rename test
[clang.git] / lib / Sema / SemaCXXScopeSpec.cpp
blobc7affed3118e324ddcd36517cc10f5f7fc2be988
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
26 /// \brief Find the current instantiation that associated with the given type.
27 static CXXRecordDecl *getCurrentInstantiationOf(QualType T) {
28 if (T.isNull())
29 return 0;
31 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
32 if (isa<RecordType>(Ty))
33 return cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
34 else if (isa<InjectedClassNameType>(Ty))
35 return cast<InjectedClassNameType>(Ty)->getDecl();
36 else
37 return 0;
40 /// \brief Compute the DeclContext that is associated with the given type.
41 ///
42 /// \param T the type for which we are attempting to find a DeclContext.
43 ///
44 /// \returns the declaration context represented by the type T,
45 /// or NULL if the declaration context cannot be computed (e.g., because it is
46 /// dependent and not the current instantiation).
47 DeclContext *Sema::computeDeclContext(QualType T) {
48 if (const TagType *Tag = T->getAs<TagType>())
49 return Tag->getDecl();
51 return ::getCurrentInstantiationOf(T);
54 /// \brief Compute the DeclContext that is associated with the given
55 /// scope specifier.
56 ///
57 /// \param SS the C++ scope specifier as it appears in the source
58 ///
59 /// \param EnteringContext when true, we will be entering the context of
60 /// this scope specifier, so we can retrieve the declaration context of a
61 /// class template or class template partial specialization even if it is
62 /// not the current instantiation.
63 ///
64 /// \returns the declaration context represented by the scope specifier @p SS,
65 /// or NULL if the declaration context cannot be computed (e.g., because it is
66 /// dependent and not the current instantiation).
67 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
68 bool EnteringContext) {
69 if (!SS.isSet() || SS.isInvalid())
70 return 0;
72 NestedNameSpecifier *NNS
73 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
74 if (NNS->isDependent()) {
75 // If this nested-name-specifier refers to the current
76 // instantiation, return its DeclContext.
77 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
78 return Record;
80 if (EnteringContext) {
81 const Type *NNSType = NNS->getAsType();
82 if (!NNSType) {
83 // do nothing, fall out
84 } else if (const TemplateSpecializationType *SpecType
85 = NNSType->getAs<TemplateSpecializationType>()) {
86 // We are entering the context of the nested name specifier, so try to
87 // match the nested name specifier to either a primary class template
88 // or a class template partial specialization.
89 if (ClassTemplateDecl *ClassTemplate
90 = dyn_cast_or_null<ClassTemplateDecl>(
91 SpecType->getTemplateName().getAsTemplateDecl())) {
92 QualType ContextType
93 = Context.getCanonicalType(QualType(SpecType, 0));
95 // If the type of the nested name specifier is the same as the
96 // injected class name of the named class template, we're entering
97 // into that class template definition.
98 QualType Injected
99 = ClassTemplate->getInjectedClassNameSpecialization();
100 if (Context.hasSameType(Injected, ContextType))
101 return ClassTemplate->getTemplatedDecl();
103 // If the type of the nested name specifier is the same as the
104 // type of one of the class template's class template partial
105 // specializations, we're entering into the definition of that
106 // class template partial specialization.
107 if (ClassTemplatePartialSpecializationDecl *PartialSpec
108 = ClassTemplate->findPartialSpecialization(ContextType))
109 return PartialSpec;
111 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
112 // The nested name specifier refers to a member of a class template.
113 return RecordT->getDecl();
117 return 0;
120 switch (NNS->getKind()) {
121 case NestedNameSpecifier::Identifier:
122 assert(false && "Dependent nested-name-specifier has no DeclContext");
123 break;
125 case NestedNameSpecifier::Namespace:
126 return NNS->getAsNamespace();
128 case NestedNameSpecifier::TypeSpec:
129 case NestedNameSpecifier::TypeSpecWithTemplate: {
130 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
131 assert(Tag && "Non-tag type in nested-name-specifier");
132 return Tag->getDecl();
133 } break;
135 case NestedNameSpecifier::Global:
136 return Context.getTranslationUnitDecl();
139 // Required to silence a GCC warning.
