rename test
[clang.git] / lib / Sema / SemaLookup.cpp
blobb7740bf5c0828f97404509d27ef863adf09a8bb1
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/DeclSpec.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/Sema/TemplateDeduction.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CXXInheritance.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/LangOptions.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <limits>
37 #include <list>
38 #include <set>
39 #include <vector>
40 #include <iterator>
41 #include <utility>
42 #include <algorithm>
44 using namespace clang;
45 using namespace sema;
47 namespace {
48 class UnqualUsingEntry {
49 const DeclContext *Nominated;
50 const DeclContext *CommonAncestor;
52 public:
53 UnqualUsingEntry(const DeclContext *Nominated,
54 const DeclContext *CommonAncestor)
55 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
58 const DeclContext *getCommonAncestor() const {
59 return CommonAncestor;
62 const DeclContext *getNominatedNamespace() const {
63 return Nominated;
66 // Sort by the pointer value of the common ancestor.
67 struct Comparator {
68 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
69 return L.getCommonAncestor() < R.getCommonAncestor();
72 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
73 return E.getCommonAncestor() < DC;
76 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
77 return DC < E.getCommonAncestor();
82 /// A collection of using directives, as used by C++ unqualified
83 /// lookup.
84 class UnqualUsingDirectiveSet {
85 typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
87 ListTy list;
88 llvm::SmallPtrSet<DeclContext*, 8> visited;
90 public:
91 UnqualUsingDirectiveSet() {}
93 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
94 // C++ [namespace.udir]p1:
95 // During unqualified name lookup, the names appear as if they
96 // were declared in the nearest enclosing namespace which contains
97 // both the using-directive and the nominated namespace.
98 DeclContext *InnermostFileDC
99 = static_cast<DeclContext*>(InnermostFileScope->getEntity());
100 assert(InnermostFileDC && InnermostFileDC->isFileContext());
102 for (; S; S = S->getParent()) {
103 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
104 DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
105 visit(Ctx, EffectiveDC);
106 } else {
107 Scope::udir_iterator I = S->using_directives_begin(),
108 End = S->using_directives_end();
110 for (; I != End; ++I)
111 visit(*I, InnermostFileDC);
116 // Visits a context and collect all of its using directives
117 // recursively. Treats all using directives as if they were
118 // declared in the context.
120 // A given context is only every visited once, so it is important
121 // that contexts be visited from the inside out in order to get
122 // the effective DCs right.
123 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
124 if (!visited.insert(DC))
125 return;
127 addUsingDirectives(DC, EffectiveDC);
130 // Visits a using directive and collects all of its using
131 // directives recursively. Treats all using directives as if they
132 // were declared in the effective DC.
133 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
134 DeclContext *NS = UD->getNominatedNamespace();
135 if (!visited.insert(NS))
136 return;
138 addUsingDirective(UD, EffectiveDC);
139 addUsingDirectives(NS, EffectiveDC);
142 // Adds all the using directives in a context (and those nominated
143 // by its using directives, transitively) as if they appeared in
144 // the given effective context.
145 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
146 llvm::SmallVector<DeclContext*,4> queue;
147 while (true) {
148 DeclContext::udir_iterator I, End;
149 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
150 UsingDirectiveDecl *UD = *I;
151 DeclContext *NS = UD->getNominatedNamespace();
152 if (visited.insert(NS)) {
153 addUsingDirective(UD, EffectiveDC);
154 queue.push_back(NS);
158 if (queue.empty())
159 return;
161 DC = queue.back();
162 queue.pop_back();
166 // Add a using directive as if it had been declared in the given
167 // context. This helps implement C++ [namespace.udir]p3:
168 // The using-directive is transitive: if a scope contains a
169 // using-directive that nominates a second namespace that itself
170 // contains using-directives, the effect is as if the
171 // using-directives from the second namespace also appeared in
172 // the first.
173 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
174 // Find the common ancestor between the effective context and
175 // the nominated namespace.
176 DeclContext *Common = UD->getNominatedNamespace();
177 while (!Common->Encloses(EffectiveDC))
178 Common = Common->getParent();
179 Common = Common->getPrimaryContext();
181 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
184 void done() {
185 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
188 typedef ListTy::const_iterator const_iterator;
190 const_iterator begin() const { return list.begin(); }
191 const_iterator end() const { return list.end(); }
193 std::pair<const_iterator,const_iterator>
194 getNamespacesFor(DeclContext *DC) const {
195 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
196 UnqualUsingEntry::Comparator());
201 // Retrieve the set of identifier namespaces that correspond to a
202 // specific kind of name lookup.
203 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
204 bool CPlusPlus,
205 bool Redeclaration) {
206 unsigned IDNS = 0;
207 switch (NameKind) {
208 case Sema::LookupOrdinaryName:
209 case Sema::LookupRedeclarationWithLinkage:
210 IDNS = Decl::IDNS_Ordinary;
211 if (CPlusPlus) {
212 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
213 if (Redeclaration)
214 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
216 break;
218 case Sema::LookupOperatorName:
219 // Operator lookup is its own crazy thing; it is not the same
220 // as (e.g.) looking up an operator name for redeclaration.
221 assert(!Redeclaration && "cannot do redeclaration operator lookup");
222 IDNS = Decl::IDNS_NonMemberOperator;
223 break;
225 case Sema::LookupTagName:
226 if (CPlusPlus) {
227 IDNS = Decl::IDNS_Type;
229 // When looking for a redeclaration of a tag name, we add:
230 // 1) TagFriend to find undeclared friend decls
231 // 2) Namespace because they can't "overload" with tag decls.
232 // 3) Tag because it includes class templates, which can't
233 // "overload" with tag decls.
234 if (Redeclaration)
235 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
236 } else {
237 IDNS = Decl::IDNS_Tag;
239 break;
240 case Sema::LookupLabel:
241 IDNS = Decl::IDNS_Label;
242 break;
244 case Sema::LookupMemberName:
245 IDNS = Decl::IDNS_Member;
246 if (CPlusPlus)
247 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
248 break;
250 case Sema::LookupNestedNameSpecifierName:
251 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
252 break;
254 case Sema::LookupNamespaceName:
255 IDNS = Decl::IDNS_Namespace;
256 break;
258 case Sema::LookupUsingDeclName:
259 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
260 | Decl::IDNS_Member | Decl::IDNS_Using;
261 break;
263 case Sema::LookupObjCProtocolName:
264 IDNS = Decl::IDNS_ObjCProtocol;
265 break;
267 case Sema::LookupAnyName:
268 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
269 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
270 | Decl::IDNS_Type;
271 break;
273 return IDNS;
276 void LookupResult::configure() {
277 IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus,
278 isForRedeclaration());
280 // If we're looking for one of the allocation or deallocation
281 // operators, make sure that the implicitly-declared new and delete
282 // operators can be found.
283 if (!isForRedeclaration()) {
284 switch (NameInfo.getName().getCXXOverloadedOperator()) {
285 case OO_New:
286 case OO_Delete:
287 case OO_Array_New:
288 case OO_Array_Delete:
289 SemaRef.DeclareGlobalNewDelete();
290 break;
292 default:
293 break;
298 void LookupResult::sanity() const {
299 assert(ResultKind != NotFound || Decls.size() == 0);
300 assert(ResultKind != Found || Decls.size() == 1);
301 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
302 (Decls.size() == 1 &&
303 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
304 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
305 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
306 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
307 Ambiguity == AmbiguousBaseSubobjectTypes)));
308 assert((Paths != NULL) == (ResultKind == Ambiguous &&
309 (Ambiguity == AmbiguousBaseSubobjectTypes ||
310 Ambiguity == AmbiguousBaseSubobjects)));
313 // Necessary because CXXBasePaths is not complete in Sema.h
314 void LookupResult::deletePaths(CXXBasePaths *Paths) {
315 delete Paths;
318 /// Resolves the result kind of this lookup.
319 void LookupResult::resolveKind() {
320 unsigned N = Decls.size();
322 // Fast case: no possible ambiguity.
323 if (N == 0) {
324 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
325 return;
328 // If there's a single decl, we need to examine it to decide what
329 // kind of lookup this is.
330 if (N == 1) {
331 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
332 if (isa<FunctionTemplateDecl>(D))
333 ResultKind = FoundOverloaded;
334 else if (isa<UnresolvedUsingValueDecl>(D))
335 ResultKind = FoundUnresolvedValue;
336 return;
339 // Don't do any extra resolution if we've already resolved as ambiguous.
340 if (ResultKind == Ambiguous) return;
342 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
343 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
345 bool Ambiguous = false;
346 bool HasTag = false, HasFunction = false, HasNonFunction = false;
347 bool HasFunctionTemplate = false, HasUnresolved = false;
349 unsigned UniqueTagIndex = 0;
351 unsigned I = 0;
352 while (I < N) {
353 NamedDecl *D = Decls[I]->getUnderlyingDecl();
354 D = cast<NamedDecl>(D->getCanonicalDecl());
356 // Redeclarations of types via typedef can occur both within a scope
357 // and, through using declarations and directives, across scopes. There is
358 // no ambiguity if they all refer to the same type, so unique based on the
359 // canonical type.
360 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
361 if (!TD->getDeclContext()->isRecord()) {
362 QualType T = SemaRef.Context.getTypeDeclType(TD);
363 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
364 // The type is not unique; pull something off the back and continue
365 // at this index.
366 Decls[I] = Decls[--N];
367 continue;
372 if (!Unique.insert(D)) {
373 // If it's not unique, pull something off the back (and
374 // continue at this index).
375 Decls[I] = Decls[--N];
376 continue;
379 // Otherwise, do some decl type analysis and then continue.
381 if (isa<UnresolvedUsingValueDecl>(D)) {
382 HasUnresolved = true;
383 } else if (isa<TagDecl>(D)) {
384 if (HasTag)
385 Ambiguous = true;
386 UniqueTagIndex = I;
387 HasTag = true;
388 } else if (isa<FunctionTemplateDecl>(D)) {
389 HasFunction = true;
390 HasFunctionTemplate = true;
391 } else if (isa<FunctionDecl>(D)) {
392 HasFunction = true;
393 } else {
394 if (HasNonFunction)
395 Ambiguous = true;
396 HasNonFunction = true;
398 I++;
401 // C++ [basic.scope.hiding]p2:
402 // A class name or enumeration name can be hidden by the name of
403 // an object, function, or enumerator declared in the same
404 // scope. If a class or enumeration name and an object, function,
405 // or enumerator are declared in the same scope (in any order)
406 // with the same name, the class or enumeration name is hidden
407 // wherever the object, function, or enumerator name is visible.
408 // But it's still an error if there are distinct tag types found,
409 // even if they're not visible. (ref?)
410 if (HideTags && HasTag && !Ambiguous &&
411 (HasFunction || HasNonFunction || HasUnresolved)) {
412 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
413 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
414 Decls[UniqueTagIndex] = Decls[--N];
415 else
416 Ambiguous = true;
419 Decls.set_size(N);
421 if (HasNonFunction && (HasFunction || HasUnresolved))
422 Ambiguous = true;
424 if (Ambiguous)
425 setAmbiguous(LookupResult::AmbiguousReference);
426 else if (HasUnresolved)
427 ResultKind = LookupResult::FoundUnresolvedValue;
428 else if (N > 1 || HasFunctionTemplate)
429 ResultKind = LookupResult::FoundOverloaded;
430 else
431 ResultKind = LookupResult::Found;
434 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
435 CXXBasePaths::const_paths_iterator I, E;
436 DeclContext::lookup_iterator DI, DE;
437 for (I = P.begin(), E = P.end(); I != E; ++I)
438 for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
439 addDecl(*DI);
442 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
443 Paths = new CXXBasePaths;
444 Paths->swap(P);
445 addDeclsFromBasePaths(*Paths);
446 resolveKind();
447 setAmbiguous(AmbiguousBaseSubobjects);
450 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
451 Paths = new CXXBasePaths;
452 Paths->swap(P);
453 addDeclsFromBasePaths(*Paths);
454 resolveKind();
455 setAmbiguous(AmbiguousBaseSubobjectTypes);
458 void LookupResult::print(llvm::raw_ostream &Out) {
459 Out << Decls.size() << " result(s)";
460 if (isAmbiguous()) Out << ", ambiguous";
461 if (Paths) Out << ", base paths present";
463 for (iterator I = begin(), E = end(); I != E; ++I) {
464 Out << "\n";
465 (*I)->print(Out, 2);
469 /// \brief Lookup a builtin function, when name lookup would otherwise
470 /// fail.
