:
722 // - A function parameter pack that does not occur at the end of the
723 // parameter-declaration-clause.
724 if (ParamIdx + 1 < NumParams)
725 return Sema::TDK_Success;
727 // C++0x [temp.deduct.type]p10:
728 // If the parameter-declaration corresponding to Pi is a function
729 // parameter pack, then the type of its declarator- id is compared with
730 // each remaining parameter type in the parameter-type-list of A. Each
731 // comparison deduces template arguments for subsequent positions in the
732 // template parameter packs expanded by the function parameter pack.
734 // Compute the set of template parameter indices that correspond to
735 // parameter packs expanded by the pack expansion.
736 llvm::SmallVector<unsigned, 2> PackIndices;
737 QualType Pattern = Expansion->getPattern();
739 llvm::BitVector SawIndices(TemplateParams->size());
740 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743 unsigned Depth, Index;
744 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745 if (Depth == 0 && !SawIndices[Index]) {
746 SawIndices[Index] = true;
747 PackIndices.push_back(Index);
751 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
753 // Keep track of the deduced template arguments for each parameter pack
754 // expanded by this pack expansion (the outer index) and for each
755 // template argument (the inner SmallVectors).
756 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
757 NewlyDeducedPacks(PackIndices.size());
758 llvm::SmallVector<DeducedTemplateArgument, 2>
759 SavedPacks(PackIndices.size());
760 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761 NewlyDeducedPacks);
763 bool HasAnyArguments = false;
764 for (; ArgIdx < NumArgs; ++ArgIdx) {
765 HasAnyArguments = true;
767 // Deduce template arguments from the pattern.
768 if (Sema::TemplateDeductionResult Result
769 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
770 Info, Deduced, TDF, PartialOrdering,
771 RefParamComparisons))
772 return Result;
774 // Capture the deduced template arguments for each parameter pack expanded
775 // by this pack expansion, add them to the list of arguments we've deduced
776 // for that pack, then clear out the deduced argument.
777 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
778 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
779 if (!DeducedArg.isNull()) {
780 NewlyDeducedPacks[I].push_back(DeducedArg);
781 DeducedArg = DeducedTemplateArgument();
786 // Build argument packs for each of the parameter packs expanded by this
787 // pack expansion.
788 if (Sema::TemplateDeductionResult Result
789 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
790 Deduced, PackIndices, SavedPacks,
791 NewlyDeducedPacks, Info))
792 return Result;
795 // Make sure we don't have any extra arguments.
796 if (ArgIdx < NumArgs)
797 return Sema::TDK_NonDeducedMismatch;
799 return Sema::TDK_Success;
802 /// \brief Deduce the template arguments by comparing the parameter type and
803 /// the argument type (C++ [temp.deduct.type]).
805 /// \param S the semantic analysis object within which we are deducing
807 /// \param TemplateParams the template parameters that we are deducing
809 /// \param ParamIn the parameter type
811 /// \param ArgIn the argument type
813 /// \param Info information about the template argument deduction itself
815 /// \param Deduced the deduced template arguments
817 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
818 /// how template argument deduction is performed.
820 /// \param PartialOrdering Whether we're performing template argument deduction
821 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
823 /// \param RefParamComparisons If we're performing template argument deduction
824 /// in the context of partial ordering, the set of qualifier comparisons.
826 /// \returns the result of template argument deduction so far. Note that a
827 /// "success" result means that template argument deduction has not yet failed,
828 /// but it may still fail, later, for other reasons.
829 static Sema::TemplateDeductionResult
830 DeduceTemplateArguments(Sema &S,
831 TemplateParameterList *TemplateParams,
832 QualType ParamIn, QualType ArgIn,
833 TemplateDeductionInfo &Info,
834 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
835 unsigned TDF,
836 bool PartialOrdering,
837 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
838 // We only want to look at the canonical types, since typedefs and
839 // sugar are not part of template argument deduction.
840 QualType Param = S.Context.getCanonicalType(ParamIn);
841 QualType Arg = S.Context.getCanonicalType(ArgIn);
843 // If the argument type is a pack expansion, look at its pattern.
844 // This isn't explicitly called out
845 if (const PackExpansionType *ArgExpansion
846 = dyn_cast<PackExpansionType>(Arg))
847 Arg = ArgExpansion->getPattern();
849 if (PartialOrdering) {
850 // C++0x [temp.deduct.partial]p5:
851 // Before the partial ordering is done, certain transformations are
852 // performed on the types used for partial ordering:
853 // - If P is a reference type, P is replaced by the type referred to.
854 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
855 if (ParamRef)
856 Param = ParamRef->getPointeeType();
858 // - If A is a reference type, A is replaced by the type referred to.
859 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
860 if (ArgRef)
861 Arg = ArgRef->getPointeeType();
863 if (RefParamComparisons && ParamRef && ArgRef) {
864 // C++0x [temp.deduct.partial]p6:
865 // If both P and A were reference types (before being replaced with the
866 // type referred to above), determine which of the two types (if any) is
867 // more cv-qualified than the other; otherwise the types are considered
868 // to be equally cv-qualified for partial ordering purposes. The result
869 // of this determination will be used below.
871 // We save this information for later, using it only when deduction
872 // succeeds in both directions.
873 RefParamPartialOrderingComparison Comparison;
874 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
875 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
876 Comparison.Qualifiers = NeitherMoreQualified;
877 if (Param.isMoreQualifiedThan(Arg))
878 Comparison.Qualifiers = ParamMoreQualified;
879 else if (Arg.isMoreQualifiedThan(Param))
880 Comparison.Qualifiers = ArgMoreQualified;
881 RefParamComparisons->push_back(Comparison);
884 // C++0x [temp.deduct.partial]p7:
885 // Remove any top-level cv-qualifiers:
886 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
887 // version of P.
888 Param = Param.getUnqualifiedType();
889 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
890 // version of A.
891 Arg = Arg.getUnqualifiedType();
892 } else {
893 // C++0x [temp.deduct.call]p4 bullet 1:
894 // - If the original P is a reference type, the deduced A (i.e., the type
895 // referred to by the reference) can be more cv-qualified than the
896 // transformed A.
897 if (TDF & TDF_ParamWithReferenceType) {
898 Qualifiers Quals;
899 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
900 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
901 Arg.getCVRQualifiers());
902 Param = S.Context.getQualifiedType(UnqualParam, Quals);
905 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
906 // C++0x [temp.deduct.type]p10:
907 // If P and A are function types that originated from deduction when
908 // taking the address of a function template (14.8.2.2) or when deducing
909 // template arguments from a function declaration (14.8.2.6) and Pi and
910 // Ai are parameters of the top-level parameter-type-list of P and A,
911 // respectively, Pi is adjusted if it is an rvalue reference to a
912 // cv-unqualified template parameter and Ai is an lvalue reference, in
913 // which case the type of Pi is changed to be the template parameter
914 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
915 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
916 // deduced as X&. - end note ]
917 TDF &= ~TDF_TopLevelParameterTypeList;
919 if (const RValueReferenceType *ParamRef
920 = Param->getAs<RValueReferenceType>()) {
921 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
922 !ParamRef->getPointeeType().getQualifiers())
923 if (Arg->isLValueReferenceType())
924 Param = ParamRef->getPointeeType();
929 // If the parameter type is not dependent, there is nothing to deduce.
930 if (!Param->isDependentType()) {
931 if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
932 return Sema::TDK_NonDeducedMismatch;
934 return Sema::TDK_Success;
937 // C++ [temp.deduct.type]p9:
938 // A template type argument T, a template template argument TT or a
939 // template non-type argument i can be deduced if P and A have one of
940 // the following forms:
942 // T
943 // cv-list T
944 if (const TemplateTypeParmType *TemplateTypeParm
945 = Param->getAs<TemplateTypeParmType>()) {
946 unsigned Index = TemplateTypeParm->getIndex();
947 bool RecanonicalizeArg = false;
949 // If the argument type is an array type, move the qualifiers up to the
950 // top level, so they can be matched with the qualifiers on the parameter.
951 // FIXME: address spaces, ObjC GC qualifiers
952 if (isa<ArrayType>(Arg)) {
953 Qualifiers Quals;
954 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
955 if (Quals) {
956 Arg = S.Context.getQualifiedType(Arg, Quals);
957 RecanonicalizeArg = true;
961 // The argument type can not be less qualified than the parameter
962 // type.
963 if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
964 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
965 Info.FirstArg = TemplateArgument(Param);
966 Info.SecondArg = TemplateArgument(Arg);
967 return Sema::TDK_Underqualified;
970 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
971 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
972 QualType DeducedType = Arg;
974 // local manipulation is okay because it's canonical
975 DeducedType.removeLocalCVRQualifiers(Param.getCVRQualifiers());
976 if (RecanonicalizeArg)
977 DeducedType = S.Context.getCanonicalType(DeducedType);
979 DeducedTemplateArgument NewDeduced(DeducedType);
980 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
981 Deduced[Index],
982 NewDeduced);
983 if (Result.isNull()) {
984 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
985 Info.FirstArg = Deduced[Index];
986 Info.SecondArg = NewDeduced;
987 return Sema::TDK_Inconsistent;
990 Deduced[Index] = Result;
991 return Sema::TDK_Success;
994 // Set up the template argument deduction information for a failure.
995 Info.FirstArg = TemplateArgument(ParamIn);
996 Info.SecondArg = TemplateArgument(ArgIn);
998 // If the parameter is an already-substituted template parameter
999 // pack, do nothing: we don't know which of its arguments to look
1000 // at, so we have to wait until all of the parameter packs in this
1001 // expansion have arguments.
1002 if (isa<SubstTemplateTypeParmPackType>(Param))
1003 return Sema::TDK_Success;
1005 // Check the cv-qualifiers on the parameter and argument types.
1006 if (!(TDF & TDF_IgnoreQualifiers)) {
1007 if (TDF & TDF_ParamWithReferenceType) {
1008 if (Param.isMoreQualifiedThan(Arg))
1009 return Sema::TDK_NonDeducedMismatch;
1010 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1011 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1012 return Sema::TDK_NonDeducedMismatch;
1016 switch (Param->getTypeClass()) {
1017 // No deduction possible for these types
1018 case Type::Builtin:
1019 return Sema::TDK_NonDeducedMismatch;
1021 // T *
1022 case Type::Pointer: {
1023 QualType PointeeType;
1024 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1025 PointeeType = PointerArg->getPointeeType();
1026 } else if (const ObjCObjectPointerType *PointerArg
1027 = Arg->getAs<ObjCObjectPointerType>()) {
1028 PointeeType = PointerArg->getPointeeType();
1029 } else {
1030 return Sema::TDK_NonDeducedMismatch;
1033 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1034 return DeduceTemplateArguments(S, TemplateParams,
1035 cast<PointerType>(Param)->getPointeeType(),
1036 PointeeType,
1037 Info, Deduced, SubTDF);
1040 // T &
1041 case Type::LValueReference: {
1042 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1043 if (!ReferenceArg)
1044 return Sema::TDK_NonDeducedMismatch;
1046 return DeduceTemplateArguments(S, TemplateParams,
1047 cast<LValueReferenceType>(Param)->getPointeeType(),
1048 ReferenceArg->getPointeeType(),
1049 Info, Deduced, 0);
1052 // T && [C++0x]
1053 case Type::RValueReference: {
1054 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1055 if (!ReferenceArg)
1056 return Sema::TDK_NonDeducedMismatch;
1058 return DeduceTemplateArguments(S, TemplateParams,
1059 cast<RValueReferenceType>(Param)->getPointeeType(),
1060 ReferenceArg->getPointeeType(),
1061 Info, Deduced, 0);
1064 // T [] (implied, but not stated explicitly)
1065 case Type::IncompleteArray: {
1066 const IncompleteArrayType *IncompleteArrayArg =
1067 S.Context.getAsIncompleteArrayType(Arg);
1068 if (!IncompleteArrayArg)
1069 return Sema::TDK_NonDeducedMismatch;
1071 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1072 return DeduceTemplateArguments(S, TemplateParams,
1073 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1074 IncompleteArrayArg->getElementType(),
1075 Info, Deduced, SubTDF);
1078 // T [integer-constant]
1079 case Type::ConstantArray: {
1080 const ConstantArrayType *ConstantArrayArg =
1081 S.Context.getAsConstantArrayType(Arg);
1082 if (!ConstantArrayArg)
1083 return Sema::TDK_NonDeducedMismatch;
1085 const ConstantArrayType *ConstantArrayParm =
1086 S.Context.getAsConstantArrayType(Param);
1087 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1088 return Sema::TDK_NonDeducedMismatch;
1090 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1091 return DeduceTemplateArguments(S, TemplateParams,
1092 ConstantArrayParm->getElementType(),
1093 ConstantArrayArg->getElementType(),
1094 Info, Deduced, SubTDF);
1097 // type [i]
1098 case Type::DependentSizedArray: {
1099 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1100 if (!ArrayArg)
1101 return Sema::TDK_NonDeducedMismatch;
1103 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1105 // Check the element type of the arrays
1106 const DependentSizedArrayType *DependentArrayParm
1107 = S.Context.getAsDependentSizedArrayType(Param);
1108 if (Sema::TemplateDeductionResult Result
1109 = DeduceTemplateArguments(S, TemplateParams,
1110 DependentArrayParm->getElementType(),
1111 ArrayArg->getElementType(),
1112 Info, Deduced, SubTDF))
1113 return Result;
1115 // Determine the array bound is something we can deduce.
