rename test
[clang.git] / lib / Sema / SemaInit.cpp
blob3aeb5188270978a1010330a9a28682ce3ea2eddb
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers. The main entry
11 // point is Sema::CheckInitList(), but all of the work is performed
12 // within the InitListChecker class.
14 //===----------------------------------------------------------------------===//
16 #include "clang/Sema/Designator.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/SemaInternal.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <map>
28 using namespace clang;
30 //===----------------------------------------------------------------------===//
31 // Sema Initialization Checking
32 //===----------------------------------------------------------------------===//
34 static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35 const ArrayType *AT = Context.getAsArrayType(DeclType);
36 if (!AT) return 0;
38 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39 return 0;
41 // See if this is a string literal or @encode.
42 Init = Init->IgnoreParens();
44 // Handle @encode, which is a narrow string.
45 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46 return Init;
48 // Otherwise we can only handle string literals.
49 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50 if (SL == 0) return 0;
52 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53 // char array can be initialized with a narrow string.
54 // Only allow char x[] = "foo"; not char x[] = L"foo";
55 if (!SL->isWide())
56 return ElemTy->isCharType() ? Init : 0;
58 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59 // correction from DR343): "An array with element type compatible with a
60 // qualified or unqualified version of wchar_t may be initialized by a wide
61 // string literal, optionally enclosed in braces."
62 if (Context.typesAreCompatible(Context.getWCharType(),
63 ElemTy.getUnqualifiedType()))
64 return Init;
66 return 0;
69 static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
70 // Get the length of the string as parsed.
71 uint64_t StrLength =
72 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
75 const ArrayType *AT = S.Context.getAsArrayType(DeclT);
76 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
77 // C99 6.7.8p14. We have an array of character type with unknown size
78 // being initialized to a string literal.
79 llvm::APSInt ConstVal(32);
80 ConstVal = StrLength;
81 // Return a new array type (C99 6.7.8p22).
82 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
83 ConstVal,
84 ArrayType::Normal, 0);
85 return;
88 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90 // C99 6.7.8p14. We have an array of character type with known size. However,
91 // the size may be smaller or larger than the string we are initializing.
92 // FIXME: Avoid truncation for 64-bit length strings.
93 if (StrLength-1 > CAT->getSize().getZExtValue())
94 S.Diag(Str->getSourceRange().getBegin(),
95 diag::warn_initializer_string_for_char_array_too_long)
96 << Str->getSourceRange();
98 // Set the type to the actual size that we are initializing. If we have
99 // something like:
100 // char x[1] = "foo";
101 // then this will set the string literal's type to char[1].
102 Str->setType(DeclT);
105 //===----------------------------------------------------------------------===//
106 // Semantic checking for initializer lists.
107 //===----------------------------------------------------------------------===//
109 /// @brief Semantic checking for initializer lists.
111 /// The InitListChecker class contains a set of routines that each
112 /// handle the initialization of a certain kind of entity, e.g.,
113 /// arrays, vectors, struct/union types, scalars, etc. The
114 /// InitListChecker itself performs a recursive walk of the subobject
115 /// structure of the type to be initialized, while stepping through
116 /// the initializer list one element at a time. The IList and Index
117 /// parameters to each of the Check* routines contain the active
118 /// (syntactic) initializer list and the index into that initializer
119 /// list that represents the current initializer. Each routine is
120 /// responsible for moving that Index forward as it consumes elements.
122 /// Each Check* routine also has a StructuredList/StructuredIndex
123 /// arguments, which contains the current "structured" (semantic)
124 /// initializer list and the index into that initializer list where we
125 /// are copying initializers as we map them over to the semantic
126 /// list. Once we have completed our recursive walk of the subobject
127 /// structure, we will have constructed a full semantic initializer
128 /// list.
130 /// C99 designators cause changes in the initializer list traversal,
131 /// because they make the initialization "jump" into a specific
132 /// subobject and then continue the initialization from that
133 /// point. CheckDesignatedInitializer() recursively steps into the
134 /// designated subobject and manages backing out the recursion to
135 /// initialize the subobjects after the one designated.
136 namespace {
137 class InitListChecker {
138 Sema &SemaRef;
139 bool hadError;
140 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
141 InitListExpr *FullyStructuredList;
143 void CheckImplicitInitList(const InitializedEntity &Entity,
144 InitListExpr *ParentIList, QualType T,
145 unsigned &Index, InitListExpr *StructuredList,
146 unsigned &StructuredIndex,
147 bool TopLevelObject = false);
148 void CheckExplicitInitList(const InitializedEntity &Entity,
149 InitListExpr *IList, QualType &T,
150 unsigned &Index, InitListExpr *StructuredList,
151 unsigned &StructuredIndex,
152 bool TopLevelObject = false);
153 void CheckListElementTypes(const InitializedEntity &Entity,
154 InitListExpr *IList, QualType &DeclType,
155 bool SubobjectIsDesignatorContext,
156 unsigned &Index,
157 InitListExpr *StructuredList,
158 unsigned &StructuredIndex,
159 bool TopLevelObject = false);
160 void CheckSubElementType(const InitializedEntity &Entity,
161 InitListExpr *IList, QualType ElemType,
162 unsigned &Index,
163 InitListExpr *StructuredList,
164 unsigned &StructuredIndex);
165 void CheckScalarType(const InitializedEntity &Entity,
166 InitListExpr *IList, QualType DeclType,
167 unsigned &Index,
168 InitListExpr *StructuredList,
169 unsigned &StructuredIndex);
170 void CheckReferenceType(const InitializedEntity &Entity,
171 InitListExpr *IList, QualType DeclType,
172 unsigned &Index,
173 InitListExpr *StructuredList,
174 unsigned &StructuredIndex);
175 void CheckVectorType(const InitializedEntity &Entity,
176 InitListExpr *IList, QualType DeclType, unsigned &Index,
177 InitListExpr *StructuredList,
178 unsigned &StructuredIndex);
179 void CheckStructUnionTypes(const InitializedEntity &Entity,
180 InitListExpr *IList, QualType DeclType,
181 RecordDecl::field_iterator Field,
182 bool SubobjectIsDesignatorContext, unsigned &Index,
183 InitListExpr *StructuredList,
184 unsigned &StructuredIndex,
185 bool TopLevelObject = false);
186 void CheckArrayType(const InitializedEntity &Entity,
187 InitListExpr *IList, QualType &DeclType,
188 llvm::APSInt elementIndex,
189 bool SubobjectIsDesignatorContext, unsigned &Index,
190 InitListExpr *StructuredList,
191 unsigned &StructuredIndex);
192 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
193 InitListExpr *IList, DesignatedInitExpr *DIE,
194 unsigned DesigIdx,
195 QualType &CurrentObjectType,
196 RecordDecl::field_iterator *NextField,
197 llvm::APSInt *NextElementIndex,
198 unsigned &Index,
199 InitListExpr *StructuredList,
200 unsigned &StructuredIndex,
201 bool FinishSubobjectInit,
202 bool TopLevelObject);
203 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
204 QualType CurrentObjectType,
205 InitListExpr *StructuredList,
206 unsigned StructuredIndex,
207 SourceRange InitRange);
208 void UpdateStructuredListElement(InitListExpr *StructuredList,
209 unsigned &StructuredIndex,
210 Expr *expr);
211 int numArrayElements(QualType DeclType);
212 int numStructUnionElements(QualType DeclType);
214 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
215 const InitializedEntity &ParentEntity,
216 InitListExpr *ILE, bool &RequiresSecondPass);
217 void FillInValueInitializations(const InitializedEntity &Entity,
218 InitListExpr *ILE, bool &RequiresSecondPass);
219 public:
220 InitListChecker(Sema &S, const InitializedEntity &Entity,
221 InitListExpr *IL, QualType &T);
222 bool HadError() { return hadError; }
224 // @brief Retrieves the fully-structured initializer list used for
225 // semantic analysis and code generation.
226 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228 } // end anonymous namespace
230 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
231 const InitializedEntity &ParentEntity,
232 InitListExpr *ILE,
233 bool &RequiresSecondPass) {
234 SourceLocation Loc = ILE->getSourceRange().getBegin();
235 unsigned NumInits = ILE->getNumInits();
236 InitializedEntity MemberEntity
237 = InitializedEntity::InitializeMember(Field, &ParentEntity);
238 if (Init >= NumInits || !ILE->getInit(Init)) {
239 // FIXME: We probably don't need to handle references
240 // specially here, since value-initialization of references is
241 // handled in InitializationSequence.
242 if (Field->getType()->isReferenceType()) {
243 // C++ [dcl.init.aggr]p9:
244 // If an incomplete or empty initializer-list leaves a
245 // member of reference type uninitialized, the program is
246 // ill-formed.
247 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
248 << Field->getType()
249 << ILE->getSyntacticForm()->getSourceRange();
250 SemaRef.Diag(Field->getLocation(),
251 diag::note_uninit_reference_member);
252 hadError = true;
253 return;
256 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
257 true);
258 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
259 if (!InitSeq) {
260 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
261 hadError = true;
262 return;
265 ExprResult MemberInit
266 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
267 if (MemberInit.isInvalid()) {
268 hadError = true;
269 return;
272 if (hadError) {
273 // Do nothing
274 } else if (Init < NumInits) {
275 ILE->setInit(Init, MemberInit.takeAs<Expr>());
276 } else if (InitSeq.getKind()
277 == InitializationSequence::ConstructorInitialization) {
278 // Value-initialization requires a constructor call, so
279 // extend the initializer list to include the constructor
280 // call and make a note that we'll need to take another pass
281 // through the initializer list.
282 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
283 RequiresSecondPass = true;
285 } else if (InitListExpr *InnerILE
286 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
287 FillInValueInitializations(MemberEntity, InnerILE,
288 RequiresSecondPass);
291 /// Recursively replaces NULL values within the given initializer list
292 /// with expressions that perform value-initialization of the
293 /// appropriate type.
294 void
295 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
296 InitListExpr *ILE,
297 bool &RequiresSecondPass) {
298 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
299 "Should not have void type");
300 SourceLocation Loc = ILE->getSourceRange().getBegin();
301 if (ILE->getSyntacticForm())
302 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
304 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
305 if (RType->getDecl()->isUnion() &&
306 ILE->getInitializedFieldInUnion())
307 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
308 Entity, ILE, RequiresSecondPass);
309 else {
310 unsigned Init = 0;
311 for (RecordDecl::field_iterator
312 Field = RType->getDecl()->field_begin(),
313 FieldEnd = RType->getDecl()->field_end();
314 Field != FieldEnd; ++Field) {
315 if (Field->isUnnamedBitfield())
316 continue;
318 if (hadError)
319 return;
321 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
322 if (hadError)
323 return;
325 ++Init;
327 // Only look at the first initialization of a union.
328 if (RType->getDecl()->isUnion())
329 break;
333 return;
336 QualType ElementType;
338 InitializedEntity ElementEntity = Entity;
339 unsigned NumInits = ILE->getNumInits();
340 unsigned NumElements = NumInits;
341 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
342 ElementType = AType->getElementType();
343 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
344 NumElements = CAType->getSize().getZExtValue();
345 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
346 0, Entity);
347 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
348 ElementType = VType->getElementType();
349 NumElements = VType->getNumElements();
350 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
351 0, Entity);
352 } else
353 ElementType = ILE->getType();
356 for (unsigned Init = 0; Init != NumElements; ++Init) {
357 if (hadError)
358 return;
360 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
361 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
362 ElementEntity.setElementIndex(Init);
364 if (Init >= NumInits || !ILE->getInit(Init)) {
365 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
366 true);
367 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
368 if (!InitSeq) {
369 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
370 hadError = true;
371 return;
374 ExprResult ElementInit
375 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
376 if (ElementInit.isInvalid()) {
377 hadError = true;
378 return;
381 if (hadError) {
382 // Do nothing
383 } else if (Init < NumInits) {
384 ILE->setInit(Init, ElementInit.takeAs<Expr>());
385 } else if (InitSeq.getKind()
386 == InitializationSequence::ConstructorInitialization) {
387 // Value-initialization requires a constructor call, so
388 // extend the initializer list to include the constructor
389 // call and make a note that we'll need to take another pass
390 // through the initializer list.
391 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
392 RequiresSecondPass = true;
394 } else if (InitListExpr *InnerILE
395 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
396 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
401 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
402 InitListExpr *IL, QualType &T)
403 : SemaRef(S) {
404 hadError = false;
406 unsigned newIndex = 0;
407 unsigned newStructuredIndex = 0;
408 FullyStructuredList
409 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
410 CheckExplicitInitList(Entity, IL, T, newIndex,
411 FullyStructuredList, newStructuredIndex,
412 /*TopLevelObject=*/true);
414 if (!hadError) {
415 bool RequiresSecondPass = false;
416 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
417 if (RequiresSecondPass && !hadError)
418 FillInValueInitializations(Entity, FullyStructuredList,
419 RequiresSecondPass);
423 int InitListChecker::numArrayElements(QualType DeclType) {
424 // FIXME: use a proper constant
425 int maxElements = 0x7FFFFFFF;
426 if (const ConstantArrayType *CAT =
427 SemaRef.Context.getAsConstantArrayType(DeclType)) {
428 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
430 return maxElements;
433 int InitListChecker::numStructUnionElements(QualType DeclType) {
434 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
435 int InitializableMembers = 0;
436 for (RecordDecl::field_iterator
437 Field = structDecl->field_begin(),
438 FieldEnd = structDecl->field_end();
439 Field != FieldEnd; ++Field) {
440 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
441 ++InitializableMembers;
443 if (structDecl->isUnion())
444 return std::min(InitializableMembers, 1);
445 return InitializableMembers - structDecl->hasFlexibleArrayMember();
448 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
449 InitListExpr *ParentIList,
450 QualType T, unsigned &Index,
451 InitListExpr *StructuredList,
452 unsigned &StructuredIndex,
453 bool TopLevelObject) {
454 int maxElements = 0;
456 if (T->isArrayType())
457 maxElements = numArrayElements(T);
458 else if (T->isRecordType())
459 maxElements = numStructUnionElements(T);
460 else if (T->isVectorType())
461 maxElements = T->getAs<VectorType>()->getNumElements();
462 else
463 assert(0 && "CheckImplicitInitList(): Illegal type");
465 if (maxElements == 0) {
466 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
467 diag::err_implicit_empty_initializer);
468 ++Index;
469 hadError = true;
470 return;
473 // Build a structured initializer list corresponding to this subobject.
474 InitListExpr *StructuredSubobjectInitList
475 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
476 StructuredIndex,
477 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
478 ParentIList->getSourceRange().getEnd()));
479 unsigned StructuredSubobjectInitIndex = 0;
481 // Check the element types and build the structural subobject.
482 unsigned StartIndex = Index;
483 CheckListElementTypes(Entity, ParentIList, T,
484 /*SubobjectIsDesignatorContext=*/false, Index,
485 StructuredSubobjectInitList,
486 StructuredSubobjectInitIndex,
487 TopLevelObject);
488 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
489 StructuredSubobjectInitList->setType(T);
491 // Update the structured sub-object initializer so that it's ending
492 // range corresponds with the end of the last initializer it used.
493 if (EndIndex < ParentIList->getNumInits()) {
494 SourceLocation EndLoc
495 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
496 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
499 // Warn about missing braces.
500 if (T->isArrayType() || T->isRecordType()) {
501 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
502 diag::warn_missing_braces)
503 << StructuredSubobjectInitList->getSourceRange()
504 << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
505 "{")
506 << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
507 StructuredSubobjectInitList->getLocEnd()),
508 "}");
512 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
513 InitListExpr *IList, QualType &T,
514 unsigned &Index,
515 InitListExpr *StructuredList,
516 unsigned &StructuredIndex,
517 bool TopLevelObject) {
518 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
519 SyntacticToSemantic[IList] = StructuredList;
520 StructuredList->setSyntacticForm(IList);
521 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
522 Index, StructuredList, StructuredIndex, TopLevelObject);
523 QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
524 IList->setType(ExprTy);
525 StructuredList->setType(ExprTy);
526 if (hadError)
527 return;
529 if (Index < IList->getNumInits()) {
530 // We have leftover initializers
531 if (StructuredIndex == 1 &&
532 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
533 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
534 if (SemaRef.getLangOptions().CPlusPlus) {
535 DK = diag::err_excess_initializers_in_char_array_initializer;
536 hadError = true;
538 // Special-case
539 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
540 << IList->getInit(Index)->getSourceRange();
541 } else if (!T->isIncompleteType()) {
542 // Don't complain for incomplete types, since we'll get an error
543 // elsewhere
544 QualType CurrentObjectType = StructuredList->getType();
545 int initKind =
546 CurrentObjectType->isArrayType()? 0 :
547 CurrentObjectType->isVectorType()? 1 :
548 CurrentObjectType->isScalarType()? 2 :
549 CurrentObjectType->isUnionType()? 3 :
552 unsigned DK = diag::warn_excess_initializers;
553 if (SemaRef.getLangOptions().CPlusPlus) {
554 DK = diag::err_excess_initializers;
555 hadError = true;
557 if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
558 DK = diag::err_excess_initializers;
559 hadError = true;
562 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
563 << initKind << IList->getInit(Index)->getSourceRange();
567 if (T->isScalarType() && !TopLevelObject)
568 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
569 << IList->getSourceRange()
570 << FixItHint::CreateRemoval(IList->getLocStart())
571 << FixItHint::CreateRemoval(IList->getLocEnd());
574 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
575 InitListExpr *IList,
576 QualType &DeclType,
577 bool SubobjectIsDesignatorContext,
578 unsigned &Index,
579 InitListExpr *StructuredList,
580 unsigned &StructuredIndex,
581 bool TopLevelObject) {
582 if (DeclType->isScalarType()) {
583 CheckScalarType(Entity, IList, DeclType, Index,
584 StructuredList, StructuredIndex);
585 } else if (DeclType->isVectorType()) {
586 CheckVectorType(Entity, IList, DeclType, Index,
587 StructuredList, StructuredIndex);
588 } else if (DeclType->isAggregateType()) {
589 if (DeclType->isRecordType()) {
590 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
591 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
592 SubobjectIsDesignatorContext, Index,
593 StructuredList, StructuredIndex,
594 TopLevelObject);
595 } else if (DeclType->isArrayType()) {
596 llvm::APSInt Zero(
597 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
598 false);
599 CheckArrayType(Entity, IList, DeclType, Zero,
600 SubobjectIsDesignatorContext, Index,
601 StructuredList, StructuredIndex);
602 } else
603 assert(0 && "Aggregate that isn't a structure or array?!");
604 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
605 // This type is invalid, issue a diagnostic.