471 static bool LookupBuiltin(Sema &S, LookupResult &R) {
472 Sema::LookupNameKind NameKind = R.getLookupKind();
474 // If we didn't find a use of this identifier, and if the identifier
475 // corresponds to a compiler builtin, create the decl object for the builtin
476 // now, injecting it into translation unit scope, and return it.
477 if (NameKind == Sema::LookupOrdinaryName ||
478 NameKind == Sema::LookupRedeclarationWithLinkage) {
479 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
480 if (II) {
481 // If this is a builtin on this (or all) targets, create the decl.
482 if (unsigned BuiltinID = II->getBuiltinID()) {
483 // In C++, we don't have any predefined library functions like
484 // 'malloc'. Instead, we'll just error.
485 if (S.getLangOptions().CPlusPlus &&
486 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
487 return false;
489 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
490 BuiltinID, S.TUScope,
491 R.isForRedeclaration(),
492 R.getNameLoc())) {
493 R.addDecl(D);
494 return true;
497 if (R.isForRedeclaration()) {
498 // If we're redeclaring this function anyway, forget that
499 // this was a builtin at all.
500 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
503 return false;
508 return false;
511 /// \brief Determine whether we can declare a special member function within
512 /// the class at this point.
513 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
514 const CXXRecordDecl *Class) {
515 // Don't do it if the class is invalid.
516 if (Class->isInvalidDecl())
517 return false;
519 // We need to have a definition for the class.
520 if (!Class->getDefinition() || Class->isDependentContext())
521 return false;
523 // We can't be in the middle of defining the class.
524 if (const RecordType *RecordTy
525 = Context.getTypeDeclType(Class)->getAs<RecordType>())
526 return !RecordTy->isBeingDefined();
528 return false;
531 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
532 if (!CanDeclareSpecialMemberFunction(Context, Class))
533 return;
535 // If the default constructor has not yet been declared, do so now.
536 if (!Class->hasDeclaredDefaultConstructor())
537 DeclareImplicitDefaultConstructor(Class);
539 // If the copy constructor has not yet been declared, do so now.
540 if (!Class->hasDeclaredCopyConstructor())
541 DeclareImplicitCopyConstructor(Class);
543 // If the copy assignment operator has not yet been declared, do so now.
544 if (!Class->hasDeclaredCopyAssignment())
545 DeclareImplicitCopyAssignment(Class);
547 // If the destructor has not yet been declared, do so now.
548 if (!Class->hasDeclaredDestructor())
549 DeclareImplicitDestructor(Class);
552 /// \brief Determine whether this is the name of an implicitly-declared
553 /// special member function.
554 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
555 switch (Name.getNameKind()) {
556 case DeclarationName::CXXConstructorName:
557 case DeclarationName::CXXDestructorName:
558 return true;
560 case DeclarationName::CXXOperatorName:
561 return Name.getCXXOverloadedOperator() == OO_Equal;
563 default:
564 break;
567 return false;
570 /// \brief If there are any implicit member functions with the given name
571 /// that need to be declared in the given declaration context, do so.
572 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
573 DeclarationName Name,
574 const DeclContext *DC) {
575 if (!DC)
576 return;
578 switch (Name.getNameKind()) {
579 case DeclarationName::CXXConstructorName:
580 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
581 if (Record->getDefinition() &&
582 CanDeclareSpecialMemberFunction(S.Context, Record)) {
583 if (!Record->hasDeclaredDefaultConstructor())
584 S.DeclareImplicitDefaultConstructor(
585 const_cast<CXXRecordDecl *>(Record));
586 if (!Record->hasDeclaredCopyConstructor())
587 S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
589 break;
591 case DeclarationName::CXXDestructorName:
592 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
593 if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
594 CanDeclareSpecialMemberFunction(S.Context, Record))
595 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
596 break;
598 case DeclarationName::CXXOperatorName:
599 if (Name.getCXXOverloadedOperator() != OO_Equal)
600 break;
602 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
603 if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
604 CanDeclareSpecialMemberFunction(S.Context, Record))
605 S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
606 break;
608 default:
609 break;
613 // Adds all qualifying matches for a name within a decl context to the
614 // given lookup result. Returns true if any matches were found.
615 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
616 bool Found = false;
618 // Lazily declare C++ special member functions.
619 if (S.getLangOptions().CPlusPlus)
620 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
622 // Perform lookup into this declaration context.
623 DeclContext::lookup_const_iterator I, E;
624 for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
625 NamedDecl *D = *I;
626 if (R.isAcceptableDecl(D)) {
627 R.addDecl(D);
628 Found = true;
632 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
633 return true;
635 if (R.getLookupName().getNameKind()
636 != DeclarationName::CXXConversionFunctionName ||
637 R.getLookupName().getCXXNameType()->isDependentType() ||
638 !isa<CXXRecordDecl>(DC))
639 return Found;
641 // C++ [temp.mem]p6:
642 // A specialization of a conversion function template is not found by
643 // name lookup. Instead, any conversion function templates visible in the
644 // context of the use are considered. [...]
645 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
646 if (!Record->isDefinition())
647 return Found;
649 const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
650 for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
651 UEnd = Unresolved->end(); U != UEnd; ++U) {
652 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
653 if (!ConvTemplate)
654 continue;
656 // When we're performing lookup for the purposes of redeclaration, just
657 // add the conversion function template. When we deduce template
658 // arguments for specializations, we'll end up unifying the return
659 // type of the new declaration with the type of the function template.
660 if (R.isForRedeclaration()) {
661 R.addDecl(ConvTemplate);
662 Found = true;
663 continue;
666 // C++ [temp.mem]p6:
667 // [...] For each such operator, if argument deduction succeeds
668 // (14.9.2.3), the resulting specialization is used as if found by
669 // name lookup.
671 // When referencing a conversion function for any purpose other than
672 // a redeclaration (such that we'll be building an expression with the
673 // result), perform template argument deduction and place the
674 // specialization into the result set. We do this to avoid forcing all
675 // callers to perform special deduction for conversion functions.
676 TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
677 FunctionDecl *Specialization = 0;
679 const FunctionProtoType *ConvProto
680 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
681 assert(ConvProto && "Nonsensical conversion function template type");
683 // Compute the type of the function that we would expect the conversion
684 // function to have, if it were to match the name given.
685 // FIXME: Calling convention!
686 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
687 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
688 EPI.HasExceptionSpec = false;
689 EPI.HasAnyExceptionSpec = false;
690 EPI.NumExceptions = 0;
691 QualType ExpectedType
692 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
693 0, 0, EPI);
695 // Perform template argument deduction against the type that we would
696 // expect the function to have.
697 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
698 Specialization, Info)
699 == Sema::TDK_Success) {
700 R.addDecl(Specialization);
701 Found = true;
705 return Found;
708 // Performs C++ unqualified lookup into the given file context.
709 static bool
710 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
711 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
713 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
715 // Perform direct name lookup into the LookupCtx.
716 bool Found = LookupDirect(S, R, NS);
718 // Perform direct name lookup into the namespaces nominated by the
719 // using directives whose common ancestor is this namespace.
720 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
721 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
723 for (; UI != UEnd; ++UI)
724 if (LookupDirect(S, R, UI->getNominatedNamespace()))
725 Found = true;
727 R.resolveKind();
729 return Found;
732 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
733 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
734 return Ctx->isFileContext();
735 return false;
738 // Find the next outer declaration context from this scope. This
739 // routine actually returns the semantic outer context, which may
740 // differ from the lexical context (encoded directly in the Scope
741 // stack) when we are parsing a member of a class template. In this
742 // case, the second element of the pair will be true, to indicate that
743 // name lookup should continue searching in this semantic context when
744 // it leaves the current template parameter scope.
745 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
746 DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
747 DeclContext *Lexical = 0;
748 for (Scope *OuterS = S->getParent(); OuterS;
749 OuterS = OuterS->getParent()) {
750 if (OuterS->getEntity()) {
751 Lexical = static_cast<DeclContext *>(OuterS->getEntity());
752 break;
756 // C++ [temp.local]p8:
757 // In the definition of a member of a class template that appears
758 // outside of the namespace containing the class template
759 // definition, the name of a template-parameter hides the name of
760 // a member of this namespace.
762 // Example:
764 // namespace N {
765 // class C { };
767 // template<class T> class B {
768 // void f(T);
769 // };
770 // }
772 // template<class C> void N::B<C>::f(C) {
773 // C b; // C is the template parameter, not N::C
774 // }
776 // In this example, the lexical context we return is the
777 // TranslationUnit, while the semantic context is the namespace N.
778 if (!Lexical || !DC || !S->getParent() ||
779 !S->getParent()->isTemplateParamScope())
780 return std::make_pair(Lexical, false);
782 // Find the outermost template parameter scope.
783 // For the example, this is the scope for the template parameters of
784 // template<class C>.
785 Scope *OutermostTemplateScope = S->getParent();
786 while (OutermostTemplateScope->getParent() &&
787 OutermostTemplateScope->getParent()->isTemplateParamScope())
788 OutermostTemplateScope = OutermostTemplateScope->getParent();
790 // Find the namespace context in which the original scope occurs. In
791 // the example, this is namespace N.
792 DeclContext *Semantic = DC;
793 while (!Semantic->isFileContext())
794 Semantic = Semantic->getParent();
796 // Find the declaration context just outside of the template
797 // parameter scope. This is the context in which the template is
798 // being lexically declaration (a namespace context). In the
799 // example, this is the global scope.
800 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
801 Lexical->Encloses(Semantic))
802 return std::make_pair(Semantic, true);
804 return std::make_pair(Lexical, false);
807 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
808 assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
810 DeclarationName Name = R.getLookupName();
812 // If this is the name of an implicitly-declared special member function,
813 // go through the scope stack to implicitly declare
814 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
815 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
816 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
817 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
820 // Implicitly declare member functions with the name we're looking for, if in
821 // fact we are in a scope where it matters.
823 Scope *Initial = S;
824 IdentifierResolver::iterator
825 I = IdResolver.begin(Name),
826 IEnd = IdResolver.end();
828 // First we lookup local scope.
829 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
830 // ...During unqualified name lookup (3.4.1), the names appear as if
831 // they were declared in the nearest enclosing namespace which contains
832 // both the using-directive and the nominated namespace.
833 // [Note: in this context, "contains" means "contains directly or
834 // indirectly".
836 // For example:
837 // namespace A { int i; }
838 // void foo() {
839 // int i;
840 // {
841 // using namespace A;
842 // ++i; // finds local 'i', A::i appears at global scope
843 // }
844 // }
846 DeclContext *OutsideOfTemplateParamDC = 0;
847 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
848 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
850 // Check whether the IdResolver has anything in this scope.
851 bool Found = false;
852 for (; I != IEnd && S->isDeclScope(*I); ++I) {
853 if (R.isAcceptableDecl(*I)) {
854 Found = true;
855 R.addDecl(*I);
858 if (Found) {
859 R.resolveKind();
860 if (S->isClassScope())
861 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
862 R.setNamingClass(Record);
863 return true;
866 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
867 S->getParent() && !S->getParent()->isTemplateParamScope()) {
868 // We've just searched the last template parameter scope and
869 // found nothing, so look into the the contexts between the
870 // lexical and semantic declaration contexts returned by
871 // findOuterContext(). This implements the name lookup behavior
872 // of C++ [temp.local]p8.
873 Ctx = OutsideOfTemplateParamDC;
874 OutsideOfTemplateParamDC = 0;
877 if (Ctx) {
878 DeclContext *OuterCtx;
879 bool SearchAfterTemplateScope;
880 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
881 if (SearchAfterTemplateScope)
882 OutsideOfTemplateParamDC = OuterCtx;
884 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
885 // We do not directly look into transparent contexts, since
886 // those entities will be found in the nearest enclosing
887 // non-transparent context.
888 if (Ctx->isTransparentContext())
889 continue;
891 // We do not look directly into function or method contexts,
892 // since all of the local variables and parameters of the
893 // function/method are present within the Scope.
894 if (Ctx->isFunctionOrMethod()) {
895 // If we have an Objective-C instance method, look for ivars
896 // in the corresponding interface.
897 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
898 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
899 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
900 ObjCInterfaceDecl *ClassDeclared;
901 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
902 Name.getAsIdentifierInfo(),
903 ClassDeclared)) {
904 if (R.isAcceptableDecl(Ivar)) {
905 R.addDecl(Ivar);
906 R.resolveKind();
907 return true;
913 continue;
916 // Perform qualified name lookup into this context.
917 // FIXME: In some cases, we know that every name that could be found by
918 // this qualified name lookup will also be on the identifier chain. For
919 // example, inside a class without any base classes, we never need to
920 // perform qualified lookup because all of the members are on top of the
921 // identifier chain.