1116 NonTypeTemplateParmDecl *NTTP
1117 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1118 if (!NTTP)
1119 return Sema::TDK_Success;
1121 // We can perform template argument deduction for the given non-type
1122 // template parameter.
1123 assert(NTTP->getDepth() == 0 &&
1124 "Cannot deduce non-type template argument at depth > 0");
1125 if (const ConstantArrayType *ConstantArrayArg
1126 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1127 llvm::APSInt Size(ConstantArrayArg->getSize());
1128 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1129 S.Context.getSizeType(),
1130 /*ArrayBound=*/true,
1131 Info, Deduced);
1133 if (const DependentSizedArrayType *DependentArrayArg
1134 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1135 if (DependentArrayArg->getSizeExpr())
1136 return DeduceNonTypeTemplateArgument(S, NTTP,
1137 DependentArrayArg->getSizeExpr(),
1138 Info, Deduced);
1140 // Incomplete type does not match a dependently-sized array type
1141 return Sema::TDK_NonDeducedMismatch;
1144 // type(*)(T)
1145 // T(*)()
1146 // T(*)(T)
1147 case Type::FunctionProto: {
1148 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1149 const FunctionProtoType *FunctionProtoArg =
1150 dyn_cast<FunctionProtoType>(Arg);
1151 if (!FunctionProtoArg)
1152 return Sema::TDK_NonDeducedMismatch;
1154 const FunctionProtoType *FunctionProtoParam =
1155 cast<FunctionProtoType>(Param);
1157 if (FunctionProtoParam->getTypeQuals()
1158 != FunctionProtoArg->getTypeQuals() ||
1159 FunctionProtoParam->getRefQualifier()
1160 != FunctionProtoArg->getRefQualifier() ||
1161 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1162 return Sema::TDK_NonDeducedMismatch;
1164 // Check return types.
1165 if (Sema::TemplateDeductionResult Result
1166 = DeduceTemplateArguments(S, TemplateParams,
1167 FunctionProtoParam->getResultType(),
1168 FunctionProtoArg->getResultType(),
1169 Info, Deduced, 0))
1170 return Result;
1172 return DeduceTemplateArguments(S, TemplateParams,
1173 FunctionProtoParam->arg_type_begin(),
1174 FunctionProtoParam->getNumArgs(),
1175 FunctionProtoArg->arg_type_begin(),
1176 FunctionProtoArg->getNumArgs(),
1177 Info, Deduced, SubTDF);
1180 case Type::InjectedClassName: {
1181 // Treat a template's injected-class-name as if the template
1182 // specialization type had been used.
1183 Param = cast<InjectedClassNameType>(Param)
1184 ->getInjectedSpecializationType();
1185 assert(isa<TemplateSpecializationType>(Param) &&
1186 "injected class name is not a template specialization type");
1187 // fall through
1190 // template-name<T> (where template-name refers to a class template)
1191 // template-name<i>
1192 // TT<T>
1193 // TT<i>
1194 // TT<>
1195 case Type::TemplateSpecialization: {
1196 const TemplateSpecializationType *SpecParam
1197 = cast<TemplateSpecializationType>(Param);
1199 // Try to deduce template arguments from the template-id.
1200 Sema::TemplateDeductionResult Result
1201 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1202 Info, Deduced);
1204 if (Result && (TDF & TDF_DerivedClass)) {
1205 // C++ [temp.deduct.call]p3b3:
1206 // If P is a class, and P has the form template-id, then A can be a
1207 // derived class of the deduced A. Likewise, if P is a pointer to a
1208 // class of the form template-id, A can be a pointer to a derived
1209 // class pointed to by the deduced A.
1211 // More importantly:
1212 // These alternatives are considered only if type deduction would
1213 // otherwise fail.
1214 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1215 // We cannot inspect base classes as part of deduction when the type
1216 // is incomplete, so either instantiate any templates necessary to
1217 // complete the type, or skip over it if it cannot be completed.
1218 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1219 return Result;
1221 // Use data recursion to crawl through the list of base classes.
1222 // Visited contains the set of nodes we have already visited, while
1223 // ToVisit is our stack of records that we still need to visit.
1224 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1225 llvm::SmallVector<const RecordType *, 8> ToVisit;
1226 ToVisit.push_back(RecordT);
1227 bool Successful = false;
1228 llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
1229 DeducedOrig = Deduced;
1230 while (!ToVisit.empty()) {
1231 // Retrieve the next class in the inheritance hierarchy.
1232 const RecordType *NextT = ToVisit.back();
1233 ToVisit.pop_back();
1235 // If we have already seen this type, skip it.
1236 if (!Visited.insert(NextT))
1237 continue;
1239 // If this is a base class, try to perform template argument
1240 // deduction from it.
1241 if (NextT != RecordT) {
1242 Sema::TemplateDeductionResult BaseResult
1243 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1244 QualType(NextT, 0), Info, Deduced);
1246 // If template argument deduction for this base was successful,
1247 // note that we had some success. Otherwise, ignore any deductions
1248 // from this base class.
1249 if (BaseResult == Sema::TDK_Success) {
1250 Successful = true;
1251 DeducedOrig = Deduced;
1253 else
1254 Deduced = DeducedOrig;
1257 // Visit base classes
1258 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1259 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1260 BaseEnd = Next->bases_end();
1261 Base != BaseEnd; ++Base) {
1262 assert(Base->getType()->isRecordType() &&
1263 "Base class that isn't a record?");
1264 ToVisit.push_back(Base->getType()->getAs<RecordType>());
1268 if (Successful)
1269 return Sema::TDK_Success;
1274 return Result;
1277 // T type::*
1278 // T T::*
1279 // T (type::*)()
1280 // type (T::*)()
1281 // type (type::*)(T)
1282 // type (T::*)(T)
1283 // T (type::*)(T)
1284 // T (T::*)()
1285 // T (T::*)(T)
1286 case Type::MemberPointer: {
1287 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1288 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1289 if (!MemPtrArg)
1290 return Sema::TDK_NonDeducedMismatch;
1292 if (Sema::TemplateDeductionResult Result
1293 = DeduceTemplateArguments(S, TemplateParams,
1294 MemPtrParam->getPointeeType(),
1295 MemPtrArg->getPointeeType(),
1296 Info, Deduced,
1297 TDF & TDF_IgnoreQualifiers))
1298 return Result;
1300 return DeduceTemplateArguments(S, TemplateParams,
1301 QualType(MemPtrParam->getClass(), 0),
1302 QualType(MemPtrArg->getClass(), 0),
1303 Info, Deduced, 0);
1306 // (clang extension)
1308 // type(^)(T)
1309 // T(^)()
1310 // T(^)(T)
1311 case Type::BlockPointer: {
1312 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1313 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1315 if (!BlockPtrArg)
1316 return Sema::TDK_NonDeducedMismatch;
1318 return DeduceTemplateArguments(S, TemplateParams,
1319 BlockPtrParam->getPointeeType(),
1320 BlockPtrArg->getPointeeType(), Info,
1321 Deduced, 0);
1324 case Type::TypeOfExpr:
1325 case Type::TypeOf:
1326 case Type::DependentName:
1327 // No template argument deduction for these types
1328 return Sema::TDK_Success;
1330 default:
1331 break;
1334 // FIXME: Many more cases to go (to go).
1335 return Sema::TDK_Success;
1338 static Sema::TemplateDeductionResult
1339 DeduceTemplateArguments(Sema &S,
1340 TemplateParameterList *TemplateParams,
1341 const TemplateArgument &Param,
1342 TemplateArgument Arg,
1343 TemplateDeductionInfo &Info,
1344 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1345 // If the template argument is a pack expansion, perform template argument
1346 // deduction against the pattern of that expansion. This only occurs during
1347 // partial ordering.
1348 if (Arg.isPackExpansion())
1349 Arg = Arg.getPackExpansionPattern();
1351 switch (Param.getKind()) {
1352 case TemplateArgument::Null:
1353 assert(false && "Null template argument in parameter list");
1354 break;
1356 case TemplateArgument::Type:
1357 if (Arg.getKind() == TemplateArgument::Type)
1358 return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
1359 Arg.getAsType(), Info, Deduced, 0);
1360 Info.FirstArg = Param;
1361 Info.SecondArg = Arg;
1362 return Sema::TDK_NonDeducedMismatch;
1364 case TemplateArgument::Template:
1365 if (Arg.getKind() == TemplateArgument::Template)
1366 return DeduceTemplateArguments(S, TemplateParams,
1367 Param.getAsTemplate(),
1368 Arg.getAsTemplate(), Info, Deduced);
1369 Info.FirstArg = Param;
1370 Info.SecondArg = Arg;
1371 return Sema::TDK_NonDeducedMismatch;
1373 case TemplateArgument::TemplateExpansion:
1374 llvm_unreachable("caller should handle pack expansions");
1375 break;
1377 case TemplateArgument::Declaration:
1378 if (Arg.getKind() == TemplateArgument::Declaration &&
1379 Param.getAsDecl()->getCanonicalDecl() ==
1380 Arg.getAsDecl()->getCanonicalDecl())
1381 return Sema::TDK_Success;
1383 Info.FirstArg = Param;
1384 Info.SecondArg = Arg;
1385 return Sema::TDK_NonDeducedMismatch;
1387 case TemplateArgument::Integral:
1388 if (Arg.getKind() == TemplateArgument::Integral) {
1389 if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1390 return Sema::TDK_Success;
1392 Info.FirstArg = Param;
1393 Info.SecondArg = Arg;
1394 return Sema::TDK_NonDeducedMismatch;
1397 if (Arg.getKind() == TemplateArgument::Expression) {
1398 Info.FirstArg = Param;
1399 Info.SecondArg = Arg;
1400 return Sema::TDK_NonDeducedMismatch;
1403 Info.FirstArg = Param;
1404 Info.SecondArg = Arg;
1405 return Sema::TDK_NonDeducedMismatch;
1407 case TemplateArgument::Expression: {
1408 if (NonTypeTemplateParmDecl *NTTP
1409 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1410 if (Arg.getKind() == TemplateArgument::Integral)
1411 return DeduceNonTypeTemplateArgument(S, NTTP,
1412 *Arg.getAsIntegral(),
1413 Arg.getIntegralType(),
1414 /*ArrayBound=*/false,
1415 Info, Deduced);
1416 if (Arg.getKind() == TemplateArgument::Expression)
1417 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1418 Info, Deduced);
1419 if (Arg.getKind() == TemplateArgument::Declaration)
1420 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1421 Info, Deduced);
1423 Info.FirstArg = Param;
1424 Info.SecondArg = Arg;
1425 return Sema::TDK_NonDeducedMismatch;
1428 // Can't deduce anything, but that's okay.
1429 return Sema::TDK_Success;
1431 case TemplateArgument::Pack:
1432 llvm_unreachable("Argument packs should be expanded by the caller!");
1435 return Sema::TDK_Success;
1438 /// \brief Determine whether there is a template argument to be used for
1439 /// deduction.
1441 /// This routine "expands" argument packs in-place, overriding its input
1442 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1444 /// \returns true if there is another template argument (which will be at
1445 /// \c Args[ArgIdx]), false otherwise.
1446 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1447 unsigned &ArgIdx,
1448 unsigned &NumArgs) {
1449 if (ArgIdx == NumArgs)
1450 return false;
1452 const TemplateArgument &Arg = Args[ArgIdx];
1453 if (Arg.getKind() != TemplateArgument::Pack)
1454 return true;
1456 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1457 Args = Arg.pack_begin();
1458 NumArgs = Arg.pack_size();
1459 ArgIdx = 0;
1460 return ArgIdx < NumArgs;
1463 /// \brief Determine whether the given set of template arguments has a pack
1464 /// expansion that is not the last template argument.
1465 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1466 unsigned NumArgs) {
1467 unsigned ArgIdx = 0;
1468 while (ArgIdx < NumArgs) {
1469 const TemplateArgument &Arg = Args[ArgIdx];
1471 // Unwrap argument packs.
1472 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1473 Args = Arg.pack_begin();
1474 NumArgs = Arg.pack_size();
1475 ArgIdx = 0;
1476 continue;
1479 ++ArgIdx;
1480 if (ArgIdx == NumArgs)
1481 return false;
1483 if (Arg.isPackExpansion())
1484 return true;
1487 return false;
1490 static Sema::TemplateDeductionResult
1491 DeduceTemplateArguments(Sema &S,
1492 TemplateParameterList *TemplateParams,
1493 const TemplateArgument *Params, unsigned NumParams,
1494 const TemplateArgument *Args, unsigned NumArgs,
1495 TemplateDeductionInfo &Info,
1496 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1497 bool NumberOfArgumentsMustMatch) {
1498 // C++0x [temp.deduct.type]p9:
1499 // If the template argument list of P contains a pack expansion that is not
1500 // the last template argument, the entire template argument list is a
1501 // non-deduced context.
