rename test
[clang.git] / lib / Analysis / CFG.cpp
blobabb8df585443d52bb17a11058659e2b9f002357c
1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the CFG and CFGBuilder classes for representing and
11 // building Control-Flow Graphs (CFGs) from ASTs.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Analysis/Support/SaveAndRestore.h"
16 #include "clang/Analysis/CFG.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/AST/PrettyPrinter.h"
20 #include "llvm/Support/GraphWriter.h"
21 #include "llvm/Support/Allocator.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/OwningPtr.h"
27 using namespace clang;
29 namespace {
31 static SourceLocation GetEndLoc(Decl* D) {
32 if (VarDecl* VD = dyn_cast<VarDecl>(D))
33 if (Expr* Ex = VD->getInit())
34 return Ex->getSourceRange().getEnd();
35 return D->getLocation();
38 /// The CFG builder uses a recursive algorithm to build the CFG. When
39 /// we process an expression, sometimes we know that we must add the
40 /// subexpressions as block-level expressions. For example:
41 ///
42 /// exp1 || exp2
43 ///
44 /// When processing the '||' expression, we know that exp1 and exp2
45 /// need to be added as block-level expressions, even though they
46 /// might not normally need to be. AddStmtChoice records this
47 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
48 /// the builder has an option not to add a subexpression as a
49 /// block-level expression.
50 ///
51 class AddStmtChoice {
52 public:
53 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
55 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
57 bool alwaysAdd() const { return kind & AlwaysAdd; }
59 /// Return a copy of this object, except with the 'always-add' bit
60 /// set as specified.
61 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
62 return AddStmtChoice(alwaysAdd ? Kind(kind | AlwaysAdd) :
63 Kind(kind & ~AlwaysAdd));
66 private:
67 Kind kind;
70 /// LocalScope - Node in tree of local scopes created for C++ implicit
71 /// destructor calls generation. It contains list of automatic variables
72 /// declared in the scope and link to position in previous scope this scope
73 /// began in.
74 ///
75 /// The process of creating local scopes is as follows:
76 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
77 /// - Before processing statements in scope (e.g. CompoundStmt) create
78 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
79 /// and set CFGBuilder::ScopePos to the end of new scope,
80 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
81 /// at this VarDecl,
82 /// - For every normal (without jump) end of scope add to CFGBlock destructors
83 /// for objects in the current scope,
84 /// - For every jump add to CFGBlock destructors for objects
85 /// between CFGBuilder::ScopePos and local scope position saved for jump
86 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
87 /// jump target position will be on the path to root from CFGBuilder::ScopePos
88 /// (adding any variable that doesn't need constructor to be called to
89 /// LocalScope can break this assumption),
90 ///
91 class LocalScope {
92 public:
93 typedef BumpVector<VarDecl*> AutomaticVarsTy;
95 /// const_iterator - Iterates local scope backwards and jumps to previous
96 /// scope on reaching the beginning of currently iterated scope.
97 class const_iterator {
98 const LocalScope* Scope;
100 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
101 /// Invalid iterator (with null Scope) has VarIter equal to 0.
102 unsigned VarIter;
104 public:
105 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
106 /// Incrementing invalid iterator is allowed and will result in invalid
107 /// iterator.
108 const_iterator()
109 : Scope(NULL), VarIter(0) {}
111 /// Create valid iterator. In case when S.Prev is an invalid iterator and
112 /// I is equal to 0, this will create invalid iterator.
113 const_iterator(const LocalScope& S, unsigned I)
114 : Scope(&S), VarIter(I) {
115 // Iterator to "end" of scope is not allowed. Handle it by going up
116 // in scopes tree possibly up to invalid iterator in the root.
