1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements C++ semantic analysis for scope specifiers.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang
;
26 /// \brief Find the current instantiation that associated with the given type.
27 static CXXRecordDecl
*getCurrentInstantiationOf(QualType T
) {
31 const Type
*Ty
= T
->getCanonicalTypeInternal().getTypePtr();
32 if (isa
<RecordType
>(Ty
))
33 return cast
<CXXRecordDecl
>(cast
<RecordType
>(Ty
)->getDecl());
34 else if (isa
<InjectedClassNameType
>(Ty
))
35 return cast
<InjectedClassNameType
>(Ty
)->getDecl();
40 /// \brief Compute the DeclContext that is associated with the given type.
42 /// \param T the type for which we are attempting to find a DeclContext.
44 /// \returns the declaration context represented by the type T,
45 /// or NULL if the declaration context cannot be computed (e.g., because it is
46 /// dependent and not the current instantiation).
47 DeclContext
*Sema::computeDeclContext(QualType T
) {
48 if (const TagType
*Tag
= T
->getAs
<TagType
>())
49 return Tag
->getDecl();
51 return ::getCurrentInstantiationOf(T
);
54 /// \brief Compute the DeclContext that is associated with the given
57 /// \param SS the C++ scope specifier as it appears in the source
59 /// \param EnteringContext when true, we will be entering the context of
60 /// this scope specifier, so we can retrieve the declaration context of a
61 /// class template or class template partial specialization even if it is
62 /// not the current instantiation.
64 /// \returns the declaration context represented by the scope specifier @p SS,
65 /// or NULL if the declaration context cannot be computed (e.g., because it is
66 /// dependent and not the current instantiation).
67 DeclContext
*Sema::computeDeclContext(const CXXScopeSpec
&SS
,
68 bool EnteringContext
) {
69 if (!SS
.isSet() || SS
.isInvalid())
72 NestedNameSpecifier
*NNS
73 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
74 if (NNS
->isDependent()) {
75 // If this nested-name-specifier refers to the current
76 // instantiation, return its DeclContext.
77 if (CXXRecordDecl
*Record
= getCurrentInstantiationOf(NNS
))
80 if (EnteringContext
) {
81 const Type
*NNSType
= NNS
->getAsType();
83 // do nothing, fall out
84 } else if (const TemplateSpecializationType
*SpecType
85 = NNSType
->getAs
<TemplateSpecializationType
>()) {
86 // We are entering the context of the nested name specifier, so try to
87 // match the nested name specifier to either a primary class template
88 // or a class template partial specialization.
89 if (ClassTemplateDecl
*ClassTemplate
90 = dyn_cast_or_null
<ClassTemplateDecl
>(
91 SpecType
->getTemplateName().getAsTemplateDecl())) {
93 = Context
.getCanonicalType(QualType(SpecType
, 0));
95 // If the type of the nested name specifier is the same as the
96 // injected class name of the named class template, we're entering
97 // into that class template definition.
99 = ClassTemplate
->getInjectedClassNameSpecialization();
100 if (Context
.hasSameType(Injected
, ContextType
))
101 return ClassTemplate
->getTemplatedDecl();
103 // If the type of the nested name specifier is the same as the
104 // type of one of the class template's class template partial
105 // specializations, we're entering into the definition of that
106 // class template partial specialization.
107 if (ClassTemplatePartialSpecializationDecl
*PartialSpec
108 = ClassTemplate
->findPartialSpecialization(ContextType
))
111 } else if (const RecordType
*RecordT
= NNSType
->getAs
<RecordType
>()) {
112 // The nested name specifier refers to a member of a class template.
113 return RecordT
->getDecl();
120 switch (NNS
->getKind()) {
121 case NestedNameSpecifier::Identifier
:
122 assert(false && "Dependent nested-name-specifier has no DeclContext");
125 case NestedNameSpecifier::Namespace
:
126 return NNS
->getAsNamespace();
128 case NestedNameSpecifier::TypeSpec
:
129 case NestedNameSpecifier::TypeSpecWithTemplate
: {
130 const TagType
*Tag
= NNS
->getAsType()->getAs
<TagType
>();
131 assert(Tag
&& "Non-tag type in nested-name-specifier");
132 return Tag
->getDecl();
135 case NestedNameSpecifier::Global
:
136 return Context
.getTranslationUnitDecl();
139 // Required to silence a GCC warning.