1502 if (hasPackExpansionBeforeEnd(Params, NumParams))
1503 return Sema::TDK_Success;
1505 // C++0x [temp.deduct.type]p9:
1506 // If P has a form that contains <T> or <i>, then each argument Pi of the
1507 // respective template argument list P is compared with the corresponding
1508 // argument Ai of the corresponding template argument list of A.
1509 unsigned ArgIdx = 0, ParamIdx = 0;
1510 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1511 ++ParamIdx) {
1512 if (!Params[ParamIdx].isPackExpansion()) {
1513 // The simple case: deduce template arguments by matching Pi and Ai.
1515 // Check whether we have enough arguments.
1516 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1517 return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1518 : Sema::TDK_Success;
1520 if (Args[ArgIdx].isPackExpansion()) {
1521 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1522 // but applied to pack expansions that are template arguments.
1523 return Sema::TDK_NonDeducedMismatch;
1526 // Perform deduction for this Pi/Ai pair.
1527 if (Sema::TemplateDeductionResult Result
1528 = DeduceTemplateArguments(S, TemplateParams,
1529 Params[ParamIdx], Args[ArgIdx],
1530 Info, Deduced))
1531 return Result;
1533 // Move to the next argument.
1534 ++ArgIdx;
1535 continue;
1538 // The parameter is a pack expansion.
1540 // C++0x [temp.deduct.type]p9:
1541 // If Pi is a pack expansion, then the pattern of Pi is compared with
1542 // each remaining argument in the template argument list of A. Each
1543 // comparison deduces template arguments for subsequent positions in the
1544 // template parameter packs expanded by Pi.
1545 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1547 // Compute the set of template parameter indices that correspond to
1548 // parameter packs expanded by the pack expansion.
1549 llvm::SmallVector<unsigned, 2> PackIndices;
1551 llvm::BitVector SawIndices(TemplateParams->size());
1552 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1553 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1554 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1555 unsigned Depth, Index;
1556 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1557 if (Depth == 0 && !SawIndices[Index]) {
1558 SawIndices[Index] = true;
1559 PackIndices.push_back(Index);
1563 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1565 // FIXME: If there are no remaining arguments, we can bail out early
1566 // and set any deduced parameter packs to an empty argument pack.
1567 // The latter part of this is a (minor) correctness issue.
1569 // Save the deduced template arguments for each parameter pack expanded
1570 // by this pack expansion, then clear out the deduction.
1571 llvm::SmallVector<DeducedTemplateArgument, 2>
1572 SavedPacks(PackIndices.size());
1573 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
1574 NewlyDeducedPacks(PackIndices.size());
1575 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1576 NewlyDeducedPacks);
1578 // Keep track of the deduced template arguments for each parameter pack
1579 // expanded by this pack expansion (the outer index) and for each
1580 // template argument (the inner SmallVectors).
1581 bool HasAnyArguments = false;
1582 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1583 HasAnyArguments = true;
1585 // Deduce template arguments from the pattern.
1586 if (Sema::TemplateDeductionResult Result
1587 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1588 Info, Deduced))
1589 return Result;
1591 // Capture the deduced template arguments for each parameter pack expanded
1592 // by this pack expansion, add them to the list of arguments we've deduced
1593 // for that pack, then clear out the deduced argument.
1594 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1595 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1596 if (!DeducedArg.isNull()) {
1597 NewlyDeducedPacks[I].push_back(DeducedArg);
1598 DeducedArg = DeducedTemplateArgument();
1602 ++ArgIdx;
1605 // Build argument packs for each of the parameter packs expanded by this
1606 // pack expansion.
1607 if (Sema::TemplateDeductionResult Result
1608 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1609 Deduced, PackIndices, SavedPacks,
1610 NewlyDeducedPacks, Info))
1611 return Result;
1614 // If there is an argument remaining, then we had too many arguments.
1615 if (NumberOfArgumentsMustMatch &&
1616 hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1617 return Sema::TDK_NonDeducedMismatch;
1619 return Sema::TDK_Success;
1622 static Sema::TemplateDeductionResult
1623 DeduceTemplateArguments(Sema &S,
1624 TemplateParameterList *TemplateParams,
1625 const TemplateArgumentList &ParamList,
1626 const TemplateArgumentList &ArgList,
1627 TemplateDeductionInfo &Info,
1628 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1629 return DeduceTemplateArguments(S, TemplateParams,
1630 ParamList.data(), ParamList.size(),
1631 ArgList.data(), ArgList.size(),
1632 Info, Deduced);
1635 /// \brief Determine whether two template arguments are the same.
1636 static bool isSameTemplateArg(ASTContext &Context,
1637 const TemplateArgument &X,
1638 const TemplateArgument &Y) {
1639 if (X.getKind() != Y.getKind())
1640 return false;
1642 switch (X.getKind()) {
1643 case TemplateArgument::Null:
1644 assert(false && "Comparing NULL template argument");
1645 break;
1647 case TemplateArgument::Type:
1648 return Context.getCanonicalType(X.getAsType()) ==
1649 Context.getCanonicalType(Y.getAsType());
1651 case TemplateArgument::Declaration:
1652 return X.getAsDecl()->getCanonicalDecl() ==
1653 Y.getAsDecl()->getCanonicalDecl();
1655 case TemplateArgument::Template:
1656 case TemplateArgument::TemplateExpansion:
1657 return Context.getCanonicalTemplateName(
1658 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1659 Context.getCanonicalTemplateName(
1660 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1662 case TemplateArgument::Integral:
1663 return *X.getAsIntegral() == *Y.getAsIntegral();
1665 case TemplateArgument::Expression: {
1666 llvm::FoldingSetNodeID XID, YID;
1667 X.getAsExpr()->Profile(XID, Context, true);
1668 Y.getAsExpr()->Profile(YID, Context, true);
1669 return XID == YID;
1672 case TemplateArgument::Pack:
1673 if (X.pack_size() != Y.pack_size())
1674 return false;
1676 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1677 XPEnd = X.pack_end(),
1678 YP = Y.pack_begin();
1679 XP != XPEnd; ++XP, ++YP)
1680 if (!isSameTemplateArg(Context, *XP, *YP))
1681 return false;
1683 return true;
1686 return false;
1689 /// \brief Allocate a TemplateArgumentLoc where all locations have
1690 /// been initialized to the given location.
1692 /// \param S The semantic analysis object.
1694 /// \param The template argument we are producing template argument
1695 /// location information for.
1697 /// \param NTTPType For a declaration template argument, the type of
1698 /// the non-type template parameter that corresponds to this template
1699 /// argument.
1701 /// \param Loc The source location to use for the resulting template
1702 /// argument.
1703 static TemplateArgumentLoc
1704 getTrivialTemplateArgumentLoc(Sema &S,
1705 const TemplateArgument &Arg,
1706 QualType NTTPType,
1707 SourceLocation Loc) {
1708 switch (Arg.getKind()) {
1709 case TemplateArgument::Null:
1710 llvm_unreachable("Can't get a NULL template argument here");
1711 break;
1713 case TemplateArgument::Type:
1714 return TemplateArgumentLoc(Arg,
1715 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1717 case TemplateArgument::Declaration: {
1718 Expr *E
1719 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1720 .takeAs<Expr>();
1721 return TemplateArgumentLoc(TemplateArgument(E), E);
1724 case TemplateArgument::Integral: {
1725 Expr *E
1726 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1727 return TemplateArgumentLoc(TemplateArgument(E), E);
1730 case TemplateArgument::Template:
1731 return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1733 case TemplateArgument::TemplateExpansion:
1734 return TemplateArgumentLoc(Arg, SourceRange(), Loc, Loc);
1736 case TemplateArgument::Expression:
1737 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1739 case TemplateArgument::Pack:
1740 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1743 return TemplateArgumentLoc();
1747 /// \brief Convert the given deduced template argument and add it to the set of
1748 /// fully-converted template arguments.
1749 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1750 DeducedTemplateArgument Arg,
1751 NamedDecl *Template,
1752 QualType NTTPType,
1753 unsigned ArgumentPackIndex,
1754 TemplateDeductionInfo &Info,
1755 bool InFunctionTemplate,
1756 llvm::SmallVectorImpl<TemplateArgument> &Output) {
1757 if (Arg.getKind() == TemplateArgument::Pack) {
1758 // This is a template argument pack, so check each of its arguments against
1759 // the template parameter.
1760 llvm::SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1761 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1762 PAEnd = Arg.pack_end();
1763 PA != PAEnd; ++PA) {
1764 // When converting the deduced template argument, append it to the
1765 // general output list. We need to do this so that the template argument
1766 // checking logic has all of the prior template arguments available.
1767 DeducedTemplateArgument InnerArg(*PA);
1768 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1769 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1770 NTTPType, PackedArgsBuilder.size(),
1771 Info, InFunctionTemplate, Output))
1772 return true;
1774 // Move the converted template argument into our argument pack.
1775 PackedArgsBuilder.push_back(Output.back());
1776 Output.pop_back();
1779 // Create the resulting argument pack.
1780 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
1781 PackedArgsBuilder.data(),
1782 PackedArgsBuilder.size()));
1783 return false;
1786 // Convert the deduced template argument into a template
1787 // argument that we can check, almost as if the user had written
1788 // the template argument explicitly.
1789 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
1790 Info.getLocation());
1792 // Check the template argument, converting it as necessary.
1793 return S.CheckTemplateArgument(Param, ArgLoc,
1794 Template,
1795 Template->getLocation(),
1796 Template->getSourceRange().getEnd(),
1797 ArgumentPackIndex,
1798 Output,
1799 InFunctionTemplate
1800 ? (Arg.wasDeducedFromArrayBound()
1801 ? Sema::CTAK_DeducedFromArrayBound
1802 : Sema::CTAK_Deduced)
1803 : Sema::CTAK_Specified);
1806 /// Complete template argument deduction for a class template partial
1807 /// specialization.
1808 static Sema::TemplateDeductionResult
1809 FinishTemplateArgumentDeduction(Sema &S,
1810 ClassTemplatePartialSpecializationDecl *Partial,
1811 const TemplateArgumentList &TemplateArgs,
1812 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1813 TemplateDeductionInfo &Info) {
1814 // Trap errors.
1815 Sema::SFINAETrap Trap(S);
1817 Sema::ContextRAII SavedContext(S, Partial);
1819 // C++ [temp.deduct.type]p2:
1820 // [...] or if any template argument remains neither deduced nor
1821 // explicitly specified, template argument deduction fails.
1822 llvm::SmallVector<TemplateArgument, 4> Builder;
1823 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
1824 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
1825 NamedDecl *Param = PartialParams->getParam(I);
1826 if (Deduced[I].isNull()) {
1827 Info.Param = makeTemplateParameter(Param);
1828 return Sema::TDK_Incomplete;
1831 // We have deduced this argument, so it still needs to be
1832 // checked and converted.
1834 // First, for a non-type template parameter type that is
1835 // initialized by a declaration, we need the type of the
1836 // corresponding non-type template parameter.
1837 QualType NTTPType;
1838 if (NonTypeTemplateParmDecl *NTTP
1839 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1840 NTTPType = NTTP->getType();
1841 if (NTTPType->isDependentType()) {
1842 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1843 Builder.data(), Builder.size());
1844 NTTPType = S.SubstType(NTTPType,
1845 MultiLevelTemplateArgumentList(TemplateArgs),
1846 NTTP->getLocation(),
1847 NTTP->getDeclName());
1848 if (NTTPType.isNull()) {
1849 Info.Param = makeTemplateParameter(Param);
1850 // FIXME: These template arguments are temporary. Free them!
1851 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
1852 Builder.data(),
1853 Builder.size()));
1854 return Sema::TDK_SubstitutionFailure;
1859 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
1860 Partial, NTTPType, 0, Info, false,
1861 Builder)) {
1862 Info.Param = makeTemplateParameter(Param);
1863 // FIXME: These template arguments are temporary. Free them!
1864 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1865 Builder.size()));
1866 return Sema::TDK_SubstitutionFailure;
1870 // Form the template argument list from the deduced template arguments.
1871 TemplateArgumentList *DeducedArgumentList
1872 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1873 Builder.size());
1875 Info.reset(DeducedArgumentList);
1877 // Substitute the deduced template arguments into the template
1878 // arguments of the class template partial specialization, and
1879 // verify that the instantiated template arguments are both valid
1880 // and are equivalent to the template arguments originally provided
1881 // to the class template.
1882 LocalInstantiationScope InstScope(S);
1883 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1884 const TemplateArgumentLoc *PartialTemplateArgs
1885 = Partial->getTemplateArgsAsWritten();
1887 // Note that we don't provide the langle and rangle locations.