117 if (VarIter == 0 && Scope)
118 *this = Scope->Prev;
121 VarDecl* const* operator->() const {
122 assert (Scope && "Dereferencing invalid iterator is not allowed");
123 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
124 return &Scope->Vars[VarIter - 1];
126 VarDecl* operator*() const {
127 return *this->operator->();
130 const_iterator& operator++() {
131 if (!Scope)
132 return *this;
134 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
135 --VarIter;
136 if (VarIter == 0)
137 *this = Scope->Prev;
138 return *this;
140 const_iterator operator++(int) {
141 const_iterator P = *this;
142 ++*this;
143 return P;
146 bool operator==(const const_iterator& rhs) const {
147 return Scope == rhs.Scope && VarIter == rhs.VarIter;
149 bool operator!=(const const_iterator& rhs) const {
150 return !(*this == rhs);
153 operator bool() const {
154 return *this != const_iterator();
157 int distance(const_iterator L);
160 friend class const_iterator;
162 private:
163 BumpVectorContext ctx;
165 /// Automatic variables in order of declaration.
166 AutomaticVarsTy Vars;
167 /// Iterator to variable in previous scope that was declared just before
168 /// begin of this scope.
169 const_iterator Prev;
171 public:
172 /// Constructs empty scope linked to previous scope in specified place.
173 LocalScope(BumpVectorContext &ctx, const_iterator P)
174 : ctx(ctx), Vars(ctx, 4), Prev(P) {}
176 /// Begin of scope in direction of CFG building (backwards).
177 const_iterator begin() const { return const_iterator(*this, Vars.size()); }
179 void addVar(VarDecl* VD) {
180 Vars.push_back(VD, ctx);
184 /// distance - Calculates distance from this to L. L must be reachable from this
185 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
186 /// number of scopes between this and L.
187 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
188 int D = 0;
189 const_iterator F = *this;
190 while (F.Scope != L.Scope) {
191 assert (F != const_iterator()
192 && "L iterator is not reachable from F iterator.");
193 D += F.VarIter;
194 F = F.Scope->Prev;
196 D += F.VarIter - L.VarIter;
197 return D;
200 /// BlockScopePosPair - Structure for specifying position in CFG during its
201 /// build process. It consists of CFGBlock that specifies position in CFG graph
202 /// and LocalScope::const_iterator that specifies position in LocalScope graph.
203 struct BlockScopePosPair {
204 BlockScopePosPair() : block(0) {}
205 BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
206 : block(b), scopePosition(scopePos) {}
208 CFGBlock *block;
209 LocalScope::const_iterator scopePosition;
212 /// CFGBuilder - This class implements CFG construction from an AST.
213 /// The builder is stateful: an instance of the builder should be used to only
214 /// construct a single CFG.
216 /// Example usage:
218 /// CFGBuilder builder;
219 /// CFG* cfg = builder.BuildAST(stmt1);
221 /// CFG construction is done via a recursive walk of an AST. We actually parse
222 /// the AST in reverse order so that the successor of a basic block is
223 /// constructed prior to its predecessor. This allows us to nicely capture
224 /// implicit fall-throughs without extra basic blocks.
226 class CFGBuilder {
227 typedef BlockScopePosPair JumpTarget;
228 typedef BlockScopePosPair JumpSource;
230 ASTContext *Context;
231 llvm::OwningPtr<CFG> cfg;
233 CFGBlock* Block;
234 CFGBlock* Succ;
235 JumpTarget ContinueJumpTarget;
236 JumpTarget BreakJumpTarget;
237 CFGBlock* SwitchTerminatedBlock;
238 CFGBlock* DefaultCaseBlock;
239 CFGBlock* TryTerminatedBlock;
241 // Current position in local scope.
242 LocalScope::const_iterator ScopePos;
244 // LabelMap records the mapping from Label expressions to their jump targets.
245 typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
246 LabelMapTy LabelMap;
248 // A list of blocks that end with a "goto" that must be backpatched to their
249 // resolved targets upon completion of CFG construction.
250 typedef std::vector<JumpSource> BackpatchBlocksTy;
251 BackpatchBlocksTy BackpatchBlocks;
253 // A list of labels whose address has been taken (for indirect gotos).
254 typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
255 LabelSetTy AddressTakenLabels;
257 bool badCFG;
258 CFG::BuildOptions BuildOpts;
260 public:
261 explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
262 Block(NULL), Succ(NULL),
263 SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
264 TryTerminatedBlock(NULL), badCFG(false) {}
266 // buildCFG - Used by external clients to construct the CFG.