922 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
923 return true;
928 // Stop if we ran out of scopes.
929 // FIXME: This really, really shouldn't be happening.
930 if (!S) return false;
932 // If we are looking for members, no need to look into global/namespace scope.
933 if (R.getLookupKind() == LookupMemberName)
934 return false;
936 // Collect UsingDirectiveDecls in all scopes, and recursively all
937 // nominated namespaces by those using-directives.
939 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
940 // don't build it for each lookup!
942 UnqualUsingDirectiveSet UDirs;
943 UDirs.visitScopeChain(Initial, S);
944 UDirs.done();
946 // Lookup namespace scope, and global scope.
947 // Unqualified name lookup in C++ requires looking into scopes
948 // that aren't strictly lexical, and therefore we walk through the
949 // context as well as walking through the scopes.
951 for (; S; S = S->getParent()) {
952 // Check whether the IdResolver has anything in this scope.
953 bool Found = false;
954 for (; I != IEnd && S->isDeclScope(*I); ++I) {
955 if (R.isAcceptableDecl(*I)) {
956 // We found something. Look for anything else in our scope
957 // with this same name and in an acceptable identifier
958 // namespace, so that we can construct an overload set if we
959 // need to.
960 Found = true;
961 R.addDecl(*I);
965 if (Found && S->isTemplateParamScope()) {
966 R.resolveKind();
967 return true;
970 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
971 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
972 S->getParent() && !S->getParent()->isTemplateParamScope()) {
973 // We've just searched the last template parameter scope and
974 // found nothing, so look into the the contexts between the
975 // lexical and semantic declaration contexts returned by
976 // findOuterContext(). This implements the name lookup behavior
977 // of C++ [temp.local]p8.
978 Ctx = OutsideOfTemplateParamDC;
979 OutsideOfTemplateParamDC = 0;
982 if (Ctx) {
983 DeclContext *OuterCtx;
984 bool SearchAfterTemplateScope;
985 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
986 if (SearchAfterTemplateScope)
987 OutsideOfTemplateParamDC = OuterCtx;
989 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
990 // We do not directly look into transparent contexts, since
991 // those entities will be found in the nearest enclosing
992 // non-transparent context.
993 if (Ctx->isTransparentContext())
994 continue;
996 // If we have a context, and it's not a context stashed in the
997 // template parameter scope for an out-of-line definition, also
998 // look into that context.
999 if (!(Found && S && S->isTemplateParamScope())) {
1000 assert(Ctx->isFileContext() &&
1001 "We should have been looking only at file context here already.");
1003 // Look into context considering using-directives.
1004 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1005 Found = true;
1008 if (Found) {
1009 R.resolveKind();
1010 return true;
1013 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1014 return false;
1018 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1019 return false;
1022 return !R.empty();
1025 /// @brief Perform unqualified name lookup starting from a given
1026 /// scope.
1028 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1029 /// used to find names within the current scope. For example, 'x' in
1030 /// @code
1031 /// int x;
1032 /// int f() {
1033 /// return x; // unqualified name look finds 'x' in the global scope
1034 /// }
1035 /// @endcode
1037 /// Different lookup criteria can find different names. For example, a
1038 /// particular scope can have both a struct and a function of the same
1039 /// name, and each can be found by certain lookup criteria. For more
1040 /// information about lookup criteria, see the documentation for the
1041 /// class LookupCriteria.
1043 /// @param S The scope from which unqualified name lookup will
1044 /// begin. If the lookup criteria permits, name lookup may also search
1045 /// in the parent scopes.
1047 /// @param Name The name of the entity that we are searching for.
1049 /// @param Loc If provided, the source location where we're performing
1050 /// name lookup. At present, this is only used to produce diagnostics when
1051 /// C library functions (like "malloc") are implicitly declared.
1053 /// @returns The result of name lookup, which includes zero or more
1054 /// declarations and possibly additional information used to diagnose
1055 /// ambiguities.
1056 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1057 DeclarationName Name = R.getLookupName();
1058 if (!Name) return false;
1060 LookupNameKind NameKind = R.getLookupKind();
1062 if (!getLangOptions().CPlusPlus) {
1063 // Unqualified name lookup in C/Objective-C is purely lexical, so
1064 // search in the declarations attached to the name.
1065 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1066 // Find the nearest non-transparent declaration scope.
1067 while (!(S->getFlags() & Scope::DeclScope) ||
1068 (S->getEntity() &&
1069 static_cast<DeclContext *>(S->getEntity())
1070 ->isTransparentContext()))
1071 S = S->getParent();
1074 unsigned IDNS = R.getIdentifierNamespace();
1076 // Scan up the scope chain looking for a decl that matches this
1077 // identifier that is in the appropriate namespace. This search
1078 // should not take long, as shadowing of names is uncommon, and
1079 // deep shadowing is extremely uncommon.
1080 bool LeftStartingScope = false;
1082 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1083 IEnd = IdResolver.end();
1084 I != IEnd; ++I)
1085 if ((*I)->isInIdentifierNamespace(IDNS)) {
1086 if (NameKind == LookupRedeclarationWithLinkage) {
1087 // Determine whether this (or a previous) declaration is
1088 // out-of-scope.
1089 if (!LeftStartingScope && !S->isDeclScope(*I))
1090 LeftStartingScope = true;
1092 // If we found something outside of our starting scope that
1093 // does not have linkage, skip it.
1094 if (LeftStartingScope && !((*I)->hasLinkage()))
1095 continue;
1098 R.addDecl(*I);
1100 if ((*I)->getAttr<OverloadableAttr>()) {
1101 // If this declaration has the "overloadable" attribute, we
1102 // might have a set of overloaded functions.
1104 // Figure out what scope the identifier is in.
1105 while (!(S->getFlags() & Scope::DeclScope) ||
1106 !S->isDeclScope(*I))
1107 S = S->getParent();
1109 // Find the last declaration in this scope (with the same
1110 // name, naturally).
1111 IdentifierResolver::iterator LastI = I;
1112 for (++LastI; LastI != IEnd; ++LastI) {
1113 if (!S->isDeclScope(*LastI))
1114 break;
1115 R.addDecl(*LastI);
1119 R.resolveKind();
1121 return true;
1123 } else {
1124 // Perform C++ unqualified name lookup.
1125 if (CppLookupName(R, S))
1126 return true;
1129 // If we didn't find a use of this identifier, and if the identifier
1130 // corresponds to a compiler builtin, create the decl object for the builtin
1131 // now, injecting it into translation unit scope, and return it.
1132 if (AllowBuiltinCreation)
1133 return LookupBuiltin(*this, R);
1135 return false;
1138 /// @brief Perform qualified name lookup in the namespaces nominated by
1139 /// using directives by the given context.
1141 /// C++98 [namespace.qual]p2:
1142 /// Given X::m (where X is a user-declared namespace), or given ::m
1143 /// (where X is the global namespace), let S be the set of all
1144 /// declarations of m in X and in the transitive closure of all
1145 /// namespaces nominated by using-directives in X and its used
1146 /// namespaces, except that using-directives are ignored in any
1147 /// namespace, including X, directly containing one or more
1148 /// declarations of m. No namespace is searched more than once in
1149 /// the lookup of a name. If S is the empty set, the program is
1150 /// ill-formed. Otherwise, if S has exactly one member, or if the
1151 /// context of the reference is a using-declaration
1152 /// (namespace.udecl), S is the required set of declarations of
1153 /// m. Otherwise if the use of m is not one that allows a unique
1154 /// declaration to be chosen from S, the program is ill-formed.
1155 /// C++98 [namespace.qual]p5:
1156 /// During the lookup of a qualified namespace member name, if the
1157 /// lookup finds more than one declaration of the member, and if one
1158 /// declaration introduces a class name or enumeration name and the
1159 /// other declarations either introduce the same object, the same
1160 /// enumerator or a set of functions, the non-type name hides the
1161 /// class or enumeration name if and only if the declarations are
1162 /// from the same namespace; otherwise (the declarations are from
1163 /// different namespaces), the program is ill-formed.
1164 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1165 DeclContext *StartDC) {
1166 assert(StartDC->isFileContext() && "start context is not a file context");
1168 DeclContext::udir_iterator I = StartDC->using_directives_begin();
1169 DeclContext::udir_iterator E = StartDC->using_directives_end();
1171 if (I == E) return false;
1173 // We have at least added all these contexts to the queue.
1174 llvm::DenseSet<DeclContext*> Visited;
1175 Visited.insert(StartDC);
1177 // We have not yet looked into these namespaces, much less added
1178 // their "using-children" to the queue.
1179 llvm::SmallVector<NamespaceDecl*, 8> Queue;
1181 // We have already looked into the initial namespace; seed the queue
1182 // with its using-children.
1183 for (; I != E; ++I) {
1184 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1185 if (Visited.insert(ND).second)
1186 Queue.push_back(ND);
1189 // The easiest way to implement the restriction in [namespace.qual]p5
1190 // is to check whether any of the individual results found a tag
1191 // and, if so, to declare an ambiguity if the final result is not
1192 // a tag.
1193 bool FoundTag = false;
1194 bool FoundNonTag = false;
1196 LookupResult LocalR(LookupResult::Temporary, R);
1198 bool Found = false;
1199 while (!Queue.empty()) {
1200 NamespaceDecl *ND = Queue.back();
1201 Queue.pop_back();
1203 // We go through some convolutions here to avoid copying results
1204 // between LookupResults.
1205 bool UseLocal = !R.empty();
1206 LookupResult &DirectR = UseLocal ? LocalR : R;
1207 bool FoundDirect = LookupDirect(S, DirectR, ND);
1209 if (FoundDirect) {
1210 // First do any local hiding.
1211 DirectR.resolveKind();
1213 // If the local result is a tag, remember that.
1214 if (DirectR.isSingleTagDecl())
1215 FoundTag = true;
1216 else
1217 FoundNonTag = true;
1219 // Append the local results to the total results if necessary.
1220 if (UseLocal) {
1221 R.addAllDecls(LocalR);
1222 LocalR.clear();
1226 // If we find names in this namespace, ignore its using directives.
1227 if (FoundDirect) {
1228 Found = true;
1229 continue;
1232 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1233 NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1234 if (Visited.insert(Nom).second)
1235 Queue.push_back(Nom);
1239 if (Found) {
1240 if (FoundTag && FoundNonTag)
1241 R.setAmbiguousQualifiedTagHiding();
1242 else
1243 R.resolveKind();
1246 return Found;
1249 /// \brief Callback that looks for any member of a class with the given name.
1250 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1251 CXXBasePath &Path,
1252 void *Name) {
1253 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1255 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1256 Path.Decls = BaseRecord->lookup(N);
1257 return Path.Decls.first != Path.Decls.second;
1260 /// \brief Determine whether the given set of member declarations contains only
1261 /// static members, nested types, and enumerators.
1262 template<typename InputIterator>
1263 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1264 Decl *D = (*First)->getUnderlyingDecl();
1265 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1266 return true;
1268 if (isa<CXXMethodDecl>(D)) {
1269 // Determine whether all of the methods are static.
1270 bool AllMethodsAreStatic = true;
1271 for(; First != Last; ++First) {
1272 D = (*First)->getUnderlyingDecl();
1274 if (!isa<CXXMethodDecl>(D)) {
1275 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1276 break;
1279 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1280 AllMethodsAreStatic = false;
1281 break;
1285 if (AllMethodsAreStatic)
1286 return true;
1289 return false;
1292 /// \brief Perform qualified name lookup into a given context.
1294 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1295 /// names when the context of those names is explicit specified, e.g.,
1296 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1298 /// Different lookup criteria can find different names. For example, a
1299 /// particular scope can have both a struct and a function of the same
1300 /// name, and each can be found by certain lookup criteria. For more
1301 /// information about lookup criteria, see the documentation for the
1302 /// class LookupCriteria.
1304 /// \param R captures both the lookup criteria and any lookup results found.
1306 /// \param LookupCtx The context in which qualified name lookup will
1307 /// search. If the lookup criteria permits, name lookup may also search
1308 /// in the parent contexts or (for C++ classes) base classes.
1310 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1311 /// occurs as part of unqualified name lookup.
1313 /// \returns true if lookup succeeded, false if it failed.
1314 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1315 bool InUnqualifiedLookup) {
1316 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1318 if (!R.getLookupName())
1319 return false;
1321 // Make sure that the declaration context is complete.