143 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec
&SS
) {
144 if (!SS
.isSet() || SS
.isInvalid())
147 NestedNameSpecifier
*NNS
148 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
149 return NNS
->isDependent();
152 // \brief Determine whether this C++ scope specifier refers to an
153 // unknown specialization, i.e., a dependent type that is not the
154 // current instantiation.
155 bool Sema::isUnknownSpecialization(const CXXScopeSpec
&SS
) {
156 if (!isDependentScopeSpecifier(SS
))
159 NestedNameSpecifier
*NNS
160 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
161 return getCurrentInstantiationOf(NNS
) == 0;
164 /// \brief If the given nested name specifier refers to the current
165 /// instantiation, return the declaration that corresponds to that
166 /// current instantiation (C++0x [temp.dep.type]p1).
168 /// \param NNS a dependent nested name specifier.
169 CXXRecordDecl
*Sema::getCurrentInstantiationOf(NestedNameSpecifier
*NNS
) {
170 assert(getLangOptions().CPlusPlus
&& "Only callable in C++");
171 assert(NNS
->isDependent() && "Only dependent nested-name-specifier allowed");
173 if (!NNS
->getAsType())
176 QualType T
= QualType(NNS
->getAsType(), 0);
177 return ::getCurrentInstantiationOf(T
);
180 /// \brief Require that the context specified by SS be complete.
182 /// If SS refers to a type, this routine checks whether the type is
183 /// complete enough (or can be made complete enough) for name lookup
184 /// into the DeclContext. A type that is not yet completed can be
185 /// considered "complete enough" if it is a class/struct/union/enum
186 /// that is currently being defined. Or, if we have a type that names
187 /// a class template specialization that is not a complete type, we
188 /// will attempt to instantiate that class template.
189 bool Sema::RequireCompleteDeclContext(CXXScopeSpec
&SS
,
191 assert(DC
!= 0 && "given null context");
193 if (TagDecl
*Tag
= dyn_cast
<TagDecl
>(DC
)) {
194 // If this is a dependent type, then we consider it complete.
195 if (Tag
->isDependentContext())
198 // If we're currently defining this type, then lookup into the
199 // type is okay: don't complain that it isn't complete yet.
200 const TagType
*TagT
= Context
.getTypeDeclType(Tag
)->getAs
<TagType
>();
201 if (TagT
&& TagT
->isBeingDefined())
204 // The type must be complete.
205 if (RequireCompleteType(SS
.getRange().getBegin(),
206 Context
.getTypeDeclType(Tag
),
207 PDiag(diag::err_incomplete_nested_name_spec
)
209 SS
.setScopeRep(0); // Mark the ScopeSpec invalid.
217 /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
218 /// global scope ('::').
219 Sema::CXXScopeTy
*Sema::ActOnCXXGlobalScopeSpecifier(Scope
*S
,
220 SourceLocation CCLoc
) {
221 return NestedNameSpecifier::GlobalSpecifier(Context
);
224 /// \brief Determines whether the given declaration is an valid acceptable
225 /// result for name lookup of a nested-name-specifier.
226 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl
*SD
) {
230 // Namespace and namespace aliases are fine.
231 if (isa
<NamespaceDecl
>(SD
) || isa
<NamespaceAliasDecl
>(SD
))
234 if (!isa
<TypeDecl
>(SD
))
237 // Determine whether we have a class (or, in C++0x, an enum) or
238 // a typedef thereof. If so, build the nested-name-specifier.