606 ++Index;
607 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
608 << DeclType;
609 hadError = true;
610 } else if (DeclType->isRecordType()) {
611 // C++ [dcl.init]p14:
612 // [...] If the class is an aggregate (8.5.1), and the initializer
613 // is a brace-enclosed list, see 8.5.1.
615 // Note: 8.5.1 is handled below; here, we diagnose the case where
616 // we have an initializer list and a destination type that is not
617 // an aggregate.
618 // FIXME: In C++0x, this is yet another form of initialization.
619 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
620 << DeclType << IList->getSourceRange();
621 hadError = true;
622 } else if (DeclType->isReferenceType()) {
623 CheckReferenceType(Entity, IList, DeclType, Index,
624 StructuredList, StructuredIndex);
625 } else if (DeclType->isObjCObjectType()) {
626 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
627 << DeclType;
628 hadError = true;
629 } else {
630 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
631 << DeclType;
632 hadError = true;
636 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
637 InitListExpr *IList,
638 QualType ElemType,
639 unsigned &Index,
640 InitListExpr *StructuredList,
641 unsigned &StructuredIndex) {
642 Expr *expr = IList->getInit(Index);
643 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
644 unsigned newIndex = 0;
645 unsigned newStructuredIndex = 0;
646 InitListExpr *newStructuredList
647 = getStructuredSubobjectInit(IList, Index, ElemType,
648 StructuredList, StructuredIndex,
649 SubInitList->getSourceRange());
650 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
651 newStructuredList, newStructuredIndex);
652 ++StructuredIndex;
653 ++Index;
654 } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
655 CheckStringInit(Str, ElemType, SemaRef);
656 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
657 ++Index;
658 } else if (ElemType->isScalarType()) {
659 CheckScalarType(Entity, IList, ElemType, Index,
660 StructuredList, StructuredIndex);
661 } else if (ElemType->isReferenceType()) {
662 CheckReferenceType(Entity, IList, ElemType, Index,
663 StructuredList, StructuredIndex);
664 } else {
665 if (SemaRef.getLangOptions().CPlusPlus) {
666 // C++ [dcl.init.aggr]p12:
667 // All implicit type conversions (clause 4) are considered when
668 // initializing the aggregate member with an ini- tializer from
669 // an initializer-list. If the initializer can initialize a
670 // member, the member is initialized. [...]
672 // FIXME: Better EqualLoc?
673 InitializationKind Kind =
674 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
675 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
677 if (Seq) {
678 ExprResult Result =
679 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
680 if (Result.isInvalid())
681 hadError = true;
683 UpdateStructuredListElement(StructuredList, StructuredIndex,
684 Result.takeAs<Expr>());
685 ++Index;
686 return;
689 // Fall through for subaggregate initialization
690 } else {
691 // C99 6.7.8p13:
693 // The initializer for a structure or union object that has
694 // automatic storage duration shall be either an initializer
695 // list as described below, or a single expression that has
696 // compatible structure or union type. In the latter case, the
697 // initial value of the object, including unnamed members, is
698 // that of the expression.
699 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
700 SemaRef.CheckSingleAssignmentConstraints(ElemType, expr)
701 == Sema::Compatible) {
702 SemaRef.DefaultFunctionArrayLvalueConversion(expr);
703 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
704 ++Index;
705 return;
708 // Fall through for subaggregate initialization
711 // C++ [dcl.init.aggr]p12:
713 // [...] Otherwise, if the member is itself a non-empty
714 // subaggregate, brace elision is assumed and the initializer is
715 // considered for the initialization of the first member of
716 // the subaggregate.
717 if (ElemType->isAggregateType() || ElemType->isVectorType()) {
718 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
719 StructuredIndex);
720 ++StructuredIndex;
721 } else {
722 // We cannot initialize this element, so let
723 // PerformCopyInitialization produce the appropriate diagnostic.
724 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
725 SemaRef.Owned(expr));
726 hadError = true;
727 ++Index;
728 ++StructuredIndex;
733 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
734 InitListExpr *IList, QualType DeclType,
735 unsigned &Index,
736 InitListExpr *StructuredList,
737 unsigned &StructuredIndex) {
738 if (Index >= IList->getNumInits()) {
739 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
740 << IList->getSourceRange();
741 hadError = true;
742 ++Index;
743 ++StructuredIndex;
744 return;
747 Expr *expr = IList->getInit(Index);
748 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
749 SemaRef.Diag(SubIList->getLocStart(),
750 diag::warn_many_braces_around_scalar_init)
751 << SubIList->getSourceRange();
753 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
754 StructuredIndex);
755 return;
756 } else if (isa<DesignatedInitExpr>(expr)) {
757 SemaRef.Diag(expr->getSourceRange().getBegin(),
758 diag::err_designator_for_scalar_init)
759 << DeclType << expr->getSourceRange();
760 hadError = true;
761 ++Index;
762 ++StructuredIndex;
763 return;
766 ExprResult Result =
767 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
768 SemaRef.Owned(expr));
770 Expr *ResultExpr = 0;
772 if (Result.isInvalid())
773 hadError = true; // types weren't compatible.
774 else {
775 ResultExpr = Result.takeAs<Expr>();
777 if (ResultExpr != expr) {
778 // The type was promoted, update initializer list.
779 IList->setInit(Index, ResultExpr);
782 if (hadError)
783 ++StructuredIndex;
784 else
785 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
786 ++Index;
789 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
790 InitListExpr *IList, QualType DeclType,
791 unsigned &Index,
792 InitListExpr *StructuredList,
793 unsigned &StructuredIndex) {
794 if (Index < IList->getNumInits()) {
795 Expr *expr = IList->getInit(Index);
796 if (isa<InitListExpr>(expr)) {
797 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
798 << DeclType << IList->getSourceRange();
799 hadError = true;
800 ++Index;
801 ++StructuredIndex;
802 return;
805 ExprResult Result =
806 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
807 SemaRef.Owned(expr));
809 if (Result.isInvalid())
810 hadError = true;
812 expr = Result.takeAs<Expr>();
813 IList->setInit(Index, expr);
815 if (hadError)
816 ++StructuredIndex;
817 else
818 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
819 ++Index;
820 } else {
821 // FIXME: It would be wonderful if we could point at the actual member. In
822 // general, it would be useful to pass location information down the stack,
823 // so that we know the location (or decl) of the "current object" being
824 // initialized.
825 SemaRef.Diag(IList->getLocStart(),
826 diag::err_init_reference_member_uninitialized)
827 << DeclType
828 << IList->getSourceRange();
829 hadError = true;
830 ++Index;
831 ++StructuredIndex;
832 return;
836 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
837 InitListExpr *IList, QualType DeclType,
838 unsigned &Index,
839 InitListExpr *StructuredList,
840 unsigned &StructuredIndex) {
841 if (Index >= IList->getNumInits())
842 return;
844 const VectorType *VT = DeclType->getAs<VectorType>();
845 unsigned maxElements = VT->getNumElements();
846 unsigned numEltsInit = 0;
847 QualType elementType = VT->getElementType();
849 if (!SemaRef.getLangOptions().OpenCL) {
850 // If the initializing element is a vector, try to copy-initialize
851 // instead of breaking it apart (which is doomed to failure anyway).
852 Expr *Init = IList->getInit(Index);
853 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
854 ExprResult Result =
855 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
856 SemaRef.Owned(Init));
858 Expr *ResultExpr = 0;
859 if (Result.isInvalid())
860 hadError = true; // types weren't compatible.
861 else {
862 ResultExpr = Result.takeAs<Expr>();
864 if (ResultExpr != Init) {
865 // The type was promoted, update initializer list.
866 IList->setInit(Index, ResultExpr);
869 if (hadError)
870 ++StructuredIndex;
871 else
872 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
873 ++Index;
874 return;
877 InitializedEntity ElementEntity =
878 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
880 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
881 // Don't attempt to go past the end of the init list
882 if (Index >= IList->getNumInits())
883 break;
885 ElementEntity.setElementIndex(Index);
886 CheckSubElementType(ElementEntity, IList, elementType, Index,
887 StructuredList, StructuredIndex);
889 return;
892 InitializedEntity ElementEntity =
893 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
895 // OpenCL initializers allows vectors to be constructed from vectors.
896 for (unsigned i = 0; i < maxElements; ++i) {
897 // Don't attempt to go past the end of the init list
898 if (Index >= IList->getNumInits())
899 break;
901 ElementEntity.setElementIndex(Index);
903 QualType IType = IList->getInit(Index)->getType();
904 if (!IType->isVectorType()) {
905 CheckSubElementType(ElementEntity, IList, elementType, Index,
906 StructuredList, StructuredIndex);
907 ++numEltsInit;
908 } else {
909 QualType VecType;
910 const VectorType *IVT = IType->getAs<VectorType>();
911 unsigned numIElts = IVT->getNumElements();
913 if (IType->isExtVectorType())
914 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
915 else
916 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
917 IVT->getVectorKind());
918 CheckSubElementType(ElementEntity, IList, VecType, Index,
919 StructuredList, StructuredIndex);
920 numEltsInit += numIElts;
924 // OpenCL requires all elements to be initialized.
925 if (numEltsInit != maxElements)
926 if (SemaRef.getLangOptions().OpenCL)
927 SemaRef.Diag(IList->getSourceRange().getBegin(),
928 diag::err_vector_incorrect_num_initializers)
929 << (numEltsInit < maxElements) << maxElements << numEltsInit;
932 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
933 InitListExpr *IList, QualType &DeclType,
934 llvm::APSInt elementIndex,
935 bool SubobjectIsDesignatorContext,
936 unsigned &Index,
937 InitListExpr *StructuredList,
938 unsigned &StructuredIndex) {
939 // Check for the special-case of initializing an array with a string.
940 if (Index < IList->getNumInits()) {
941 if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
942 SemaRef.Context)) {
943 CheckStringInit(Str, DeclType, SemaRef);
944 // We place the string literal directly into the resulting
945 // initializer list. This is the only place where the structure
946 // of the structured initializer list doesn't match exactly,
947 // because doing so would involve allocating one character
948 // constant for each string.
949 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
950 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
951 ++Index;
952 return;
955 if (const VariableArrayType *VAT =
956 SemaRef.Context.getAsVariableArrayType(DeclType)) {
957 // Check for VLAs; in standard C it would be possible to check this
958 // earlier, but I don't know where clang accepts VLAs (gcc accepts
959 // them in all sorts of strange places).
960 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
961 diag::err_variable_object_no_init)
962 << VAT->getSizeExpr()->getSourceRange();
963 hadError = true;
964 ++Index;
965 ++StructuredIndex;
966 return;
969 // We might know the maximum number of elements in advance.
970 llvm::APSInt maxElements(elementIndex.getBitWidth(),
971 elementIndex.isUnsigned());
972 bool maxElementsKnown = false;
973 if (const ConstantArrayType *CAT =
974 SemaRef.Context.getAsConstantArrayType(DeclType)) {
975 maxElements = CAT->getSize();
976 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
977 elementIndex.setIsUnsigned(maxElements.isUnsigned());
978 maxElementsKnown = true;
981 QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
982 ->getElementType();
983 while (Index < IList->getNumInits()) {
984 Expr *Init = IList->getInit(Index);
985 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
986 // If we're not the subobject that matches up with the '{' for
987 // the designator, we shouldn't be handling the
988 // designator. Return immediately.
989 if (!SubobjectIsDesignatorContext)
990 return;
992 // Handle this designated initializer. elementIndex will be
993 // updated to be the next array element we'll initialize.
994 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
995 DeclType, 0, &elementIndex, Index,
996 StructuredList, StructuredIndex, true,
997 false)) {
998 hadError = true;
999 continue;
1002 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1003 maxElements = maxElements.extend(elementIndex.getBitWidth());
1004 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1005 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1006 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1008 // If the array is of incomplete type, keep track of the number of
1009 // elements in the initializer.
1010 if (!maxElementsKnown && elementIndex > maxElements)
1011 maxElements = elementIndex;
1013 continue;
1016 // If we know the maximum number of elements, and we've already
1017 // hit it, stop consuming elements in the initializer list.
1018 if (maxElementsKnown && elementIndex == maxElements)
1019 break;
1021 InitializedEntity ElementEntity =
1022 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1023 Entity);
1024 // Check this element.
1025 CheckSubElementType(ElementEntity, IList, elementType, Index,
1026 StructuredList, StructuredIndex);
1027 ++elementIndex;
1029 // If the array is of incomplete type, keep track of the number of
1030 // elements in the initializer.
1031 if (!maxElementsKnown && elementIndex > maxElements)
1032 maxElements = elementIndex;
1034 if (!hadError && DeclType->isIncompleteArrayType()) {
1035 // If this is an incomplete array type, the actual type needs to
1036 // be calculated here.
1037 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1038 if (maxElements == Zero) {
1039 // Sizing an array implicitly to zero is not allowed by ISO C,
1040 // but is supported by GNU.
1041 SemaRef.Diag(IList->getLocStart(),
1042 diag::ext_typecheck_zero_array_size);
1045 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1046 ArrayType::Normal, 0);
1050 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1051 InitListExpr *IList,
1052 QualType DeclType,
1053 RecordDecl::field_iterator Field,
1054 bool SubobjectIsDesignatorContext,
1055 unsigned &Index,
1056 InitListExpr *StructuredList,
1057 unsigned &StructuredIndex,
1058 bool TopLevelObject) {
1059 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1061 // If the record is invalid, some of it's members are invalid. To avoid
1062 // confusion, we forgo checking the intializer for the entire record.
1063 if (structDecl->isInvalidDecl()) {
1064 hadError = true;
1065 return;
1068 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1069 // Value-initialize the first named member of the union.
1070 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1071 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1072 Field != FieldEnd; ++Field) {
1073 if (Field->getDeclName()) {
1074 StructuredList->setInitializedFieldInUnion(*Field);
1075 break;
1078 return;
1081 // If structDecl is a forward declaration, this loop won't do
1082 // anything except look at designated initializers; That's okay,
1083 // because an error should get printed out elsewhere. It might be
1084 // worthwhile to skip over the rest of the initializer, though.
1085 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1086 RecordDecl::field_iterator FieldEnd = RD->field_end();
1087 bool InitializedSomething = false;
1088 bool CheckForMissingFields = true;
1089 while (Index < IList->getNumInits()) {
1090 Expr *Init = IList->getInit(Index);
1092 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1093 // If we're not the subobject that matches up with the '{' for
1094 // the designator, we shouldn't be handling the
1095 // designator. Return immediately.
1096 if (!SubobjectIsDesignatorContext)
1097 return;
1099 // Handle this designated initializer. Field will be updated to
1100 // the next field that we'll be initializing.
1101 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1102 DeclType, &Field, 0, Index,
1103 StructuredList, StructuredIndex,
1104 true, TopLevelObject))
1105 hadError = true;
1107 InitializedSomething = true;
1109 // Disable check for missing fields when designators are used.
1110 // This matches gcc behaviour.
1111 CheckForMissingFields = false;
1112 continue;
1115 if (Field == FieldEnd) {
1116 // We've run out of fields. We're done.
1117 break;
1120 // We've already initialized a member of a union. We're done.
1121 if (InitializedSomething && DeclType->isUnionType())
1122 break;
1124 // If we've hit the flexible array member at the end, we're done.
1125 if (Field->getType()->isIncompleteArrayType())
1126 break;
1128 if (Field->isUnnamedBitfield()) {
1129 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1130 ++Field;
1131 continue;
1134 InitializedEntity MemberEntity =
1135 InitializedEntity::InitializeMember(*Field, &Entity);
1136 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1137 StructuredList, StructuredIndex);
1138 InitializedSomething = true;
1140 if (DeclType->isUnionType()) {
1141 // Initialize the first field within the union.
1142 StructuredList->setInitializedFieldInUnion(*Field);
1145 ++Field;
1148 // Emit warnings for missing struct field initializers.
1149 if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1150 !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1151 // It is possible we have one or more unnamed bitfields remaining.
1152 // Find first (if any) named field and emit warning.
1153 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1154 it != end; ++it) {
1155 if (!it->isUnnamedBitfield()) {
1156 SemaRef.Diag(IList->getSourceRange().getEnd(),
1157 diag::warn_missing_field_initializers) << it->getName();
1158 break;
1163 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1164 Index >= IList->getNumInits())
1165 return;
1167 // Handle GNU flexible array initializers.