267 CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
268 CFG::BuildOptions BO);
270 private:
271 // Visitors to walk an AST and construct the CFG.
272 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
273 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
274 CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
275 CFGBlock *VisitBreakStmt(BreakStmt *B);
276 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
277 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
278 AddStmtChoice asc);
279 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
280 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
281 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
282 AddStmtChoice asc);
283 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
284 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
285 AddStmtChoice asc);
286 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
287 AddStmtChoice asc);
288 CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
289 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
290 CFGBlock *VisitCaseStmt(CaseStmt *C);
291 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
292 CFGBlock *VisitCompoundStmt(CompoundStmt *C);
293 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
294 AddStmtChoice asc);
295 CFGBlock *VisitContinueStmt(ContinueStmt *C);
296 CFGBlock *VisitDeclStmt(DeclStmt *DS);
297 CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
298 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
299 CFGBlock *VisitDoStmt(DoStmt *D);
300 CFGBlock *VisitForStmt(ForStmt *F);
301 CFGBlock *VisitGotoStmt(GotoStmt* G);
302 CFGBlock *VisitIfStmt(IfStmt *I);
303 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
304 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
305 CFGBlock *VisitLabelStmt(LabelStmt *L);
306 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
307 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
308 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
309 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
310 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
311 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
312 CFGBlock *VisitReturnStmt(ReturnStmt* R);
313 CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
314 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
315 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
316 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
317 CFGBlock *VisitWhileStmt(WhileStmt *W);
319 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
320 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
321 CFGBlock *VisitChildren(Stmt* S);
323 // Visitors to walk an AST and generate destructors of temporaries in
324 // full expression.
325 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
326 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
327 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
328 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
329 bool BindToTemporary);
330 CFGBlock *
331 VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
332 bool BindToTemporary);
334 // NYS == Not Yet Supported
335 CFGBlock* NYS() {
336 badCFG = true;
337 return Block;
340 void autoCreateBlock() { if (!Block) Block = createBlock(); }
341 CFGBlock *createBlock(bool add_successor = true);
343 CFGBlock *addStmt(Stmt *S) {
344 return Visit(S, AddStmtChoice::AlwaysAdd);
346 CFGBlock *addInitializer(CXXCtorInitializer *I);
347 void addAutomaticObjDtors(LocalScope::const_iterator B,
348 LocalScope::const_iterator E, Stmt* S);
349 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
351 // Local scopes creation.
352 LocalScope* createOrReuseLocalScope(LocalScope* Scope);
354 void addLocalScopeForStmt(Stmt* S);
355 LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
356 LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
358 void addLocalScopeAndDtors(Stmt* S);
360 // Interface to CFGBlock - adding CFGElements.
361 void appendStmt(CFGBlock *B, Stmt *S,
362 AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
363 B->appendStmt(S, cfg->getBumpVectorContext());
365 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
366 B->appendInitializer(I, cfg->getBumpVectorContext());
368 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
369 B->appendBaseDtor(BS, cfg->getBumpVectorContext());
371 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
372 B->appendMemberDtor(FD, cfg->getBumpVectorContext());
374 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
375 B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
378 void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
379 LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
380 void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
381 LocalScope::const_iterator E, Stmt* S);
382 void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
383 LocalScope::const_iterator B, LocalScope::const_iterator E);
385 void addSuccessor(CFGBlock *B, CFGBlock *S) {
386 B->addSuccessor(S, cfg->getBumpVectorContext());
389 /// TryResult - a class representing a variant over the values
390 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
391 /// and is used by the CFGBuilder to decide if a branch condition
392 /// can be decided up front during CFG construction.
393 class TryResult {
394 int X;
395 public:
396 TryResult(bool b) : X(b ? 1 : 0) {}
397 TryResult() : X(-1) {}
399 bool isTrue() const { return X == 1; }
400 bool isFalse() const { return X == 0; }
401 bool isKnown() const { return X >= 0; }
402 void negate() {
403 assert(isKnown());
404 X ^= 0x1;
408 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
409 /// if we can evaluate to a known value, otherwise return -1.