239 QualType T
= Context
.getTypeDeclType(cast
<TypeDecl
>(SD
));
240 if (T
->isDependentType())
242 else if (TypedefDecl
*TD
= dyn_cast
<TypedefDecl
>(SD
)) {
243 if (TD
->getUnderlyingType()->isRecordType() ||
244 (Context
.getLangOptions().CPlusPlus0x
&&
245 TD
->getUnderlyingType()->isEnumeralType()))
247 } else if (isa
<RecordDecl
>(SD
) ||
248 (Context
.getLangOptions().CPlusPlus0x
&& isa
<EnumDecl
>(SD
)))
254 /// \brief If the given nested-name-specifier begins with a bare identifier
255 /// (e.g., Base::), perform name lookup for that identifier as a
256 /// nested-name-specifier within the given scope, and return the result of that
258 NamedDecl
*Sema::FindFirstQualifierInScope(Scope
*S
, NestedNameSpecifier
*NNS
) {
262 while (NNS
->getPrefix())
263 NNS
= NNS
->getPrefix();
265 if (NNS
->getKind() != NestedNameSpecifier::Identifier
)
268 LookupResult
Found(*this, NNS
->getAsIdentifier(), SourceLocation(),
269 LookupNestedNameSpecifierName
);
270 LookupName(Found
, S
);
271 assert(!Found
.isAmbiguous() && "Cannot handle ambiguities here yet");
273 if (!Found
.isSingleResult())
276 NamedDecl
*Result
= Found
.getFoundDecl();
277 if (isAcceptableNestedNameSpecifier(Result
))
283 bool Sema::isNonTypeNestedNameSpecifier(Scope
*S
, CXXScopeSpec
&SS
,
284 SourceLocation IdLoc
,
286 ParsedType ObjectTypePtr
) {
287 QualType ObjectType
= GetTypeFromParser(ObjectTypePtr
);
288 LookupResult
Found(*this, &II
, IdLoc
, LookupNestedNameSpecifierName
);
290 // Determine where to perform name lookup
291 DeclContext
*LookupCtx
= 0;
292 bool isDependent
= false;
293 if (!ObjectType
.isNull()) {
294 // This nested-name-specifier occurs in a member access expression, e.g.,
295 // x->B::f, and we are looking into the type of the object.
296 assert(!SS
.isSet() && "ObjectType and scope specifier cannot coexist");
297 LookupCtx
= computeDeclContext(ObjectType
);
298 isDependent
= ObjectType
->isDependentType();
299 } else if (SS
.isSet()) {
300 // This nested-name-specifier occurs after another nested-name-specifier,
301 // so long into the context associated with the prior nested-name-specifier.
302 LookupCtx
= computeDeclContext(SS
, false);
303 isDependent
= isDependentScopeSpecifier(SS
);
304 Found
.setContextRange(SS
.getRange());
308 // Perform "qualified" name lookup into the declaration context we
309 // computed, which is either the type of the base of a member access
310 // expression or the declaration context associated with a prior
311 // nested-name-specifier.
313 // The declaration context must be complete.
314 if (!LookupCtx
->isDependentContext() &&
315 RequireCompleteDeclContext(SS
, LookupCtx
))
318 LookupQualifiedName(Found
, LookupCtx
);
319 } else if (isDependent
) {
322 LookupName(Found
, S
);
324 Found
.suppressDiagnostics();
326 if (NamedDecl
*ND
= Found
.getAsSingle
<NamedDecl
>())
327 return isa
<NamespaceDecl
>(ND
) || isa
<NamespaceAliasDecl
>(ND
);
332 /// \brief Build a new nested-name-specifier for "identifier::", as described
333 /// by ActOnCXXNestedNameSpecifier.
335 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
336 /// that it contains an extra parameter \p ScopeLookupResult, which provides
337 /// the result of name lookup within the scope of the nested-name-specifier
338 /// that was computed at template definition time.
340 /// If ErrorRecoveryLookup is true, then this call is used to improve error
341 /// recovery. This means that it should not emit diagnostics, it should
342 /// just return null on failure. It also means it should only return a valid
343 /// scope if it *knows* that the result is correct. It should not return in a
344 /// dependent context, for example.
345 Sema::CXXScopeTy
*Sema::BuildCXXNestedNameSpecifier(Scope
*S
,
347 SourceLocation IdLoc
,
348 SourceLocation CCLoc
,
351 NamedDecl
*ScopeLookupResult
,
352 bool EnteringContext
,
353 bool ErrorRecoveryLookup
) {
354 NestedNameSpecifier
*Prefix
355 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
357 LookupResult
Found(*this, &II
, IdLoc
, LookupNestedNameSpecifierName
);
359 // Determine where to perform name lookup
360 DeclContext
*LookupCtx
= 0;
361 bool isDependent
= false;
362 if (!ObjectType
.isNull()) {
363 // This nested-name-specifier occurs in a member access expression, e.g.,
364 // x->B::f, and we are looking into the type of the object.