1168 if (!TopLevelObject &&
1169 (!isa<InitListExpr>(IList->getInit(Index)) ||
1170 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1171 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1172 diag::err_flexible_array_init_nonempty)
1173 << IList->getInit(Index)->getSourceRange().getBegin();
1174 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1175 << *Field;
1176 hadError = true;
1177 ++Index;
1178 return;
1179 } else {
1180 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1181 diag::ext_flexible_array_init)
1182 << IList->getInit(Index)->getSourceRange().getBegin();
1183 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1184 << *Field;
1187 InitializedEntity MemberEntity =
1188 InitializedEntity::InitializeMember(*Field, &Entity);
1190 if (isa<InitListExpr>(IList->getInit(Index)))
1191 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1192 StructuredList, StructuredIndex);
1193 else
1194 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1195 StructuredList, StructuredIndex);
1198 /// \brief Expand a field designator that refers to a member of an
1199 /// anonymous struct or union into a series of field designators that
1200 /// refers to the field within the appropriate subobject.
1202 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1203 DesignatedInitExpr *DIE,
1204 unsigned DesigIdx,
1205 IndirectFieldDecl *IndirectField) {
1206 typedef DesignatedInitExpr::Designator Designator;
1208 // Build the replacement designators.
1209 llvm::SmallVector<Designator, 4> Replacements;
1210 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1211 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1212 if (PI + 1 == PE)
1213 Replacements.push_back(Designator((IdentifierInfo *)0,
1214 DIE->getDesignator(DesigIdx)->getDotLoc(),
1215 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1216 else
1217 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1218 SourceLocation()));
1219 assert(isa<FieldDecl>(*PI));
1220 Replacements.back().setField(cast<FieldDecl>(*PI));
1223 // Expand the current designator into the set of replacement
1224 // designators, so we have a full subobject path down to where the
1225 // member of the anonymous struct/union is actually stored.
1226 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1227 &Replacements[0] + Replacements.size());
1230 /// \brief Given an implicit anonymous field, search the IndirectField that
1231 /// corresponds to FieldName.
1232 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1233 IdentifierInfo *FieldName) {
1234 assert(AnonField->isAnonymousStructOrUnion());
1235 Decl *NextDecl = AnonField->getNextDeclInContext();
1236 while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1237 if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1238 return IF;
1239 NextDecl = NextDecl->getNextDeclInContext();
1241 return 0;
1244 /// @brief Check the well-formedness of a C99 designated initializer.
1246 /// Determines whether the designated initializer @p DIE, which
1247 /// resides at the given @p Index within the initializer list @p
1248 /// IList, is well-formed for a current object of type @p DeclType
1249 /// (C99 6.7.8). The actual subobject that this designator refers to
1250 /// within the current subobject is returned in either
1251 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1253 /// @param IList The initializer list in which this designated
1254 /// initializer occurs.
1256 /// @param DIE The designated initializer expression.
1258 /// @param DesigIdx The index of the current designator.
1260 /// @param DeclType The type of the "current object" (C99 6.7.8p17),
1261 /// into which the designation in @p DIE should refer.
1263 /// @param NextField If non-NULL and the first designator in @p DIE is
1264 /// a field, this will be set to the field declaration corresponding
1265 /// to the field named by the designator.
1267 /// @param NextElementIndex If non-NULL and the first designator in @p
1268 /// DIE is an array designator or GNU array-range designator, this
1269 /// will be set to the last index initialized by this designator.
1271 /// @param Index Index into @p IList where the designated initializer
1272 /// @p DIE occurs.
1274 /// @param StructuredList The initializer list expression that
1275 /// describes all of the subobject initializers in the order they'll
1276 /// actually be initialized.
1278 /// @returns true if there was an error, false otherwise.
1279 bool
1280 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1281 InitListExpr *IList,
1282 DesignatedInitExpr *DIE,
1283 unsigned DesigIdx,
1284 QualType &CurrentObjectType,
1285 RecordDecl::field_iterator *NextField,
1286 llvm::APSInt *NextElementIndex,
1287 unsigned &Index,
1288 InitListExpr *StructuredList,
1289 unsigned &StructuredIndex,
1290 bool FinishSubobjectInit,
1291 bool TopLevelObject) {
1292 if (DesigIdx == DIE->size()) {
1293 // Check the actual initialization for the designated object type.
1294 bool prevHadError = hadError;
1296 // Temporarily remove the designator expression from the
1297 // initializer list that the child calls see, so that we don't try
1298 // to re-process the designator.
1299 unsigned OldIndex = Index;
1300 IList->setInit(OldIndex, DIE->getInit());
1302 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1303 StructuredList, StructuredIndex);
1305 // Restore the designated initializer expression in the syntactic
1306 // form of the initializer list.
1307 if (IList->getInit(OldIndex) != DIE->getInit())
1308 DIE->setInit(IList->getInit(OldIndex));
1309 IList->setInit(OldIndex, DIE);
1311 return hadError && !prevHadError;
1314 bool IsFirstDesignator = (DesigIdx == 0);
1315 assert((IsFirstDesignator || StructuredList) &&
1316 "Need a non-designated initializer list to start from");
1318 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1319 // Determine the structural initializer list that corresponds to the
1320 // current subobject.
1321 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1322 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1323 StructuredList, StructuredIndex,
1324 SourceRange(D->getStartLocation(),
1325 DIE->getSourceRange().getEnd()));
1326 assert(StructuredList && "Expected a structured initializer list");
1328 if (D->isFieldDesignator()) {
1329 // C99 6.7.8p7:
1331 // If a designator has the form
1333 // . identifier
1335 // then the current object (defined below) shall have
1336 // structure or union type and the identifier shall be the
1337 // name of a member of that type.
1338 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1339 if (!RT) {
1340 SourceLocation Loc = D->getDotLoc();
1341 if (Loc.isInvalid())
1342 Loc = D->getFieldLoc();
1343 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1344 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1345 ++Index;
1346 return true;
1349 // Note: we perform a linear search of the fields here, despite
1350 // the fact that we have a faster lookup method, because we always
1351 // need to compute the field's index.
1352 FieldDecl *KnownField = D->getField();
1353 IdentifierInfo *FieldName = D->getFieldName();
1354 unsigned FieldIndex = 0;
1355 RecordDecl::field_iterator
1356 Field = RT->getDecl()->field_begin(),
1357 FieldEnd = RT->getDecl()->field_end();
1358 for (; Field != FieldEnd; ++Field) {
1359 if (Field->isUnnamedBitfield())
1360 continue;
1362 // If we find a field representing an anonymous field, look in the
1363 // IndirectFieldDecl that follow for the designated initializer.
1364 if (!KnownField && Field->isAnonymousStructOrUnion()) {
1365 if (IndirectFieldDecl *IF =
1366 FindIndirectFieldDesignator(*Field, FieldName)) {
1367 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1368 D = DIE->getDesignator(DesigIdx);
1369 break;
1372 if (KnownField && KnownField == *Field)
1373 break;
1374 if (FieldName && FieldName == Field->getIdentifier())
1375 break;
1377 ++FieldIndex;
1380 if (Field == FieldEnd) {
1381 // There was no normal field in the struct with the designated
1382 // name. Perform another lookup for this name, which may find
1383 // something that we can't designate (e.g., a member function),
1384 // may find nothing, or may find a member of an anonymous
1385 // struct/union.
1386 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1387 FieldDecl *ReplacementField = 0;
1388 if (Lookup.first == Lookup.second) {
1389 // Name lookup didn't find anything. Determine whether this
1390 // was a typo for another field name.
1391 LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1392 Sema::LookupMemberName);
1393 if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1394 Sema::CTC_NoKeywords) &&
1395 (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1396 ReplacementField->getDeclContext()->getRedeclContext()
1397 ->Equals(RT->getDecl())) {
1398 SemaRef.Diag(D->getFieldLoc(),
1399 diag::err_field_designator_unknown_suggest)
1400 << FieldName << CurrentObjectType << R.getLookupName()
1401 << FixItHint::CreateReplacement(D->getFieldLoc(),
1402 R.getLookupName().getAsString());
1403 SemaRef.Diag(ReplacementField->getLocation(),
1404 diag::note_previous_decl)
1405 << ReplacementField->getDeclName();
1406 } else {
1407 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1408 << FieldName << CurrentObjectType;
1409 ++Index;
1410 return true;
1414 if (!ReplacementField) {
1415 // Name lookup found something, but it wasn't a field.
1416 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1417 << FieldName;
1418 SemaRef.Diag((*Lookup.first)->getLocation(),
1419 diag::note_field_designator_found);
1420 ++Index;
1421 return true;
1424 if (!KnownField) {
1425 // The replacement field comes from typo correction; find it
1426 // in the list of fields.
1427 FieldIndex = 0;
1428 Field = RT->getDecl()->field_begin();
1429 for (; Field != FieldEnd; ++Field) {
1430 if (Field->isUnnamedBitfield())
1431 continue;
1433 if (ReplacementField == *Field ||
1434 Field->getIdentifier() == ReplacementField->getIdentifier())
1435 break;
1437 ++FieldIndex;
1442 // All of the fields of a union are located at the same place in
1443 // the initializer list.
1444 if (RT->getDecl()->isUnion()) {
1445 FieldIndex = 0;
1446 StructuredList->setInitializedFieldInUnion(*Field);
1449 // Update the designator with the field declaration.
1450 D->setField(*Field);
1452 // Make sure that our non-designated initializer list has space
1453 // for a subobject corresponding to this field.
1454 if (FieldIndex >= StructuredList->getNumInits())
1455 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1457 // This designator names a flexible array member.
1458 if (Field->getType()->isIncompleteArrayType()) {
1459 bool Invalid = false;
1460 if ((DesigIdx + 1) != DIE->size()) {
1461 // We can't designate an object within the flexible array
1462 // member (because GCC doesn't allow it).
1463 DesignatedInitExpr::Designator *NextD
1464 = DIE->getDesignator(DesigIdx + 1);
1465 SemaRef.Diag(NextD->getStartLocation(),
1466 diag::err_designator_into_flexible_array_member)
1467 << SourceRange(NextD->getStartLocation(),
1468 DIE->getSourceRange().getEnd());
1469 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1470 << *Field;
1471 Invalid = true;
1474 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1475 !isa<StringLiteral>(DIE->getInit())) {
1476 // The initializer is not an initializer list.
1477 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1478 diag::err_flexible_array_init_needs_braces)
1479 << DIE->getInit()->getSourceRange();
1480 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1481 << *Field;
1482 Invalid = true;
1485 // Handle GNU flexible array initializers.
1486 if (!Invalid && !TopLevelObject &&
1487 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1488 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1489 diag::err_flexible_array_init_nonempty)
1490 << DIE->getSourceRange().getBegin();
1491 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1492 << *Field;
1493 Invalid = true;
1496 if (Invalid) {
1497 ++Index;
1498 return true;
1501 // Initialize the array.
1502 bool prevHadError = hadError;
1503 unsigned newStructuredIndex = FieldIndex;
1504 unsigned OldIndex = Index;
1505 IList->setInit(Index, DIE->getInit());
1507 InitializedEntity MemberEntity =
1508 InitializedEntity::InitializeMember(*Field, &Entity);
1509 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1510 StructuredList, newStructuredIndex);
1512 IList->setInit(OldIndex, DIE);
1513 if (hadError && !prevHadError) {
1514 ++Field;
1515 ++FieldIndex;
1516 if (NextField)
1517 *NextField = Field;
1518 StructuredIndex = FieldIndex;
1519 return true;
1521 } else {
1522 // Recurse to check later designated subobjects.
1523 QualType FieldType = (*Field)->getType();
1524 unsigned newStructuredIndex = FieldIndex;
1526 InitializedEntity MemberEntity =
1527 InitializedEntity::InitializeMember(*Field, &Entity);
1528 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1529 FieldType, 0, 0, Index,
1530 StructuredList, newStructuredIndex,
1531 true, false))
1532 return true;
1535 // Find the position of the next field to be initialized in this
1536 // subobject.
1537 ++Field;
1538 ++FieldIndex;
1540 // If this the first designator, our caller will continue checking
1541 // the rest of this struct/class/union subobject.
1542 if (IsFirstDesignator) {
1543 if (NextField)
1544 *NextField = Field;
1545 StructuredIndex = FieldIndex;
1546 return false;
1549 if (!FinishSubobjectInit)
1550 return false;
1552 // We've already initialized something in the union; we're done.
1553 if (RT->getDecl()->isUnion())
1554 return hadError;
1556 // Check the remaining fields within this class/struct/union subobject.
1557 bool prevHadError = hadError;
1559 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1560 StructuredList, FieldIndex);
1561 return hadError && !prevHadError;
1564 // C99 6.7.8p6:
1566 // If a designator has the form
1568 // [ constant-expression ]
1570 // then the current object (defined below) shall have array
1571 // type and the expression shall be an integer constant
1572 // expression. If the array is of unknown size, any
1573 // nonnegative value is valid.
1575 // Additionally, cope with the GNU extension that permits
1576 // designators of the form
1578 // [ constant-expression ... constant-expression ]
1579 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1580 if (!AT) {
1581 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1582 << CurrentObjectType;
1583 ++Index;
1584 return true;
1587 Expr *IndexExpr = 0;
1588 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1589 if (D->isArrayDesignator()) {
1590 IndexExpr = DIE->getArrayIndex(*D);
1591 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1592 DesignatedEndIndex = DesignatedStartIndex;
1593 } else {
1594 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1597 DesignatedStartIndex =
1598 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1599 DesignatedEndIndex =
1600 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1601 IndexExpr = DIE->getArrayRangeEnd(*D);
1603 if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1604 FullyStructuredList->sawArrayRangeDesignator();
1607 if (isa<ConstantArrayType>(AT)) {
1608 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1609 DesignatedStartIndex
1610 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1611 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1612 DesignatedEndIndex
1613 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1614 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1615 if (DesignatedEndIndex >= MaxElements) {
1616 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1617 diag::err_array_designator_too_large)
1618 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1619 << IndexExpr->getSourceRange();
1620 ++Index;
1621 return true;
1623 } else {
1624 // Make sure the bit-widths and signedness match.
1625 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1626 DesignatedEndIndex
1627 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1628 else if (DesignatedStartIndex.getBitWidth() <
1629 DesignatedEndIndex.getBitWidth())
1630 DesignatedStartIndex
1631 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1632 DesignatedStartIndex.setIsUnsigned(true);
1633 DesignatedEndIndex.setIsUnsigned(true);
1636 // Make sure that our non-designated initializer list has space
1637 // for a subobject corresponding to this array element.
1638 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1639 StructuredList->resizeInits(SemaRef.Context,
1640 DesignatedEndIndex.getZExtValue() + 1);
1642 // Repeatedly perform subobject initializations in the range
1643 // [DesignatedStartIndex, DesignatedEndIndex].
1645 // Move to the next designator
1646 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1647 unsigned OldIndex = Index;
1649 InitializedEntity ElementEntity =
1650 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1652 while (DesignatedStartIndex <= DesignatedEndIndex) {
1653 // Recurse to check later designated subobjects.
1654 QualType ElementType = AT->getElementType();
1655 Index = OldIndex;
1657 ElementEntity.setElementIndex(ElementIndex);
1658 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1659 ElementType, 0, 0, Index,
1660 StructuredList, ElementIndex,
1661 (DesignatedStartIndex == DesignatedEndIndex),
1662 false))
1663 return true;
1665 // Move to the next index in the array that we'll be initializing.
1666 ++DesignatedStartIndex;
1667 ElementIndex = DesignatedStartIndex.getZExtValue();
1670 // If this the first designator, our caller will continue checking
1671 // the rest of this array subobject.
1672 if (IsFirstDesignator) {
1673 if (NextElementIndex)
1674 *NextElementIndex = DesignatedStartIndex;
1675 StructuredIndex = ElementIndex;
1676 return false;
1679 if (!FinishSubobjectInit)
1680 return false;
1682 // Check the remaining elements within this array subobject.
1683 bool prevHadError = hadError;
1684 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1685 /*SubobjectIsDesignatorContext=*/false, Index,
1686 StructuredList, ElementIndex);
1687 return hadError && !prevHadError;
1690 // Get the structured initializer list for a subobject of type
1691 // @p CurrentObjectType.
1692 InitListExpr *
1693 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1694 QualType CurrentObjectType,
1695 InitListExpr *StructuredList,
1696 unsigned StructuredIndex,
1697 SourceRange InitRange) {
1698 Expr *ExistingInit = 0;
1699 if (!StructuredList)
1700 ExistingInit = SyntacticToSemantic[IList];
1701 else if (StructuredIndex < StructuredList->getNumInits())
1702 ExistingInit = StructuredList->getInit(StructuredIndex);
1704 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1705 return Result;
1707 if (ExistingInit) {
1708 // We are creating an initializer list that initializes the
1709 // subobjects of the current object, but there was already an
1710 // initialization that completely initialized the current
1711 // subobject, e.g., by a compound literal:
1713 // struct X { int a, b; };
1714 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1716 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1717 // designated initializer re-initializes the whole
1718 // subobject [0], overwriting previous initializers.
1719 SemaRef.Diag(InitRange.getBegin(),
1720 diag::warn_subobject_initializer_overrides)
1721 << InitRange;
1722 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1723 diag::note_previous_initializer)
1724 << /*FIXME:has side effects=*/0
1725 << ExistingInit->getSourceRange();
1728 InitListExpr *Result
1729 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1730 InitRange.getBegin(), 0, 0,
1731 InitRange.getEnd());
1733 Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1735 // Pre-allocate storage for the structured initializer list.