410 TryResult tryEvaluateBool(Expr *S) {
411 if (!BuildOpts.PruneTriviallyFalseEdges)
412 return TryResult();
414 Expr::EvalResult Result;
415 if (!S->isTypeDependent() && !S->isValueDependent() &&
416 S->Evaluate(Result, *Context) && Result.Val.isInt())
417 return Result.Val.getInt().getBoolValue();
419 return TryResult();
423 // FIXME: Add support for dependent-sized array types in C++?
424 // Does it even make sense to build a CFG for an uninstantiated template?
425 static const VariableArrayType *FindVA(const Type *t) {
426 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
427 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
428 if (vat->getSizeExpr())
429 return vat;
431 t = vt->getElementType().getTypePtr();
434 return 0;
437 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
438 /// arbitrary statement. Examples include a single expression or a function
439 /// body (compound statement). The ownership of the returned CFG is
440 /// transferred to the caller. If CFG construction fails, this method returns
441 /// NULL.
442 CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
443 CFG::BuildOptions BO) {
445 Context = C;
446 assert(cfg.get());
447 if (!Statement)
448 return NULL;
450 BuildOpts = BO;
452 // Create an empty block that will serve as the exit block for the CFG. Since
453 // this is the first block added to the CFG, it will be implicitly registered
454 // as the exit block.
455 Succ = createBlock();
456 assert(Succ == &cfg->getExit());
457 Block = NULL; // the EXIT block is empty. Create all other blocks lazily.
459 if (BuildOpts.AddImplicitDtors)
460 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
461 addImplicitDtorsForDestructor(DD);
463 // Visit the statements and create the CFG.
464 CFGBlock *B = addStmt(Statement);
466 if (badCFG)
467 return NULL;
469 // For C++ constructor add initializers to CFG.
470 if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
471 for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
472 E = CD->init_rend(); I != E; ++I) {
473 B = addInitializer(*I);
474 if (badCFG)
475 return NULL;
479 if (B)
480 Succ = B;
482 // Backpatch the gotos whose label -> block mappings we didn't know when we
483 // encountered them.
484 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
485 E = BackpatchBlocks.end(); I != E; ++I ) {
487 CFGBlock* B = I->block;
488 GotoStmt* G = cast<GotoStmt>(B->getTerminator());
489 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
491 // If there is no target for the goto, then we are looking at an
492 // incomplete AST. Handle this by not registering a successor.
493 if (LI == LabelMap.end()) continue;
495 JumpTarget JT = LI->second;
496 prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
497 JT.scopePosition);
498 addSuccessor(B, JT.block);
501 // Add successors to the Indirect Goto Dispatch block (if we have one).
502 if (CFGBlock* B = cfg->getIndirectGotoBlock())
503 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
504 E = AddressTakenLabels.end(); I != E; ++I ) {
506 // Lookup the target block.
507 LabelMapTy::iterator LI = LabelMap.find(*I);
509 // If there is no target block that contains label, then we are looking
510 // at an incomplete AST. Handle this by not registering a successor.
511 if (LI == LabelMap.end()) continue;
513 addSuccessor(B, LI->second.block);
516 // Create an empty entry block that has no predecessors.
517 cfg->setEntry(createBlock());
519 return cfg.take();
522 /// createBlock - Used to lazily create blocks that are connected
523 /// to the current (global) succcessor.
524 CFGBlock* CFGBuilder::createBlock(bool add_successor) {
525 CFGBlock* B = cfg->createBlock();
526 if (add_successor && Succ)
527 addSuccessor(B, Succ);
528 return B;
531 /// addInitializer - Add C++ base or member initializer element to CFG.
532 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
533 if (!BuildOpts.AddInitializers)
534 return Block;
536 bool IsReference = false;
537 bool HasTemporaries = false;
539 // Destructors of temporaries in initialization expression should be called
540 // after initialization finishes.
541 Expr *Init = I->getInit();
542 if (Init) {
543 if (FieldDecl *FD = I->getAnyMember())
544 IsReference = FD->getType()->isReferenceType();
545 HasTemporaries = isa<ExprWithCleanups>(Init);
547 if (BuildOpts.AddImplicitDtors && HasTemporaries) {
548 // Generate destructors for temporaries in initialization expression.