140 return 0;
143 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
144 if (!SS.isSet() || SS.isInvalid())
145 return false;
147 NestedNameSpecifier *NNS
148 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
149 return NNS->isDependent();
152 // \brief Determine whether this C++ scope specifier refers to an
153 // unknown specialization, i.e., a dependent type that is not the
154 // current instantiation.
155 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
156 if (!isDependentScopeSpecifier(SS))
157 return false;
159 NestedNameSpecifier *NNS
160 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
161 return getCurrentInstantiationOf(NNS) == 0;
164 /// \brief If the given nested name specifier refers to the current
165 /// instantiation, return the declaration that corresponds to that
166 /// current instantiation (C++0x [temp.dep.type]p1).
168 /// \param NNS a dependent nested name specifier.
169 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
170 assert(getLangOptions().CPlusPlus && "Only callable in C++");
171 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
173 if (!NNS->getAsType())
174 return 0;
176 QualType T = QualType(NNS->getAsType(), 0);
177 return ::getCurrentInstantiationOf(T);
180 /// \brief Require that the context specified by SS be complete.
182 /// If SS refers to a type, this routine checks whether the type is
183 /// complete enough (or can be made complete enough) for name lookup
184 /// into the DeclContext. A type that is not yet completed can be
185 /// considered "complete enough" if it is a class/struct/union/enum
186 /// that is currently being defined. Or, if we have a type that names
187 /// a class template specialization that is not a complete type, we
188 /// will attempt to instantiate that class template.
189 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
190 DeclContext *DC) {
191 assert(DC != 0 && "given null context");
193 if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
194 // If this is a dependent type, then we consider it complete.
195 if (Tag->isDependentContext())
196 return false;
198 // If we're currently defining this type, then lookup into the
199 // type is okay: don't complain that it isn't complete yet.
200 const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
201 if (TagT && TagT->isBeingDefined())
202 return false;
204 // The type must be complete.
205 if (RequireCompleteType(SS.getRange().getBegin(),
206 Context.getTypeDeclType(Tag),
207 PDiag(diag::err_incomplete_nested_name_spec)
208 << SS.getRange())) {
209 SS.setScopeRep(0); // Mark the ScopeSpec invalid.
210 return true;
214 return false;
217 /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
218 /// global scope ('::').
219 Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
220 SourceLocation CCLoc) {
221 return NestedNameSpecifier::GlobalSpecifier(Context);
224 /// \brief Determines whether the given declaration is an valid acceptable
225 /// result for name lookup of a nested-name-specifier.
226 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
227 if (!SD)
228 return false;
230 // Namespace and namespace aliases are fine.
231 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
232 return true;
234 if (!isa<TypeDecl>(SD))
235 return false;
237 // Determine whether we have a class (or, in C++0x, an enum) or
238 // a typedef thereof. If so, build the nested-name-specifier.
239 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
240 if (T->isDependentType())
241 return true;
242 else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
243 if (TD->getUnderlyingType()->isRecordType() ||
244 (Context.getLangOptions().CPlusPlus0x &&
245 TD->getUnderlyingType()->isEnumeralType()))
246 return true;
247 } else if (isa<RecordDecl>(SD) ||
248 (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
249 return true;
251 return false;
254 /// \brief If the given nested-name-specifier begins with a bare identifier
255 /// (e.g., Base::), perform name lookup for that identifier as a
256 /// nested-name-specifier within the given scope, and return the result of that
257 /// name lookup.
258 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
259 if (!S || !NNS)
260 return 0;
262 while (NNS->getPrefix())
263 NNS = NNS->getPrefix();
265 if (NNS->getKind() != NestedNameSpecifier::Identifier)
266 return 0;
268 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
269 LookupNestedNameSpecifierName);
270 LookupName(Found, S);
271 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
273 if (!Found.isSingleResult())
274 return 0;
276 NamedDecl *Result = Found.getFoundDecl();
277 if (isAcceptableNestedNameSpecifier(Result))
278 return Result;
280 return 0;
283 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
284 SourceLocation IdLoc,
285 IdentifierInfo &II,
286 ParsedType ObjectTypePtr) {
287 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
288 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
290 // Determine where to perform name lookup
291 DeclContext *LookupCtx = 0;
292 bool isDependent = false;
293 if (!ObjectType.isNull()) {
294 // This nested-name-specifier occurs in a member access expression, e.g.,
295 // x->B::f, and we are looking into the type of the object.