1888 TemplateArgumentListInfo InstArgs;
1890 if (S.Subst(PartialTemplateArgs,
1891 Partial->getNumTemplateArgsAsWritten(),
1892 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1893 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
1894 if (ParamIdx >= Partial->getTemplateParameters()->size())
1895 ParamIdx = Partial->getTemplateParameters()->size() - 1;
1897 Decl *Param
1898 = const_cast<NamedDecl *>(
1899 Partial->getTemplateParameters()->getParam(ParamIdx));
1900 Info.Param = makeTemplateParameter(Param);
1901 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
1902 return Sema::TDK_SubstitutionFailure;
1905 llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
1906 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1907 InstArgs, false, ConvertedInstArgs))
1908 return Sema::TDK_SubstitutionFailure;
1910 TemplateParameterList *TemplateParams
1911 = ClassTemplate->getTemplateParameters();
1912 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
1913 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
1914 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1915 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
1916 Info.FirstArg = TemplateArgs[I];
1917 Info.SecondArg = InstArg;
1918 return Sema::TDK_NonDeducedMismatch;
1922 if (Trap.hasErrorOccurred())
1923 return Sema::TDK_SubstitutionFailure;
1925 return Sema::TDK_Success;
1928 /// \brief Perform template argument deduction to determine whether
1929 /// the given template arguments match the given class template
1930 /// partial specialization per C++ [temp.class.spec.match].
1931 Sema::TemplateDeductionResult
1932 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1933 const TemplateArgumentList &TemplateArgs,
1934 TemplateDeductionInfo &Info) {
1935 // C++ [temp.class.spec.match]p2:
1936 // A partial specialization matches a given actual template
1937 // argument list if the template arguments of the partial
1938 // specialization can be deduced from the actual template argument
1939 // list (14.8.2).
1940 SFINAETrap Trap(*this);
1941 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1942 Deduced.resize(Partial->getTemplateParameters()->size());
1943 if (TemplateDeductionResult Result
1944 = ::DeduceTemplateArguments(*this,
1945 Partial->getTemplateParameters(),
1946 Partial->getTemplateArgs(),
1947 TemplateArgs, Info, Deduced))
1948 return Result;
1950 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1951 Deduced.data(), Deduced.size(), Info);
1952 if (Inst)
1953 return TDK_InstantiationDepth;
1955 if (Trap.hasErrorOccurred())
1956 return Sema::TDK_SubstitutionFailure;
1958 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1959 Deduced, Info);
1962 /// \brief Determine whether the given type T is a simple-template-id type.
1963 static bool isSimpleTemplateIdType(QualType T) {
1964 if (const TemplateSpecializationType *Spec
1965 = T->getAs<TemplateSpecializationType>())
1966 return Spec->getTemplateName().getAsTemplateDecl() != 0;
1968 return false;
1971 /// \brief Substitute the explicitly-provided template arguments into the
1972 /// given function template according to C++ [temp.arg.explicit].
1974 /// \param FunctionTemplate the function template into which the explicit
1975 /// template arguments will be substituted.
1977 /// \param ExplicitTemplateArguments the explicitly-specified template
1978 /// arguments.
1980 /// \param Deduced the deduced template arguments, which will be populated
1981 /// with the converted and checked explicit template arguments.
1983 /// \param ParamTypes will be populated with the instantiated function
1984 /// parameters.
1986 /// \param FunctionType if non-NULL, the result type of the function template
1987 /// will also be instantiated and the pointed-to value will be updated with
1988 /// the instantiated function type.
1990 /// \param Info if substitution fails for any reason, this object will be
1991 /// populated with more information about the failure.
1993 /// \returns TDK_Success if substitution was successful, or some failure
1994 /// condition.
1995 Sema::TemplateDeductionResult
1996 Sema::SubstituteExplicitTemplateArguments(
1997 FunctionTemplateDecl *FunctionTemplate,
1998 const TemplateArgumentListInfo &ExplicitTemplateArgs,
1999 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2000 llvm::SmallVectorImpl<QualType> &ParamTypes,
2001 QualType *FunctionType,
2002 TemplateDeductionInfo &Info) {
2003 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2004 TemplateParameterList *TemplateParams
2005 = FunctionTemplate->getTemplateParameters();
2007 if (ExplicitTemplateArgs.size() == 0) {
2008 // No arguments to substitute; just copy over the parameter types and
2009 // fill in the function type.
2010 for (FunctionDecl::param_iterator P = Function->param_begin(),
2011 PEnd = Function->param_end();
2012 P != PEnd;
2013 ++P)
2014 ParamTypes.push_back((*P)->getType());
2016 if (FunctionType)
2017 *FunctionType = Function->getType();
2018 return TDK_Success;
2021 // Substitution of the explicit template arguments into a function template
2022 /// is a SFINAE context. Trap any errors that might occur.
2023 SFINAETrap Trap(*this);
2025 // C++ [temp.arg.explicit]p3:
2026 // Template arguments that are present shall be specified in the
2027 // declaration order of their corresponding template-parameters. The
2028 // template argument list shall not specify more template-arguments than
2029 // there are corresponding template-parameters.
2030 llvm::SmallVector<TemplateArgument, 4> Builder;
2032 // Enter a new template instantiation context where we check the
2033 // explicitly-specified template arguments against this function template,
2034 // and then substitute them into the function parameter types.
2035 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2036 FunctionTemplate, Deduced.data(), Deduced.size(),
2037 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2038 Info);
2039 if (Inst)
2040 return TDK_InstantiationDepth;
2042 if (CheckTemplateArgumentList(FunctionTemplate,
2043 SourceLocation(),
2044 ExplicitTemplateArgs,
2045 true,
2046 Builder) || Trap.hasErrorOccurred()) {
2047 unsigned Index = Builder.size();
2048 if (Index >= TemplateParams->size())
2049 Index = TemplateParams->size() - 1;
2050 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2051 return TDK_InvalidExplicitArguments;
2054 // Form the template argument list from the explicitly-specified
2055 // template arguments.
2056 TemplateArgumentList *ExplicitArgumentList
2057 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2058 Info.reset(ExplicitArgumentList);
2060 // Template argument deduction and the final substitution should be
2061 // done in the context of the templated declaration. Explicit
2062 // argument substitution, on the other hand, needs to happen in the
2063 // calling context.
2064 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2066 // If we deduced template arguments for a template parameter pack,
2067 // note that the template argument pack is partially substituted and record
2068 // the explicit template arguments. They'll be used as part of deduction
2069 // for this template parameter pack.
2070 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2071 const TemplateArgument &Arg = Builder[I];
2072 if (Arg.getKind() == TemplateArgument::Pack) {
2073 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2074 TemplateParams->getParam(I),
2075 Arg.pack_begin(),
2076 Arg.pack_size());
2077 break;
2081 // Instantiate the types of each of the function parameters given the
2082 // explicitly-specified template arguments.
2083 if (SubstParmTypes(Function->getLocation(),
2084 Function->param_begin(), Function->getNumParams(),
2085 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2086 ParamTypes))
2087 return TDK_SubstitutionFailure;
2089 // If the caller wants a full function type back, instantiate the return
2090 // type and form that function type.
2091 if (FunctionType) {
2092 // FIXME: exception-specifications?
2093 const FunctionProtoType *Proto
2094 = Function->getType()->getAs<FunctionProtoType>();
2095 assert(Proto && "Function template does not have a prototype?");
2097 QualType ResultType
2098 = SubstType(Proto->getResultType(),
2099 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2100 Function->getTypeSpecStartLoc(),
2101 Function->getDeclName());
2102 if (ResultType.isNull() || Trap.hasErrorOccurred())
2103 return TDK_SubstitutionFailure;
2105 *FunctionType = BuildFunctionType(ResultType,
2106 ParamTypes.data(), ParamTypes.size(),
2107 Proto->isVariadic(),
2108 Proto->getTypeQuals(),
2109 Proto->getRefQualifier(),
2110 Function->getLocation(),
2111 Function->getDeclName(),
2112 Proto->getExtInfo());
2113 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2114 return TDK_SubstitutionFailure;
2117 // C++ [temp.arg.explicit]p2:
2118 // Trailing template arguments that can be deduced (14.8.2) may be
2119 // omitted from the list of explicit template-arguments. If all of the
2120 // template arguments can be deduced, they may all be omitted; in this
2121 // case, the empty template argument list <> itself may also be omitted.
2123 // Take all of the explicitly-specified arguments and put them into
2124 // the set of deduced template arguments. Explicitly-specified
2125 // parameter packs, however, will be set to NULL since the deduction
2126 // mechanisms handle explicitly-specified argument packs directly.
2127 Deduced.reserve(TemplateParams->size());
2128 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2129 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2130 if (Arg.getKind() == TemplateArgument::Pack)
2131 Deduced.push_back(DeducedTemplateArgument());
2132 else
2133 Deduced.push_back(Arg);
2136 return TDK_Success;
2139 /// \brief Finish template argument deduction for a function template,
2140 /// checking the deduced template arguments for completeness and forming
2141 /// the function template specialization.
2142 Sema::TemplateDeductionResult
2143 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2144 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2145 unsigned NumExplicitlySpecified,
2146 FunctionDecl *&Specialization,
2147 TemplateDeductionInfo &Info) {
2148 TemplateParameterList *TemplateParams
2149 = FunctionTemplate->getTemplateParameters();
2151 // Template argument deduction for function templates in a SFINAE context.
2152 // Trap any errors that might occur.
2153 SFINAETrap Trap(*this);
2155 // Enter a new template instantiation context while we instantiate the
2156 // actual function declaration.
2157 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2158 FunctionTemplate, Deduced.data(), Deduced.size(),
2159 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2160 Info);
2161 if (Inst)
2162 return TDK_InstantiationDepth;
2164 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2166 // C++ [temp.deduct.type]p2:
2167 // [...] or if any template argument remains neither deduced nor
2168 // explicitly specified, template argument deduction fails.
2169 llvm::SmallVector<TemplateArgument, 4> Builder;
2170 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2171 NamedDecl *Param = TemplateParams->getParam(I);
2173 if (!Deduced[I].isNull()) {
2174 if (I < NumExplicitlySpecified) {
2175 // We have already fully type-checked and converted this
2176 // argument, because it was explicitly-specified. Just record the
2177 // presence of this argument.
2178 Builder.push_back(Deduced[I]);
2179 continue;
2182 // We have deduced this argument, so it still needs to be
2183 // checked and converted.
2185 // First, for a non-type template parameter type that is
2186 // initialized by a declaration, we need the type of the
2187 // corresponding non-type template parameter.
2188 QualType NTTPType;
2189 if (NonTypeTemplateParmDecl *NTTP
2190 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2191 NTTPType = NTTP->getType();
2192 if (NTTPType->isDependentType()) {
2193 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2194 Builder.data(), Builder.size());
2195 NTTPType = SubstType(NTTPType,
2196 MultiLevelTemplateArgumentList(TemplateArgs),
2197 NTTP->getLocation(),
2198 NTTP->getDeclName());
2199 if (NTTPType.isNull()) {
2200 Info.Param = makeTemplateParameter(Param);
2201 // FIXME: These template arguments are temporary. Free them!
2202 Info.reset(TemplateArgumentList::CreateCopy(Context,
2203 Builder.data(),
2204 Builder.size()));
2205 return TDK_SubstitutionFailure;
2210 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2211 FunctionTemplate, NTTPType, 0, Info,
2212 true, Builder)) {
2213 Info.Param = makeTemplateParameter(Param);
2214 // FIXME: These template arguments are temporary. Free them!
2215 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2216 Builder.size()));
2217 return TDK_SubstitutionFailure;
2220 continue;
2223 // C++0x [temp.arg.explicit]p3:
2224 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2225 // be deduced to an empty sequence of template arguments.
2226 // FIXME: Where did the word "trailing" come from?
2227 if (Param->isTemplateParameterPack()) {
2228 // We may have had explicitly-specified template arguments for this
2229 // template parameter pack. If so, our empty deduction extends the
2230 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2231 const TemplateArgument *ExplicitArgs;
2232 unsigned NumExplicitArgs;
2233 if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2234 &NumExplicitArgs)
2235 == Param)
2236 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2237 else
2238 Builder.push_back(TemplateArgument(0, 0));
2240 continue;
2243 // Substitute into the default template argument, if available.
2244 TemplateArgumentLoc DefArg
2245 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2246 FunctionTemplate->getLocation(),
2247 FunctionTemplate->getSourceRange().getEnd(),
2248 Param,
2249 Builder);
2251 // If there was no default argument, deduction is incomplete.
2252 if (DefArg.getArgument().isNull()) {
2253 Info.Param = makeTemplateParameter(
2254 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2255 return TDK_Incomplete;
2258 // Check whether we can actually use the default argument.
2259 if (CheckTemplateArgument(Param, DefArg,
2260 FunctionTemplate,
2261 FunctionTemplate->getLocation(),
2262 FunctionTemplate->getSourceRange().getEnd(),
2263 0, Builder,
2264 CTAK_Deduced)) {
2265 Info.Param = makeTemplateParameter(
2266 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2267 // FIXME: These template arguments are temporary. Free them!