549 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
550 IsReference);
554 autoCreateBlock();
555 appendInitializer(Block, I);
557 if (Init) {
558 if (HasTemporaries) {
559 // For expression with temporaries go directly to subexpression to omit
560 // generating destructors for the second time.
561 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
563 return Visit(Init);
566 return Block;
569 /// addAutomaticObjDtors - Add to current block automatic objects destructors
570 /// for objects in range of local scope positions. Use S as trigger statement
571 /// for destructors.
572 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
573 LocalScope::const_iterator E, Stmt* S) {
574 if (!BuildOpts.AddImplicitDtors)
575 return;
577 if (B == E)
578 return;
580 autoCreateBlock();
581 appendAutomaticObjDtors(Block, B, E, S);
584 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
585 /// base and member objects in destructor.
586 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
587 assert (BuildOpts.AddImplicitDtors
588 && "Can be called only when dtors should be added");
589 const CXXRecordDecl *RD = DD->getParent();
591 // At the end destroy virtual base objects.
592 for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
593 VE = RD->vbases_end(); VI != VE; ++VI) {
594 const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
595 if (!CD->hasTrivialDestructor()) {
596 autoCreateBlock();
597 appendBaseDtor(Block, VI);
601 // Before virtual bases destroy direct base objects.
602 for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
603 BE = RD->bases_end(); BI != BE; ++BI) {
604 if (!BI->isVirtual()) {
605 const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
606 if (!CD->hasTrivialDestructor()) {
607 autoCreateBlock();
608 appendBaseDtor(Block, BI);
613 // First destroy member objects.
614 for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
615 FE = RD->field_end(); FI != FE; ++FI) {
616 // Check for constant size array. Set type to array element type.
617 QualType QT = FI->getType();
618 if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
619 if (AT->getSize() == 0)
620 continue;
621 QT = AT->getElementType();
624 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
625 if (!CD->hasTrivialDestructor()) {
626 autoCreateBlock();
627 appendMemberDtor(Block, *FI);
632 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
633 /// way return valid LocalScope object.
634 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
635 if (!Scope) {
636 llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
637 Scope = alloc.Allocate<LocalScope>();
638 BumpVectorContext ctx(alloc);
639 new (Scope) LocalScope(ctx, ScopePos);
641 return Scope;
644 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
645 /// that should create implicit scope (e.g. if/else substatements).
646 void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
647 if (!BuildOpts.AddImplicitDtors)
648 return;
650 LocalScope *Scope = 0;
652 // For compound statement we will be creating explicit scope.
653 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
654 for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
655 ; BI != BE; ++BI) {
656 Stmt *SI = *BI;
657 if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
658 SI = LS->getSubStmt();
659 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
660 Scope = addLocalScopeForDeclStmt(DS, Scope);
662 return;
665 // For any other statement scope will be implicit and as such will be
666 // interesting only for DeclStmt.
667 if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
668 S = LS->getSubStmt();
669 if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
670 addLocalScopeForDeclStmt(DS);
673 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
674 /// reuse Scope if not NULL.
675 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
676 LocalScope* Scope) {
677 if (!BuildOpts.AddImplicitDtors)
678 return Scope;
680 for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
681 ; DI != DE; ++DI) {
682 if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
683 Scope = addLocalScopeForVarDecl(VD, Scope);
685 return Scope;
688 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
689 /// create add scope for automatic objects and temporary objects bound to
690 /// const reference. Will reuse Scope if not NULL.
691 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
692 LocalScope* Scope) {
693 if (!BuildOpts.AddImplicitDtors)
694 return Scope;
696 // Check if variable is local.
697 switch (VD->getStorageClass()) {
698 case SC_None:
699 case SC_Auto:
700 case SC_Register:
701 break;
702 default: return Scope;
705 // Check for const references bound to temporary. Set type to pointee.
706 QualType QT = VD->getType();
707 if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
708 QT = RT->getPointeeType();
709 if (!QT.isConstQualified())
710 return Scope;
711 if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
712 return Scope;
715 // Check for constant size array. Set type to array element type.
716 if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
717 if (AT->getSize() == 0)
718 return Scope;
719 QT = AT->getElementType();
722 // Check if type is a C++ class with non-trivial destructor.