1322 assert((!isa<TagDecl>(LookupCtx) ||
1323 LookupCtx->isDependentContext() ||
1324 cast<TagDecl>(LookupCtx)->isDefinition() ||
1325 Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1326 ->isBeingDefined()) &&
1327 "Declaration context must already be complete!");
1329 // Perform qualified name lookup into the LookupCtx.
1330 if (LookupDirect(*this, R, LookupCtx)) {
1331 R.resolveKind();
1332 if (isa<CXXRecordDecl>(LookupCtx))
1333 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1334 return true;
1337 // Don't descend into implied contexts for redeclarations.
1338 // C++98 [namespace.qual]p6:
1339 // In a declaration for a namespace member in which the
1340 // declarator-id is a qualified-id, given that the qualified-id
1341 // for the namespace member has the form
1342 // nested-name-specifier unqualified-id
1343 // the unqualified-id shall name a member of the namespace
1344 // designated by the nested-name-specifier.
1345 // See also [class.mfct]p5 and [class.static.data]p2.
1346 if (R.isForRedeclaration())
1347 return false;
1349 // If this is a namespace, look it up in the implied namespaces.
1350 if (LookupCtx->isFileContext())
1351 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1353 // If this isn't a C++ class, we aren't allowed to look into base
1354 // classes, we're done.
1355 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1356 if (!LookupRec || !LookupRec->getDefinition())
1357 return false;
1359 // If we're performing qualified name lookup into a dependent class,
1360 // then we are actually looking into a current instantiation. If we have any
1361 // dependent base classes, then we either have to delay lookup until
1362 // template instantiation time (at which point all bases will be available)
1363 // or we have to fail.
1364 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1365 LookupRec->hasAnyDependentBases()) {
1366 R.setNotFoundInCurrentInstantiation();
1367 return false;
1370 // Perform lookup into our base classes.
1371 CXXBasePaths Paths;
1372 Paths.setOrigin(LookupRec);
1374 // Look for this member in our base classes
1375 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1376 switch (R.getLookupKind()) {
1377 case LookupOrdinaryName:
1378 case LookupMemberName:
1379 case LookupRedeclarationWithLinkage:
1380 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1381 break;
1383 case LookupTagName:
1384 BaseCallback = &CXXRecordDecl::FindTagMember;
1385 break;
1387 case LookupAnyName:
1388 BaseCallback = &LookupAnyMember;
1389 break;
1391 case LookupUsingDeclName:
1392 // This lookup is for redeclarations only.
1394 case LookupOperatorName:
1395 case LookupNamespaceName:
1396 case LookupObjCProtocolName:
1397 case LookupLabel:
1398 // These lookups will never find a member in a C++ class (or base class).
1399 return false;
1401 case LookupNestedNameSpecifierName:
1402 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1403 break;
1406 if (!LookupRec->lookupInBases(BaseCallback,
1407 R.getLookupName().getAsOpaquePtr(), Paths))
1408 return false;
1410 R.setNamingClass(LookupRec);
1412 // C++ [class.member.lookup]p2:
1413 // [...] If the resulting set of declarations are not all from
1414 // sub-objects of the same type, or the set has a nonstatic member
1415 // and includes members from distinct sub-objects, there is an
1416 // ambiguity and the program is ill-formed. Otherwise that set is
1417 // the result of the lookup.
1418 QualType SubobjectType;
1419 int SubobjectNumber = 0;
1420 AccessSpecifier SubobjectAccess = AS_none;
1422 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1423 Path != PathEnd; ++Path) {
1424 const CXXBasePathElement &PathElement = Path->back();
1426 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1427 // across all paths.
1428 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1430 // Determine whether we're looking at a distinct sub-object or not.
1431 if (SubobjectType.isNull()) {
1432 // This is the first subobject we've looked at. Record its type.
1433 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1434 SubobjectNumber = PathElement.SubobjectNumber;
1435 continue;
1438 if (SubobjectType
1439 != Context.getCanonicalType(PathElement.Base->getType())) {
1440 // We found members of the given name in two subobjects of
1441 // different types. If the declaration sets aren't the same, this
1442 // this lookup is ambiguous.
1443 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1444 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1445 DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1446 DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1448 while (FirstD != FirstPath->Decls.second &&
1449 CurrentD != Path->Decls.second) {
1450 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1451 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1452 break;
1454 ++FirstD;
1455 ++CurrentD;
1458 if (FirstD == FirstPath->Decls.second &&
1459 CurrentD == Path->Decls.second)
1460 continue;
1463 R.setAmbiguousBaseSubobjectTypes(Paths);
1464 return true;
1467 if (SubobjectNumber != PathElement.SubobjectNumber) {
1468 // We have a different subobject of the same type.
1470 // C++ [class.member.lookup]p5:
1471 // A static member, a nested type or an enumerator defined in
1472 // a base class T can unambiguously be found even if an object
1473 // has more than one base class subobject of type T.
1474 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1475 continue;
1477 // We have found a nonstatic member name in multiple, distinct
1478 // subobjects. Name lookup is ambiguous.
1479 R.setAmbiguousBaseSubobjects(Paths);
1480 return true;
1484 // Lookup in a base class succeeded; return these results.
1486 DeclContext::lookup_iterator I, E;
1487 for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1488 NamedDecl *D = *I;
1489 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1490 D->getAccess());
1491 R.addDecl(D, AS);
1493 R.resolveKind();
1494 return true;
1497 /// @brief Performs name lookup for a name that was parsed in the
1498 /// source code, and may contain a C++ scope specifier.
1500 /// This routine is a convenience routine meant to be called from
1501 /// contexts that receive a name and an optional C++ scope specifier
1502 /// (e.g., "N::M::x"). It will then perform either qualified or
1503 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1504 /// respectively) on the given name and return those results.
1506 /// @param S The scope from which unqualified name lookup will
1507 /// begin.
1509 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1511 /// @param EnteringContext Indicates whether we are going to enter the
1512 /// context of the scope-specifier SS (if present).
1514 /// @returns True if any decls were found (but possibly ambiguous)
1515 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1516 bool AllowBuiltinCreation, bool EnteringContext) {
1517 if (SS && SS->isInvalid()) {
1518 // When the scope specifier is invalid, don't even look for
1519 // anything.
1520 return false;
1523 if (SS && SS->isSet()) {
1524 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1525 // We have resolved the scope specifier to a particular declaration
1526 // contex, and will perform name lookup in that context.
1527 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1528 return false;
1530 R.setContextRange(SS->getRange());
1532 return LookupQualifiedName(R, DC);
1535 // We could not resolve the scope specified to a specific declaration
1536 // context, which means that SS refers to an unknown specialization.
1537 // Name lookup can't find anything in this case.
1538 return false;
1541 // Perform unqualified name lookup starting in the given scope.
1542 return LookupName(R, S, AllowBuiltinCreation);
1546 /// @brief Produce a diagnostic describing the ambiguity that resulted
1547 /// from name lookup.
1549 /// @param Result The ambiguous name lookup result.
1551 /// @param Name The name of the entity that name lookup was
1552 /// searching for.
1554 /// @param NameLoc The location of the name within the source code.
1556 /// @param LookupRange A source range that provides more
1557 /// source-location information concerning the lookup itself. For
1558 /// example, this range might highlight a nested-name-specifier that
1559 /// precedes the name.
1561 /// @returns true
1562 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1563 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1565 DeclarationName Name = Result.getLookupName();
1566 SourceLocation NameLoc = Result.getNameLoc();
1567 SourceRange LookupRange = Result.getContextRange();
1569 switch (Result.getAmbiguityKind()) {
1570 case LookupResult::AmbiguousBaseSubobjects: {
1571 CXXBasePaths *Paths = Result.getBasePaths();
1572 QualType SubobjectType = Paths->front().back().Base->getType();
1573 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1574 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1575 << LookupRange;
1577 DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1578 while (isa<CXXMethodDecl>(*Found) &&
1579 cast<CXXMethodDecl>(*Found)->isStatic())
1580 ++Found;
1582 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1584 return true;
1587 case LookupResult::AmbiguousBaseSubobjectTypes: {
1588 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1589 << Name << LookupRange;
1591 CXXBasePaths *Paths = Result.getBasePaths();
1592 std::set<Decl *> DeclsPrinted;
1593 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1594 PathEnd = Paths->end();
1595 Path != PathEnd; ++Path) {
1596 Decl *D = *Path->Decls.first;
1597 if (DeclsPrinted.insert(D).second)
1598 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1601 return true;
1604 case LookupResult::AmbiguousTagHiding: {
1605 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1607 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1609 LookupResult::iterator DI, DE = Result.end();
1610 for (DI = Result.begin(); DI != DE; ++DI)
1611 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1612 TagDecls.insert(TD);
1613 Diag(TD->getLocation(), diag::note_hidden_tag);
1616 for (DI = Result.begin(); DI != DE; ++DI)
1617 if (!isa<TagDecl>(*DI))
1618 Diag((*DI)->getLocation(), diag::note_hiding_object);
1620 // For recovery purposes, go ahead and implement the hiding.
1621 LookupResult::Filter F = Result.makeFilter();
1622 while (F.hasNext()) {
1623 if (TagDecls.count(F.next()))
1624 F.erase();
1626 F.done();
1628 return true;
1631 case LookupResult::AmbiguousReference: {
1632 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1634 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1635 for (; DI != DE; ++DI)
1636 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1638 return true;
1642 llvm_unreachable("unknown ambiguity kind");
1643 return true;
1646 namespace {
1647 struct AssociatedLookup {
1648 AssociatedLookup(Sema &S,
1649 Sema::AssociatedNamespaceSet &Namespaces,
1650 Sema::AssociatedClassSet &Classes)
1651 : S(S), Namespaces(Namespaces), Classes(Classes) {
1654 Sema &S;
1655 Sema::AssociatedNamespaceSet &Namespaces;
1656 Sema::AssociatedClassSet &Classes;
1660 static void
1661 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1663 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1664 DeclContext *Ctx) {
1665 // Add the associated namespace for this class.
1667 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1668 // be a locally scoped record.
1670 // We skip out of inline namespaces. The innermost non-inline namespace
1671 // contains all names of all its nested inline namespaces anyway, so we can
1672 // replace the entire inline namespace tree with its root.
1673 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1674 Ctx->isInlineNamespace())
1675 Ctx = Ctx->getParent();
1677 if (Ctx->isFileContext())
1678 Namespaces.insert(Ctx->getPrimaryContext());
1681 // \brief Add the associated classes and namespaces for argument-dependent
1682 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1683 static void
1684 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1685 const TemplateArgument &Arg) {
1686 // C++ [basic.lookup.koenig]p2, last bullet:
1687 // -- [...] ;
1688 switch (Arg.getKind()) {
1689 case TemplateArgument::Null:
1690 break;
1692 case TemplateArgument::Type:
1693 // [...] the namespaces and classes associated with the types of the
1694 // template arguments provided for template type parameters (excluding
1695 // template template parameters)
1696 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1697 break;
1699 case TemplateArgument::Template:
1700 case TemplateArgument::TemplateExpansion: {
1701 // [...] the namespaces in which any template template arguments are
1702 // defined; and the classes in which any member templates used as
1703 // template template arguments are defined.
1704 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1705 if (ClassTemplateDecl *ClassTemplate
1706 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1707 DeclContext *Ctx = ClassTemplate->getDeclContext();
1708 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1709 Result.Classes.insert(EnclosingClass);
1710 // Add the associated namespace for this class.
1711 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1713 break;
1716 case TemplateArgument::Declaration:
1717 case TemplateArgument::Integral:
1718 case TemplateArgument::Expression:
1719 // [Note: non-type template arguments do not contribute to the set of
1720 // associated namespaces. ]
1721 break;
1723 case TemplateArgument::Pack:
1724 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1725 PEnd = Arg.pack_end();
1726 P != PEnd; ++P)
1727 addAssociatedClassesAndNamespaces(Result, *P);
1728 break;
1732 // \brief Add the associated classes and namespaces for
1733 // argument-dependent lookup with an argument of class type
1734 // (C++ [basic.lookup.koenig]p2).
1735 static void
1736 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1737 CXXRecordDecl *Class) {
1739 // Just silently ignore anything whose name is __va_list_tag.
1740 if (Class->getDeclName() == Result.S.VAListTagName)
1741 return;
1743 // C++ [basic.lookup.koenig]p2:
1744 // [...]
1745 // -- If T is a class type (including unions), its associated
1746 // classes are: the class itself; the class of which it is a
1747 // member, if any; and its direct and indirect base
1748 // classes. Its associated namespaces are the namespaces in
1749 // which its associated classes are defined.
1751 // Add the class of which it is a member, if any.