2268 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2269 Builder.size()));
2270 return TDK_SubstitutionFailure;
2273 // If we get here, we successfully used the default template argument.
2276 // Form the template argument list from the deduced template arguments.
2277 TemplateArgumentList *DeducedArgumentList
2278 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2279 Info.reset(DeducedArgumentList);
2281 // Substitute the deduced template arguments into the function template
2282 // declaration to produce the function template specialization.
2283 DeclContext *Owner = FunctionTemplate->getDeclContext();
2284 if (FunctionTemplate->getFriendObjectKind())
2285 Owner = FunctionTemplate->getLexicalDeclContext();
2286 Specialization = cast_or_null<FunctionDecl>(
2287 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2288 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2289 if (!Specialization)
2290 return TDK_SubstitutionFailure;
2292 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2293 FunctionTemplate->getCanonicalDecl());
2295 // If the template argument list is owned by the function template
2296 // specialization, release it.
2297 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2298 !Trap.hasErrorOccurred())
2299 Info.take();
2301 // There may have been an error that did not prevent us from constructing a
2302 // declaration. Mark the declaration invalid and return with a substitution
2303 // failure.
2304 if (Trap.hasErrorOccurred()) {
2305 Specialization->setInvalidDecl(true);
2306 return TDK_SubstitutionFailure;
2309 // If we suppressed any diagnostics while performing template argument
2310 // deduction, and if we haven't already instantiated this declaration,
2311 // keep track of these diagnostics. They'll be emitted if this specialization
2312 // is actually used.
2313 if (Info.diag_begin() != Info.diag_end()) {
2314 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
2315 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2316 if (Pos == SuppressedDiagnostics.end())
2317 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2318 .append(Info.diag_begin(), Info.diag_end());
2321 return TDK_Success;
2324 /// Gets the type of a function for template-argument-deducton
2325 /// purposes when it's considered as part of an overload set.
2326 static QualType GetTypeOfFunction(ASTContext &Context,
2327 const OverloadExpr::FindResult &R,
2328 FunctionDecl *Fn) {
2329 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2330 if (Method->isInstance()) {
2331 // An instance method that's referenced in a form that doesn't
2332 // look like a member pointer is just invalid.
2333 if (!R.HasFormOfMemberPointer) return QualType();
2335 return Context.getMemberPointerType(Fn->getType(),
2336 Context.getTypeDeclType(Method->getParent()).getTypePtr());
2339 if (!R.IsAddressOfOperand) return Fn->getType();
2340 return Context.getPointerType(Fn->getType());
2343 /// Apply the deduction rules for overload sets.
2345 /// \return the null type if this argument should be treated as an
2346 /// undeduced context
2347 static QualType
2348 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2349 Expr *Arg, QualType ParamType,
2350 bool ParamWasReference) {
2352 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2354 OverloadExpr *Ovl = R.Expression;
2356 // C++0x [temp.deduct.call]p4
2357 unsigned TDF = 0;
2358 if (ParamWasReference)
2359 TDF |= TDF_ParamWithReferenceType;
2360 if (R.IsAddressOfOperand)
2361 TDF |= TDF_IgnoreQualifiers;
2363 // If there were explicit template arguments, we can only find
2364 // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
2365 // unambiguously name a full specialization.
2366 if (Ovl->hasExplicitTemplateArgs()) {
2367 // But we can still look for an explicit specialization.
2368 if (FunctionDecl *ExplicitSpec
2369 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2370 return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2371 return QualType();
2374 // C++0x [temp.deduct.call]p6:
2375 // When P is a function type, pointer to function type, or pointer
2376 // to member function type:
2378 if (!ParamType->isFunctionType() &&
2379 !ParamType->isFunctionPointerType() &&
2380 !ParamType->isMemberFunctionPointerType())
2381 return QualType();
2383 QualType Match;
2384 for (UnresolvedSetIterator I = Ovl->decls_begin(),
2385 E = Ovl->decls_end(); I != E; ++I) {
2386 NamedDecl *D = (*I)->getUnderlyingDecl();
2388 // - If the argument is an overload set containing one or more
2389 // function templates, the parameter is treated as a
2390 // non-deduced context.
2391 if (isa<FunctionTemplateDecl>(D))
2392 return QualType();
2394 FunctionDecl *Fn = cast<FunctionDecl>(D);
2395 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2396 if (ArgType.isNull()) continue;
2398 // Function-to-pointer conversion.
2399 if (!ParamWasReference && ParamType->isPointerType() &&
2400 ArgType->isFunctionType())
2401 ArgType = S.Context.getPointerType(ArgType);
2403 // - If the argument is an overload set (not containing function
2404 // templates), trial argument deduction is attempted using each
2405 // of the members of the set. If deduction succeeds for only one
2406 // of the overload set members, that member is used as the
2407 // argument value for the deduction. If deduction succeeds for
2408 // more than one member of the overload set the parameter is
2409 // treated as a non-deduced context.
2411 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2412 // Type deduction is done independently for each P/A pair, and
2413 // the deduced template argument values are then combined.
2414 // So we do not reject deductions which were made elsewhere.
2415 llvm::SmallVector<DeducedTemplateArgument, 8>
2416 Deduced(TemplateParams->size());
2417 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2418 Sema::TemplateDeductionResult Result
2419 = DeduceTemplateArguments(S, TemplateParams,
2420 ParamType, ArgType,
2421 Info, Deduced, TDF);
2422 if (Result) continue;
2423 if (!Match.isNull()) return QualType();
2424 Match = ArgType;
2427 return Match;
2430 /// \brief Perform the adjustments to the parameter and argument types
2431 /// described in C++ [temp.deduct.call].
2433 /// \returns true if the caller should not attempt to perform any template
2434 /// argument deduction based on this P/A pair.
2435 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2436 TemplateParameterList *TemplateParams,
2437 QualType &ParamType,
2438 QualType &ArgType,
2439 Expr *Arg,
2440 unsigned &TDF) {
2441 // C++0x [temp.deduct.call]p3:
2442 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
2443 // are ignored for type deduction.
2444 if (ParamType.getCVRQualifiers())
2445 ParamType = ParamType.getLocalUnqualifiedType();
2446 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2447 if (ParamRefType) {
2448 // [C++0x] If P is an rvalue reference to a cv-unqualified
2449 // template parameter and the argument is an lvalue, the type
2450 // "lvalue reference to A" is used in place of A for type
2451 // deduction.
2452 if (const RValueReferenceType *RValueRef
2453 = dyn_cast<RValueReferenceType>(ParamType)) {
2454 if (!RValueRef->getPointeeType().getQualifiers() &&
2455 isa<TemplateTypeParmType>(RValueRef->getPointeeType()) &&
2456 Arg->Classify(S.Context).isLValue())
2457 ArgType = S.Context.getLValueReferenceType(ArgType);
2460 // [...] If P is a reference type, the type referred to by P is used
2461 // for type deduction.
2462 ParamType = ParamRefType->getPointeeType();
2465 // Overload sets usually make this parameter an undeduced
2466 // context, but there are sometimes special circumstances.
2467 if (ArgType == S.Context.OverloadTy) {
2468 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2469 Arg, ParamType,
2470 ParamRefType != 0);
2471 if (ArgType.isNull())
2472 return true;
2475 if (ParamRefType) {
2476 // C++0x [temp.deduct.call]p3:
2477 // [...] If P is of the form T&&, where T is a template parameter, and
2478 // the argument is an lvalue, the type A& is used in place of A for
2479 // type deduction.
2480 if (ParamRefType->isRValueReferenceType() &&
2481 ParamRefType->getAs<TemplateTypeParmType>() &&
2482 Arg->isLValue())
2483 ArgType = S.Context.getLValueReferenceType(ArgType);
2484 } else {
2485 // C++ [temp.deduct.call]p2:
2486 // If P is not a reference type:
2487 // - If A is an array type, the pointer type produced by the
2488 // array-to-pointer standard conversion (4.2) is used in place of
2489 // A for type deduction; otherwise,
2490 if (ArgType->isArrayType())
2491 ArgType = S.Context.getArrayDecayedType(ArgType);
2492 // - If A is a function type, the pointer type produced by the
2493 // function-to-pointer standard conversion (4.3) is used in place
2494 // of A for type deduction; otherwise,
2495 else if (ArgType->isFunctionType())
2496 ArgType = S.Context.getPointerType(ArgType);
2497 else {
2498 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2499 // type are ignored for type deduction.
2500 if (ArgType.getCVRQualifiers())
2501 ArgType = ArgType.getUnqualifiedType();
2505 // C++0x [temp.deduct.call]p4:
2506 // In general, the deduction process attempts to find template argument
2507 // values that will make the deduced A identical to A (after the type A
2508 // is transformed as described above). [...]
2509 TDF = TDF_SkipNonDependent;
2511 // - If the original P is a reference type, the deduced A (i.e., the
2512 // type referred to by the reference) can be more cv-qualified than
2513 // the transformed A.
2514 if (ParamRefType)
2515 TDF |= TDF_ParamWithReferenceType;
2516 // - The transformed A can be another pointer or pointer to member
2517 // type that can be converted to the deduced A via a qualification
2518 // conversion (4.4).
2519 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2520 ArgType->isObjCObjectPointerType())
2521 TDF |= TDF_IgnoreQualifiers;
2522 // - If P is a class and P has the form simple-template-id, then the
2523 // transformed A can be a derived class of the deduced A. Likewise,
2524 // if P is a pointer to a class of the form simple-template-id, the
2525 // transformed A can be a pointer to a derived class pointed to by
2526 // the deduced A.
2527 if (isSimpleTemplateIdType(ParamType) ||
2528 (isa<PointerType>(ParamType) &&
2529 isSimpleTemplateIdType(
2530 ParamType->getAs<PointerType>()->getPointeeType())))
2531 TDF |= TDF_DerivedClass;
2533 return false;
2536 /// \brief Perform template argument deduction from a function call
2537 /// (C++ [temp.deduct.call]).
2539 /// \param FunctionTemplate the function template for which we are performing
2540 /// template argument deduction.
2542 /// \param ExplicitTemplateArguments the explicit template arguments provided
2543 /// for this call.
2545 /// \param Args the function call arguments
2547 /// \param NumArgs the number of arguments in Args
2549 /// \param Name the name of the function being called. This is only significant
2550 /// when the function template is a conversion function template, in which
2551 /// case this routine will also perform template argument deduction based on
2552 /// the function to which
2554 /// \param Specialization if template argument deduction was successful,
2555 /// this will be set to the function template specialization produced by
2556 /// template argument deduction.
2558 /// \param Info the argument will be updated to provide additional information
2559 /// about template argument deduction.
2561 /// \returns the result of template argument deduction.
2562 Sema::TemplateDeductionResult
2563 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2564 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2565 Expr **Args, unsigned NumArgs,
2566 FunctionDecl *&Specialization,
2567 TemplateDeductionInfo &Info) {
2568 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2570 // C++ [temp.deduct.call]p1:
2571 // Template argument deduction is done by comparing each function template
2572 // parameter type (call it P) with the type of the corresponding argument
2573 // of the call (call it A) as described below.
2574 unsigned CheckArgs = NumArgs;
2575 if (NumArgs < Function->getMinRequiredArguments())
2576 return TDK_TooFewArguments;
2577 else if (NumArgs > Function->getNumParams()) {
2578 const FunctionProtoType *Proto
2579 = Function->getType()->getAs<FunctionProtoType>();
2580 if (Proto->isTemplateVariadic())
2581 /* Do nothing */;
2582 else if (Proto->isVariadic())
2583 CheckArgs = Function->getNumParams();
2584 else
2585 return TDK_TooManyArguments;
2588 // The types of the parameters from which we will perform template argument
2589 // deduction.
2590 LocalInstantiationScope InstScope(*this);
2591 TemplateParameterList *TemplateParams
2592 = FunctionTemplate->getTemplateParameters();
2593 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2594 llvm::SmallVector<QualType, 4> ParamTypes;
2595 unsigned NumExplicitlySpecified = 0;
2596 if (ExplicitTemplateArgs) {
2597 TemplateDeductionResult Result =
2598 SubstituteExplicitTemplateArguments(FunctionTemplate,
2599 *ExplicitTemplateArgs,
2600 Deduced,
2601 ParamTypes,
2603 Info);
2604 if (Result)
2605 return Result;
2607 NumExplicitlySpecified = Deduced.size();
2608 } else {
2609 // Just fill in the parameter types from the function declaration.
2610 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2611 ParamTypes.push_back(Function->getParamDecl(I)->getType());
2614 // Deduce template arguments from the function parameters.
2615 Deduced.resize(TemplateParams->size());
2616 unsigned ArgIdx = 0;
2617 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
2618 ParamIdx != NumParams; ++ParamIdx) {
2619 QualType ParamType = ParamTypes[ParamIdx];
2621 const PackExpansionType *ParamExpansion
2622 = dyn_cast<PackExpansionType>(ParamType);
2623 if (!ParamExpansion) {
2624 // Simple case: matching a function parameter to a function argument.