1736 unsigned NumElements = 0;
1737 unsigned NumInits = 0;
1738 if (!StructuredList)
1739 NumInits = IList->getNumInits();
1740 else if (Index < IList->getNumInits()) {
1741 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1742 NumInits = SubList->getNumInits();
1745 if (const ArrayType *AType
1746 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1747 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1748 NumElements = CAType->getSize().getZExtValue();
1749 // Simple heuristic so that we don't allocate a very large
1750 // initializer with many empty entries at the end.
1751 if (NumInits && NumElements > NumInits)
1752 NumElements = 0;
1754 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1755 NumElements = VType->getNumElements();
1756 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1757 RecordDecl *RDecl = RType->getDecl();
1758 if (RDecl->isUnion())
1759 NumElements = 1;
1760 else
1761 NumElements = std::distance(RDecl->field_begin(),
1762 RDecl->field_end());
1765 if (NumElements < NumInits)
1766 NumElements = IList->getNumInits();
1768 Result->reserveInits(SemaRef.Context, NumElements);
1770 // Link this new initializer list into the structured initializer
1771 // lists.
1772 if (StructuredList)
1773 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1774 else {
1775 Result->setSyntacticForm(IList);
1776 SyntacticToSemantic[IList] = Result;
1779 return Result;
1782 /// Update the initializer at index @p StructuredIndex within the
1783 /// structured initializer list to the value @p expr.
1784 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1785 unsigned &StructuredIndex,
1786 Expr *expr) {
1787 // No structured initializer list to update
1788 if (!StructuredList)
1789 return;
1791 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1792 StructuredIndex, expr)) {
1793 // This initializer overwrites a previous initializer. Warn.
1794 SemaRef.Diag(expr->getSourceRange().getBegin(),
1795 diag::warn_initializer_overrides)
1796 << expr->getSourceRange();
1797 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1798 diag::note_previous_initializer)
1799 << /*FIXME:has side effects=*/0
1800 << PrevInit->getSourceRange();
1803 ++StructuredIndex;
1806 /// Check that the given Index expression is a valid array designator
1807 /// value. This is essentailly just a wrapper around
1808 /// VerifyIntegerConstantExpression that also checks for negative values
1809 /// and produces a reasonable diagnostic if there is a
1810 /// failure. Returns true if there was an error, false otherwise. If
1811 /// everything went okay, Value will receive the value of the constant
1812 /// expression.
1813 static bool
1814 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1815 SourceLocation Loc = Index->getSourceRange().getBegin();
1817 // Make sure this is an integer constant expression.
1818 if (S.VerifyIntegerConstantExpression(Index, &Value))
1819 return true;
1821 if (Value.isSigned() && Value.isNegative())
1822 return S.Diag(Loc, diag::err_array_designator_negative)
1823 << Value.toString(10) << Index->getSourceRange();
1825 Value.setIsUnsigned(true);
1826 return false;
1829 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1830 SourceLocation Loc,
1831 bool GNUSyntax,
1832 ExprResult Init) {
1833 typedef DesignatedInitExpr::Designator ASTDesignator;
1835 bool Invalid = false;
1836 llvm::SmallVector<ASTDesignator, 32> Designators;
1837 llvm::SmallVector<Expr *, 32> InitExpressions;
1839 // Build designators and check array designator expressions.
1840 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1841 const Designator &D = Desig.getDesignator(Idx);
1842 switch (D.getKind()) {
1843 case Designator::FieldDesignator:
1844 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1845 D.getFieldLoc()));
1846 break;
1848 case Designator::ArrayDesignator: {
1849 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1850 llvm::APSInt IndexValue;
1851 if (!Index->isTypeDependent() &&
1852 !Index->isValueDependent() &&
1853 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1854 Invalid = true;
1855 else {
1856 Designators.push_back(ASTDesignator(InitExpressions.size(),
1857 D.getLBracketLoc(),
1858 D.getRBracketLoc()));
1859 InitExpressions.push_back(Index);
1861 break;
1864 case Designator::ArrayRangeDesignator: {
1865 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1866 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1867 llvm::APSInt StartValue;
1868 llvm::APSInt EndValue;
1869 bool StartDependent = StartIndex->isTypeDependent() ||
1870 StartIndex->isValueDependent();
1871 bool EndDependent = EndIndex->isTypeDependent() ||
1872 EndIndex->isValueDependent();
1873 if ((!StartDependent &&
1874 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1875 (!EndDependent &&
1876 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1877 Invalid = true;
1878 else {
1879 // Make sure we're comparing values with the same bit width.
1880 if (StartDependent || EndDependent) {
1881 // Nothing to compute.
1882 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1883 EndValue = EndValue.extend(StartValue.getBitWidth());
1884 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1885 StartValue = StartValue.extend(EndValue.getBitWidth());
1887 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1888 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1889 << StartValue.toString(10) << EndValue.toString(10)
1890 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1891 Invalid = true;
1892 } else {
1893 Designators.push_back(ASTDesignator(InitExpressions.size(),
1894 D.getLBracketLoc(),
1895 D.getEllipsisLoc(),
1896 D.getRBracketLoc()));
1897 InitExpressions.push_back(StartIndex);
1898 InitExpressions.push_back(EndIndex);
1901 break;
1906 if (Invalid || Init.isInvalid())
1907 return ExprError();
1909 // Clear out the expressions within the designation.
1910 Desig.ClearExprs(*this);
1912 DesignatedInitExpr *DIE
1913 = DesignatedInitExpr::Create(Context,
1914 Designators.data(), Designators.size(),
1915 InitExpressions.data(), InitExpressions.size(),
1916 Loc, GNUSyntax, Init.takeAs<Expr>());
1918 if (getLangOptions().CPlusPlus)
1919 Diag(DIE->getLocStart(), diag::ext_designated_init)
1920 << DIE->getSourceRange();
1922 return Owned(DIE);
1925 bool Sema::CheckInitList(const InitializedEntity &Entity,
1926 InitListExpr *&InitList, QualType &DeclType) {
1927 InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1928 if (!CheckInitList.HadError())
1929 InitList = CheckInitList.getFullyStructuredList();
1931 return CheckInitList.HadError();
1934 //===----------------------------------------------------------------------===//
1935 // Initialization entity
1936 //===----------------------------------------------------------------------===//
1938 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1939 const InitializedEntity &Parent)
1940 : Parent(&Parent), Index(Index)
1942 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1943 Kind = EK_ArrayElement;
1944 Type = AT->getElementType();
1945 } else {
1946 Kind = EK_VectorElement;
1947 Type = Parent.getType()->getAs<VectorType>()->getElementType();
1951 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1952 CXXBaseSpecifier *Base,
1953 bool IsInheritedVirtualBase)
1955 InitializedEntity Result;
1956 Result.Kind = EK_Base;
1957 Result.Base = reinterpret_cast<uintptr_t>(Base);
1958 if (IsInheritedVirtualBase)
1959 Result.Base |= 0x01;
1961 Result.Type = Base->getType();
1962 return Result;
1965 DeclarationName InitializedEntity::getName() const {
1966 switch (getKind()) {
1967 case EK_Parameter:
1968 if (!VariableOrMember)
1969 return DeclarationName();
1970 // Fall through
1972 case EK_Variable:
1973 case EK_Member:
1974 return VariableOrMember->getDeclName();
1976 case EK_Result:
1977 case EK_Exception:
1978 case EK_New:
1979 case EK_Temporary:
1980 case EK_Base:
1981 case EK_ArrayElement:
1982 case EK_VectorElement:
1983 case EK_BlockElement:
1984 return DeclarationName();
1987 // Silence GCC warning
1988 return DeclarationName();
1991 DeclaratorDecl *InitializedEntity::getDecl() const {
1992 switch (getKind()) {
1993 case EK_Variable:
1994 case EK_Parameter:
1995 case EK_Member:
1996 return VariableOrMember;
1998 case EK_Result:
1999 case EK_Exception:
2000 case EK_New:
2001 case EK_Temporary:
2002 case EK_Base:
2003 case EK_ArrayElement:
2004 case EK_VectorElement:
2005 case EK_BlockElement:
2006 return 0;
2009 // Silence GCC warning
2010 return 0;
2013 bool InitializedEntity::allowsNRVO() const {
2014 switch (getKind()) {
2015 case EK_Result:
2016 case EK_Exception:
2017 return LocAndNRVO.NRVO;
2019 case EK_Variable:
2020 case EK_Parameter:
2021 case EK_Member:
2022 case EK_New:
2023 case EK_Temporary:
2024 case EK_Base:
2025 case EK_ArrayElement:
2026 case EK_VectorElement:
2027 case EK_BlockElement:
2028 break;
2031 return false;
2034 //===----------------------------------------------------------------------===//
2035 // Initialization sequence
2036 //===----------------------------------------------------------------------===//
2038 void InitializationSequence::Step::Destroy() {
2039 switch (Kind) {
2040 case SK_ResolveAddressOfOverloadedFunction:
2041 case SK_CastDerivedToBaseRValue:
2042 case SK_CastDerivedToBaseXValue:
2043 case SK_CastDerivedToBaseLValue:
2044 case SK_BindReference:
2045 case SK_BindReferenceToTemporary:
2046 case SK_ExtraneousCopyToTemporary:
2047 case SK_UserConversion:
2048 case SK_QualificationConversionRValue:
2049 case SK_QualificationConversionXValue:
2050 case SK_QualificationConversionLValue:
2051 case SK_ListInitialization:
2052 case SK_ConstructorInitialization:
2053 case SK_ZeroInitialization:
2054 case SK_CAssignment:
2055 case SK_StringInit:
2056 case SK_ObjCObjectConversion:
2057 break;
2059 case SK_ConversionSequence:
2060 delete ICS;
2064 bool InitializationSequence::isDirectReferenceBinding() const {
2065 return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2068 bool InitializationSequence::isAmbiguous() const {
2069 if (getKind() != FailedSequence)
2070 return false;
2072 switch (getFailureKind()) {
2073 case FK_TooManyInitsForReference:
2074 case FK_ArrayNeedsInitList:
2075 case FK_ArrayNeedsInitListOrStringLiteral:
2076 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2077 case FK_NonConstLValueReferenceBindingToTemporary:
2078 case FK_NonConstLValueReferenceBindingToUnrelated:
2079 case FK_RValueReferenceBindingToLValue:
2080 case FK_ReferenceInitDropsQualifiers:
2081 case FK_ReferenceInitFailed:
2082 case FK_ConversionFailed:
2083 case FK_TooManyInitsForScalar:
2084 case FK_ReferenceBindingToInitList:
2085 case FK_InitListBadDestinationType:
2086 case FK_DefaultInitOfConst:
2087 case FK_Incomplete:
2088 return false;
2090 case FK_ReferenceInitOverloadFailed:
2091 case FK_UserConversionOverloadFailed:
2092 case FK_ConstructorOverloadFailed:
2093 return FailedOverloadResult == OR_Ambiguous;
2096 return false;
2099 bool InitializationSequence::isConstructorInitialization() const {
2100 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2103 void InitializationSequence::AddAddressOverloadResolutionStep(
2104 FunctionDecl *Function,
2105 DeclAccessPair Found) {
2106 Step S;
2107 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2108 S.Type = Function->getType();
2109 S.Function.Function = Function;
2110 S.Function.FoundDecl = Found;
2111 Steps.push_back(S);
2114 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2115 ExprValueKind VK) {
2116 Step S;
2117 switch (VK) {
2118 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2119 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2120 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2121 default: llvm_unreachable("No such category");
2123 S.Type = BaseType;
2124 Steps.push_back(S);
2127 void InitializationSequence::AddReferenceBindingStep(QualType T,
2128 bool BindingTemporary) {
2129 Step S;
2130 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2131 S.Type = T;
2132 Steps.push_back(S);
2135 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2136 Step S;
2137 S.Kind = SK_ExtraneousCopyToTemporary;
2138 S.Type = T;
2139 Steps.push_back(S);
2142 void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2143 DeclAccessPair FoundDecl,
2144 QualType T) {
2145 Step S;
2146 S.Kind = SK_UserConversion;
2147 S.Type = T;
2148 S.Function.Function = Function;
2149 S.Function.FoundDecl = FoundDecl;
2150 Steps.push_back(S);
2153 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2154 ExprValueKind VK) {
2155 Step S;
2156 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2157 switch (VK) {
2158 case VK_RValue:
2159 S.Kind = SK_QualificationConversionRValue;
2160 break;
2161 case VK_XValue:
2162 S.Kind = SK_QualificationConversionXValue;
2163 break;
2164 case VK_LValue:
2165 S.Kind = SK_QualificationConversionLValue;
2166 break;
2168 S.Type = Ty;
2169 Steps.push_back(S);
2172 void InitializationSequence::AddConversionSequenceStep(
2173 const ImplicitConversionSequence &ICS,
2174 QualType T) {
2175 Step S;
2176 S.Kind = SK_ConversionSequence;
2177 S.Type = T;
2178 S.ICS = new ImplicitConversionSequence(ICS);
2179 Steps.push_back(S);
2182 void InitializationSequence::AddListInitializationStep(QualType T) {
2183 Step S;
2184 S.Kind = SK_ListInitialization;
2185 S.Type = T;
2186 Steps.push_back(S);
2189 void
2190 InitializationSequence::AddConstructorInitializationStep(
2191 CXXConstructorDecl *Constructor,
2192 AccessSpecifier Access,
2193 QualType T) {
2194 Step S;
2195 S.Kind = SK_ConstructorInitialization;
2196 S.Type = T;
2197 S.Function.Function = Constructor;
2198 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2199 Steps.push_back(S);
2202 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2203 Step S;
2204 S.Kind = SK_ZeroInitialization;
2205 S.Type = T;
2206 Steps.push_back(S);
2209 void InitializationSequence::AddCAssignmentStep(QualType T) {
2210 Step S;
2211 S.Kind = SK_CAssignment;
2212 S.Type = T;
2213 Steps.push_back(S);
2216 void InitializationSequence::AddStringInitStep(QualType T) {
2217 Step S;
2218 S.Kind = SK_StringInit;
2219 S.Type = T;
2220 Steps.push_back(S);
2223 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2224 Step S;
2225 S.Kind = SK_ObjCObjectConversion;
2226 S.Type = T;
2227 Steps.push_back(S);
2230 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2231 OverloadingResult Result) {
2232 SequenceKind = FailedSequence;
2233 this->Failure = Failure;
2234 this->FailedOverloadResult = Result;
2237 //===----------------------------------------------------------------------===//
2238 // Attempt initialization
2239 //===----------------------------------------------------------------------===//
2241 /// \brief Attempt list initialization (C++0x [dcl.init.list])
2242 static void TryListInitialization(Sema &S,
2243 const InitializedEntity &Entity,
2244 const InitializationKind &Kind,
2245 InitListExpr *InitList,
2246 InitializationSequence &Sequence) {
2247 // FIXME: We only perform rudimentary checking of list
2248 // initializations at this point, then assume that any list
2249 // initialization of an array, aggregate, or scalar will be
2250 // well-formed. When we actually "perform" list initialization, we'll
2251 // do all of the necessary checking. C++0x initializer lists will
2252 // force us to perform more checking here.
2253 Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2255 QualType DestType = Entity.getType();
2257 // C++ [dcl.init]p13:
2258 // If T is a scalar type, then a declaration of the form
2260 // T x = { a };
2262 // is equivalent to
2264 // T x = a;
2265 if (DestType->isScalarType()) {
2266 if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2267 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2268 return;
2271 // Assume scalar initialization from a single value works.
2272 } else if (DestType->isAggregateType()) {
2273 // Assume aggregate initialization works.
2274 } else if (DestType->isVectorType()) {
2275 // Assume vector initialization works.
2276 } else if (DestType->isReferenceType()) {
2277 // FIXME: C++0x defines behavior for this.
2278 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2279 return;
2280 } else if (DestType->isRecordType()) {
2281 // FIXME: C++0x defines behavior for this
2282 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2285 // Add a general "list initialization" step.
2286 Sequence.AddListInitializationStep(DestType);
2289 /// \brief Try a reference initialization that involves calling a conversion
2290 /// function.
2291 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2292 const InitializedEntity &Entity,
2293 const InitializationKind &Kind,
2294 Expr *Initializer,
2295 bool AllowRValues,
2296 InitializationSequence &Sequence) {
2297 QualType DestType = Entity.getType();
2298 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2299 QualType T1 = cv1T1.getUnqualifiedType();
2300 QualType cv2T2 = Initializer->getType();
2301 QualType T2 = cv2T2.getUnqualifiedType();
2303 bool DerivedToBase;
2304 bool ObjCConversion;
2305 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2306 T1, T2, DerivedToBase,
2307 ObjCConversion) &&
2308 "Must have incompatible references when binding via conversion");
2309 (void)DerivedToBase;
2310 (void)ObjCConversion;
2312 // Build the candidate set directly in the initialization sequence
2313 // structure, so that it will persist if we fail.
2314 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2315 CandidateSet.clear();
2317 // Determine whether we are allowed to call explicit constructors or
2318 // explicit conversion operators.
2319 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2321 const RecordType *T1RecordType = 0;
2322 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2323 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2324 // The type we're converting to is a class type. Enumerate its constructors
2325 // to see if there is a suitable conversion.
2326 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2328 DeclContext::lookup_iterator Con, ConEnd;
2329 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2330 Con != ConEnd; ++Con) {
2331 NamedDecl *D = *Con;
2332 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2334 // Find the constructor (which may be a template).