365 assert(!SS
.isSet() && "ObjectType and scope specifier cannot coexist");
366 LookupCtx
= computeDeclContext(ObjectType
);
367 isDependent
= ObjectType
->isDependentType();
368 } else if (SS
.isSet()) {
369 // This nested-name-specifier occurs after another nested-name-specifier,
370 // so long into the context associated with the prior nested-name-specifier.
371 LookupCtx
= computeDeclContext(SS
, EnteringContext
);
372 isDependent
= isDependentScopeSpecifier(SS
);
373 Found
.setContextRange(SS
.getRange());
377 bool ObjectTypeSearchedInScope
= false;
379 // Perform "qualified" name lookup into the declaration context we
380 // computed, which is either the type of the base of a member access
381 // expression or the declaration context associated with a prior
382 // nested-name-specifier.
384 // The declaration context must be complete.
385 if (!LookupCtx
->isDependentContext() &&
386 RequireCompleteDeclContext(SS
, LookupCtx
))
389 LookupQualifiedName(Found
, LookupCtx
);
391 if (!ObjectType
.isNull() && Found
.empty()) {
392 // C++ [basic.lookup.classref]p4:
393 // If the id-expression in a class member access is a qualified-id of
396 // class-name-or-namespace-name::...
398 // the class-name-or-namespace-name following the . or -> operator is
399 // looked up both in the context of the entire postfix-expression and in
400 // the scope of the class of the object expression. If the name is found
401 // only in the scope of the class of the object expression, the name
402 // shall refer to a class-name. If the name is found only in the
403 // context of the entire postfix-expression, the name shall refer to a
404 // class-name or namespace-name. [...]
406 // Qualified name lookup into a class will not find a namespace-name,
407 // so we do not need to diagnoste that case specifically. However,
408 // this qualified name lookup may find nothing. In that case, perform
409 // unqualified name lookup in the given scope (if available) or
410 // reconstruct the result from when name lookup was performed at template
413 LookupName(Found
, S
);
414 else if (ScopeLookupResult
)
415 Found
.addDecl(ScopeLookupResult
);
417 ObjectTypeSearchedInScope
= true;
419 } else if (!isDependent
) {
420 // Perform unqualified name lookup in the current scope.
421 LookupName(Found
, S
);
424 // If we performed lookup into a dependent context and did not find anything,
425 // that's fine: just build a dependent nested-name-specifier.
426 if (Found
.empty() && isDependent
&&
427 !(LookupCtx
&& LookupCtx
->isRecord() &&
428 (!cast
<CXXRecordDecl
>(LookupCtx
)->hasDefinition() ||
429 !cast
<CXXRecordDecl
>(LookupCtx
)->hasAnyDependentBases()))) {
430 // Don't speculate if we're just trying to improve error recovery.
431 if (ErrorRecoveryLookup
)
434 // We were not able to compute the declaration context for a dependent
435 // base object type or prior nested-name-specifier, so this
436 // nested-name-specifier refers to an unknown specialization. Just build
437 // a dependent nested-name-specifier.
439 return NestedNameSpecifier::Create(Context
, &II
);
441 return NestedNameSpecifier::Create(Context
, Prefix
, &II
);
444 // FIXME: Deal with ambiguities cleanly.
446 if (Found
.empty() && !ErrorRecoveryLookup
) {
447 // We haven't found anything, and we're not recovering from a
448 // different kind of error, so look for typos.
449 DeclarationName Name
= Found
.getLookupName();
450 if (CorrectTypo(Found
, S
, &SS
, LookupCtx
, EnteringContext
,
452 Found
.isSingleResult() &&
453 isAcceptableNestedNameSpecifier(Found
.getAsSingle
<NamedDecl
>())) {
455 Diag(Found
.getNameLoc(), diag::err_no_member_suggest
)
456 << Name
<< LookupCtx
<< Found
.getLookupName() << SS
.getRange()
457 << FixItHint::CreateReplacement(Found
.getNameLoc(),
458 Found
.getLookupName().getAsString());
460 Diag(Found
.getNameLoc(), diag::err_undeclared_var_use_suggest
)
461 << Name
<< Found
.getLookupName()
462 << FixItHint::CreateReplacement(Found
.getNameLoc(),
463 Found
.getLookupName().getAsString());
465 if (NamedDecl
*ND
= Found
.getAsSingle
<NamedDecl
>())
466 Diag(ND
->getLocation(), diag::note_previous_decl
)
467 << ND
->getDeclName();
470 Found
.setLookupName(&II
);
474 NamedDecl
*SD
= Found
.getAsSingle
<NamedDecl
>();
475 if (isAcceptableNestedNameSpecifier(SD
)) {
476 if (!ObjectType
.isNull() && !ObjectTypeSearchedInScope
) {
477 // C++ [basic.lookup.classref]p4:
478 // [...] If the name is found in both contexts, the
479 // class-name-or-namespace-name shall refer to the same entity.