2625 if (ArgIdx >= CheckArgs)
2626 break;
2628 Expr *Arg = Args[ArgIdx++];
2629 QualType ArgType = Arg->getType();
2630 unsigned TDF = 0;
2631 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2632 ParamType, ArgType, Arg,
2633 TDF))
2634 continue;
2636 if (TemplateDeductionResult Result
2637 = ::DeduceTemplateArguments(*this, TemplateParams,
2638 ParamType, ArgType, Info, Deduced,
2639 TDF))
2640 return Result;
2642 // FIXME: we need to check that the deduced A is the same as A,
2643 // modulo the various allowed differences.
2644 continue;
2647 // C++0x [temp.deduct.call]p1:
2648 // For a function parameter pack that occurs at the end of the
2649 // parameter-declaration-list, the type A of each remaining argument of
2650 // the call is compared with the type P of the declarator-id of the
2651 // function parameter pack. Each comparison deduces template arguments
2652 // for subsequent positions in the template parameter packs expanded by
2653 // the function parameter pack. For a function parameter pack that does
2654 // not occur at the end of the parameter-declaration-list, the type of
2655 // the parameter pack is a non-deduced context.
2656 if (ParamIdx + 1 < NumParams)
2657 break;
2659 QualType ParamPattern = ParamExpansion->getPattern();
2660 llvm::SmallVector<unsigned, 2> PackIndices;
2662 llvm::BitVector SawIndices(TemplateParams->size());
2663 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2664 collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
2665 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
2666 unsigned Depth, Index;
2667 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
2668 if (Depth == 0 && !SawIndices[Index]) {
2669 SawIndices[Index] = true;
2670 PackIndices.push_back(Index);
2674 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
2676 // Keep track of the deduced template arguments for each parameter pack
2677 // expanded by this pack expansion (the outer index) and for each
2678 // template argument (the inner SmallVectors).
2679 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
2680 NewlyDeducedPacks(PackIndices.size());
2681 llvm::SmallVector<DeducedTemplateArgument, 2>
2682 SavedPacks(PackIndices.size());
2683 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
2684 NewlyDeducedPacks);
2685 bool HasAnyArguments = false;
2686 for (; ArgIdx < NumArgs; ++ArgIdx) {
2687 HasAnyArguments = true;
2689 ParamType = ParamPattern;
2690 Expr *Arg = Args[ArgIdx];
2691 QualType ArgType = Arg->getType();
2692 unsigned TDF = 0;
2693 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2694 ParamType, ArgType, Arg,
2695 TDF)) {
2696 // We can't actually perform any deduction for this argument, so stop
2697 // deduction at this point.
2698 ++ArgIdx;
2699 break;
2702 if (TemplateDeductionResult Result
2703 = ::DeduceTemplateArguments(*this, TemplateParams,
2704 ParamType, ArgType, Info, Deduced,
2705 TDF))
2706 return Result;
2708 // Capture the deduced template arguments for each parameter pack expanded
2709 // by this pack expansion, add them to the list of arguments we've deduced
2710 // for that pack, then clear out the deduced argument.
2711 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
2712 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
2713 if (!DeducedArg.isNull()) {
2714 NewlyDeducedPacks[I].push_back(DeducedArg);
2715 DeducedArg = DeducedTemplateArgument();
2720 // Build argument packs for each of the parameter packs expanded by this
2721 // pack expansion.
2722 if (Sema::TemplateDeductionResult Result
2723 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
2724 Deduced, PackIndices, SavedPacks,
2725 NewlyDeducedPacks, Info))
2726 return Result;
2728 // After we've matching against a parameter pack, we're done.
2729 break;
2732 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2733 NumExplicitlySpecified,
2734 Specialization, Info);
2737 /// \brief Deduce template arguments when taking the address of a function
2738 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
2739 /// a template.
2741 /// \param FunctionTemplate the function template for which we are performing
2742 /// template argument deduction.
2744 /// \param ExplicitTemplateArguments the explicitly-specified template
2745 /// arguments.
2747 /// \param ArgFunctionType the function type that will be used as the
2748 /// "argument" type (A) when performing template argument deduction from the
2749 /// function template's function type. This type may be NULL, if there is no
2750 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
2752 /// \param Specialization if template argument deduction was successful,
2753 /// this will be set to the function template specialization produced by
2754 /// template argument deduction.
2756 /// \param Info the argument will be updated to provide additional information
2757 /// about template argument deduction.
2759 /// \returns the result of template argument deduction.
2760 Sema::TemplateDeductionResult
2761 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2762 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2763 QualType ArgFunctionType,
2764 FunctionDecl *&Specialization,
2765 TemplateDeductionInfo &Info) {
2766 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2767 TemplateParameterList *TemplateParams
2768 = FunctionTemplate->getTemplateParameters();
2769 QualType FunctionType = Function->getType();
2771 // Substitute any explicit template arguments.
2772 LocalInstantiationScope InstScope(*this);
2773 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2774 unsigned NumExplicitlySpecified = 0;
2775 llvm::SmallVector<QualType, 4> ParamTypes;
2776 if (ExplicitTemplateArgs) {
2777 if (TemplateDeductionResult Result
2778 = SubstituteExplicitTemplateArguments(FunctionTemplate,
2779 *ExplicitTemplateArgs,
2780 Deduced, ParamTypes,
2781 &FunctionType, Info))
2782 return Result;
2784 NumExplicitlySpecified = Deduced.size();
2787 // Template argument deduction for function templates in a SFINAE context.
2788 // Trap any errors that might occur.
2789 SFINAETrap Trap(*this);
2791 Deduced.resize(TemplateParams->size());
2793 if (!ArgFunctionType.isNull()) {
2794 // Deduce template arguments from the function type.
2795 if (TemplateDeductionResult Result
2796 = ::DeduceTemplateArguments(*this, TemplateParams,
2797 FunctionType, ArgFunctionType, Info,
2798 Deduced, TDF_TopLevelParameterTypeList))
2799 return Result;
2802 if (TemplateDeductionResult Result
2803 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2804 NumExplicitlySpecified,
2805 Specialization, Info))
2806 return Result;
2808 // If the requested function type does not match the actual type of the
2809 // specialization, template argument deduction fails.
2810 if (!ArgFunctionType.isNull() &&
2811 !Context.hasSameType(ArgFunctionType, Specialization->getType()))
2812 return TDK_NonDeducedMismatch;
2814 return TDK_Success;
2817 /// \brief Deduce template arguments for a templated conversion
2818 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
2819 /// conversion function template specialization.
2820 Sema::TemplateDeductionResult
2821 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2822 QualType ToType,
2823 CXXConversionDecl *&Specialization,
2824 TemplateDeductionInfo &Info) {
2825 CXXConversionDecl *Conv
2826 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
2827 QualType FromType = Conv->getConversionType();
2829 // Canonicalize the types for deduction.
2830 QualType P = Context.getCanonicalType(FromType);
2831 QualType A = Context.getCanonicalType(ToType);
2833 // C++0x [temp.deduct.conv]p3:
2834 // If P is a reference type, the type referred to by P is used for
2835 // type deduction.
2836 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
2837 P = PRef->getPointeeType();
2839 // C++0x [temp.deduct.conv]p3:
2840 // If A is a reference type, the type referred to by A is used
2841 // for type deduction.
2842 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2843 A = ARef->getPointeeType();
2844 // C++ [temp.deduct.conv]p2:
2846 // If A is not a reference type:
2847 else {
2848 assert(!A->isReferenceType() && "Reference types were handled above");
2850 // - If P is an array type, the pointer type produced by the
2851 // array-to-pointer standard conversion (4.2) is used in place
2852 // of P for type deduction; otherwise,
2853 if (P->isArrayType())
2854 P = Context.getArrayDecayedType(P);
2855 // - If P is a function type, the pointer type produced by the
2856 // function-to-pointer standard conversion (4.3) is used in
2857 // place of P for type deduction; otherwise,
2858 else if (P->isFunctionType())
2859 P = Context.getPointerType(P);
2860 // - If P is a cv-qualified type, the top level cv-qualifiers of
2861 // P's type are ignored for type deduction.
2862 else
2863 P = P.getUnqualifiedType();
2865 // C++0x [temp.deduct.conv]p3:
2866 // If A is a cv-qualified type, the top level cv-qualifiers of A's
2867 // type are ignored for type deduction.
2868 A = A.getUnqualifiedType();
2871 // Template argument deduction for function templates in a SFINAE context.
2872 // Trap any errors that might occur.
2873 SFINAETrap Trap(*this);
2875 // C++ [temp.deduct.conv]p1:
2876 // Template argument deduction is done by comparing the return
2877 // type of the template conversion function (call it P) with the
2878 // type that is required as the result of the conversion (call it
2879 // A) as described in 14.8.2.4.
2880 TemplateParameterList *TemplateParams
2881 = FunctionTemplate->getTemplateParameters();
2882 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2883 Deduced.resize(TemplateParams->size());
2885 // C++0x [temp.deduct.conv]p4:
2886 // In general, the deduction process attempts to find template
2887 // argument values that will make the deduced A identical to
2888 // A. However, there are two cases that allow a difference:
2889 unsigned TDF = 0;
2890 // - If the original A is a reference type, A can be more
2891 // cv-qualified than the deduced A (i.e., the type referred to
2892 // by the reference)
2893 if (ToType->isReferenceType())
2894 TDF |= TDF_ParamWithReferenceType;
2895 // - The deduced A can be another pointer or pointer to member
2896 // type that can be converted to A via a qualification
2897 // conversion.
2899 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
2900 // both P and A are pointers or member pointers. In this case, we
2901 // just ignore cv-qualifiers completely).
2902 if ((P->isPointerType() && A->isPointerType()) ||
2903 (P->isMemberPointerType() && P->isMemberPointerType()))
2904 TDF |= TDF_IgnoreQualifiers;
2905 if (TemplateDeductionResult Result
2906 = ::DeduceTemplateArguments(*this, TemplateParams,
2907 P, A, Info, Deduced, TDF))
2908 return Result;
2910 // FIXME: we need to check that the deduced A is the same as A,
2911 // modulo the various allowed differences.
2913 // Finish template argument deduction.
2914 LocalInstantiationScope InstScope(*this);
2915 FunctionDecl *Spec = 0;
2916 TemplateDeductionResult Result
2917 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
2918 Info);
2919 Specialization = cast_or_null<CXXConversionDecl>(Spec);
2920 return Result;
2923 /// \brief Deduce template arguments for a function template when there is
2924 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
2926 /// \param FunctionTemplate the function template for which we are performing
2927 /// template argument deduction.
2929 /// \param ExplicitTemplateArguments the explicitly-specified template
2930 /// arguments.
2932 /// \param Specialization if template argument deduction was successful,
2933 /// this will be set to the function template specialization produced by
2934 /// template argument deduction.
2936 /// \param Info the argument will be updated to provide additional information
2937 /// about template argument deduction.
2939 /// \returns the result of template argument deduction.
2940 Sema::TemplateDeductionResult
2941 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2942 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2943 FunctionDecl *&Specialization,
2944 TemplateDeductionInfo &Info) {
2945 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2946 QualType(), Specialization, Info);
2949 static void
2950 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2951 bool OnlyDeduced,
2952 unsigned Level,
2953 llvm::SmallVectorImpl<bool> &Deduced);
2955 /// \brief If this is a non-static member function,
2956 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
2957 CXXMethodDecl *Method,
2958 llvm::SmallVectorImpl<QualType> &ArgTypes) {
2959 if (Method->isStatic())
2960 return;
2962 // C++ [over.match.funcs]p4:
2964 // For non-static member functions, the type of the implicit
2965 // object parameter is
2966 // - "lvalue reference to cv X" for functions declared without a
2967 // ref-qualifier or with the & ref-qualifier
2968 // - "rvalue reference to cv X" for functions declared with the
2969 // && ref-qualifier
2971 // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
2972 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
2973 ArgTy = Context.getQualifiedType(ArgTy,
2974 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
2975 ArgTy = Context.getLValueReferenceType(ArgTy);
2976 ArgTypes.push_back(ArgTy);
2979 /// \brief Determine whether the function template \p FT1 is at least as
2980 /// specialized as \p FT2.
2981 static bool isAtLeastAsSpecializedAs(Sema &S,
2982 SourceLocation Loc,
2983 FunctionTemplateDecl *FT1,
2984 FunctionTemplateDecl *FT2,
2985 TemplatePartialOrderingContext TPOC,
2986 unsigned NumCallArguments,
2987 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
2988 FunctionDecl *FD1 = FT1->getTemplatedDecl();
2989 FunctionDecl *FD2 = FT2->getTemplatedDecl();
2990 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2991 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2993 assert(Proto1 && Proto2 && "Function templates must have prototypes");
2994 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2995 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2996 Deduced.resize(TemplateParams->size());
2998 // C++0x [temp.deduct.partial]p3:
2999 // The types used to determine the ordering depend on the context in which
3000 // the partial ordering is done:
3001 TemplateDeductionInfo Info(S.Context, Loc);
3002 CXXMethodDecl *Method1 = 0;
3003 CXXMethodDecl *Method2 = 0;
3004 bool IsNonStatic2 = false;
3005 bool IsNonStatic1 = false;
3006 unsigned Skip2 = 0;
3007 switch (TPOC) {
3008 case TPOC_Call: {
3009 // - In the context of a function call, the function parameter types are
3010 // used.