2335 CXXConstructorDecl *Constructor = 0;
2336 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2337 if (ConstructorTmpl)
2338 Constructor = cast<CXXConstructorDecl>(
2339 ConstructorTmpl->getTemplatedDecl());
2340 else
2341 Constructor = cast<CXXConstructorDecl>(D);
2343 if (!Constructor->isInvalidDecl() &&
2344 Constructor->isConvertingConstructor(AllowExplicit)) {
2345 if (ConstructorTmpl)
2346 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2347 /*ExplicitArgs*/ 0,
2348 &Initializer, 1, CandidateSet,
2349 /*SuppressUserConversions=*/true);
2350 else
2351 S.AddOverloadCandidate(Constructor, FoundDecl,
2352 &Initializer, 1, CandidateSet,
2353 /*SuppressUserConversions=*/true);
2357 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2358 return OR_No_Viable_Function;
2360 const RecordType *T2RecordType = 0;
2361 if ((T2RecordType = T2->getAs<RecordType>()) &&
2362 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2363 // The type we're converting from is a class type, enumerate its conversion
2364 // functions.
2365 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2367 const UnresolvedSetImpl *Conversions
2368 = T2RecordDecl->getVisibleConversionFunctions();
2369 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2370 E = Conversions->end(); I != E; ++I) {
2371 NamedDecl *D = *I;
2372 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2373 if (isa<UsingShadowDecl>(D))
2374 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2376 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2377 CXXConversionDecl *Conv;
2378 if (ConvTemplate)
2379 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2380 else
2381 Conv = cast<CXXConversionDecl>(D);
2383 // If the conversion function doesn't return a reference type,
2384 // it can't be considered for this conversion unless we're allowed to
2385 // consider rvalues.
2386 // FIXME: Do we need to make sure that we only consider conversion
2387 // candidates with reference-compatible results? That might be needed to
2388 // break recursion.
2389 if ((AllowExplicit || !Conv->isExplicit()) &&
2390 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2391 if (ConvTemplate)
2392 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2393 ActingDC, Initializer,
2394 DestType, CandidateSet);
2395 else
2396 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2397 Initializer, DestType, CandidateSet);
2401 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2402 return OR_No_Viable_Function;
2404 SourceLocation DeclLoc = Initializer->getLocStart();
2406 // Perform overload resolution. If it fails, return the failed result.
2407 OverloadCandidateSet::iterator Best;
2408 if (OverloadingResult Result
2409 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2410 return Result;
2412 FunctionDecl *Function = Best->Function;
2414 // Compute the returned type of the conversion.
2415 if (isa<CXXConversionDecl>(Function))
2416 T2 = Function->getResultType();
2417 else
2418 T2 = cv1T1;
2420 // Add the user-defined conversion step.
2421 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2422 T2.getNonLValueExprType(S.Context));
2424 // Determine whether we need to perform derived-to-base or
2425 // cv-qualification adjustments.
2426 ExprValueKind VK = VK_RValue;
2427 if (T2->isLValueReferenceType())
2428 VK = VK_LValue;
2429 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2430 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2432 bool NewDerivedToBase = false;
2433 bool NewObjCConversion = false;
2434 Sema::ReferenceCompareResult NewRefRelationship
2435 = S.CompareReferenceRelationship(DeclLoc, T1,
2436 T2.getNonLValueExprType(S.Context),
2437 NewDerivedToBase, NewObjCConversion);
2438 if (NewRefRelationship == Sema::Ref_Incompatible) {
2439 // If the type we've converted to is not reference-related to the
2440 // type we're looking for, then there is another conversion step
2441 // we need to perform to produce a temporary of the right type
2442 // that we'll be binding to.
2443 ImplicitConversionSequence ICS;
2444 ICS.setStandard();
2445 ICS.Standard = Best->FinalConversion;
2446 T2 = ICS.Standard.getToType(2);
2447 Sequence.AddConversionSequenceStep(ICS, T2);
2448 } else if (NewDerivedToBase)
2449 Sequence.AddDerivedToBaseCastStep(
2450 S.Context.getQualifiedType(T1,
2451 T2.getNonReferenceType().getQualifiers()),
2452 VK);
2453 else if (NewObjCConversion)
2454 Sequence.AddObjCObjectConversionStep(
2455 S.Context.getQualifiedType(T1,
2456 T2.getNonReferenceType().getQualifiers()));
2458 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2459 Sequence.AddQualificationConversionStep(cv1T1, VK);
2461 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2462 return OR_Success;
2465 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2466 static void TryReferenceInitialization(Sema &S,
2467 const InitializedEntity &Entity,
2468 const InitializationKind &Kind,
2469 Expr *Initializer,
2470 InitializationSequence &Sequence) {
2471 Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2473 QualType DestType = Entity.getType();
2474 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2475 Qualifiers T1Quals;
2476 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2477 QualType cv2T2 = Initializer->getType();
2478 Qualifiers T2Quals;
2479 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2480 SourceLocation DeclLoc = Initializer->getLocStart();
2482 // If the initializer is the address of an overloaded function, try
2483 // to resolve the overloaded function. If all goes well, T2 is the
2484 // type of the resulting function.
2485 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2486 DeclAccessPair Found;
2487 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2489 false,
2490 Found)) {
2491 Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2492 cv2T2 = Fn->getType();
2493 T2 = cv2T2.getUnqualifiedType();
2494 } else if (!T1->isRecordType()) {
2495 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2496 return;
2500 // Compute some basic properties of the types and the initializer.
2501 bool isLValueRef = DestType->isLValueReferenceType();
2502 bool isRValueRef = !isLValueRef;
2503 bool DerivedToBase = false;
2504 bool ObjCConversion = false;
2505 Expr::Classification InitCategory = Initializer->Classify(S.Context);
2506 Sema::ReferenceCompareResult RefRelationship
2507 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2508 ObjCConversion);
2510 // C++0x [dcl.init.ref]p5:
2511 // A reference to type "cv1 T1" is initialized by an expression of type
2512 // "cv2 T2" as follows:
2514 // - If the reference is an lvalue reference and the initializer
2515 // expression
2516 // Note the analogous bullet points for rvlaue refs to functions. Because
2517 // there are no function rvalues in C++, rvalue refs to functions are treated
2518 // like lvalue refs.
2519 OverloadingResult ConvOvlResult = OR_Success;
2520 bool T1Function = T1->isFunctionType();
2521 if (isLValueRef || T1Function) {
2522 if (InitCategory.isLValue() &&
2523 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2524 (Kind.isCStyleOrFunctionalCast() &&
2525 RefRelationship == Sema::Ref_Related))) {
2526 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
2527 // reference-compatible with "cv2 T2," or
2529 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2530 // bit-field when we're determining whether the reference initialization
2531 // can occur. However, we do pay attention to whether it is a bit-field
2532 // to decide whether we're actually binding to a temporary created from
2533 // the bit-field.
2534 if (DerivedToBase)
2535 Sequence.AddDerivedToBaseCastStep(
2536 S.Context.getQualifiedType(T1, T2Quals),
2537 VK_LValue);
2538 else if (ObjCConversion)
2539 Sequence.AddObjCObjectConversionStep(
2540 S.Context.getQualifiedType(T1, T2Quals));
2542 if (T1Quals != T2Quals)
2543 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2544 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2545 (Initializer->getBitField() || Initializer->refersToVectorElement());
2546 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2547 return;
2550 // - has a class type (i.e., T2 is a class type), where T1 is not
2551 // reference-related to T2, and can be implicitly converted to an
2552 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2553 // with "cv3 T3" (this conversion is selected by enumerating the
2554 // applicable conversion functions (13.3.1.6) and choosing the best
2555 // one through overload resolution (13.3)),
2556 // If we have an rvalue ref to function type here, the rhs must be
2557 // an rvalue.
2558 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2559 (isLValueRef || InitCategory.isRValue())) {
2560 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2561 Initializer,
2562 /*AllowRValues=*/isRValueRef,
2563 Sequence);
2564 if (ConvOvlResult == OR_Success)
2565 return;
2566 if (ConvOvlResult != OR_No_Viable_Function) {
2567 Sequence.SetOverloadFailure(
2568 InitializationSequence::FK_ReferenceInitOverloadFailed,
2569 ConvOvlResult);
2574 // - Otherwise, the reference shall be an lvalue reference to a
2575 // non-volatile const type (i.e., cv1 shall be const), or the reference
2576 // shall be an rvalue reference.
2577 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2578 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2579 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2580 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2581 Sequence.SetOverloadFailure(
2582 InitializationSequence::FK_ReferenceInitOverloadFailed,
2583 ConvOvlResult);
2584 else
2585 Sequence.SetFailed(InitCategory.isLValue()
2586 ? (RefRelationship == Sema::Ref_Related
2587 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2588 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2589 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2591 return;
2594 // - If the initializer expression
2595 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
2596 // "cv1 T1" is reference-compatible with "cv2 T2"
2597 // Note: functions are handled below.
2598 if (!T1Function &&
2599 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2600 (Kind.isCStyleOrFunctionalCast() &&
2601 RefRelationship == Sema::Ref_Related)) &&
2602 (InitCategory.isXValue() ||
2603 (InitCategory.isPRValue() && T2->isRecordType()) ||
2604 (InitCategory.isPRValue() && T2->isArrayType()))) {
2605 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2606 if (InitCategory.isPRValue() && T2->isRecordType()) {
2607 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2608 // compiler the freedom to perform a copy here or bind to the
2609 // object, while C++0x requires that we bind directly to the
2610 // object. Hence, we always bind to the object without making an
2611 // extra copy. However, in C++03 requires that we check for the
2612 // presence of a suitable copy constructor:
2614 // The constructor that would be used to make the copy shall
2615 // be callable whether or not the copy is actually done.
2616 if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2617 Sequence.AddExtraneousCopyToTemporary(cv2T2);
2620 if (DerivedToBase)
2621 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2622 ValueKind);
2623 else if (ObjCConversion)
2624 Sequence.AddObjCObjectConversionStep(
2625 S.Context.getQualifiedType(T1, T2Quals));
2627 if (T1Quals != T2Quals)
2628 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2629 Sequence.AddReferenceBindingStep(cv1T1,
2630 /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2631 return;
2634 // - has a class type (i.e., T2 is a class type), where T1 is not
2635 // reference-related to T2, and can be implicitly converted to an
2636 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
2637 // where "cv1 T1" is reference-compatible with "cv3 T3",
2638 if (T2->isRecordType()) {
2639 if (RefRelationship == Sema::Ref_Incompatible) {
2640 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2641 Kind, Initializer,
2642 /*AllowRValues=*/true,
2643 Sequence);
2644 if (ConvOvlResult)
2645 Sequence.SetOverloadFailure(
2646 InitializationSequence::FK_ReferenceInitOverloadFailed,
2647 ConvOvlResult);
2649 return;
2652 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2653 return;
2656 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
2657 // from the initializer expression using the rules for a non-reference
2658 // copy initialization (8.5). The reference is then bound to the
2659 // temporary. [...]
2661 // Determine whether we are allowed to call explicit constructors or
2662 // explicit conversion operators.
2663 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2665 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2667 if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2668 /*SuppressUserConversions*/ false,
2669 AllowExplicit,
2670 /*FIXME:InOverloadResolution=*/false,
2671 /*CStyle=*/Kind.isCStyleOrFunctionalCast())) {
2672 // FIXME: Use the conversion function set stored in ICS to turn
2673 // this into an overloading ambiguity diagnostic. However, we need
2674 // to keep that set as an OverloadCandidateSet rather than as some
2675 // other kind of set.
2676 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2677 Sequence.SetOverloadFailure(
2678 InitializationSequence::FK_ReferenceInitOverloadFailed,
2679 ConvOvlResult);
2680 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2681 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2682 else
2683 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2684 return;
2687 // [...] If T1 is reference-related to T2, cv1 must be the
2688 // same cv-qualification as, or greater cv-qualification
2689 // than, cv2; otherwise, the program is ill-formed.
2690 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2691 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2692 if (RefRelationship == Sema::Ref_Related &&
2693 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2694 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2695 return;
2698 // [...] If T1 is reference-related to T2 and the reference is an rvalue
2699 // reference, the initializer expression shall not be an lvalue.
2700 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2701 InitCategory.isLValue()) {
2702 Sequence.SetFailed(
2703 InitializationSequence::FK_RValueReferenceBindingToLValue);
2704 return;
2707 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2708 return;
2711 /// \brief Attempt character array initialization from a string literal
2712 /// (C++ [dcl.init.string], C99 6.7.8).
2713 static void TryStringLiteralInitialization(Sema &S,
2714 const InitializedEntity &Entity,
2715 const InitializationKind &Kind,
2716 Expr *Initializer,
2717 InitializationSequence &Sequence) {
2718 Sequence.setSequenceKind(InitializationSequence::StringInit);
2719 Sequence.AddStringInitStep(Entity.getType());
2722 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2723 /// enumerates the constructors of the initialized entity and performs overload
2724 /// resolution to select the best.
2725 static void TryConstructorInitialization(Sema &S,
2726 const InitializedEntity &Entity,
2727 const InitializationKind &Kind,
2728 Expr **Args, unsigned NumArgs,
2729 QualType DestType,
2730 InitializationSequence &Sequence) {
2731 Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2733 // Build the candidate set directly in the initialization sequence
2734 // structure, so that it will persist if we fail.
2735 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2736 CandidateSet.clear();
2738 // Determine whether we are allowed to call explicit constructors or
2739 // explicit conversion operators.
2740 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2741 Kind.getKind() == InitializationKind::IK_Value ||
2742 Kind.getKind() == InitializationKind::IK_Default);
2744 // The type we're constructing needs to be complete.
2745 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2746 Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2747 return;
2750 // The type we're converting to is a class type. Enumerate its constructors
2751 // to see if one is suitable.
2752 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2753 assert(DestRecordType && "Constructor initialization requires record type");
2754 CXXRecordDecl *DestRecordDecl
2755 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2757 DeclContext::lookup_iterator Con, ConEnd;
2758 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2759 Con != ConEnd; ++Con) {
2760 NamedDecl *D = *Con;
2761 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2762 bool SuppressUserConversions = false;
2764 // Find the constructor (which may be a template).
2765 CXXConstructorDecl *Constructor = 0;
2766 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2767 if (ConstructorTmpl)
2768 Constructor = cast<CXXConstructorDecl>(
2769 ConstructorTmpl->getTemplatedDecl());
2770 else {
2771 Constructor = cast<CXXConstructorDecl>(D);
2773 // If we're performing copy initialization using a copy constructor, we
2774 // suppress user-defined conversions on the arguments.
2775 // FIXME: Move constructors?
2776 if (Kind.getKind() == InitializationKind::IK_Copy &&
2777 Constructor->isCopyConstructor())
2778 SuppressUserConversions = true;
2781 if (!Constructor->isInvalidDecl() &&
2782 (AllowExplicit || !Constructor->isExplicit())) {
2783 if (ConstructorTmpl)
2784 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2785 /*ExplicitArgs*/ 0,
2786 Args, NumArgs, CandidateSet,
2787 SuppressUserConversions);
2788 else
2789 S.AddOverloadCandidate(Constructor, FoundDecl,
2790 Args, NumArgs, CandidateSet,
2791 SuppressUserConversions);
2795 SourceLocation DeclLoc = Kind.getLocation();
2797 // Perform overload resolution. If it fails, return the failed result.
2798 OverloadCandidateSet::iterator Best;
2799 if (OverloadingResult Result
2800 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2801 Sequence.SetOverloadFailure(
2802 InitializationSequence::FK_ConstructorOverloadFailed,
2803 Result);
2804 return;
2807 // C++0x [dcl.init]p6:
2808 // If a program calls for the default initialization of an object
2809 // of a const-qualified type T, T shall be a class type with a
2810 // user-provided default constructor.
2811 if (Kind.getKind() == InitializationKind::IK_Default &&
2812 Entity.getType().isConstQualified() &&
2813 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2814 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2815 return;
2818 // Add the constructor initialization step. Any cv-qualification conversion is
2819 // subsumed by the initialization.
2820 Sequence.AddConstructorInitializationStep(
2821 cast<CXXConstructorDecl>(Best->Function),
2822 Best->FoundDecl.getAccess(),
2823 DestType);
2826 /// \brief Attempt value initialization (C++ [dcl.init]p7).
2827 static void TryValueInitialization(Sema &S,
2828 const InitializedEntity &Entity,
2829 const InitializationKind &Kind,
2830 InitializationSequence &Sequence) {
2831 // C++ [dcl.init]p5:
2833 // To value-initialize an object of type T means:
2834 QualType T = Entity.getType();
2836 // -- if T is an array type, then each element is value-initialized;
2837 while (const ArrayType *AT = S.Context.getAsArrayType(T))
2838 T = AT->getElementType();
2840 if (const RecordType *RT = T->getAs<RecordType>()) {
2841 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2842 // -- if T is a class type (clause 9) with a user-declared
2843 // constructor (12.1), then the default constructor for T is
2844 // called (and the initialization is ill-formed if T has no
2845 // accessible default constructor);
2847 // FIXME: we really want to refer to a single subobject of the array,
2848 // but Entity doesn't have a way to capture that (yet).
2849 if (ClassDecl->hasUserDeclaredConstructor())
2850 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2852 // -- if T is a (possibly cv-qualified) non-union class type
2853 // without a user-provided constructor, then the object is
2854 // zero-initialized and, if T's implicitly-declared default
2855 // constructor is non-trivial, that constructor is called.