296 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
297 LookupCtx = computeDeclContext(ObjectType);
298 isDependent = ObjectType->isDependentType();
299 } else if (SS.isSet()) {
300 // This nested-name-specifier occurs after another nested-name-specifier,
301 // so long into the context associated with the prior nested-name-specifier.
302 LookupCtx = computeDeclContext(SS, false);
303 isDependent = isDependentScopeSpecifier(SS);
304 Found.setContextRange(SS.getRange());
307 if (LookupCtx) {
308 // Perform "qualified" name lookup into the declaration context we
309 // computed, which is either the type of the base of a member access
310 // expression or the declaration context associated with a prior
311 // nested-name-specifier.
313 // The declaration context must be complete.
314 if (!LookupCtx->isDependentContext() &&
315 RequireCompleteDeclContext(SS, LookupCtx))
316 return false;
318 LookupQualifiedName(Found, LookupCtx);
319 } else if (isDependent) {
320 return false;
321 } else {
322 LookupName(Found, S);
324 Found.suppressDiagnostics();
326 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
327 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
329 return false;
332 /// \brief Build a new nested-name-specifier for "identifier::", as described
333 /// by ActOnCXXNestedNameSpecifier.
335 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
336 /// that it contains an extra parameter \p ScopeLookupResult, which provides
337 /// the result of name lookup within the scope of the nested-name-specifier
338 /// that was computed at template definition time.
340 /// If ErrorRecoveryLookup is true, then this call is used to improve error
341 /// recovery. This means that it should not emit diagnostics, it should
342 /// just return null on failure. It also means it should only return a valid
343 /// scope if it *knows* that the result is correct. It should not return in a
344 /// dependent context, for example.
345 Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
346 CXXScopeSpec &SS,
347 SourceLocation IdLoc,
348 SourceLocation CCLoc,
349 IdentifierInfo &II,
350 QualType ObjectType,
351 NamedDecl *ScopeLookupResult,
352 bool EnteringContext,
353 bool ErrorRecoveryLookup) {
354 NestedNameSpecifier *Prefix
355 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
357 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
359 // Determine where to perform name lookup
360 DeclContext *LookupCtx = 0;
361 bool isDependent = false;
362 if (!ObjectType.isNull()) {
363 // This nested-name-specifier occurs in a member access expression, e.g.,
364 // x->B::f, and we are looking into the type of the object.
365 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
366 LookupCtx = computeDeclContext(ObjectType);
367 isDependent = ObjectType->isDependentType();
368 } else if (SS.isSet()) {
369 // This nested-name-specifier occurs after another nested-name-specifier,
370 // so long into the context associated with the prior nested-name-specifier.
371 LookupCtx = computeDeclContext(SS, EnteringContext);
372 isDependent = isDependentScopeSpecifier(SS);
373 Found.setContextRange(SS.getRange());
377 bool ObjectTypeSearchedInScope = false;
378 if (LookupCtx) {
379 // Perform "qualified" name lookup into the declaration context we
380 // computed, which is either the type of the base of a member access
381 // expression or the declaration context associated with a prior
382 // nested-name-specifier.
384 // The declaration context must be complete.
385 if (!LookupCtx->isDependentContext() &&
386 RequireCompleteDeclContext(SS, LookupCtx))
387 return 0;
389 LookupQualifiedName(Found, LookupCtx);
391 if (!ObjectType.isNull() && Found.empty()) {
392 // C++ [basic.lookup.classref]p4:
393 // If the id-expression in a class member access is a qualified-id of
394 // the form
396 // class-name-or-namespace-name::...
398 // the class-name-or-namespace-name following the . or -> operator is
399 // looked up both in the context of the entire postfix-expression and in
400 // the scope of the class of the object expression. If the name is found
401 // only in the scope of the class of the object expression, the name
402 // shall refer to a class-name. If the name is found only in the
403 // context of the entire postfix-expression, the name shall refer to a
404 // class-name or namespace-name. [...]