1752 DeclContext *Ctx = Class->getDeclContext();
1753 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1754 Result.Classes.insert(EnclosingClass);
1755 // Add the associated namespace for this class.
1756 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1758 // Add the class itself. If we've already seen this class, we don't
1759 // need to visit base classes.
1760 if (!Result.Classes.insert(Class))
1761 return;
1763 // -- If T is a template-id, its associated namespaces and classes are
1764 // the namespace in which the template is defined; for member
1765 // templates, the member template's class; the namespaces and classes
1766 // associated with the types of the template arguments provided for
1767 // template type parameters (excluding template template parameters); the
1768 // namespaces in which any template template arguments are defined; and
1769 // the classes in which any member templates used as template template
1770 // arguments are defined. [Note: non-type template arguments do not
1771 // contribute to the set of associated namespaces. ]
1772 if (ClassTemplateSpecializationDecl *Spec
1773 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1774 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1775 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1776 Result.Classes.insert(EnclosingClass);
1777 // Add the associated namespace for this class.
1778 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1780 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1781 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1782 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1785 // Only recurse into base classes for complete types.
1786 if (!Class->hasDefinition()) {
1787 // FIXME: we might need to instantiate templates here
1788 return;
1791 // Add direct and indirect base classes along with their associated
1792 // namespaces.
1793 llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1794 Bases.push_back(Class);
1795 while (!Bases.empty()) {
1796 // Pop this class off the stack.
1797 Class = Bases.back();
1798 Bases.pop_back();
1800 // Visit the base classes.
1801 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1802 BaseEnd = Class->bases_end();
1803 Base != BaseEnd; ++Base) {
1804 const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1805 // In dependent contexts, we do ADL twice, and the first time around,
1806 // the base type might be a dependent TemplateSpecializationType, or a
1807 // TemplateTypeParmType. If that happens, simply ignore it.
1808 // FIXME: If we want to support export, we probably need to add the
1809 // namespace of the template in a TemplateSpecializationType, or even
1810 // the classes and namespaces of known non-dependent arguments.
1811 if (!BaseType)
1812 continue;
1813 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1814 if (Result.Classes.insert(BaseDecl)) {
1815 // Find the associated namespace for this base class.
1816 DeclContext *BaseCtx = BaseDecl->getDeclContext();
1817 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1819 // Make sure we visit the bases of this base class.
1820 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1821 Bases.push_back(BaseDecl);
1827 // \brief Add the associated classes and namespaces for
1828 // argument-dependent lookup with an argument of type T
1829 // (C++ [basic.lookup.koenig]p2).
1830 static void
1831 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1832 // C++ [basic.lookup.koenig]p2:
1834 // For each argument type T in the function call, there is a set
1835 // of zero or more associated namespaces and a set of zero or more
1836 // associated classes to be considered. The sets of namespaces and
1837 // classes is determined entirely by the types of the function
1838 // arguments (and the namespace of any template template
1839 // argument). Typedef names and using-declarations used to specify
1840 // the types do not contribute to this set. The sets of namespaces
1841 // and classes are determined in the following way:
1843 llvm::SmallVector<const Type *, 16> Queue;
1844 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1846 while (true) {
1847 switch (T->getTypeClass()) {
1849 #define TYPE(Class, Base)
1850 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1851 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1852 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1853 #define ABSTRACT_TYPE(Class, Base)
1854 #include "clang/AST/TypeNodes.def"
1855 // T is canonical. We can also ignore dependent types because
1856 // we don't need to do ADL at the definition point, but if we
1857 // wanted to implement template export (or if we find some other
1858 // use for associated classes and namespaces...) this would be
1859 // wrong.
1860 break;
1862 // -- If T is a pointer to U or an array of U, its associated
1863 // namespaces and classes are those associated with U.
1864 case Type::Pointer:
1865 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1866 continue;
1867 case Type::ConstantArray:
1868 case Type::IncompleteArray:
1869 case Type::VariableArray:
1870 T = cast<ArrayType>(T)->getElementType().getTypePtr();
1871 continue;
1873 // -- If T is a fundamental type, its associated sets of
1874 // namespaces and classes are both empty.
1875 case Type::Builtin:
1876 break;
1878 // -- If T is a class type (including unions), its associated
1879 // classes are: the class itself; the class of which it is a
1880 // member, if any; and its direct and indirect base
1881 // classes. Its associated namespaces are the namespaces in
1882 // which its associated classes are defined.
1883 case Type::Record: {
1884 CXXRecordDecl *Class
1885 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1886 addAssociatedClassesAndNamespaces(Result, Class);
1887 break;
1890 // -- If T is an enumeration type, its associated namespace is
1891 // the namespace in which it is defined. If it is class
1892 // member, its associated class is the member's class; else
1893 // it has no associated class.
1894 case Type::Enum: {
1895 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1897 DeclContext *Ctx = Enum->getDeclContext();
1898 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1899 Result.Classes.insert(EnclosingClass);
1901 // Add the associated namespace for this class.
1902 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1904 break;
1907 // -- If T is a function type, its associated namespaces and
1908 // classes are those associated with the function parameter
1909 // types and those associated with the return type.
1910 case Type::FunctionProto: {
1911 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1912 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1913 ArgEnd = Proto->arg_type_end();
1914 Arg != ArgEnd; ++Arg)
1915 Queue.push_back(Arg->getTypePtr());
1916 // fallthrough
1918 case Type::FunctionNoProto: {
1919 const FunctionType *FnType = cast<FunctionType>(T);
1920 T = FnType->getResultType().getTypePtr();
1921 continue;
1924 // -- If T is a pointer to a member function of a class X, its
1925 // associated namespaces and classes are those associated
1926 // with the function parameter types and return type,
1927 // together with those associated with X.
1929 // -- If T is a pointer to a data member of class X, its
1930 // associated namespaces and classes are those associated
1931 // with the member type together with those associated with
1932 // X.
1933 case Type::MemberPointer: {
1934 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1936 // Queue up the class type into which this points.
1937 Queue.push_back(MemberPtr->getClass());
1939 // And directly continue with the pointee type.
1940 T = MemberPtr->getPointeeType().getTypePtr();
1941 continue;
1944 // As an extension, treat this like a normal pointer.
1945 case Type::BlockPointer:
1946 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1947 continue;
1949 // References aren't covered by the standard, but that's such an
1950 // obvious defect that we cover them anyway.
1951 case Type::LValueReference:
1952 case Type::RValueReference:
1953 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1954 continue;
1956 // These are fundamental types.
1957 case Type::Vector:
1958 case Type::ExtVector:
1959 case Type::Complex:
1960 break;
1962 // These are ignored by ADL.
1963 case Type::ObjCObject:
1964 case Type::ObjCInterface:
1965 case Type::ObjCObjectPointer:
1966 break;
1969 if (Queue.empty()) break;
1970 T = Queue.back();
1971 Queue.pop_back();
1975 /// \brief Find the associated classes and namespaces for
1976 /// argument-dependent lookup for a call with the given set of
1977 /// arguments.
1979 /// This routine computes the sets of associated classes and associated
1980 /// namespaces searched by argument-dependent lookup
1981 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
1982 void
1983 Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1984 AssociatedNamespaceSet &AssociatedNamespaces,
1985 AssociatedClassSet &AssociatedClasses) {
1986 AssociatedNamespaces.clear();
1987 AssociatedClasses.clear();
1989 AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1991 // C++ [basic.lookup.koenig]p2:
1992 // For each argument type T in the function call, there is a set
1993 // of zero or more associated namespaces and a set of zero or more
1994 // associated classes to be considered. The sets of namespaces and
1995 // classes is determined entirely by the types of the function
1996 // arguments (and the namespace of any template template
1997 // argument).
1998 for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1999 Expr *Arg = Args[ArgIdx];
2001 if (Arg->getType() != Context.OverloadTy) {
2002 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2003 continue;
2006 // [...] In addition, if the argument is the name or address of a
2007 // set of overloaded functions and/or function templates, its
2008 // associated classes and namespaces are the union of those
2009 // associated with each of the members of the set: the namespace
2010 // in which the function or function template is defined and the
2011 // classes and namespaces associated with its (non-dependent)
2012 // parameter types and return type.
2013 Arg = Arg->IgnoreParens();
2014 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2015 if (unaryOp->getOpcode() == UO_AddrOf)
2016 Arg = unaryOp->getSubExpr();
2018 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2019 if (!ULE) continue;
2021 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2022 I != E; ++I) {
2023 // Look through any using declarations to find the underlying function.
2024 NamedDecl *Fn = (*I)->getUnderlyingDecl();
2026 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2027 if (!FDecl)
2028 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2030 // Add the classes and namespaces associated with the parameter
2031 // types and return type of this function.
2032 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2037 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2038 /// an acceptable non-member overloaded operator for a call whose
2039 /// arguments have types T1 (and, if non-empty, T2). This routine
2040 /// implements the check in C++ [over.match.oper]p3b2 concerning
2041 /// enumeration types.
2042 static bool
2043 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2044 QualType T1, QualType T2,
2045 ASTContext &Context) {
2046 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2047 return true;
2049 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2050 return true;
2052 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2053 if (Proto->getNumArgs() < 1)
2054 return false;
2056 if (T1->isEnumeralType()) {
2057 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2058 if (Context.hasSameUnqualifiedType(T1, ArgType))
2059 return true;
2062 if (Proto->getNumArgs() < 2)
2063 return false;
2065 if (!T2.isNull() && T2->isEnumeralType()) {
2066 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2067 if (Context.hasSameUnqualifiedType(T2, ArgType))
2068 return true;
2071 return false;
2074 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2075 SourceLocation Loc,
2076 LookupNameKind NameKind,
2077 RedeclarationKind Redecl) {
2078 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2079 LookupName(R, S);
2080 return R.getAsSingle<NamedDecl>();
2083 /// \brief Find the protocol with the given name, if any.
2084 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2085 SourceLocation IdLoc) {
2086 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2087 LookupObjCProtocolName);
2088 return cast_or_null<ObjCProtocolDecl>(D);
2091 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2092 QualType T1, QualType T2,
2093 UnresolvedSetImpl &Functions) {
2094 // C++ [over.match.oper]p3:
2095 // -- The set of non-member candidates is the result of the
2096 // unqualified lookup of operator@ in the context of the
2097 // expression according to the usual rules for name lookup in
2098 // unqualified function calls (3.4.2) except that all member
2099 // functions are ignored. However, if no operand has a class
2100 // type, only those non-member functions in the lookup set
2101 // that have a first parameter of type T1 or "reference to
2102 // (possibly cv-qualified) T1", when T1 is an enumeration
2103 // type, or (if there is a right operand) a second parameter
2104 // of type T2 or "reference to (possibly cv-qualified) T2",
2105 // when T2 is an enumeration type, are candidate functions.
2106 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2107 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2108 LookupName(Operators, S);
2110 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2112 if (Operators.empty())
2113 return;
2115 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2116 Op != OpEnd; ++Op) {
2117 NamedDecl *Found = (*Op)->getUnderlyingDecl();
2118 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2119 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2120 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2121 } else if (FunctionTemplateDecl *FunTmpl
2122 = dyn_cast<FunctionTemplateDecl>(Found)) {
2123 // FIXME: friend operators?
2124 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2125 // later?
2126 if (!FunTmpl->getDeclContext()->isRecord())
2127 Functions.addDecl(*Op, Op.getAccess());
2132 /// \brief Look up the constructors for the given class.
2133 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2134 // If the copy constructor has not yet been declared, do so now.
2135 if (CanDeclareSpecialMemberFunction(Context, Class)) {
2136 if (!Class->hasDeclaredDefaultConstructor())
2137 DeclareImplicitDefaultConstructor(Class);
2138 if (!Class->hasDeclaredCopyConstructor())
2139 DeclareImplicitCopyConstructor(Class);
2142 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2143 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2144 return Class->lookup(Name);
2147 /// \brief Look for the destructor of the given class.
2149 /// During semantic analysis, this routine should be used in lieu of
2150 /// CXXRecordDecl::getDestructor().
2152 /// \returns The destructor for this class.
2153 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2154 // If the destructor has not yet been declared, do so now.
2155 if (CanDeclareSpecialMemberFunction(Context, Class) &&
2156 !Class->hasDeclaredDestructor())
2157 DeclareImplicitDestructor(Class);
2159 return Class->getDestructor();
2162 void ADLResult::insert(NamedDecl *New) {
2163 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2165 // If we haven't yet seen a decl for this key, or the last decl
2166 // was exactly this one, we're done.
2167 if (Old == 0 || Old == New) {
2168 Old = New;
2169 return;
2172 // Otherwise, decide which is a more recent redeclaration.