2856 if ((ClassDecl->getTagKind() == TTK_Class ||
2857 ClassDecl->getTagKind() == TTK_Struct)) {
2858 Sequence.AddZeroInitializationStep(Entity.getType());
2859 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2864 Sequence.AddZeroInitializationStep(Entity.getType());
2865 Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2868 /// \brief Attempt default initialization (C++ [dcl.init]p6).
2869 static void TryDefaultInitialization(Sema &S,
2870 const InitializedEntity &Entity,
2871 const InitializationKind &Kind,
2872 InitializationSequence &Sequence) {
2873 assert(Kind.getKind() == InitializationKind::IK_Default);
2875 // C++ [dcl.init]p6:
2876 // To default-initialize an object of type T means:
2877 // - if T is an array type, each element is default-initialized;
2878 QualType DestType = Entity.getType();
2879 while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2880 DestType = Array->getElementType();
2882 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
2883 // constructor for T is called (and the initialization is ill-formed if
2884 // T has no accessible default constructor);
2885 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2886 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
2887 return;
2890 // - otherwise, no initialization is performed.
2891 Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2893 // If a program calls for the default initialization of an object of
2894 // a const-qualified type T, T shall be a class type with a user-provided
2895 // default constructor.
2896 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2897 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2900 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2901 /// which enumerates all conversion functions and performs overload resolution
2902 /// to select the best.
2903 static void TryUserDefinedConversion(Sema &S,
2904 const InitializedEntity &Entity,
2905 const InitializationKind &Kind,
2906 Expr *Initializer,
2907 InitializationSequence &Sequence) {
2908 Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2910 QualType DestType = Entity.getType();
2911 assert(!DestType->isReferenceType() && "References are handled elsewhere");
2912 QualType SourceType = Initializer->getType();
2913 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2914 "Must have a class type to perform a user-defined conversion");
2916 // Build the candidate set directly in the initialization sequence
2917 // structure, so that it will persist if we fail.
2918 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2919 CandidateSet.clear();
2921 // Determine whether we are allowed to call explicit constructors or
2922 // explicit conversion operators.
2923 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2925 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2926 // The type we're converting to is a class type. Enumerate its constructors
2927 // to see if there is a suitable conversion.
2928 CXXRecordDecl *DestRecordDecl
2929 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2931 // Try to complete the type we're converting to.
2932 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2933 DeclContext::lookup_iterator Con, ConEnd;
2934 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2935 Con != ConEnd; ++Con) {
2936 NamedDecl *D = *Con;
2937 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2939 // Find the constructor (which may be a template).
2940 CXXConstructorDecl *Constructor = 0;
2941 FunctionTemplateDecl *ConstructorTmpl
2942 = dyn_cast<FunctionTemplateDecl>(D);
2943 if (ConstructorTmpl)
2944 Constructor = cast<CXXConstructorDecl>(
2945 ConstructorTmpl->getTemplatedDecl());
2946 else
2947 Constructor = cast<CXXConstructorDecl>(D);
2949 if (!Constructor->isInvalidDecl() &&
2950 Constructor->isConvertingConstructor(AllowExplicit)) {
2951 if (ConstructorTmpl)
2952 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2953 /*ExplicitArgs*/ 0,
2954 &Initializer, 1, CandidateSet,
2955 /*SuppressUserConversions=*/true);
2956 else
2957 S.AddOverloadCandidate(Constructor, FoundDecl,
2958 &Initializer, 1, CandidateSet,
2959 /*SuppressUserConversions=*/true);
2965 SourceLocation DeclLoc = Initializer->getLocStart();
2967 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2968 // The type we're converting from is a class type, enumerate its conversion
2969 // functions.
2971 // We can only enumerate the conversion functions for a complete type; if
2972 // the type isn't complete, simply skip this step.
2973 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2974 CXXRecordDecl *SourceRecordDecl
2975 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2977 const UnresolvedSetImpl *Conversions
2978 = SourceRecordDecl->getVisibleConversionFunctions();
2979 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2980 E = Conversions->end();
2981 I != E; ++I) {
2982 NamedDecl *D = *I;
2983 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2984 if (isa<UsingShadowDecl>(D))
2985 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2987 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2988 CXXConversionDecl *Conv;
2989 if (ConvTemplate)
2990 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2991 else
2992 Conv = cast<CXXConversionDecl>(D);
2994 if (AllowExplicit || !Conv->isExplicit()) {
2995 if (ConvTemplate)
2996 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2997 ActingDC, Initializer, DestType,
2998 CandidateSet);
2999 else
3000 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3001 Initializer, DestType, CandidateSet);
3007 // Perform overload resolution. If it fails, return the failed result.
3008 OverloadCandidateSet::iterator Best;
3009 if (OverloadingResult Result
3010 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3011 Sequence.SetOverloadFailure(
3012 InitializationSequence::FK_UserConversionOverloadFailed,
3013 Result);
3014 return;
3017 FunctionDecl *Function = Best->Function;
3019 if (isa<CXXConstructorDecl>(Function)) {
3020 // Add the user-defined conversion step. Any cv-qualification conversion is
3021 // subsumed by the initialization.
3022 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3023 return;
3026 // Add the user-defined conversion step that calls the conversion function.
3027 QualType ConvType = Function->getCallResultType();
3028 if (ConvType->getAs<RecordType>()) {
3029 // If we're converting to a class type, there may be an copy if
3030 // the resulting temporary object (possible to create an object of
3031 // a base class type). That copy is not a separate conversion, so
3032 // we just make a note of the actual destination type (possibly a
3033 // base class of the type returned by the conversion function) and
3034 // let the user-defined conversion step handle the conversion.
3035 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3036 return;
3039 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3041 // If the conversion following the call to the conversion function
3042 // is interesting, add it as a separate step.
3043 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3044 Best->FinalConversion.Third) {
3045 ImplicitConversionSequence ICS;
3046 ICS.setStandard();
3047 ICS.Standard = Best->FinalConversion;
3048 Sequence.AddConversionSequenceStep(ICS, DestType);
3052 InitializationSequence::InitializationSequence(Sema &S,
3053 const InitializedEntity &Entity,
3054 const InitializationKind &Kind,
3055 Expr **Args,
3056 unsigned NumArgs)
3057 : FailedCandidateSet(Kind.getLocation()) {
3058 ASTContext &Context = S.Context;
3060 // C++0x [dcl.init]p16:
3061 // The semantics of initializers are as follows. The destination type is
3062 // the type of the object or reference being initialized and the source
3063 // type is the type of the initializer expression. The source type is not
3064 // defined when the initializer is a braced-init-list or when it is a
3065 // parenthesized list of expressions.
3066 QualType DestType = Entity.getType();
3068 if (DestType->isDependentType() ||
3069 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3070 SequenceKind = DependentSequence;
3071 return;
3074 for (unsigned I = 0; I != NumArgs; ++I)
3075 if (Args[I]->getObjectKind() == OK_ObjCProperty)
3076 S.ConvertPropertyForRValue(Args[I]);
3078 QualType SourceType;
3079 Expr *Initializer = 0;
3080 if (NumArgs == 1) {
3081 Initializer = Args[0];
3082 if (!isa<InitListExpr>(Initializer))
3083 SourceType = Initializer->getType();
3086 // - If the initializer is a braced-init-list, the object is
3087 // list-initialized (8.5.4).
3088 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3089 TryListInitialization(S, Entity, Kind, InitList, *this);
3090 return;
3093 // - If the destination type is a reference type, see 8.5.3.
3094 if (DestType->isReferenceType()) {
3095 // C++0x [dcl.init.ref]p1:
3096 // A variable declared to be a T& or T&&, that is, "reference to type T"
3097 // (8.3.2), shall be initialized by an object, or function, of type T or
3098 // by an object that can be converted into a T.
3099 // (Therefore, multiple arguments are not permitted.)
3100 if (NumArgs != 1)
3101 SetFailed(FK_TooManyInitsForReference);
3102 else
3103 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3104 return;
3107 // - If the destination type is an array of characters, an array of
3108 // char16_t, an array of char32_t, or an array of wchar_t, and the
3109 // initializer is a string literal, see 8.5.2.
3110 if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3111 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3112 return;
3115 // - If the initializer is (), the object is value-initialized.
3116 if (Kind.getKind() == InitializationKind::IK_Value ||
3117 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3118 TryValueInitialization(S, Entity, Kind, *this);
3119 return;
3122 // Handle default initialization.
3123 if (Kind.getKind() == InitializationKind::IK_Default) {
3124 TryDefaultInitialization(S, Entity, Kind, *this);
3125 return;
3128 // - Otherwise, if the destination type is an array, the program is
3129 // ill-formed.
3130 if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3131 if (AT->getElementType()->isAnyCharacterType())
3132 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3133 else
3134 SetFailed(FK_ArrayNeedsInitList);
3136 return;
3139 // Handle initialization in C
3140 if (!S.getLangOptions().CPlusPlus) {
3141 setSequenceKind(CAssignment);
3142 AddCAssignmentStep(DestType);
3143 return;
3146 // - If the destination type is a (possibly cv-qualified) class type:
3147 if (DestType->isRecordType()) {
3148 // - If the initialization is direct-initialization, or if it is
3149 // copy-initialization where the cv-unqualified version of the
3150 // source type is the same class as, or a derived class of, the
3151 // class of the destination, constructors are considered. [...]
3152 if (Kind.getKind() == InitializationKind::IK_Direct ||
3153 (Kind.getKind() == InitializationKind::IK_Copy &&
3154 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3155 S.IsDerivedFrom(SourceType, DestType))))
3156 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3157 Entity.getType(), *this);
3158 // - Otherwise (i.e., for the remaining copy-initialization cases),
3159 // user-defined conversion sequences that can convert from the source
3160 // type to the destination type or (when a conversion function is
3161 // used) to a derived class thereof are enumerated as described in
3162 // 13.3.1.4, and the best one is chosen through overload resolution
3163 // (13.3).
3164 else
3165 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3166 return;
3169 if (NumArgs > 1) {
3170 SetFailed(FK_TooManyInitsForScalar);
3171 return;
3173 assert(NumArgs == 1 && "Zero-argument case handled above");
3175 // - Otherwise, if the source type is a (possibly cv-qualified) class
3176 // type, conversion functions are considered.
3177 if (!SourceType.isNull() && SourceType->isRecordType()) {
3178 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3179 return;
3182 // - Otherwise, the initial value of the object being initialized is the
3183 // (possibly converted) value of the initializer expression. Standard
3184 // conversions (Clause 4) will be used, if necessary, to convert the
3185 // initializer expression to the cv-unqualified version of the
3186 // destination type; no user-defined conversions are considered.
3187 if (S.TryImplicitConversion(*this, Entity, Initializer,
3188 /*SuppressUserConversions*/ true,
3189 /*AllowExplicitConversions*/ false,
3190 /*InOverloadResolution*/ false,
3191 /*CStyle=*/Kind.isCStyleOrFunctionalCast()))
3193 if (Initializer->getType() == Context.OverloadTy)
3194 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3195 else
3196 SetFailed(InitializationSequence::FK_ConversionFailed);
3198 else
3199 setSequenceKind(StandardConversion);
3202 InitializationSequence::~InitializationSequence() {
3203 for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3204 StepEnd = Steps.end();
3205 Step != StepEnd; ++Step)
3206 Step->Destroy();
3209 //===----------------------------------------------------------------------===//
3210 // Perform initialization
3211 //===----------------------------------------------------------------------===//
3212 static Sema::AssignmentAction
3213 getAssignmentAction(const InitializedEntity &Entity) {
3214 switch(Entity.getKind()) {
3215 case InitializedEntity::EK_Variable:
3216 case InitializedEntity::EK_New:
3217 case InitializedEntity::EK_Exception:
3218 case InitializedEntity::EK_Base:
3219 return Sema::AA_Initializing;
3221 case InitializedEntity::EK_Parameter:
3222 if (Entity.getDecl() &&
3223 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3224 return Sema::AA_Sending;
3226 return Sema::AA_Passing;
3228 case InitializedEntity::EK_Result:
3229 return Sema::AA_Returning;
3231 case InitializedEntity::EK_Temporary:
3232 // FIXME: Can we tell apart casting vs. converting?
3233 return Sema::AA_Casting;
3235 case InitializedEntity::EK_Member:
3236 case InitializedEntity::EK_ArrayElement:
3237 case InitializedEntity::EK_VectorElement:
3238 case InitializedEntity::EK_BlockElement:
3239 return Sema::AA_Initializing;
3242 return Sema::AA_Converting;
3245 /// \brief Whether we should binding a created object as a temporary when
3246 /// initializing the given entity.
3247 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3248 switch (Entity.getKind()) {
3249 case InitializedEntity::EK_ArrayElement:
3250 case InitializedEntity::EK_Member:
3251 case InitializedEntity::EK_Result:
3252 case InitializedEntity::EK_New:
3253 case InitializedEntity::EK_Variable:
3254 case InitializedEntity::EK_Base:
3255 case InitializedEntity::EK_VectorElement:
3256 case InitializedEntity::EK_Exception:
3257 case InitializedEntity::EK_BlockElement:
3258 return false;
3260 case InitializedEntity::EK_Parameter:
3261 case InitializedEntity::EK_Temporary:
3262 return true;
3265 llvm_unreachable("missed an InitializedEntity kind?");
3268 /// \brief Whether the given entity, when initialized with an object
3269 /// created for that initialization, requires destruction.
3270 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3271 switch (Entity.getKind()) {
3272 case InitializedEntity::EK_Member:
3273 case InitializedEntity::EK_Result:
3274 case InitializedEntity::EK_New:
3275 case InitializedEntity::EK_Base:
3276 case InitializedEntity::EK_VectorElement:
3277 case InitializedEntity::EK_BlockElement:
3278 return false;
3280 case InitializedEntity::EK_Variable:
3281 case InitializedEntity::EK_Parameter:
3282 case InitializedEntity::EK_Temporary:
3283 case InitializedEntity::EK_ArrayElement:
3284 case InitializedEntity::EK_Exception:
3285 return true;
3288 llvm_unreachable("missed an InitializedEntity kind?");
3291 /// \brief Make a (potentially elidable) temporary copy of the object
3292 /// provided by the given initializer by calling the appropriate copy
3293 /// constructor.
3295 /// \param S The Sema object used for type-checking.
3297 /// \param T The type of the temporary object, which must either be
3298 /// the type of the initializer expression or a superclass thereof.
3300 /// \param Enter The entity being initialized.
3302 /// \param CurInit The initializer expression.
3304 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3305 /// is permitted in C++03 (but not C++0x) when binding a reference to
3306 /// an rvalue.
3308 /// \returns An expression that copies the initializer expression into
3309 /// a temporary object, or an error expression if a copy could not be
3310 /// created.
3311 static ExprResult CopyObject(Sema &S,
3312 QualType T,
3313 const InitializedEntity &Entity,
3314 ExprResult CurInit,
3315 bool IsExtraneousCopy) {
3316 // Determine which class type we're copying to.
3317 Expr *CurInitExpr = (Expr *)CurInit.get();
3318 CXXRecordDecl *Class = 0;
3319 if (const RecordType *Record = T->getAs<RecordType>())
3320 Class = cast<CXXRecordDecl>(Record->getDecl());
3321 if (!Class)
3322 return move(CurInit);
3324 // C++0x [class.copy]p32:
3325 // When certain criteria are met, an implementation is allowed to
3326 // omit the copy/move construction of a class object, even if the
3327 // copy/move constructor and/or destructor for the object have
3328 // side effects. [...]
3329 // - when a temporary class object that has not been bound to a
3330 // reference (12.2) would be copied/moved to a class object
3331 // with the same cv-unqualified type, the copy/move operation
3332 // can be omitted by constructing the temporary object
3333 // directly into the target of the omitted copy/move
3335 // Note that the other three bullets are handled elsewhere. Copy
3336 // elision for return statements and throw expressions are handled as part
3337 // of constructor initialization, while copy elision for exception handlers
3338 // is handled by the run-time.
3339 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3340 SourceLocation Loc;
3341 switch (Entity.getKind()) {
3342 case InitializedEntity::EK_Result:
3343 Loc = Entity.getReturnLoc();
3344 break;
3346 case InitializedEntity::EK_Exception:
3347 Loc = Entity.getThrowLoc();
3348 break;
3350 case InitializedEntity::EK_Variable:
3351 Loc = Entity.getDecl()->getLocation();
3352 break;
3354 case InitializedEntity::EK_ArrayElement:
3355 case InitializedEntity::EK_Member:
3356 case InitializedEntity::EK_Parameter:
3357 case InitializedEntity::EK_Temporary:
3358 case InitializedEntity::EK_New:
3359 case InitializedEntity::EK_Base:
3360 case InitializedEntity::EK_VectorElement:
3361 case InitializedEntity::EK_BlockElement:
3362 Loc = CurInitExpr->getLocStart();
3363 break;
3366 // Make sure that the type we are copying is complete.
3367 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3368 return move(CurInit);
3370 // Perform overload resolution using the class's copy/move constructors.
3371 DeclContext::lookup_iterator Con, ConEnd;
3372 OverloadCandidateSet CandidateSet(Loc);
3373 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3374 Con != ConEnd; ++Con) {
3375 // Only consider copy/move constructors and constructor templates. Per
3376 // C++0x [dcl.init]p16, second bullet to class types, this
3377 // initialization is direct-initialization.