406 // Qualified name lookup into a class will not find a namespace-name,
407 // so we do not need to diagnoste that case specifically. However,
408 // this qualified name lookup may find nothing. In that case, perform
409 // unqualified name lookup in the given scope (if available) or
410 // reconstruct the result from when name lookup was performed at template
411 // definition time.
412 if (S)
413 LookupName(Found, S);
414 else if (ScopeLookupResult)
415 Found.addDecl(ScopeLookupResult);
417 ObjectTypeSearchedInScope = true;
419 } else if (!isDependent) {
420 // Perform unqualified name lookup in the current scope.
421 LookupName(Found, S);
424 // If we performed lookup into a dependent context and did not find anything,
425 // that's fine: just build a dependent nested-name-specifier.
426 if (Found.empty() && isDependent &&
427 !(LookupCtx && LookupCtx->isRecord() &&
428 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
429 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
430 // Don't speculate if we're just trying to improve error recovery.
431 if (ErrorRecoveryLookup)
432 return 0;
434 // We were not able to compute the declaration context for a dependent
435 // base object type or prior nested-name-specifier, so this
436 // nested-name-specifier refers to an unknown specialization. Just build
437 // a dependent nested-name-specifier.
438 if (!Prefix)
439 return NestedNameSpecifier::Create(Context, &II);
441 return NestedNameSpecifier::Create(Context, Prefix, &II);
444 // FIXME: Deal with ambiguities cleanly.
446 if (Found.empty() && !ErrorRecoveryLookup) {
447 // We haven't found anything, and we're not recovering from a
448 // different kind of error, so look for typos.
449 DeclarationName Name = Found.getLookupName();
450 if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
451 CTC_NoKeywords) &&
452 Found.isSingleResult() &&
453 isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
454 if (LookupCtx)
455 Diag(Found.getNameLoc(), diag::err_no_member_suggest)
456 << Name << LookupCtx << Found.getLookupName() << SS.getRange()
457 << FixItHint::CreateReplacement(Found.getNameLoc(),
458 Found.getLookupName().getAsString());
459 else
460 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
461 << Name << Found.getLookupName()
462 << FixItHint::CreateReplacement(Found.getNameLoc(),
463 Found.getLookupName().getAsString());
465 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
466 Diag(ND->getLocation(), diag::note_previous_decl)
467 << ND->getDeclName();
468 } else {
469 Found.clear();
470 Found.setLookupName(&II);
474 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
475 if (isAcceptableNestedNameSpecifier(SD)) {
476 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
477 // C++ [basic.lookup.classref]p4:
478 // [...] If the name is found in both contexts, the
479 // class-name-or-namespace-name shall refer to the same entity.
481 // We already found the name in the scope of the object. Now, look
482 // into the current scope (the scope of the postfix-expression) to
483 // see if we can find the same name there. As above, if there is no
484 // scope, reconstruct the result from the template instantiation itself.
485 NamedDecl *OuterDecl;
486 if (S) {
487 LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
488 LookupName(FoundOuter, S);
489 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
490 } else
491 OuterDecl = ScopeLookupResult;
493 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
494 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
495 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
496 !Context.hasSameType(
497 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
498 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
499 if (ErrorRecoveryLookup)
500 return 0;
502 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
503 << &II;
504 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
505 << ObjectType;
506 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
508 // Fall through so that we'll pick the name we found in the object
509 // type, since that's probably what the user wanted anyway.
513 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
514 return NestedNameSpecifier::Create(Context, Prefix, Namespace);
516 // FIXME: It would be nice to maintain the namespace alias name, then
517 // see through that alias when resolving the nested-name-specifier down to
518 // a declaration context.
519 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
520 return NestedNameSpecifier::Create(Context, Prefix,
521 Alias->getNamespace());
523 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
524 return NestedNameSpecifier::Create(Context, Prefix, false,
525 T.getTypePtr());
528 // Otherwise, we have an error case. If we don't want diagnostics, just
529 // return an error now.
530 if (ErrorRecoveryLookup)
531 return 0;
533 // If we didn't find anything during our lookup, try again with
534 // ordinary name lookup, which can help us produce better error
535 // messages.