2173 FunctionDecl *OldFD, *NewFD;
2174 if (isa<FunctionTemplateDecl>(New)) {
2175 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2176 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2177 } else {
2178 OldFD = cast<FunctionDecl>(Old);
2179 NewFD = cast<FunctionDecl>(New);
2182 FunctionDecl *Cursor = NewFD;
2183 while (true) {
2184 Cursor = Cursor->getPreviousDeclaration();
2186 // If we got to the end without finding OldFD, OldFD is the newer
2187 // declaration; leave things as they are.
2188 if (!Cursor) return;
2190 // If we do find OldFD, then NewFD is newer.
2191 if (Cursor == OldFD) break;
2193 // Otherwise, keep looking.
2196 Old = New;
2199 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2200 Expr **Args, unsigned NumArgs,
2201 ADLResult &Result) {
2202 // Find all of the associated namespaces and classes based on the
2203 // arguments we have.
2204 AssociatedNamespaceSet AssociatedNamespaces;
2205 AssociatedClassSet AssociatedClasses;
2206 FindAssociatedClassesAndNamespaces(Args, NumArgs,
2207 AssociatedNamespaces,
2208 AssociatedClasses);
2210 QualType T1, T2;
2211 if (Operator) {
2212 T1 = Args[0]->getType();
2213 if (NumArgs >= 2)
2214 T2 = Args[1]->getType();
2217 // C++ [basic.lookup.argdep]p3:
2218 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2219 // and let Y be the lookup set produced by argument dependent
2220 // lookup (defined as follows). If X contains [...] then Y is
2221 // empty. Otherwise Y is the set of declarations found in the
2222 // namespaces associated with the argument types as described
2223 // below. The set of declarations found by the lookup of the name
2224 // is the union of X and Y.
2226 // Here, we compute Y and add its members to the overloaded
2227 // candidate set.
2228 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2229 NSEnd = AssociatedNamespaces.end();
2230 NS != NSEnd; ++NS) {
2231 // When considering an associated namespace, the lookup is the
2232 // same as the lookup performed when the associated namespace is
2233 // used as a qualifier (3.4.3.2) except that:
2235 // -- Any using-directives in the associated namespace are
2236 // ignored.
2238 // -- Any namespace-scope friend functions declared in
2239 // associated classes are visible within their respective
2240 // namespaces even if they are not visible during an ordinary
2241 // lookup (11.4).
2242 DeclContext::lookup_iterator I, E;
2243 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2244 NamedDecl *D = *I;
2245 // If the only declaration here is an ordinary friend, consider
2246 // it only if it was declared in an associated classes.
2247 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2248 DeclContext *LexDC = D->getLexicalDeclContext();
2249 if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2250 continue;
2253 if (isa<UsingShadowDecl>(D))
2254 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2256 if (isa<FunctionDecl>(D)) {
2257 if (Operator &&
2258 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2259 T1, T2, Context))
2260 continue;
2261 } else if (!isa<FunctionTemplateDecl>(D))
2262 continue;
2264 Result.insert(D);
2269 //----------------------------------------------------------------------------
2270 // Search for all visible declarations.
2271 //----------------------------------------------------------------------------
2272 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2274 namespace {
2276 class ShadowContextRAII;
2278 class VisibleDeclsRecord {
2279 public:
2280 /// \brief An entry in the shadow map, which is optimized to store a
2281 /// single declaration (the common case) but can also store a list
2282 /// of declarations.
2283 class ShadowMapEntry {
2284 typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2286 /// \brief Contains either the solitary NamedDecl * or a vector
2287 /// of declarations.
2288 llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2290 public:
2291 ShadowMapEntry() : DeclOrVector() { }
2293 void Add(NamedDecl *ND);
2294 void Destroy();
2296 // Iteration.
2297 typedef NamedDecl **iterator;
2298 iterator begin();
2299 iterator end();
2302 private:
2303 /// \brief A mapping from declaration names to the declarations that have
2304 /// this name within a particular scope.
2305 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2307 /// \brief A list of shadow maps, which is used to model name hiding.
2308 std::list<ShadowMap> ShadowMaps;
2310 /// \brief The declaration contexts we have already visited.
2311 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2313 friend class ShadowContextRAII;
2315 public:
2316 /// \brief Determine whether we have already visited this context
2317 /// (and, if not, note that we are going to visit that context now).
2318 bool visitedContext(DeclContext *Ctx) {
2319 return !VisitedContexts.insert(Ctx);
2322 bool alreadyVisitedContext(DeclContext *Ctx) {
2323 return VisitedContexts.count(Ctx);
2326 /// \brief Determine whether the given declaration is hidden in the
2327 /// current scope.
2329 /// \returns the declaration that hides the given declaration, or
2330 /// NULL if no such declaration exists.
2331 NamedDecl *checkHidden(NamedDecl *ND);
2333 /// \brief Add a declaration to the current shadow map.
2334 void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2337 /// \brief RAII object that records when we've entered a shadow context.
2338 class ShadowContextRAII {
2339 VisibleDeclsRecord &Visible;
2341 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2343 public:
2344 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2345 Visible.ShadowMaps.push_back(ShadowMap());
2348 ~ShadowContextRAII() {
2349 for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2350 EEnd = Visible.ShadowMaps.back().end();
2351 E != EEnd;
2352 ++E)
2353 E->second.Destroy();
2355 Visible.ShadowMaps.pop_back();
2359 } // end anonymous namespace
2361 void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2362 if (DeclOrVector.isNull()) {
2363 // 0 - > 1 elements: just set the single element information.
2364 DeclOrVector = ND;
2365 return;
2368 if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2369 // 1 -> 2 elements: create the vector of results and push in the
2370 // existing declaration.
2371 DeclVector *Vec = new DeclVector;
2372 Vec->push_back(PrevND);
2373 DeclOrVector = Vec;
2376 // Add the new element to the end of the vector.
2377 DeclOrVector.get<DeclVector*>()->push_back(ND);
2380 void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2381 if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2382 delete Vec;
2383 DeclOrVector = ((NamedDecl *)0);
2387 VisibleDeclsRecord::ShadowMapEntry::iterator
2388 VisibleDeclsRecord::ShadowMapEntry::begin() {
2389 if (DeclOrVector.isNull())
2390 return 0;
2392 if (DeclOrVector.dyn_cast<NamedDecl *>())
2393 return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2395 return DeclOrVector.get<DeclVector *>()->begin();
2398 VisibleDeclsRecord::ShadowMapEntry::iterator
2399 VisibleDeclsRecord::ShadowMapEntry::end() {
2400 if (DeclOrVector.isNull())
2401 return 0;
2403 if (DeclOrVector.dyn_cast<NamedDecl *>())
2404 return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2406 return DeclOrVector.get<DeclVector *>()->end();
2409 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2410 // Look through using declarations.
2411 ND = ND->getUnderlyingDecl();
2413 unsigned IDNS = ND->getIdentifierNamespace();
2414 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2415 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2416 SM != SMEnd; ++SM) {
2417 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2418 if (Pos == SM->end())
2419 continue;
2421 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2422 IEnd = Pos->second.end();
2423 I != IEnd; ++I) {
2424 // A tag declaration does not hide a non-tag declaration.
2425 if ((*I)->hasTagIdentifierNamespace() &&
2426 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2427 Decl::IDNS_ObjCProtocol)))
2428 continue;
2430 // Protocols are in distinct namespaces from everything else.
2431 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2432 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2433 (*I)->getIdentifierNamespace() != IDNS)
2434 continue;
2436 // Functions and function templates in the same scope overload
2437 // rather than hide. FIXME: Look for hiding based on function
2438 // signatures!
2439 if ((*I)->isFunctionOrFunctionTemplate() &&
2440 ND->isFunctionOrFunctionTemplate() &&
2441 SM == ShadowMaps.rbegin())
2442 continue;
2444 // We've found a declaration that hides this one.
2445 return *I;
2449 return 0;
2452 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2453 bool QualifiedNameLookup,
2454 bool InBaseClass,
2455 VisibleDeclConsumer &Consumer,
2456 VisibleDeclsRecord &Visited) {
2457 if (!Ctx)
2458 return;
2460 // Make sure we don't visit the same context twice.
2461 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2462 return;
2464 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2465 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2467 // Enumerate all of the results in this context.
2468 for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2469 CurCtx = CurCtx->getNextContext()) {
2470 for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2471 DEnd = CurCtx->decls_end();
2472 D != DEnd; ++D) {
2473 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) {
2474 if (Result.isAcceptableDecl(ND)) {
2475 Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2476 Visited.add(ND);
2478 } else if (ObjCForwardProtocolDecl *ForwardProto
2479 = dyn_cast<ObjCForwardProtocolDecl>(*D)) {
2480 for (ObjCForwardProtocolDecl::protocol_iterator
2481 P = ForwardProto->protocol_begin(),
2482 PEnd = ForwardProto->protocol_end();
2483 P != PEnd;
2484 ++P) {
2485 if (Result.isAcceptableDecl(*P)) {
2486 Consumer.FoundDecl(*P, Visited.checkHidden(*P), InBaseClass);
2487 Visited.add(*P);
2490 } else if (ObjCClassDecl *Class = dyn_cast<ObjCClassDecl>(*D)) {
2491 for (ObjCClassDecl::iterator I = Class->begin(), IEnd = Class->end();
2492 I != IEnd; ++I) {
2493 ObjCInterfaceDecl *IFace = I->getInterface();
2494 if (Result.isAcceptableDecl(IFace)) {
2495 Consumer.FoundDecl(IFace, Visited.checkHidden(IFace), InBaseClass);
2496 Visited.add(IFace);
2501 // Visit transparent contexts and inline namespaces inside this context.
2502 if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2503 if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
2504 LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2505 Consumer, Visited);
2510 // Traverse using directives for qualified name lookup.
2511 if (QualifiedNameLookup) {
2512 ShadowContextRAII Shadow(Visited);
2513 DeclContext::udir_iterator I, E;
2514 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2515 LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2516 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2520 // Traverse the contexts of inherited C++ classes.
2521 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2522 if (!Record->hasDefinition())
2523 return;
2525 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2526 BEnd = Record->bases_end();
2527 B != BEnd; ++B) {
2528 QualType BaseType = B->getType();
2530 // Don't look into dependent bases, because name lookup can't look
2531 // there anyway.
2532 if (BaseType->isDependentType())
2533 continue;
2535 const RecordType *Record = BaseType->getAs<RecordType>();
2536 if (!Record)
2537 continue;
2539 // FIXME: It would be nice to be able to determine whether referencing
2540 // a particular member would be ambiguous. For example, given
2542 // struct A { int member; };
2543 // struct B { int member; };
2544 // struct C : A, B { };
2546 // void f(C *c) { c->### }
2548 // accessing 'member' would result in an ambiguity. However, we
2549 // could be smart enough to qualify the member with the base
2550 // class, e.g.,
2552 // c->B::member
2554 // or
2556 // c->A::member
2558 // Find results in this base class (and its bases).
2559 ShadowContextRAII Shadow(Visited);
2560 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2561 true, Consumer, Visited);
2565 // Traverse the contexts of Objective-C classes.
2566 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2567 // Traverse categories.
2568 for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2569 Category; Category = Category->getNextClassCategory()) {
2570 ShadowContextRAII Shadow(Visited);
2571 LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2572 Consumer, Visited);
2575 // Traverse protocols.
2576 for (ObjCInterfaceDecl::all_protocol_iterator
2577 I = IFace->all_referenced_protocol_begin(),
2578 E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2579 ShadowContextRAII Shadow(Visited);
2580 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2581 Visited);
2584 // Traverse the superclass.
2585 if (IFace->getSuperClass()) {
2586 ShadowContextRAII Shadow(Visited);
2587 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2588 true, Consumer, Visited);
2591 // If there is an implementation, traverse it. We do this to find
2592 // synthesized ivars.
2593 if (IFace->getImplementation()) {
2594 ShadowContextRAII Shadow(Visited);
2595 LookupVisibleDecls(IFace->getImplementation(), Result,
2596 QualifiedNameLookup, true, Consumer, Visited);
2598 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2599 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2600 E = Protocol->protocol_end(); I != E; ++I) {
2601 ShadowContextRAII Shadow(Visited);
2602 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2603 Visited);
2605 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2606 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2607 E = Category->protocol_end(); I != E; ++I) {
2608 ShadowContextRAII Shadow(Visited);
2609 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2610 Visited);
2613 // If there is an implementation, traverse it.