3378 CXXConstructorDecl *Constructor = 0;
3380 if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3381 // Handle copy/moveconstructors, only.
3382 if (!Constructor || Constructor->isInvalidDecl() ||
3383 !Constructor->isCopyOrMoveConstructor() ||
3384 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3385 continue;
3387 DeclAccessPair FoundDecl
3388 = DeclAccessPair::make(Constructor, Constructor->getAccess());
3389 S.AddOverloadCandidate(Constructor, FoundDecl,
3390 &CurInitExpr, 1, CandidateSet);
3391 continue;
3394 // Handle constructor templates.
3395 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3396 if (ConstructorTmpl->isInvalidDecl())
3397 continue;
3399 Constructor = cast<CXXConstructorDecl>(
3400 ConstructorTmpl->getTemplatedDecl());
3401 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3402 continue;
3404 // FIXME: Do we need to limit this to copy-constructor-like
3405 // candidates?
3406 DeclAccessPair FoundDecl
3407 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3408 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3409 &CurInitExpr, 1, CandidateSet, true);
3412 OverloadCandidateSet::iterator Best;
3413 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3414 case OR_Success:
3415 break;
3417 case OR_No_Viable_Function:
3418 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3419 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3420 : diag::err_temp_copy_no_viable)
3421 << (int)Entity.getKind() << CurInitExpr->getType()
3422 << CurInitExpr->getSourceRange();
3423 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3424 if (!IsExtraneousCopy || S.isSFINAEContext())
3425 return ExprError();
3426 return move(CurInit);
3428 case OR_Ambiguous:
3429 S.Diag(Loc, diag::err_temp_copy_ambiguous)
3430 << (int)Entity.getKind() << CurInitExpr->getType()
3431 << CurInitExpr->getSourceRange();
3432 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3433 return ExprError();
3435 case OR_Deleted:
3436 S.Diag(Loc, diag::err_temp_copy_deleted)
3437 << (int)Entity.getKind() << CurInitExpr->getType()
3438 << CurInitExpr->getSourceRange();
3439 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3440 << Best->Function->isDeleted();
3441 return ExprError();
3444 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3445 ASTOwningVector<Expr*> ConstructorArgs(S);
3446 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3448 S.CheckConstructorAccess(Loc, Constructor, Entity,
3449 Best->FoundDecl.getAccess(), IsExtraneousCopy);
3451 if (IsExtraneousCopy) {
3452 // If this is a totally extraneous copy for C++03 reference
3453 // binding purposes, just return the original initialization
3454 // expression. We don't generate an (elided) copy operation here
3455 // because doing so would require us to pass down a flag to avoid
3456 // infinite recursion, where each step adds another extraneous,
3457 // elidable copy.
3459 // Instantiate the default arguments of any extra parameters in
3460 // the selected copy constructor, as if we were going to create a
3461 // proper call to the copy constructor.
3462 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3463 ParmVarDecl *Parm = Constructor->getParamDecl(I);
3464 if (S.RequireCompleteType(Loc, Parm->getType(),
3465 S.PDiag(diag::err_call_incomplete_argument)))
3466 break;
3468 // Build the default argument expression; we don't actually care
3469 // if this succeeds or not, because this routine will complain
3470 // if there was a problem.
3471 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3474 return S.Owned(CurInitExpr);
3477 // Determine the arguments required to actually perform the
3478 // constructor call (we might have derived-to-base conversions, or
3479 // the copy constructor may have default arguments).
3480 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3481 Loc, ConstructorArgs))
3482 return ExprError();
3484 // Actually perform the constructor call.
3485 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3486 move_arg(ConstructorArgs),
3487 /*ZeroInit*/ false,
3488 CXXConstructExpr::CK_Complete,
3489 SourceRange());
3491 // If we're supposed to bind temporaries, do so.
3492 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3493 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3494 return move(CurInit);
3497 void InitializationSequence::PrintInitLocationNote(Sema &S,
3498 const InitializedEntity &Entity) {
3499 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3500 if (Entity.getDecl()->getLocation().isInvalid())
3501 return;
3503 if (Entity.getDecl()->getDeclName())
3504 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3505 << Entity.getDecl()->getDeclName();
3506 else
3507 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3511 ExprResult
3512 InitializationSequence::Perform(Sema &S,
3513 const InitializedEntity &Entity,
3514 const InitializationKind &Kind,
3515 MultiExprArg Args,
3516 QualType *ResultType) {
3517 if (SequenceKind == FailedSequence) {
3518 unsigned NumArgs = Args.size();
3519 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3520 return ExprError();
3523 if (SequenceKind == DependentSequence) {
3524 // If the declaration is a non-dependent, incomplete array type
3525 // that has an initializer, then its type will be completed once
3526 // the initializer is instantiated.
3527 if (ResultType && !Entity.getType()->isDependentType() &&
3528 Args.size() == 1) {
3529 QualType DeclType = Entity.getType();
3530 if (const IncompleteArrayType *ArrayT
3531 = S.Context.getAsIncompleteArrayType(DeclType)) {
3532 // FIXME: We don't currently have the ability to accurately
3533 // compute the length of an initializer list without
3534 // performing full type-checking of the initializer list
3535 // (since we have to determine where braces are implicitly
3536 // introduced and such). So, we fall back to making the array
3537 // type a dependently-sized array type with no specified
3538 // bound.
3539 if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3540 SourceRange Brackets;
3542 // Scavange the location of the brackets from the entity, if we can.
3543 if (DeclaratorDecl *DD = Entity.getDecl()) {
3544 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3545 TypeLoc TL = TInfo->getTypeLoc();
3546 if (IncompleteArrayTypeLoc *ArrayLoc
3547 = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3548 Brackets = ArrayLoc->getBracketsRange();
3552 *ResultType
3553 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3554 /*NumElts=*/0,
3555 ArrayT->getSizeModifier(),
3556 ArrayT->getIndexTypeCVRQualifiers(),
3557 Brackets);
3563 if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3564 return ExprResult(Args.release()[0]);
3566 if (Args.size() == 0)
3567 return S.Owned((Expr *)0);
3569 unsigned NumArgs = Args.size();
3570 return S.Owned(new (S.Context) ParenListExpr(S.Context,
3571 SourceLocation(),
3572 (Expr **)Args.release(),
3573 NumArgs,
3574 SourceLocation()));
3577 if (SequenceKind == NoInitialization)
3578 return S.Owned((Expr *)0);
3580 QualType DestType = Entity.getType().getNonReferenceType();
3581 // FIXME: Ugly hack around the fact that Entity.getType() is not
3582 // the same as Entity.getDecl()->getType() in cases involving type merging,
3583 // and we want latter when it makes sense.
3584 if (ResultType)
3585 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3586 Entity.getType();
3588 ExprResult CurInit = S.Owned((Expr *)0);
3590 assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3592 // For initialization steps that start with a single initializer,
3593 // grab the only argument out the Args and place it into the "current"
3594 // initializer.
3595 switch (Steps.front().Kind) {
3596 case SK_ResolveAddressOfOverloadedFunction:
3597 case SK_CastDerivedToBaseRValue:
3598 case SK_CastDerivedToBaseXValue:
3599 case SK_CastDerivedToBaseLValue:
3600 case SK_BindReference:
3601 case SK_BindReferenceToTemporary:
3602 case SK_ExtraneousCopyToTemporary:
3603 case SK_UserConversion:
3604 case SK_QualificationConversionLValue:
3605 case SK_QualificationConversionXValue:
3606 case SK_QualificationConversionRValue:
3607 case SK_ConversionSequence:
3608 case SK_ListInitialization:
3609 case SK_CAssignment:
3610 case SK_StringInit:
3611 case SK_ObjCObjectConversion: {
3612 assert(Args.size() == 1);
3613 Expr *CurInitExpr = Args.get()[0];
3614 if (!CurInitExpr) return ExprError();
3616 // Read from a property when initializing something with it.
3617 if (CurInitExpr->getObjectKind() == OK_ObjCProperty)
3618 S.ConvertPropertyForRValue(CurInitExpr);
3620 CurInit = ExprResult(CurInitExpr);
3621 break;
3624 case SK_ConstructorInitialization:
3625 case SK_ZeroInitialization:
3626 break;
3629 // Walk through the computed steps for the initialization sequence,
3630 // performing the specified conversions along the way.
3631 bool ConstructorInitRequiresZeroInit = false;
3632 for (step_iterator Step = step_begin(), StepEnd = step_end();
3633 Step != StepEnd; ++Step) {
3634 if (CurInit.isInvalid())
3635 return ExprError();
3637 Expr *CurInitExpr = CurInit.get();
3638 QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3640 switch (Step->Kind) {
3641 case SK_ResolveAddressOfOverloadedFunction:
3642 // Overload resolution determined which function invoke; update the
3643 // initializer to reflect that choice.
3644 S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3645 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3646 CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3647 Step->Function.FoundDecl,
3648 Step->Function.Function);
3649 break;
3651 case SK_CastDerivedToBaseRValue:
3652 case SK_CastDerivedToBaseXValue:
3653 case SK_CastDerivedToBaseLValue: {
3654 // We have a derived-to-base cast that produces either an rvalue or an
3655 // lvalue. Perform that cast.
3657 CXXCastPath BasePath;
3659 // Casts to inaccessible base classes are allowed with C-style casts.
3660 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3661 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3662 CurInitExpr->getLocStart(),
3663 CurInitExpr->getSourceRange(),
3664 &BasePath, IgnoreBaseAccess))
3665 return ExprError();
3667 if (S.BasePathInvolvesVirtualBase(BasePath)) {
3668 QualType T = SourceType;
3669 if (const PointerType *Pointer = T->getAs<PointerType>())
3670 T = Pointer->getPointeeType();
3671 if (const RecordType *RecordTy = T->getAs<RecordType>())
3672 S.MarkVTableUsed(CurInitExpr->getLocStart(),
3673 cast<CXXRecordDecl>(RecordTy->getDecl()));
3676 ExprValueKind VK =
3677 Step->Kind == SK_CastDerivedToBaseLValue ?
3678 VK_LValue :
3679 (Step->Kind == SK_CastDerivedToBaseXValue ?
3680 VK_XValue :
3681 VK_RValue);
3682 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3683 Step->Type,
3684 CK_DerivedToBase,
3685 CurInit.get(),
3686 &BasePath, VK));
3687 break;
3690 case SK_BindReference:
3691 if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3692 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3693 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3694 << Entity.getType().isVolatileQualified()
3695 << BitField->getDeclName()
3696 << CurInitExpr->getSourceRange();
3697 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3698 return ExprError();
3701 if (CurInitExpr->refersToVectorElement()) {
3702 // References cannot bind to vector elements.
3703 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3704 << Entity.getType().isVolatileQualified()
3705 << CurInitExpr->getSourceRange();
3706 PrintInitLocationNote(S, Entity);
3707 return ExprError();
3710 // Reference binding does not have any corresponding ASTs.
3712 // Check exception specifications
3713 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3714 return ExprError();
3716 break;
3718 case SK_BindReferenceToTemporary:
3719 // Reference binding does not have any corresponding ASTs.
3721 // Check exception specifications
3722 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3723 return ExprError();
3725 break;
3727 case SK_ExtraneousCopyToTemporary:
3728 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3729 /*IsExtraneousCopy=*/true);
3730 break;
3732 case SK_UserConversion: {
3733 // We have a user-defined conversion that invokes either a constructor
3734 // or a conversion function.
3735 CastKind CastKind;
3736 bool IsCopy = false;
3737 FunctionDecl *Fn = Step->Function.Function;
3738 DeclAccessPair FoundFn = Step->Function.FoundDecl;
3739 bool CreatedObject = false;
3740 bool IsLvalue = false;
3741 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3742 // Build a call to the selected constructor.
3743 ASTOwningVector<Expr*> ConstructorArgs(S);
3744 SourceLocation Loc = CurInitExpr->getLocStart();
3745 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3747 // Determine the arguments required to actually perform the constructor
3748 // call.
3749 if (S.CompleteConstructorCall(Constructor,
3750 MultiExprArg(&CurInitExpr, 1),
3751 Loc, ConstructorArgs))
3752 return ExprError();
3754 // Build the an expression that constructs a temporary.
3755 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3756 move_arg(ConstructorArgs),
3757 /*ZeroInit*/ false,
3758 CXXConstructExpr::CK_Complete,
3759 SourceRange());
3760 if (CurInit.isInvalid())
3761 return ExprError();
3763 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3764 FoundFn.getAccess());
3765 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3767 CastKind = CK_ConstructorConversion;
3768 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3769 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3770 S.IsDerivedFrom(SourceType, Class))
3771 IsCopy = true;
3773 CreatedObject = true;
3774 } else {
3775 // Build a call to the conversion function.
3776 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3777 IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3778 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3779 FoundFn);
3780 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3782 // FIXME: Should we move this initialization into a separate
3783 // derived-to-base conversion? I believe the answer is "no", because
3784 // we don't want to turn off access control here for c-style casts.
3785 if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3786 FoundFn, Conversion))
3787 return ExprError();
3789 // Do a little dance to make sure that CurInit has the proper
3790 // pointer.
3791 CurInit.release();
3793 // Build the actual call to the conversion function.
3794 CurInit = S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn, Conversion);
3795 if (CurInit.isInvalid() || !CurInit.get())
3796 return ExprError();
3798 CastKind = CK_UserDefinedConversion;
3800 CreatedObject = Conversion->getResultType()->isRecordType();
3803 bool RequiresCopy = !IsCopy &&
3804 getKind() != InitializationSequence::ReferenceBinding;
3805 if (RequiresCopy || shouldBindAsTemporary(Entity))
3806 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3807 else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3808 CurInitExpr = static_cast<Expr *>(CurInit.get());
3809 QualType T = CurInitExpr->getType();
3810 if (const RecordType *Record = T->getAs<RecordType>()) {
3811 CXXDestructorDecl *Destructor
3812 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3813 S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3814 S.PDiag(diag::err_access_dtor_temp) << T);
3815 S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3816 S.DiagnoseUseOfDecl(Destructor, CurInitExpr->getLocStart());
3820 CurInitExpr = CurInit.takeAs<Expr>();
3821 // FIXME: xvalues
3822 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3823 CurInitExpr->getType(),
3824 CastKind, CurInitExpr, 0,
3825 IsLvalue ? VK_LValue : VK_RValue));
3827 if (RequiresCopy)
3828 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3829 move(CurInit), /*IsExtraneousCopy=*/false);
3831 break;
3834 case SK_QualificationConversionLValue:
3835 case SK_QualificationConversionXValue:
3836 case SK_QualificationConversionRValue: {
3837 // Perform a qualification conversion; these can never go wrong.
3838 ExprValueKind VK =
3839 Step->Kind == SK_QualificationConversionLValue ?
3840 VK_LValue :
3841 (Step->Kind == SK_QualificationConversionXValue ?
3842 VK_XValue :
3843 VK_RValue);
3844 S.ImpCastExprToType(CurInitExpr, Step->Type, CK_NoOp, VK);
3845 CurInit.release();
3846 CurInit = S.Owned(CurInitExpr);
3847 break;
3850 case SK_ConversionSequence: {
3851 if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3852 getAssignmentAction(Entity),
3853 Kind.isCStyleOrFunctionalCast()))
3854 return ExprError();
3856 CurInit.release();
3857 CurInit = S.Owned(CurInitExpr);
3858 break;
3861 case SK_ListInitialization: {
3862 InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3863 QualType Ty = Step->Type;
3864 if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3865 return ExprError();
3867 CurInit.release();
3868 CurInit = S.Owned(InitList);
3869 break;
3872 case SK_ConstructorInitialization: {
3873 unsigned NumArgs = Args.size();
3874 CXXConstructorDecl *Constructor
3875 = cast<CXXConstructorDecl>(Step->Function.Function);
3877 // Build a call to the selected constructor.
3878 ASTOwningVector<Expr*> ConstructorArgs(S);
3879 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3880 ? Kind.getEqualLoc()
3881 : Kind.getLocation();
3883 if (Kind.getKind() == InitializationKind::IK_Default) {
3884 // Force even a trivial, implicit default constructor to be
3885 // semantically checked. We do this explicitly because we don't build
3886 // the definition for completely trivial constructors.
3887 CXXRecordDecl *ClassDecl = Constructor->getParent();
3888 assert(ClassDecl && "No parent class for constructor.");
3889 if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3890 ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
3891 S.DefineImplicitDefaultConstructor(Loc, Constructor);
3894 // Determine the arguments required to actually perform the constructor
3895 // call.
3896 if (S.CompleteConstructorCall(Constructor, move(Args),
3897 Loc, ConstructorArgs))
3898 return ExprError();
3901 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3902 NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3903 (Kind.getKind() == InitializationKind::IK_Direct ||
3904 Kind.getKind() == InitializationKind::IK_Value)) {
3905 // An explicitly-constructed temporary, e.g., X(1, 2).
3906 unsigned NumExprs = ConstructorArgs.size();
3907 Expr **Exprs = (Expr **)ConstructorArgs.take();
3908 S.MarkDeclarationReferenced(Loc, Constructor);
3909 S.DiagnoseUseOfDecl(Constructor, Loc);
3911 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3912 if (!TSInfo)
3913 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
3915 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3916 Constructor,
3917 TSInfo,
3918 Exprs,
3919 NumExprs,
3920 Kind.getParenRange(),
3921 ConstructorInitRequiresZeroInit));
3922 } else {
3923 CXXConstructExpr::ConstructionKind ConstructKind =
3924 CXXConstructExpr::CK_Complete;
3926 if (Entity.getKind() == InitializedEntity::EK_Base) {
3927 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3928 CXXConstructExpr::CK_VirtualBase :
3929 CXXConstructExpr::CK_NonVirtualBase;
3932 // Only get the parenthesis range if it is a direct construction.