481 // We already found the name in the scope of the object. Now, look
482 // into the current scope (the scope of the postfix-expression) to
483 // see if we can find the same name there. As above, if there is no
484 // scope, reconstruct the result from the template instantiation itself.
485 NamedDecl
*OuterDecl
;
487 LookupResult
FoundOuter(*this, &II
, IdLoc
, LookupNestedNameSpecifierName
);
488 LookupName(FoundOuter
, S
);
489 OuterDecl
= FoundOuter
.getAsSingle
<NamedDecl
>();
491 OuterDecl
= ScopeLookupResult
;
493 if (isAcceptableNestedNameSpecifier(OuterDecl
) &&
494 OuterDecl
->getCanonicalDecl() != SD
->getCanonicalDecl() &&
495 (!isa
<TypeDecl
>(OuterDecl
) || !isa
<TypeDecl
>(SD
) ||
496 !Context
.hasSameType(
497 Context
.getTypeDeclType(cast
<TypeDecl
>(OuterDecl
)),
498 Context
.getTypeDeclType(cast
<TypeDecl
>(SD
))))) {
499 if (ErrorRecoveryLookup
)
502 Diag(IdLoc
, diag::err_nested_name_member_ref_lookup_ambiguous
)
504 Diag(SD
->getLocation(), diag::note_ambig_member_ref_object_type
)
506 Diag(OuterDecl
->getLocation(), diag::note_ambig_member_ref_scope
);
508 // Fall through so that we'll pick the name we found in the object
509 // type, since that's probably what the user wanted anyway.
513 if (NamespaceDecl
*Namespace
= dyn_cast
<NamespaceDecl
>(SD
))
514 return NestedNameSpecifier::Create(Context
, Prefix
, Namespace
);
516 // FIXME: It would be nice to maintain the namespace alias name, then
517 // see through that alias when resolving the nested-name-specifier down to
518 // a declaration context.
519 if (NamespaceAliasDecl
*Alias
= dyn_cast
<NamespaceAliasDecl
>(SD
))
520 return NestedNameSpecifier::Create(Context
, Prefix
,
521 Alias
->getNamespace());
523 QualType T
= Context
.getTypeDeclType(cast
<TypeDecl
>(SD
));
524 return NestedNameSpecifier::Create(Context
, Prefix
, false,
528 // Otherwise, we have an error case. If we don't want diagnostics, just
529 // return an error now.
530 if (ErrorRecoveryLookup
)
533 // If we didn't find anything during our lookup, try again with
534 // ordinary name lookup, which can help us produce better error
537 Found
.clear(LookupOrdinaryName
);
538 LookupName(Found
, S
);
543 DiagID
= diag::err_expected_class_or_namespace
;
544 else if (SS
.isSet()) {
545 Diag(IdLoc
, diag::err_no_member
) << &II
<< LookupCtx
<< SS
.getRange();
548 DiagID
= diag::err_undeclared_var_use
;
551 Diag(IdLoc
, DiagID
) << &II
<< SS
.getRange();
553 Diag(IdLoc
, DiagID
) << &II
;
558 /// ActOnCXXNestedNameSpecifier - Called during parsing of a
559 /// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
560 /// we want to resolve "bar::". 'SS' is empty or the previously parsed
561 /// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
562 /// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
563 /// Returns a CXXScopeTy* object representing the C++ scope.
564 Sema::CXXScopeTy
*Sema::ActOnCXXNestedNameSpecifier(Scope
*S
,
566 SourceLocation IdLoc
,
567 SourceLocation CCLoc
,
569 ParsedType ObjectTypePtr
,
570 bool EnteringContext
) {
571 return BuildCXXNestedNameSpecifier(S
, SS
, IdLoc
, CCLoc
, II
,
572 GetTypeFromParser(ObjectTypePtr
),
573 /*ScopeLookupResult=*/0, EnteringContext
,
577 /// IsInvalidUnlessNestedName - This method is used for error recovery
578 /// purposes to determine whether the specified identifier is only valid as
579 /// a nested name specifier, for example a namespace name. It is
580 /// conservatively correct to always return false from this method.