2614 if (Category->getImplementation()) {
2615 ShadowContextRAII Shadow(Visited);
2616 LookupVisibleDecls(Category->getImplementation(), Result,
2617 QualifiedNameLookup, true, Consumer, Visited);
2622 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2623 UnqualUsingDirectiveSet &UDirs,
2624 VisibleDeclConsumer &Consumer,
2625 VisibleDeclsRecord &Visited) {
2626 if (!S)
2627 return;
2629 if (!S->getEntity() ||
2630 (!S->getParent() &&
2631 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2632 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2633 // Walk through the declarations in this Scope.
2634 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2635 D != DEnd; ++D) {
2636 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2637 if (Result.isAcceptableDecl(ND)) {
2638 Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2639 Visited.add(ND);
2644 // FIXME: C++ [temp.local]p8
2645 DeclContext *Entity = 0;
2646 if (S->getEntity()) {
2647 // Look into this scope's declaration context, along with any of its
2648 // parent lookup contexts (e.g., enclosing classes), up to the point
2649 // where we hit the context stored in the next outer scope.
2650 Entity = (DeclContext *)S->getEntity();
2651 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2653 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2654 Ctx = Ctx->getLookupParent()) {
2655 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2656 if (Method->isInstanceMethod()) {
2657 // For instance methods, look for ivars in the method's interface.
2658 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2659 Result.getNameLoc(), Sema::LookupMemberName);
2660 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
2661 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2662 /*InBaseClass=*/false, Consumer, Visited);
2664 // Look for properties from which we can synthesize ivars, if
2665 // permitted.
2666 if (Result.getSema().getLangOptions().ObjCNonFragileABI2 &&
2667 IFace->getImplementation() &&
2668 Result.getLookupKind() == Sema::LookupOrdinaryName) {
2669 for (ObjCInterfaceDecl::prop_iterator
2670 P = IFace->prop_begin(),
2671 PEnd = IFace->prop_end();
2672 P != PEnd; ++P) {
2673 if (Result.getSema().canSynthesizeProvisionalIvar(*P) &&
2674 !IFace->lookupInstanceVariable((*P)->getIdentifier())) {
2675 Consumer.FoundDecl(*P, Visited.checkHidden(*P), false);
2676 Visited.add(*P);
2683 // We've already performed all of the name lookup that we need
2684 // to for Objective-C methods; the next context will be the
2685 // outer scope.
2686 break;
2689 if (Ctx->isFunctionOrMethod())
2690 continue;
2692 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2693 /*InBaseClass=*/false, Consumer, Visited);
2695 } else if (!S->getParent()) {
2696 // Look into the translation unit scope. We walk through the translation
2697 // unit's declaration context, because the Scope itself won't have all of
2698 // the declarations if we loaded a precompiled header.
2699 // FIXME: We would like the translation unit's Scope object to point to the
2700 // translation unit, so we don't need this special "if" branch. However,
2701 // doing so would force the normal C++ name-lookup code to look into the
2702 // translation unit decl when the IdentifierInfo chains would suffice.
2703 // Once we fix that problem (which is part of a more general "don't look
2704 // in DeclContexts unless we have to" optimization), we can eliminate this.
2705 Entity = Result.getSema().Context.getTranslationUnitDecl();
2706 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2707 /*InBaseClass=*/false, Consumer, Visited);
2710 if (Entity) {
2711 // Lookup visible declarations in any namespaces found by using
2712 // directives.
2713 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2714 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2715 for (; UI != UEnd; ++UI)
2716 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2717 Result, /*QualifiedNameLookup=*/false,
2718 /*InBaseClass=*/false, Consumer, Visited);
2721 // Lookup names in the parent scope.
2722 ShadowContextRAII Shadow(Visited);
2723 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2726 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2727 VisibleDeclConsumer &Consumer,
2728 bool IncludeGlobalScope) {
2729 // Determine the set of using directives available during
2730 // unqualified name lookup.
2731 Scope *Initial = S;
2732 UnqualUsingDirectiveSet UDirs;
2733 if (getLangOptions().CPlusPlus) {
2734 // Find the first namespace or translation-unit scope.
2735 while (S && !isNamespaceOrTranslationUnitScope(S))
2736 S = S->getParent();
2738 UDirs.visitScopeChain(Initial, S);
2740 UDirs.done();
2742 // Look for visible declarations.
2743 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2744 VisibleDeclsRecord Visited;
2745 if (!IncludeGlobalScope)
2746 Visited.visitedContext(Context.getTranslationUnitDecl());
2747 ShadowContextRAII Shadow(Visited);
2748 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2751 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2752 VisibleDeclConsumer &Consumer,
2753 bool IncludeGlobalScope) {
2754 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2755 VisibleDeclsRecord Visited;
2756 if (!IncludeGlobalScope)
2757 Visited.visitedContext(Context.getTranslationUnitDecl());
2758 ShadowContextRAII Shadow(Visited);
2759 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2760 /*InBaseClass=*/false, Consumer, Visited);
2763 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc) {
2764 // Do a lookup to see if we have a label with this name already.
2765 NamedDecl *Res = LookupSingleName(CurScope, II, Loc, LookupLabel,
2766 NotForRedeclaration);
2767 // If we found a label, check to see if it is in the same context as us. When
2768 // in a Block, we don't want to reuse a label in an enclosing function.
2769 if (Res && Res->getDeclContext() != CurContext)
2770 Res = 0;
2772 if (Res == 0) {
2773 // If not forward referenced or defined already, create the backing decl.
2774 Res = LabelDecl::Create(Context, CurContext, Loc, II);
2775 PushOnScopeChains(Res, CurScope->getFnParent(), true);
2778 return cast<LabelDecl>(Res);
2781 //===----------------------------------------------------------------------===//
2782 // Typo correction
2783 //===----------------------------------------------------------------------===//
2785 namespace {
2786 class TypoCorrectionConsumer : public VisibleDeclConsumer {
2787 /// \brief The name written that is a typo in the source.
2788 llvm::StringRef Typo;
2790 /// \brief The results found that have the smallest edit distance
2791 /// found (so far) with the typo name.
2793 /// The boolean value indicates whether there is a keyword with this name.
2794 llvm::StringMap<bool, llvm::BumpPtrAllocator> BestResults;
2796 /// \brief The best edit distance found so far.
2797 unsigned BestEditDistance;
2799 public:
2800 explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2801 : Typo(Typo->getName()),
2802 BestEditDistance((std::numeric_limits<unsigned>::max)()) { }
2804 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2805 void FoundName(llvm::StringRef Name);
2806 void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2808 typedef llvm::StringMap<bool, llvm::BumpPtrAllocator>::iterator iterator;
2809 iterator begin() { return BestResults.begin(); }
2810 iterator end() { return BestResults.end(); }
2811 void erase(iterator I) { BestResults.erase(I); }
2812 unsigned size() const { return BestResults.size(); }
2813 bool empty() const { return BestResults.empty(); }
2815 bool &operator[](llvm::StringRef Name) {
2816 return BestResults[Name];
2819 unsigned getBestEditDistance() const { return BestEditDistance; }
2824 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2825 bool InBaseClass) {
2826 // Don't consider hidden names for typo correction.
2827 if (Hiding)
2828 return;
2830 // Only consider entities with identifiers for names, ignoring
2831 // special names (constructors, overloaded operators, selectors,
2832 // etc.).
2833 IdentifierInfo *Name = ND->getIdentifier();
2834 if (!Name)
2835 return;
2837 FoundName(Name->getName());
2840 void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
2841 using namespace std;
2843 // Use a simple length-based heuristic to determine the minimum possible
2844 // edit distance. If the minimum isn't good enough, bail out early.
2845 unsigned MinED = abs((int)Name.size() - (int)Typo.size());
2846 if (MinED > BestEditDistance || (MinED && Typo.size() / MinED < 3))
2847 return;
2849 // Compute an upper bound on the allowable edit distance, so that the
2850 // edit-distance algorithm can short-circuit.
2851 unsigned UpperBound = min(unsigned((Typo.size() + 2) / 3), BestEditDistance);
2853 // Compute the edit distance between the typo and the name of this
2854 // entity. If this edit distance is not worse than the best edit
2855 // distance we've seen so far, add it to the list of results.
2856 unsigned ED = Typo.edit_distance(Name, true, UpperBound);
2857 if (ED == 0)
2858 return;
2860 if (ED < BestEditDistance) {
2861 // This result is better than any we've seen before; clear out
2862 // the previous results.
2863 BestResults.clear();
2864 BestEditDistance = ED;
2865 } else if (ED > BestEditDistance) {
2866 // This result is worse than the best results we've seen so far;
2867 // ignore it.
2868 return;
2871 // Add this name to the list of results. By not assigning a value, we
2872 // keep the current value if we've seen this name before (either as a
2873 // keyword or as a declaration), or get the default value (not a keyword)
2874 // if we haven't seen it before.
2875 (void)BestResults[Name];
2878 void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2879 llvm::StringRef Keyword) {
2880 // Compute the edit distance between the typo and this keyword.
2881 // If this edit distance is not worse than the best edit
2882 // distance we've seen so far, add it to the list of results.
2883 unsigned ED = Typo.edit_distance(Keyword);
2884 if (ED < BestEditDistance) {
2885 BestResults.clear();
2886 BestEditDistance = ED;
2887 } else if (ED > BestEditDistance) {
2888 // This result is worse than the best results we've seen so far;
2889 // ignore it.
2890 return;
2893 BestResults[Keyword] = true;
2896 /// \brief Perform name lookup for a possible result for typo correction.
2897 static void LookupPotentialTypoResult(Sema &SemaRef,
2898 LookupResult &Res,
2899 IdentifierInfo *Name,
2900 Scope *S, CXXScopeSpec *SS,
2901 DeclContext *MemberContext,
2902 bool EnteringContext,
2903 Sema::CorrectTypoContext CTC) {
2904 Res.suppressDiagnostics();
2905 Res.clear();
2906 Res.setLookupName(Name);
2907 if (MemberContext) {
2908 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
2909 if (CTC == Sema::CTC_ObjCIvarLookup) {
2910 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
2911 Res.addDecl(Ivar);
2912 Res.resolveKind();
2913 return;
2917 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
2918 Res.addDecl(Prop);
2919 Res.resolveKind();
2920 return;
2924 SemaRef.LookupQualifiedName(Res, MemberContext);
2925 return;
2928 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2929 EnteringContext);
2931 // Fake ivar lookup; this should really be part of
2932 // LookupParsedName.
2933 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
2934 if (Method->isInstanceMethod() && Method->getClassInterface() &&
2935 (Res.empty() ||
2936 (Res.isSingleResult() &&
2937 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
2938 if (ObjCIvarDecl *IV
2939 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
2940 Res.addDecl(IV);
2941 Res.resolveKind();
2947 /// \brief Try to "correct" a typo in the source code by finding
2948 /// visible declarations whose names are similar to the name that was
2949 /// present in the source code.
2951 /// \param Res the \c LookupResult structure that contains the name
2952 /// that was present in the source code along with the name-lookup
2953 /// criteria used to search for the name. On success, this structure
2954 /// will contain the results of name lookup.
2956 /// \param S the scope in which name lookup occurs.
2958 /// \param SS the nested-name-specifier that precedes the name we're
2959 /// looking for, if present.
2961 /// \param MemberContext if non-NULL, the context in which to look for
2962 /// a member access expression.
2964 /// \param EnteringContext whether we're entering the context described by
2965 /// the nested-name-specifier SS.
2967 /// \param CTC The context in which typo correction occurs, which impacts the
2968 /// set of keywords permitted.
2970 /// \param OPT when non-NULL, the search for visible declarations will
2971 /// also walk the protocols in the qualified interfaces of \p OPT.
2973 /// \returns the corrected name if the typo was corrected, otherwise returns an
2974 /// empty \c DeclarationName. When a typo was corrected, the result structure
2975 /// may contain the results of name lookup for the correct name or it may be
2976 /// empty.
2977 DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2978 DeclContext *MemberContext,
2979 bool EnteringContext,
2980 CorrectTypoContext CTC,
2981 const ObjCObjectPointerType *OPT) {
2982 if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2983 return DeclarationName();
2985 // We only attempt to correct typos for identifiers.
2986 IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2987 if (!Typo)
2988 return DeclarationName();
2990 // If the scope specifier itself was invalid, don't try to correct
2991 // typos.
2992 if (SS && SS->isInvalid())
2993 return DeclarationName();
2995 // Never try to correct typos during template deduction or
2996 // instantiation.
2997 if (!ActiveTemplateInstantiations.empty())
2998 return DeclarationName();
3000 TypoCorrectionConsumer Consumer(Typo);
3002 // Perform name lookup to find visible, similarly-named entities.