3011 Method1 = dyn_cast<CXXMethodDecl>(FD1);
3012 Method2 = dyn_cast<CXXMethodDecl>(FD2);
3013 IsNonStatic1 = Method1 && !Method1->isStatic();
3014 IsNonStatic2 = Method2 && !Method2->isStatic();
3016 // C++0x [temp.func.order]p3:
3017 // [...] If only one of the function templates is a non-static
3018 // member, that function template is considered to have a new
3019 // first parameter inserted in its function parameter list. The
3020 // new parameter is of type "reference to cv A," where cv are
3021 // the cv-qualifiers of the function template (if any) and A is
3022 // the class of which the function template is a member.
3024 // C++98/03 doesn't have this provision, so instead we drop the
3025 // first argument of the free function or static member, which
3026 // seems to match existing practice.
3027 llvm::SmallVector<QualType, 4> Args1;
3028 unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
3029 IsNonStatic2 && !IsNonStatic1;
3030 if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3031 MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3032 Args1.insert(Args1.end(),
3033 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3035 llvm::SmallVector<QualType, 4> Args2;
3036 Skip2 = !S.getLangOptions().CPlusPlus0x &&
3037 IsNonStatic1 && !IsNonStatic2;
3038 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3039 MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3040 Args2.insert(Args2.end(),
3041 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3043 // C++ [temp.func.order]p5:
3044 // The presence of unused ellipsis and default arguments has no effect on
3045 // the partial ordering of function templates.
3046 if (Args1.size() > NumCallArguments)
3047 Args1.resize(NumCallArguments);
3048 if (Args2.size() > NumCallArguments)
3049 Args2.resize(NumCallArguments);
3050 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3051 Args1.data(), Args1.size(), Info, Deduced,
3052 TDF_None, /*PartialOrdering=*/true,
3053 RefParamComparisons))
3054 return false;
3056 break;
3059 case TPOC_Conversion:
3060 // - In the context of a call to a conversion operator, the return types
3061 // of the conversion function templates are used.
3062 if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(),
3063 Proto1->getResultType(), Info, Deduced,
3064 TDF_None, /*PartialOrdering=*/true,
3065 RefParamComparisons))
3066 return false;
3067 break;
3069 case TPOC_Other:
3070 // - In other contexts (14.6.6.2) the function template's function type
3071 // is used.
3072 // FIXME: Don't we actually want to perform the adjustments on the parameter
3073 // types?
3074 if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(),
3075 FD1->getType(), Info, Deduced, TDF_None,
3076 /*PartialOrdering=*/true, RefParamComparisons))
3077 return false;
3078 break;
3081 // C++0x [temp.deduct.partial]p11:
3082 // In most cases, all template parameters must have values in order for
3083 // deduction to succeed, but for partial ordering purposes a template
3084 // parameter may remain without a value provided it is not used in the
3085 // types being used for partial ordering. [ Note: a template parameter used
3086 // in a non-deduced context is considered used. -end note]
3087 unsigned ArgIdx = 0, NumArgs = Deduced.size();
3088 for (; ArgIdx != NumArgs; ++ArgIdx)
3089 if (Deduced[ArgIdx].isNull())
3090 break;
3092 if (ArgIdx == NumArgs) {
3093 // All template arguments were deduced. FT1 is at least as specialized
3094 // as FT2.
3095 return true;
3098 // Figure out which template parameters were used.
3099 llvm::SmallVector<bool, 4> UsedParameters;
3100 UsedParameters.resize(TemplateParams->size());
3101 switch (TPOC) {
3102 case TPOC_Call: {
3103 unsigned NumParams = std::min(NumCallArguments,
3104 std::min(Proto1->getNumArgs(),
3105 Proto2->getNumArgs()));
3106 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3107 ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
3108 TemplateParams->getDepth(), UsedParameters);
3109 for (unsigned I = Skip2; I < NumParams; ++I)
3110 ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
3111 TemplateParams->getDepth(),
3112 UsedParameters);
3113 break;
3116 case TPOC_Conversion:
3117 ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
3118 TemplateParams->getDepth(),
3119 UsedParameters);
3120 break;
3122 case TPOC_Other:
3123 ::MarkUsedTemplateParameters(S, FD2->getType(), false,
3124 TemplateParams->getDepth(),
3125 UsedParameters);
3126 break;
3129 for (; ArgIdx != NumArgs; ++ArgIdx)
3130 // If this argument had no value deduced but was used in one of the types
3131 // used for partial ordering, then deduction fails.
3132 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3133 return false;
3135 return true;
3138 /// \brief Determine whether this a function template whose parameter-type-list
3139 /// ends with a function parameter pack.
3140 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3141 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3142 unsigned NumParams = Function->getNumParams();
3143 if (NumParams == 0)
3144 return false;
3146 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3147 if (!Last->isParameterPack())
3148 return false;
3150 // Make sure that no previous parameter is a parameter pack.
3151 while (--NumParams > 0) {
3152 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3153 return false;
3156 return true;
3159 /// \brief Returns the more specialized function template according
3160 /// to the rules of function template partial ordering (C++ [temp.func.order]).
3162 /// \param FT1 the first function template
3164 /// \param FT2 the second function template
3166 /// \param TPOC the context in which we are performing partial ordering of
3167 /// function templates.
3169 /// \param NumCallArguments The number of arguments in a call, used only
3170 /// when \c TPOC is \c TPOC_Call.
3172 /// \returns the more specialized function template. If neither
3173 /// template is more specialized, returns NULL.
3174 FunctionTemplateDecl *
3175 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3176 FunctionTemplateDecl *FT2,
3177 SourceLocation Loc,
3178 TemplatePartialOrderingContext TPOC,
3179 unsigned NumCallArguments) {
3180 llvm::SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3181 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3182 NumCallArguments, 0);
3183 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3184 NumCallArguments,
3185 &RefParamComparisons);
3187 if (Better1 != Better2) // We have a clear winner
3188 return Better1? FT1 : FT2;
3190 if (!Better1 && !Better2) // Neither is better than the other
3191 return 0;
3193 // C++0x [temp.deduct.partial]p10:
3194 // If for each type being considered a given template is at least as
3195 // specialized for all types and more specialized for some set of types and
3196 // the other template is not more specialized for any types or is not at
3197 // least as specialized for any types, then the given template is more
3198 // specialized than the other template. Otherwise, neither template is more
3199 // specialized than the other.
3200 Better1 = false;
3201 Better2 = false;
3202 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3203 // C++0x [temp.deduct.partial]p9:
3204 // If, for a given type, deduction succeeds in both directions (i.e., the
3205 // types are identical after the transformations above) and both P and A
3206 // were reference types (before being replaced with the type referred to
3207 // above):
3209 // -- if the type from the argument template was an lvalue reference
3210 // and the type from the parameter template was not, the argument
3211 // type is considered to be more specialized than the other;
3212 // otherwise,
3213 if (!RefParamComparisons[I].ArgIsRvalueRef &&
3214 RefParamComparisons[I].ParamIsRvalueRef) {
3215 Better2 = true;
3216 if (Better1)
3217 return 0;
3218 continue;
3219 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3220 RefParamComparisons[I].ArgIsRvalueRef) {
3221 Better1 = true;
3222 if (Better2)
3223 return 0;
3224 continue;
3227 // -- if the type from the argument template is more cv-qualified than
3228 // the type from the parameter template (as described above), the
3229 // argument type is considered to be more specialized than the
3230 // other; otherwise,
3231 switch (RefParamComparisons[I].Qualifiers) {
3232 case NeitherMoreQualified:
3233 break;
3235 case ParamMoreQualified:
3236 Better1 = true;
3237 if (Better2)
3238 return 0;
3239 continue;
3241 case ArgMoreQualified:
3242 Better2 = true;
3243 if (Better1)
3244 return 0;
3245 continue;
3248 // -- neither type is more specialized than the other.
3251 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3252 if (Better1)
3253 return FT1;
3254 else if (Better2)
3255 return FT2;
3257 // FIXME: This mimics what GCC implements, but doesn't match up with the
3258 // proposed resolution for core issue 692. This area needs to be sorted out,
3259 // but for now we attempt to maintain compatibility.
3260 bool Variadic1 = isVariadicFunctionTemplate(FT1);
3261 bool Variadic2 = isVariadicFunctionTemplate(FT2);
3262 if (Variadic1 != Variadic2)
3263 return Variadic1? FT2 : FT1;
3265 return 0;
3268 /// \brief Determine if the two templates are equivalent.
3269 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3270 if (T1 == T2)
3271 return true;
3273 if (!T1 || !T2)
3274 return false;
3276 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3279 /// \brief Retrieve the most specialized of the given function template
3280 /// specializations.
3282 /// \param SpecBegin the start iterator of the function template
3283 /// specializations that we will be comparing.
3285 /// \param SpecEnd the end iterator of the function template
3286 /// specializations, paired with \p SpecBegin.
3288 /// \param TPOC the partial ordering context to use to compare the function
3289 /// template specializations.
3291 /// \param NumCallArguments The number of arguments in a call, used only
3292 /// when \c TPOC is \c TPOC_Call.
3294 /// \param Loc the location where the ambiguity or no-specializations
3295 /// diagnostic should occur.
3297 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
3298 /// no matching candidates.
3300 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3301 /// occurs.
3303 /// \param CandidateDiag partial diagnostic used for each function template
3304 /// specialization that is a candidate in the ambiguous ordering. One parameter
3305 /// in this diagnostic should be unbound, which will correspond to the string
3306 /// describing the template arguments for the function template specialization.
3308 /// \param Index if non-NULL and the result of this function is non-nULL,
3309 /// receives the index corresponding to the resulting function template
3310 /// specialization.
3312 /// \returns the most specialized function template specialization, if
3313 /// found. Otherwise, returns SpecEnd.
3315 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3316 /// template argument deduction.
3317 UnresolvedSetIterator
3318 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3319 UnresolvedSetIterator SpecEnd,
3320 TemplatePartialOrderingContext TPOC,
3321 unsigned NumCallArguments,
3322 SourceLocation Loc,
3323 const PartialDiagnostic &NoneDiag,
3324 const PartialDiagnostic &AmbigDiag,
3325 const PartialDiagnostic &CandidateDiag) {
3326 if (SpecBegin == SpecEnd) {
3327 Diag(Loc, NoneDiag);
3328 return SpecEnd;
3331 if (SpecBegin + 1 == SpecEnd)
3332 return SpecBegin;
3334 // Find the function template that is better than all of the templates it
3335 // has been compared to.
3336 UnresolvedSetIterator Best = SpecBegin;
3337 FunctionTemplateDecl *BestTemplate
3338 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3339 assert(BestTemplate && "Not a function template specialization?");
3340 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3341 FunctionTemplateDecl *Challenger
3342 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3343 assert(Challenger && "Not a function template specialization?");
3344 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3345 Loc, TPOC, NumCallArguments),
3346 Challenger)) {
3347 Best = I;
3348 BestTemplate = Challenger;
3352 // Make sure that the "best" function template is more specialized than all
3353 // of the others.
3354 bool Ambiguous = false;
3355 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3356 FunctionTemplateDecl *Challenger
3357 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3358 if (I != Best &&
3359 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3360 Loc, TPOC, NumCallArguments),
3361 BestTemplate)) {
3362 Ambiguous = true;
3363 break;
3367 if (!Ambiguous) {
3368 // We found an answer. Return it.
3369 return Best;
3372 // Diagnose the ambiguity.
3373 Diag(Loc, AmbigDiag);
3375 // FIXME: Can we order the candidates in some sane way?
3376 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
3377 Diag((*I)->getLocation(), CandidateDiag)
3378 << getTemplateArgumentBindingsText(
3379 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
3380 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
3382 return SpecEnd;
3385 /// \brief Returns the more specialized class template partial specialization
3386 /// according to the rules of partial ordering of class template partial
3387 /// specializations (C++ [temp.class.order]).
3389 /// \param PS1 the first class template partial specialization
3391 /// \param PS2 the second class template partial specialization
3393 /// \returns the more specialized class template partial specialization. If
3394 /// neither partial specialization is more specialized, returns NULL.
3395 ClassTemplatePartialSpecializationDecl *
3396 Sema::getMoreSpecializedPartialSpecialization(
3397 ClassTemplatePartialSpecializationDecl *PS1,
3398 ClassTemplatePartialSpecializationDecl *PS2,
3399 SourceLocation Loc) {
3400 // C++ [temp.class.order]p1:
3401 // For two class template partial specializations, the first is at least as
3402 // specialized as the second if, given the following rewrite to two
3403 // function templates, the first function template is at least as
3404 // specialized as the second according to the ordering rules for function
3405 // templates (14.6.6.2):
3406 // - the first function template has the same template parameters as the
3407 // first partial specialization and has a single function parameter
3408 // whose type is a class template specialization with the template
3409 // arguments of the first partial specialization, and
3410 // - the second function template has the same template parameters as the
3411 // second partial specialization and has a single function parameter
3412 // whose type is a class template specialization with the template
3413 // arguments of the second partial specialization.