582 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
583 bool Sema::IsInvalidUnlessNestedName(Scope
*S
, CXXScopeSpec
&SS
,
584 IdentifierInfo
&II
, ParsedType ObjectType
,
585 bool EnteringContext
) {
586 return BuildCXXNestedNameSpecifier(S
, SS
, SourceLocation(), SourceLocation(),
587 II
, GetTypeFromParser(ObjectType
),
588 /*ScopeLookupResult=*/0, EnteringContext
,
592 Sema::CXXScopeTy
*Sema::ActOnCXXNestedNameSpecifier(Scope
*S
,
593 const CXXScopeSpec
&SS
,
595 SourceRange TypeRange
,
596 SourceLocation CCLoc
) {
597 NestedNameSpecifier
*Prefix
= SS
.getScopeRep();
598 QualType T
= GetTypeFromParser(Ty
);
599 return NestedNameSpecifier::Create(Context
, Prefix
, /*FIXME:*/false,
603 bool Sema::ShouldEnterDeclaratorScope(Scope
*S
, const CXXScopeSpec
&SS
) {
604 assert(SS
.isSet() && "Parser passed invalid CXXScopeSpec.");
606 NestedNameSpecifier
*Qualifier
=
607 static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
609 // There are only two places a well-formed program may qualify a
610 // declarator: first, when defining a namespace or class member
611 // out-of-line, and second, when naming an explicitly-qualified
612 // friend function. The latter case is governed by
613 // C++03 [basic.lookup.unqual]p10:
614 // In a friend declaration naming a member function, a name used
615 // in the function declarator and not part of a template-argument
616 // in a template-id is first looked up in the scope of the member
617 // function's class. If it is not found, or if the name is part of
618 // a template-argument in a template-id, the look up is as
619 // described for unqualified names in the definition of the class
620 // granting friendship.
621 // i.e. we don't push a scope unless it's a class member.
623 switch (Qualifier
->getKind()) {
624 case NestedNameSpecifier::Global
:
625 case NestedNameSpecifier::Namespace
:
626 // These are always namespace scopes. We never want to enter a
627 // namespace scope from anything but a file context.
628 return CurContext
->getRedeclContext()->isFileContext();
630 case NestedNameSpecifier::Identifier
:
631 case NestedNameSpecifier::TypeSpec
:
632 case NestedNameSpecifier::TypeSpecWithTemplate
:
633 // These are never namespace scopes.
637 // Silence bogus warning.
641 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
642 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
643 /// After this method is called, according to [C++ 3.4.3p3], names should be
644 /// looked up in the declarator-id's scope, until the declarator is parsed and
645 /// ActOnCXXExitDeclaratorScope is called.
646 /// The 'SS' should be a non-empty valid CXXScopeSpec.
647 bool Sema::ActOnCXXEnterDeclaratorScope(Scope
*S
, CXXScopeSpec
&SS
) {
648 assert(SS
.isSet() && "Parser passed invalid CXXScopeSpec.");
650 if (SS
.isInvalid()) return true;
652 DeclContext
*DC
= computeDeclContext(SS
, true);
653 if (!DC
) return true;
655 // Before we enter a declarator's context, we need to make sure that
656 // it is a complete declaration context.
657 if (!DC
->isDependentContext() && RequireCompleteDeclContext(SS
, DC
))
660 EnterDeclaratorContext(S
, DC
);
662 // Rebuild the nested name specifier for the new scope.
663 if (DC
->isDependentContext())
664 RebuildNestedNameSpecifierInCurrentInstantiation(SS
);
669 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
670 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
671 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
672 /// Used to indicate that names should revert to being looked up in the
674 void Sema::ActOnCXXExitDeclaratorScope(Scope
*S
, const CXXScopeSpec
&SS
) {
675 assert(SS
.isSet() && "Parser passed invalid CXXScopeSpec.");
678 assert(!SS
.isInvalid() && computeDeclContext(SS
, true) &&
679 "exiting declarator scope we never really entered");
680 ExitDeclaratorContext(S
);