3003 bool IsUnqualifiedLookup = false;
3004 if (MemberContext) {
3005 LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
3007 // Look in qualified interfaces.
3008 if (OPT) {
3009 for (ObjCObjectPointerType::qual_iterator
3010 I = OPT->qual_begin(), E = OPT->qual_end();
3011 I != E; ++I)
3012 LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
3014 } else if (SS && SS->isSet()) {
3015 DeclContext *DC = computeDeclContext(*SS, EnteringContext);
3016 if (!DC)
3017 return DeclarationName();
3019 // Provide a stop gap for files that are just seriously broken. Trying
3020 // to correct all typos can turn into a HUGE performance penalty, causing
3021 // some files to take minutes to get rejected by the parser.
3022 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3023 return DeclarationName();
3024 ++TyposCorrected;
3026 LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
3027 } else {
3028 IsUnqualifiedLookup = true;
3029 UnqualifiedTyposCorrectedMap::iterator Cached
3030 = UnqualifiedTyposCorrected.find(Typo);
3031 if (Cached == UnqualifiedTyposCorrected.end()) {
3032 // Provide a stop gap for files that are just seriously broken. Trying
3033 // to correct all typos can turn into a HUGE performance penalty, causing
3034 // some files to take minutes to get rejected by the parser.
3035 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3036 return DeclarationName();
3038 // For unqualified lookup, look through all of the names that we have
3039 // seen in this translation unit.
3040 for (IdentifierTable::iterator I = Context.Idents.begin(),
3041 IEnd = Context.Idents.end();
3042 I != IEnd; ++I)
3043 Consumer.FoundName(I->getKey());
3045 // Walk through identifiers in external identifier sources.
3046 if (IdentifierInfoLookup *External
3047 = Context.Idents.getExternalIdentifierLookup()) {
3048 llvm::OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3049 do {
3050 llvm::StringRef Name = Iter->Next();
3051 if (Name.empty())
3052 break;
3054 Consumer.FoundName(Name);
3055 } while (true);
3057 } else {
3058 // Use the cached value, unless it's a keyword. In the keyword case, we'll
3059 // end up adding the keyword below.
3060 if (Cached->second.first.empty())
3061 return DeclarationName();
3063 if (!Cached->second.second)
3064 Consumer.FoundName(Cached->second.first);
3068 // Add context-dependent keywords.
3069 bool WantTypeSpecifiers = false;
3070 bool WantExpressionKeywords = false;
3071 bool WantCXXNamedCasts = false;
3072 bool WantRemainingKeywords = false;
3073 switch (CTC) {
3074 case CTC_Unknown:
3075 WantTypeSpecifiers = true;
3076 WantExpressionKeywords = true;
3077 WantCXXNamedCasts = true;
3078 WantRemainingKeywords = true;
3080 if (ObjCMethodDecl *Method = getCurMethodDecl())
3081 if (Method->getClassInterface() &&
3082 Method->getClassInterface()->getSuperClass())
3083 Consumer.addKeywordResult(Context, "super");
3085 break;
3087 case CTC_NoKeywords:
3088 break;
3090 case CTC_Type:
3091 WantTypeSpecifiers = true;
3092 break;
3094 case CTC_ObjCMessageReceiver:
3095 Consumer.addKeywordResult(Context, "super");
3096 // Fall through to handle message receivers like expressions.
3098 case CTC_Expression:
3099 if (getLangOptions().CPlusPlus)
3100 WantTypeSpecifiers = true;
3101 WantExpressionKeywords = true;
3102 // Fall through to get C++ named casts.
3104 case CTC_CXXCasts:
3105 WantCXXNamedCasts = true;
3106 break;
3108 case CTC_ObjCPropertyLookup:
3109 // FIXME: Add "isa"?
3110 break;
3112 case CTC_MemberLookup:
3113 if (getLangOptions().CPlusPlus)
3114 Consumer.addKeywordResult(Context, "template");
3115 break;
3117 case CTC_ObjCIvarLookup:
3118 break;
3121 if (WantTypeSpecifiers) {
3122 // Add type-specifier keywords to the set of results.
3123 const char *CTypeSpecs[] = {
3124 "char", "const", "double", "enum", "float", "int", "long", "short",
3125 "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
3126 "_Complex", "_Imaginary",
3127 // storage-specifiers as well
3128 "extern", "inline", "static", "typedef"
3131 const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3132 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3133 Consumer.addKeywordResult(Context, CTypeSpecs[I]);
3135 if (getLangOptions().C99)
3136 Consumer.addKeywordResult(Context, "restrict");
3137 if (getLangOptions().Bool || getLangOptions().CPlusPlus)
3138 Consumer.addKeywordResult(Context, "bool");
3140 if (getLangOptions().CPlusPlus) {
3141 Consumer.addKeywordResult(Context, "class");
3142 Consumer.addKeywordResult(Context, "typename");
3143 Consumer.addKeywordResult(Context, "wchar_t");
3145 if (getLangOptions().CPlusPlus0x) {
3146 Consumer.addKeywordResult(Context, "char16_t");
3147 Consumer.addKeywordResult(Context, "char32_t");
3148 Consumer.addKeywordResult(Context, "constexpr");
3149 Consumer.addKeywordResult(Context, "decltype");
3150 Consumer.addKeywordResult(Context, "thread_local");
3154 if (getLangOptions().GNUMode)
3155 Consumer.addKeywordResult(Context, "typeof");
3158 if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
3159 Consumer.addKeywordResult(Context, "const_cast");
3160 Consumer.addKeywordResult(Context, "dynamic_cast");
3161 Consumer.addKeywordResult(Context, "reinterpret_cast");
3162 Consumer.addKeywordResult(Context, "static_cast");
3165 if (WantExpressionKeywords) {
3166 Consumer.addKeywordResult(Context, "sizeof");
3167 if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
3168 Consumer.addKeywordResult(Context, "false");
3169 Consumer.addKeywordResult(Context, "true");
3172 if (getLangOptions().CPlusPlus) {
3173 const char *CXXExprs[] = {
3174 "delete", "new", "operator", "throw", "typeid"
3176 const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3177 for (unsigned I = 0; I != NumCXXExprs; ++I)
3178 Consumer.addKeywordResult(Context, CXXExprs[I]);
3180 if (isa<CXXMethodDecl>(CurContext) &&
3181 cast<CXXMethodDecl>(CurContext)->isInstance())
3182 Consumer.addKeywordResult(Context, "this");
3184 if (getLangOptions().CPlusPlus0x) {
3185 Consumer.addKeywordResult(Context, "alignof");
3186 Consumer.addKeywordResult(Context, "nullptr");
3191 if (WantRemainingKeywords) {
3192 if (getCurFunctionOrMethodDecl() || getCurBlock()) {
3193 // Statements.
3194 const char *CStmts[] = {
3195 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3196 const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3197 for (unsigned I = 0; I != NumCStmts; ++I)
3198 Consumer.addKeywordResult(Context, CStmts[I]);
3200 if (getLangOptions().CPlusPlus) {
3201 Consumer.addKeywordResult(Context, "catch");
3202 Consumer.addKeywordResult(Context, "try");
3205 if (S && S->getBreakParent())
3206 Consumer.addKeywordResult(Context, "break");
3208 if (S && S->getContinueParent())
3209 Consumer.addKeywordResult(Context, "continue");
3211 if (!getCurFunction()->SwitchStack.empty()) {
3212 Consumer.addKeywordResult(Context, "case");
3213 Consumer.addKeywordResult(Context, "default");
3215 } else {
3216 if (getLangOptions().CPlusPlus) {
3217 Consumer.addKeywordResult(Context, "namespace");
3218 Consumer.addKeywordResult(Context, "template");
3221 if (S && S->isClassScope()) {
3222 Consumer.addKeywordResult(Context, "explicit");
3223 Consumer.addKeywordResult(Context, "friend");
3224 Consumer.addKeywordResult(Context, "mutable");
3225 Consumer.addKeywordResult(Context, "private");
3226 Consumer.addKeywordResult(Context, "protected");
3227 Consumer.addKeywordResult(Context, "public");
3228 Consumer.addKeywordResult(Context, "virtual");
3232 if (getLangOptions().CPlusPlus) {
3233 Consumer.addKeywordResult(Context, "using");
3235 if (getLangOptions().CPlusPlus0x)
3236 Consumer.addKeywordResult(Context, "static_assert");
3240 // If we haven't found anything, we're done.
3241 if (Consumer.empty()) {
3242 // If this was an unqualified lookup, note that no correction was found.
3243 if (IsUnqualifiedLookup)
3244 (void)UnqualifiedTyposCorrected[Typo];
3246 return DeclarationName();
3249 // Make sure that the user typed at least 3 characters for each correction
3250 // made. Otherwise, we don't even both looking at the results.
3252 // We also suppress exact matches; those should be handled by a
3253 // different mechanism (e.g., one that introduces qualification in
3254 // C++).
3255 unsigned ED = Consumer.getBestEditDistance();
3256 if (ED > 0 && Typo->getName().size() / ED < 3) {
3257 // If this was an unqualified lookup, note that no correction was found.
3258 if (IsUnqualifiedLookup)
3259 (void)UnqualifiedTyposCorrected[Typo];
3261 return DeclarationName();
3264 // Weed out any names that could not be found by name lookup.
3265 bool LastLookupWasAccepted = false;
3266 for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3267 IEnd = Consumer.end();
3268 I != IEnd; /* Increment in loop. */) {
3269 // Keywords are always found.
3270 if (I->second) {
3271 ++I;
3272 continue;
3275 // Perform name lookup on this name.
3276 IdentifierInfo *Name = &Context.Idents.get(I->getKey());
3277 LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3278 EnteringContext, CTC);
3280 switch (Res.getResultKind()) {
3281 case LookupResult::NotFound:
3282 case LookupResult::NotFoundInCurrentInstantiation:
3283 case LookupResult::Ambiguous:
3284 // We didn't find this name in our scope, or didn't like what we found;
3285 // ignore it.
3286 Res.suppressDiagnostics();
3288 TypoCorrectionConsumer::iterator Next = I;
3289 ++Next;
3290 Consumer.erase(I);
3291 I = Next;
3293 LastLookupWasAccepted = false;
3294 break;
3296 case LookupResult::Found:
3297 case LookupResult::FoundOverloaded:
3298 case LookupResult::FoundUnresolvedValue:
3299 ++I;
3300 LastLookupWasAccepted = true;
3301 break;
3304 if (Res.isAmbiguous()) {
3305 // We don't deal with ambiguities.
3306 Res.suppressDiagnostics();
3307 Res.clear();
3308 return DeclarationName();
3312 // If only a single name remains, return that result.
3313 if (Consumer.size() == 1) {
3314 IdentifierInfo *Name = &Context.Idents.get(Consumer.begin()->getKey());
3315 if (Consumer.begin()->second) {
3316 Res.suppressDiagnostics();
3317 Res.clear();
3319 // Don't correct to a keyword that's the same as the typo; the keyword
3320 // wasn't actually in scope.
3321 if (ED == 0) {
3322 Res.setLookupName(Typo);
3323 return DeclarationName();
3326 } else if (!LastLookupWasAccepted) {
3327 // Perform name lookup on this name.
3328 LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3329 EnteringContext, CTC);
3332 // Record the correction for unqualified lookup.
3333 if (IsUnqualifiedLookup)
3334 UnqualifiedTyposCorrected[Typo]
3335 = std::make_pair(Name->getName(), Consumer.begin()->second);
3337 return &Context.Idents.get(Consumer.begin()->getKey());
3339 else if (Consumer.size() > 1 && CTC == CTC_ObjCMessageReceiver
3340 && Consumer["super"]) {
3341 // Prefix 'super' when we're completing in a message-receiver
3342 // context.
3343 Res.suppressDiagnostics();
3344 Res.clear();
3346 // Don't correct to a keyword that's the same as the typo; the keyword
3347 // wasn't actually in scope.
3348 if (ED == 0) {
3349 Res.setLookupName(Typo);
3350 return DeclarationName();
3353 // Record the correction for unqualified lookup.
3354 if (IsUnqualifiedLookup)
3355 UnqualifiedTyposCorrected[Typo]
3356 = std::make_pair("super", Consumer.begin()->second);
3358 return &Context.Idents.get("super");
3361 Res.suppressDiagnostics();
3362 Res.setLookupName(Typo);
3363 Res.clear();
3364 // Record the correction for unqualified lookup.
3365 if (IsUnqualifiedLookup)
3366 (void)UnqualifiedTyposCorrected[Typo];
3368 return DeclarationName();