3415 // Rather than synthesize function templates, we merely perform the
3416 // equivalent partial ordering by performing deduction directly on
3417 // the template arguments of the class template partial
3418 // specializations. This computation is slightly simpler than the
3419 // general problem of function template partial ordering, because
3420 // class template partial specializations are more constrained. We
3421 // know that every template parameter is deducible from the class
3422 // template partial specialization's template arguments, for
3423 // example.
3424 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3425 TemplateDeductionInfo Info(Context, Loc);
3427 QualType PT1 = PS1->getInjectedSpecializationType();
3428 QualType PT2 = PS2->getInjectedSpecializationType();
3430 // Determine whether PS1 is at least as specialized as PS2
3431 Deduced.resize(PS2->getTemplateParameters()->size());
3432 bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(),
3433 PT2, PT1, Info, Deduced, TDF_None,
3434 /*PartialOrdering=*/true,
3435 /*RefParamComparisons=*/0);
3436 if (Better1) {
3437 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
3438 Deduced.data(), Deduced.size(), Info);
3439 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
3440 PS1->getTemplateArgs(),
3441 Deduced, Info);
3444 // Determine whether PS2 is at least as specialized as PS1
3445 Deduced.clear();
3446 Deduced.resize(PS1->getTemplateParameters()->size());
3447 bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(),
3448 PT1, PT2, Info, Deduced, TDF_None,
3449 /*PartialOrdering=*/true,
3450 /*RefParamComparisons=*/0);
3451 if (Better2) {
3452 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
3453 Deduced.data(), Deduced.size(), Info);
3454 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
3455 PS2->getTemplateArgs(),
3456 Deduced, Info);
3459 if (Better1 == Better2)
3460 return 0;
3462 return Better1? PS1 : PS2;
3465 static void
3466 MarkUsedTemplateParameters(Sema &SemaRef,
3467 const TemplateArgument &TemplateArg,
3468 bool OnlyDeduced,
3469 unsigned Depth,
3470 llvm::SmallVectorImpl<bool> &Used);
3472 /// \brief Mark the template parameters that are used by the given
3473 /// expression.
3474 static void
3475 MarkUsedTemplateParameters(Sema &SemaRef,
3476 const Expr *E,
3477 bool OnlyDeduced,
3478 unsigned Depth,
3479 llvm::SmallVectorImpl<bool> &Used) {
3480 // We can deduce from a pack expansion.
3481 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
3482 E = Expansion->getPattern();
3484 // Skip through any implicit casts we added while type-checking.
3485 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3486 E = ICE->getSubExpr();
3488 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
3489 // find other occurrences of template parameters.
3490 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3491 if (!DRE)
3492 return;
3494 const NonTypeTemplateParmDecl *NTTP
3495 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3496 if (!NTTP)
3497 return;
3499 if (NTTP->getDepth() == Depth)
3500 Used[NTTP->getIndex()] = true;
3503 /// \brief Mark the template parameters that are used by the given
3504 /// nested name specifier.
3505 static void
3506 MarkUsedTemplateParameters(Sema &SemaRef,
3507 NestedNameSpecifier *NNS,
3508 bool OnlyDeduced,
3509 unsigned Depth,
3510 llvm::SmallVectorImpl<bool> &Used) {
3511 if (!NNS)
3512 return;
3514 MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
3515 Used);
3516 MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
3517 OnlyDeduced, Depth, Used);
3520 /// \brief Mark the template parameters that are used by the given
3521 /// template name.
3522 static void
3523 MarkUsedTemplateParameters(Sema &SemaRef,
3524 TemplateName Name,
3525 bool OnlyDeduced,
3526 unsigned Depth,
3527 llvm::SmallVectorImpl<bool> &Used) {
3528 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3529 if (TemplateTemplateParmDecl *TTP
3530 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
3531 if (TTP->getDepth() == Depth)
3532 Used[TTP->getIndex()] = true;
3534 return;
3537 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
3538 MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
3539 Depth, Used);
3540 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
3541 MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
3542 Depth, Used);
3545 /// \brief Mark the template parameters that are used by the given
3546 /// type.
3547 static void
3548 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
3549 bool OnlyDeduced,
3550 unsigned Depth,
3551 llvm::SmallVectorImpl<bool> &Used) {
3552 if (T.isNull())
3553 return;
3555 // Non-dependent types have nothing deducible
3556 if (!T->isDependentType())
3557 return;
3559 T = SemaRef.Context.getCanonicalType(T);
3560 switch (T->getTypeClass()) {
3561 case Type::Pointer:
3562 MarkUsedTemplateParameters(SemaRef,
3563 cast<PointerType>(T)->getPointeeType(),
3564 OnlyDeduced,
3565 Depth,
3566 Used);
3567 break;
3569 case Type::BlockPointer:
3570 MarkUsedTemplateParameters(SemaRef,
3571 cast<BlockPointerType>(T)->getPointeeType(),
3572 OnlyDeduced,
3573 Depth,
3574 Used);
3575 break;
3577 case Type::LValueReference:
3578 case Type::RValueReference:
3579 MarkUsedTemplateParameters(SemaRef,
3580 cast<ReferenceType>(T)->getPointeeType(),
3581 OnlyDeduced,
3582 Depth,
3583 Used);
3584 break;
3586 case Type::MemberPointer: {
3587 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
3588 MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
3589 Depth, Used);
3590 MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
3591 OnlyDeduced, Depth, Used);
3592 break;
3595 case Type::DependentSizedArray:
3596 MarkUsedTemplateParameters(SemaRef,
3597 cast<DependentSizedArrayType>(T)->getSizeExpr(),
3598 OnlyDeduced, Depth, Used);
3599 // Fall through to check the element type
3601 case Type::ConstantArray:
3602 case Type::IncompleteArray:
3603 MarkUsedTemplateParameters(SemaRef,
3604 cast<ArrayType>(T)->getElementType(),
3605 OnlyDeduced, Depth, Used);
3606 break;
3608 case Type::Vector:
3609 case Type::ExtVector:
3610 MarkUsedTemplateParameters(SemaRef,
3611 cast<VectorType>(T)->getElementType(),
3612 OnlyDeduced, Depth, Used);
3613 break;
3615 case Type::DependentSizedExtVector: {
3616 const DependentSizedExtVectorType *VecType
3617 = cast<DependentSizedExtVectorType>(T);
3618 MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
3619 Depth, Used);
3620 MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
3621 Depth, Used);
3622 break;
3625 case Type::FunctionProto: {
3626 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3627 MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
3628 Depth, Used);
3629 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
3630 MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
3631 Depth, Used);
3632 break;
3635 case Type::TemplateTypeParm: {
3636 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
3637 if (TTP->getDepth() == Depth)
3638 Used[TTP->getIndex()] = true;
3639 break;
3642 case Type::SubstTemplateTypeParmPack: {
3643 const SubstTemplateTypeParmPackType *Subst
3644 = cast<SubstTemplateTypeParmPackType>(T);
3645 MarkUsedTemplateParameters(SemaRef,
3646 QualType(Subst->getReplacedParameter(), 0),
3647 OnlyDeduced, Depth, Used);
3648 MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(),
3649 OnlyDeduced, Depth, Used);
3650 break;
3653 case Type::InjectedClassName:
3654 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
3655 // fall through
3657 case Type::TemplateSpecialization: {
3658 const TemplateSpecializationType *Spec
3659 = cast<TemplateSpecializationType>(T);
3660 MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
3661 Depth, Used);
3663 // C++0x [temp.deduct.type]p9:
3664 // If the template argument list of P contains a pack expansion that is not
3665 // the last template argument, the entire template argument list is a
3666 // non-deduced context.
3667 if (OnlyDeduced &&
3668 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3669 break;
3671 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3672 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3673 Used);
3674 break;
3677 case Type::Complex:
3678 if (!OnlyDeduced)
3679 MarkUsedTemplateParameters(SemaRef,
3680 cast<ComplexType>(T)->getElementType(),
3681 OnlyDeduced, Depth, Used);
3682 break;
3684 case Type::DependentName:
3685 if (!OnlyDeduced)
3686 MarkUsedTemplateParameters(SemaRef,
3687 cast<DependentNameType>(T)->getQualifier(),
3688 OnlyDeduced, Depth, Used);
3689 break;
3691 case Type::DependentTemplateSpecialization: {
3692 const DependentTemplateSpecializationType *Spec
3693 = cast<DependentTemplateSpecializationType>(T);
3694 if (!OnlyDeduced)
3695 MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
3696 OnlyDeduced, Depth, Used);
3698 // C++0x [temp.deduct.type]p9:
3699 // If the template argument list of P contains a pack expansion that is not
3700 // the last template argument, the entire template argument list is a
3701 // non-deduced context.
3702 if (OnlyDeduced &&
3703 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3704 break;
3706 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3707 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3708 Used);
3709 break;
3712 case Type::TypeOf:
3713 if (!OnlyDeduced)
3714 MarkUsedTemplateParameters(SemaRef,
3715 cast<TypeOfType>(T)->getUnderlyingType(),
3716 OnlyDeduced, Depth, Used);
3717 break;
3719 case Type::TypeOfExpr:
3720 if (!OnlyDeduced)
3721 MarkUsedTemplateParameters(SemaRef,
3722 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
3723 OnlyDeduced, Depth, Used);
3724 break;
3726 case Type::Decltype:
3727 if (!OnlyDeduced)
3728 MarkUsedTemplateParameters(SemaRef,
3729 cast<DecltypeType>(T)->getUnderlyingExpr(),
3730 OnlyDeduced, Depth, Used);
3731 break;
3733 case Type::PackExpansion:
3734 MarkUsedTemplateParameters(SemaRef,
3735 cast<PackExpansionType>(T)->getPattern(),
3736 OnlyDeduced, Depth, Used);
3737 break;
3739 // None of these types have any template parameters in them.
3740 case Type::Builtin:
3741 case Type::VariableArray:
3742 case Type::FunctionNoProto:
3743 case Type::Record:
3744 case Type::Enum:
3745 case Type::ObjCInterface:
3746 case Type::ObjCObject:
3747 case Type::ObjCObjectPointer:
3748 case Type::UnresolvedUsing:
3749 #define TYPE(Class, Base)
3750 #define ABSTRACT_TYPE(Class, Base)
3751 #define DEPENDENT_TYPE(Class, Base)
3752 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3753 #include "clang/AST/TypeNodes.def"
3754 break;
3758 /// \brief Mark the template parameters that are used by this
3759 /// template argument.
3760 static void
3761 MarkUsedTemplateParameters(Sema &SemaRef,
3762 const TemplateArgument &TemplateArg,
3763 bool OnlyDeduced,
3764 unsigned Depth,
3765 llvm::SmallVectorImpl<bool> &Used) {
3766 switch (TemplateArg.getKind()) {
3767 case TemplateArgument::Null:
3768 case TemplateArgument::Integral:
3769 case TemplateArgument::Declaration:
3770 break;
3772 case TemplateArgument::Type:
3773 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
3774 Depth, Used);
3775 break;
3777 case TemplateArgument::Template:
3778 case TemplateArgument::TemplateExpansion:
3779 MarkUsedTemplateParameters(SemaRef,
3780 TemplateArg.getAsTemplateOrTemplatePattern(),
3781 OnlyDeduced, Depth, Used);
3782 break;
3784 case TemplateArgument::Expression:
3785 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
3786 Depth, Used);
3787 break;
3789 case TemplateArgument::Pack:
3790 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
3791 PEnd = TemplateArg.pack_end();
3792 P != PEnd; ++P)
3793 MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
3794 break;
3798 /// \brief Mark the template parameters can be deduced by the given
3799 /// template argument list.
3801 /// \param TemplateArgs the template argument list from which template
3802 /// parameters will be deduced.
3804 /// \param Deduced a bit vector whose elements will be set to \c true
3805 /// to indicate when the corresponding template parameter will be
3806 /// deduced.
3807 void
3808 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
3809 bool OnlyDeduced, unsigned Depth,
3810 llvm::SmallVectorImpl<bool> &Used) {
3811 // C++0x [temp.deduct.type]p9:
3812 // If the template argument list of P contains a pack expansion that is not
3813 // the last template argument, the entire template argument list is a
3814 // non-deduced context.
3815 if (OnlyDeduced &&
3816 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
3817 return;
3819 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3820 ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
3821 Depth, Used);
3824 /// \brief Marks all of the template parameters that will be deduced by a
3825 /// call to the given function template.
3826 void
3827 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
3828 llvm::SmallVectorImpl<bool> &Deduced) {
3829 TemplateParameterList *TemplateParams
3830 = FunctionTemplate->getTemplateParameters();
3831 Deduced.clear();
3832 Deduced.resize(TemplateParams->size());
3834 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3835 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3836 ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
3837 true, TemplateParams->getDepth(), Deduced);