3933 SourceRange parenRange =
3934 Kind.getKind() == InitializationKind::IK_Direct ?
3935 Kind.getParenRange() : SourceRange();
3937 // If the entity allows NRVO, mark the construction as elidable
3938 // unconditionally.
3939 if (Entity.allowsNRVO())
3940 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3941 Constructor, /*Elidable=*/true,
3942 move_arg(ConstructorArgs),
3943 ConstructorInitRequiresZeroInit,
3944 ConstructKind,
3945 parenRange);
3946 else
3947 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3948 Constructor,
3949 move_arg(ConstructorArgs),
3950 ConstructorInitRequiresZeroInit,
3951 ConstructKind,
3952 parenRange);
3954 if (CurInit.isInvalid())
3955 return ExprError();
3957 // Only check access if all of that succeeded.
3958 S.CheckConstructorAccess(Loc, Constructor, Entity,
3959 Step->Function.FoundDecl.getAccess());
3960 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3962 if (shouldBindAsTemporary(Entity))
3963 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3965 break;
3968 case SK_ZeroInitialization: {
3969 step_iterator NextStep = Step;
3970 ++NextStep;
3971 if (NextStep != StepEnd &&
3972 NextStep->Kind == SK_ConstructorInitialization) {
3973 // The need for zero-initialization is recorded directly into
3974 // the call to the object's constructor within the next step.
3975 ConstructorInitRequiresZeroInit = true;
3976 } else if (Kind.getKind() == InitializationKind::IK_Value &&
3977 S.getLangOptions().CPlusPlus &&
3978 !Kind.isImplicitValueInit()) {
3979 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3980 if (!TSInfo)
3981 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
3982 Kind.getRange().getBegin());
3984 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
3985 TSInfo->getType().getNonLValueExprType(S.Context),
3986 TSInfo,
3987 Kind.getRange().getEnd()));
3988 } else {
3989 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3991 break;
3994 case SK_CAssignment: {
3995 QualType SourceType = CurInitExpr->getType();
3996 Sema::AssignConvertType ConvTy =
3997 S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3999 // If this is a call, allow conversion to a transparent union.
4000 if (ConvTy != Sema::Compatible &&
4001 Entity.getKind() == InitializedEntity::EK_Parameter &&
4002 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
4003 == Sema::Compatible)
4004 ConvTy = Sema::Compatible;
4006 bool Complained;
4007 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4008 Step->Type, SourceType,
4009 CurInitExpr,
4010 getAssignmentAction(Entity),
4011 &Complained)) {
4012 PrintInitLocationNote(S, Entity);
4013 return ExprError();
4014 } else if (Complained)
4015 PrintInitLocationNote(S, Entity);
4017 CurInit.release();
4018 CurInit = S.Owned(CurInitExpr);
4019 break;
4022 case SK_StringInit: {
4023 QualType Ty = Step->Type;
4024 CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
4025 break;
4028 case SK_ObjCObjectConversion:
4029 S.ImpCastExprToType(CurInitExpr, Step->Type,
4030 CK_ObjCObjectLValueCast,
4031 S.CastCategory(CurInitExpr));
4032 CurInit.release();
4033 CurInit = S.Owned(CurInitExpr);
4034 break;
4038 // Diagnose non-fatal problems with the completed initialization.
4039 if (Entity.getKind() == InitializedEntity::EK_Member &&
4040 cast<FieldDecl>(Entity.getDecl())->isBitField())
4041 S.CheckBitFieldInitialization(Kind.getLocation(),
4042 cast<FieldDecl>(Entity.getDecl()),
4043 CurInit.get());
4045 return move(CurInit);
4048 //===----------------------------------------------------------------------===//
4049 // Diagnose initialization failures
4050 //===----------------------------------------------------------------------===//
4051 bool InitializationSequence::Diagnose(Sema &S,
4052 const InitializedEntity &Entity,
4053 const InitializationKind &Kind,
4054 Expr **Args, unsigned NumArgs) {
4055 if (SequenceKind != FailedSequence)
4056 return false;
4058 QualType DestType = Entity.getType();
4059 switch (Failure) {
4060 case FK_TooManyInitsForReference:
4061 // FIXME: Customize for the initialized entity?
4062 if (NumArgs == 0)
4063 S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4064 << DestType.getNonReferenceType();
4065 else // FIXME: diagnostic below could be better!
4066 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4067 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4068 break;
4070 case FK_ArrayNeedsInitList:
4071 case FK_ArrayNeedsInitListOrStringLiteral:
4072 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4073 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4074 break;
4076 case FK_AddressOfOverloadFailed: {
4077 DeclAccessPair Found;
4078 S.ResolveAddressOfOverloadedFunction(Args[0],
4079 DestType.getNonReferenceType(),
4080 true,
4081 Found);
4082 break;
4085 case FK_ReferenceInitOverloadFailed:
4086 case FK_UserConversionOverloadFailed:
4087 switch (FailedOverloadResult) {
4088 case OR_Ambiguous:
4089 if (Failure == FK_UserConversionOverloadFailed)
4090 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4091 << Args[0]->getType() << DestType
4092 << Args[0]->getSourceRange();
4093 else
4094 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4095 << DestType << Args[0]->getType()
4096 << Args[0]->getSourceRange();
4098 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4099 break;
4101 case OR_No_Viable_Function:
4102 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4103 << Args[0]->getType() << DestType.getNonReferenceType()
4104 << Args[0]->getSourceRange();
4105 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4106 break;
4108 case OR_Deleted: {
4109 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4110 << Args[0]->getType() << DestType.getNonReferenceType()
4111 << Args[0]->getSourceRange();
4112 OverloadCandidateSet::iterator Best;
4113 OverloadingResult Ovl
4114 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4115 true);
4116 if (Ovl == OR_Deleted) {
4117 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4118 << Best->Function->isDeleted();
4119 } else {
4120 llvm_unreachable("Inconsistent overload resolution?");
4122 break;
4125 case OR_Success:
4126 llvm_unreachable("Conversion did not fail!");
4127 break;
4129 break;
4131 case FK_NonConstLValueReferenceBindingToTemporary:
4132 case FK_NonConstLValueReferenceBindingToUnrelated:
4133 S.Diag(Kind.getLocation(),
4134 Failure == FK_NonConstLValueReferenceBindingToTemporary
4135 ? diag::err_lvalue_reference_bind_to_temporary
4136 : diag::err_lvalue_reference_bind_to_unrelated)
4137 << DestType.getNonReferenceType().isVolatileQualified()
4138 << DestType.getNonReferenceType()
4139 << Args[0]->getType()
4140 << Args[0]->getSourceRange();
4141 break;
4143 case FK_RValueReferenceBindingToLValue:
4144 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4145 << DestType.getNonReferenceType() << Args[0]->getType()
4146 << Args[0]->getSourceRange();
4147 break;
4149 case FK_ReferenceInitDropsQualifiers:
4150 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4151 << DestType.getNonReferenceType()
4152 << Args[0]->getType()
4153 << Args[0]->getSourceRange();
4154 break;
4156 case FK_ReferenceInitFailed:
4157 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4158 << DestType.getNonReferenceType()
4159 << Args[0]->isLValue()
4160 << Args[0]->getType()
4161 << Args[0]->getSourceRange();
4162 break;
4164 case FK_ConversionFailed:
4165 S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4166 << (int)Entity.getKind()
4167 << DestType
4168 << Args[0]->isLValue()
4169 << Args[0]->getType()
4170 << Args[0]->getSourceRange();
4171 break;
4173 case FK_TooManyInitsForScalar: {
4174 SourceRange R;
4176 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4177 R = SourceRange(InitList->getInit(0)->getLocEnd(),
4178 InitList->getLocEnd());
4179 else
4180 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4182 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4183 if (Kind.isCStyleOrFunctionalCast())
4184 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4185 << R;
4186 else
4187 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4188 << /*scalar=*/2 << R;
4189 break;
4192 case FK_ReferenceBindingToInitList:
4193 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4194 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4195 break;
4197 case FK_InitListBadDestinationType:
4198 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4199 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4200 break;
4202 case FK_ConstructorOverloadFailed: {
4203 SourceRange ArgsRange;
4204 if (NumArgs)
4205 ArgsRange = SourceRange(Args[0]->getLocStart(),
4206 Args[NumArgs - 1]->getLocEnd());
4208 // FIXME: Using "DestType" for the entity we're printing is probably
4209 // bad.
4210 switch (FailedOverloadResult) {
4211 case OR_Ambiguous:
4212 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4213 << DestType << ArgsRange;
4214 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4215 Args, NumArgs);
4216 break;
4218 case OR_No_Viable_Function:
4219 if (Kind.getKind() == InitializationKind::IK_Default &&
4220 (Entity.getKind() == InitializedEntity::EK_Base ||
4221 Entity.getKind() == InitializedEntity::EK_Member) &&
4222 isa<CXXConstructorDecl>(S.CurContext)) {
4223 // This is implicit default initialization of a member or
4224 // base within a constructor. If no viable function was
4225 // found, notify the user that she needs to explicitly
4226 // initialize this base/member.
4227 CXXConstructorDecl *Constructor
4228 = cast<CXXConstructorDecl>(S.CurContext);
4229 if (Entity.getKind() == InitializedEntity::EK_Base) {
4230 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4231 << Constructor->isImplicit()
4232 << S.Context.getTypeDeclType(Constructor->getParent())
4233 << /*base=*/0
4234 << Entity.getType();
4236 RecordDecl *BaseDecl
4237 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4238 ->getDecl();
4239 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4240 << S.Context.getTagDeclType(BaseDecl);
4241 } else {
4242 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4243 << Constructor->isImplicit()
4244 << S.Context.getTypeDeclType(Constructor->getParent())
4245 << /*member=*/1
4246 << Entity.getName();
4247 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4249 if (const RecordType *Record
4250 = Entity.getType()->getAs<RecordType>())
4251 S.Diag(Record->getDecl()->getLocation(),
4252 diag::note_previous_decl)
4253 << S.Context.getTagDeclType(Record->getDecl());
4255 break;
4258 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4259 << DestType << ArgsRange;
4260 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4261 break;
4263 case OR_Deleted: {
4264 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4265 << true << DestType << ArgsRange;
4266 OverloadCandidateSet::iterator Best;
4267 OverloadingResult Ovl
4268 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4269 if (Ovl == OR_Deleted) {
4270 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4271 << Best->Function->isDeleted();
4272 } else {
4273 llvm_unreachable("Inconsistent overload resolution?");
4275 break;
4278 case OR_Success:
4279 llvm_unreachable("Conversion did not fail!");
4280 break;
4282 break;
4285 case FK_DefaultInitOfConst:
4286 if (Entity.getKind() == InitializedEntity::EK_Member &&
4287 isa<CXXConstructorDecl>(S.CurContext)) {
4288 // This is implicit default-initialization of a const member in
4289 // a constructor. Complain that it needs to be explicitly
4290 // initialized.
4291 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4292 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4293 << Constructor->isImplicit()
4294 << S.Context.getTypeDeclType(Constructor->getParent())
4295 << /*const=*/1
4296 << Entity.getName();
4297 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4298 << Entity.getName();
4299 } else {
4300 S.Diag(Kind.getLocation(), diag::err_default_init_const)
4301 << DestType << (bool)DestType->getAs<RecordType>();
4303 break;
4305 case FK_Incomplete:
4306 S.RequireCompleteType(Kind.getLocation(), DestType,
4307 diag::err_init_incomplete_type);
4308 break;
4311 PrintInitLocationNote(S, Entity);
4312 return true;
4315 void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4316 switch (SequenceKind) {
4317 case FailedSequence: {
4318 OS << "Failed sequence: ";
4319 switch (Failure) {
4320 case FK_TooManyInitsForReference:
4321 OS << "too many initializers for reference";
4322 break;
4324 case FK_ArrayNeedsInitList:
4325 OS << "array requires initializer list";
4326 break;
4328 case FK_ArrayNeedsInitListOrStringLiteral:
4329 OS << "array requires initializer list or string literal";
4330 break;
4332 case FK_AddressOfOverloadFailed:
4333 OS << "address of overloaded function failed";
4334 break;
4336 case FK_ReferenceInitOverloadFailed:
4337 OS << "overload resolution for reference initialization failed";
4338 break;
4340 case FK_NonConstLValueReferenceBindingToTemporary:
4341 OS << "non-const lvalue reference bound to temporary";
4342 break;
4344 case FK_NonConstLValueReferenceBindingToUnrelated:
4345 OS << "non-const lvalue reference bound to unrelated type";
4346 break;
4348 case FK_RValueReferenceBindingToLValue:
4349 OS << "rvalue reference bound to an lvalue";
4350 break;
4352 case FK_ReferenceInitDropsQualifiers:
4353 OS << "reference initialization drops qualifiers";
4354 break;
4356 case FK_ReferenceInitFailed:
4357 OS << "reference initialization failed";
4358 break;
4360 case FK_ConversionFailed:
4361 OS << "conversion failed";
4362 break;
4364 case FK_TooManyInitsForScalar:
4365 OS << "too many initializers for scalar";
4366 break;
4368 case FK_ReferenceBindingToInitList:
4369 OS << "referencing binding to initializer list";
4370 break;
4372 case FK_InitListBadDestinationType:
4373 OS << "initializer list for non-aggregate, non-scalar type";
4374 break;
4376 case FK_UserConversionOverloadFailed:
4377 OS << "overloading failed for user-defined conversion";
4378 break;
4380 case FK_ConstructorOverloadFailed:
4381 OS << "constructor overloading failed";
4382 break;
4384 case FK_DefaultInitOfConst:
4385 OS << "default initialization of a const variable";
4386 break;
4388 case FK_Incomplete:
4389 OS << "initialization of incomplete type";
4390 break;
4392 OS << '\n';
4393 return;
4396 case DependentSequence:
4397 OS << "Dependent sequence: ";
4398 return;
4400 case UserDefinedConversion:
4401 OS << "User-defined conversion sequence: ";
4402 break;
4404 case ConstructorInitialization:
4405 OS << "Constructor initialization sequence: ";
4406 break;
4408 case ReferenceBinding:
4409 OS << "Reference binding: ";
4410 break;
4412 case ListInitialization:
4413 OS << "List initialization: ";
4414 break;
4416 case ZeroInitialization:
4417 OS << "Zero initialization\n";
4418 return;
4420 case NoInitialization:
4421 OS << "No initialization\n";
4422 return;
4424 case StandardConversion:
4425 OS << "Standard conversion: ";
4426 break;
4428 case CAssignment:
4429 OS << "C assignment: ";
4430 break;
4432 case StringInit:
4433 OS << "String initialization: ";
4434 break;
4437 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4438 if (S != step_begin()) {
4439 OS << " -> ";
4442 switch (S->Kind) {
4443 case SK_ResolveAddressOfOverloadedFunction:
4444 OS << "resolve address of overloaded function";
4445 break;
4447 case SK_CastDerivedToBaseRValue:
4448 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4449 break;
4451 case SK_CastDerivedToBaseXValue:
4452 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4453 break;
4455 case SK_CastDerivedToBaseLValue:
4456 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4457 break;
4459 case SK_BindReference:
4460 OS << "bind reference to lvalue";
4461 break;
4463 case SK_BindReferenceToTemporary:
4464 OS << "bind reference to a temporary";
4465 break;
4467 case SK_ExtraneousCopyToTemporary:
4468 OS << "extraneous C++03 copy to temporary";
4469 break;
4471 case SK_UserConversion:
4472 OS << "user-defined conversion via " << S->Function.Function;
4473 break;
4475 case SK_QualificationConversionRValue:
4476 OS << "qualification conversion (rvalue)";
4478 case SK_QualificationConversionXValue:
4479 OS << "qualification conversion (xvalue)";
4481 case SK_QualificationConversionLValue:
4482 OS << "qualification conversion (lvalue)";
4483 break;
4485 case SK_ConversionSequence:
4486 OS << "implicit conversion sequence (";
4487 S->ICS->DebugPrint(); // FIXME: use OS
4488 OS << ")";
4489 break;
4491 case SK_ListInitialization:
4492 OS << "list initialization";
4493 break;
4495 case SK_ConstructorInitialization:
4496 OS << "constructor initialization";
4497 break;
4499 case SK_ZeroInitialization:
4500 OS << "zero initialization";
4501 break;
4503 case SK_CAssignment:
4504 OS << "C assignment";
4505 break;
4507 case SK_StringInit:
4508 OS << "string initialization";
4509 break;
4511 case SK_ObjCObjectConversion:
4512 OS << "Objective-C object conversion";
4513 break;
4518 void InitializationSequence::dump() const {
4519 dump(llvm::errs());
4522 //===----------------------------------------------------------------------===//
4523 // Initialization helper functions
4524 //===----------------------------------------------------------------------===//
4525 ExprResult
4526 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4527 SourceLocation EqualLoc,
4528 ExprResult Init) {
4529 if (Init.isInvalid())
4530 return ExprError();
4532 Expr *InitE = Init.get();
4533 assert(InitE && "No initialization expression?");
4535 if (EqualLoc.isInvalid())
4536 EqualLoc = InitE->getLocStart();
4538 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4539 EqualLoc);
4540 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4541 Init.release();
4542 return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));