536 if (Found.empty()) {
537 Found.clear(LookupOrdinaryName);
538 LookupName(Found, S);
541 unsigned DiagID;
542 if (!Found.empty())
543 DiagID = diag::err_expected_class_or_namespace;
544 else if (SS.isSet()) {
545 Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
546 return 0;
547 } else
548 DiagID = diag::err_undeclared_var_use;
550 if (SS.isSet())
551 Diag(IdLoc, DiagID) << &II << SS.getRange();
552 else
553 Diag(IdLoc, DiagID) << &II;
555 return 0;
558 /// ActOnCXXNestedNameSpecifier - Called during parsing of a
559 /// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
560 /// we want to resolve "bar::". 'SS' is empty or the previously parsed
561 /// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
562 /// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
563 /// Returns a CXXScopeTy* object representing the C++ scope.
564 Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
565 CXXScopeSpec &SS,
566 SourceLocation IdLoc,
567 SourceLocation CCLoc,
568 IdentifierInfo &II,
569 ParsedType ObjectTypePtr,
570 bool EnteringContext) {
571 return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
572 GetTypeFromParser(ObjectTypePtr),
573 /*ScopeLookupResult=*/0, EnteringContext,
574 false);
577 /// IsInvalidUnlessNestedName - This method is used for error recovery
578 /// purposes to determine whether the specified identifier is only valid as
579 /// a nested name specifier, for example a namespace name. It is
580 /// conservatively correct to always return false from this method.
582 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
583 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
584 IdentifierInfo &II, ParsedType ObjectType,
585 bool EnteringContext) {
586 return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
587 II, GetTypeFromParser(ObjectType),
588 /*ScopeLookupResult=*/0, EnteringContext,
589 true);
592 Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
593 const CXXScopeSpec &SS,
594 ParsedType Ty,
595 SourceRange TypeRange,
596 SourceLocation CCLoc) {
597 NestedNameSpecifier *Prefix = SS.getScopeRep();
598 QualType T = GetTypeFromParser(Ty);
599 return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
600 T.getTypePtr());
603 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
604 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
606 NestedNameSpecifier *Qualifier =
607 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
609 // There are only two places a well-formed program may qualify a
610 // declarator: first, when defining a namespace or class member
611 // out-of-line, and second, when naming an explicitly-qualified
612 // friend function. The latter case is governed by
613 // C++03 [basic.lookup.unqual]p10:
614 // In a friend declaration naming a member function, a name used
615 // in the function declarator and not part of a template-argument
616 // in a template-id is first looked up in the scope of the member
617 // function's class. If it is not found, or if the name is part of
618 // a template-argument in a template-id, the look up is as
619 // described for unqualified names in the definition of the class
620 // granting friendship.
621 // i.e. we don't push a scope unless it's a class member.
623 switch (Qualifier->getKind()) {
624 case NestedNameSpecifier::Global:
625 case NestedNameSpecifier::Namespace:
626 // These are always namespace scopes. We never want to enter a
627 // namespace scope from anything but a file context.
628 return CurContext->getRedeclContext()->isFileContext();
630 case NestedNameSpecifier::Identifier:
631 case NestedNameSpecifier::TypeSpec:
632 case NestedNameSpecifier::TypeSpecWithTemplate:
633 // These are never namespace scopes.
634 return true;
637 // Silence bogus warning.
638 return false;
641 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
642 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
643 /// After this method is called, according to [C++ 3.4.3p3], names should be
644 /// looked up in the declarator-id's scope, until the declarator is parsed and
645 /// ActOnCXXExitDeclaratorScope is called.
646 /// The 'SS' should be a non-empty valid CXXScopeSpec.
647 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
648 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
650 if (SS.isInvalid()) return true;
652 DeclContext *DC = computeDeclContext(SS, true);
653 if (!DC) return true;
655 // Before we enter a declarator's context, we need to make sure that
656 // it is a complete declaration context.
657 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
658 return true;
660 EnterDeclaratorContext(S, DC);
662 // Rebuild the nested name specifier for the new scope.
663 if (DC->isDependentContext())
664 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
666 return false;
669 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
670 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
671 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
672 /// Used to indicate that names should revert to being looked up in the
673 /// defining scope.
674 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
675 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
676 if (SS.isInvalid())
677 return;
678 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
679 "exiting declarator scope we never really entered");
680 ExitDeclaratorContext(S);