723 if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
724 if (!CD->hasTrivialDestructor()) {
725 // Add the variable to scope
726 Scope = createOrReuseLocalScope(Scope);
727 Scope->addVar(VD);
728 ScopePos = Scope->begin();
730 return Scope;
733 /// addLocalScopeAndDtors - For given statement add local scope for it and
734 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
735 void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
736 if (!BuildOpts.AddImplicitDtors)
737 return;
739 LocalScope::const_iterator scopeBeginPos = ScopePos;
740 addLocalScopeForStmt(S);
741 addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
744 /// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
745 /// automatic storage duration to CFGBlock's elements vector. Insertion will be
746 /// performed in place specified with iterator.
747 void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
748 LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
749 BumpVectorContext& C = cfg->getBumpVectorContext();
750 I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
751 while (B != E)
752 I = Blk->insertAutomaticObjDtor(I, *B++, S);
755 /// appendAutomaticObjDtors - Append destructor CFGElements for variables with
756 /// automatic storage duration to CFGBlock's elements vector. Elements will be
757 /// appended to physical end of the vector which happens to be logical
758 /// beginning.
759 void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
760 LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
761 insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
764 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
765 /// variables with automatic storage duration to CFGBlock's elements vector.
766 /// Elements will be prepended to physical beginning of the vector which
767 /// happens to be logical end. Use blocks terminator as statement that specifies
768 /// destructors call site.
769 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
770 LocalScope::const_iterator B, LocalScope::const_iterator E) {
771 insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
774 /// Visit - Walk the subtree of a statement and add extra
775 /// blocks for ternary operators, &&, and ||. We also process "," and
776 /// DeclStmts (which may contain nested control-flow).
777 CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
778 tryAgain:
779 if (!S) {
780 badCFG = true;
781 return 0;
783 switch (S->getStmtClass()) {
784 default:
785 return VisitStmt(S, asc);
787 case Stmt::AddrLabelExprClass:
788 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
790 case Stmt::BinaryConditionalOperatorClass:
791 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
793 case Stmt::BinaryOperatorClass:
794 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
796 case Stmt::BlockExprClass:
797 return VisitBlockExpr(cast<BlockExpr>(S), asc);
799 case Stmt::BreakStmtClass:
800 return VisitBreakStmt(cast<BreakStmt>(S));
802 case Stmt::CallExprClass:
803 case Stmt::CXXOperatorCallExprClass:
804 return VisitCallExpr(cast<CallExpr>(S), asc);
806 case Stmt::CaseStmtClass:
807 return VisitCaseStmt(cast<CaseStmt>(S));
809 case Stmt::ChooseExprClass:
810 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
812 case Stmt::CompoundStmtClass:
813 return VisitCompoundStmt(cast<CompoundStmt>(S));
815 case Stmt::ConditionalOperatorClass:
816 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
818 case Stmt::ContinueStmtClass:
819 return VisitContinueStmt(cast<ContinueStmt>(S));
821 case Stmt::CXXCatchStmtClass:
822 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
824 case Stmt::ExprWithCleanupsClass:
825 return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
827 case Stmt::CXXBindTemporaryExprClass:
828 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
830 case Stmt::CXXConstructExprClass:
831 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
833 case Stmt::CXXFunctionalCastExprClass:
834 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
836 case Stmt::CXXTemporaryObjectExprClass:
837 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
839 case Stmt::CXXMemberCallExprClass:
840 return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
842 case Stmt::CXXThrowExprClass:
843 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
845 case Stmt::CXXTryStmtClass:
846 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
848 case Stmt::DeclStmtClass:
849 return VisitDeclStmt(cast<DeclStmt>(S));
851 case Stmt::DefaultStmtClass:
852 return VisitDefaultStmt(cast<DefaultStmt>(S));
854 case Stmt::DoStmtClass:
855 return VisitDoStmt(cast<DoStmt>(S));
857 case Stmt::ForStmtClass:
858 return VisitForStmt(cast<ForStmt>(S));
860 case Stmt::GotoStmtClass:
861 return VisitGotoStmt(cast<GotoStmt>(S));
863 case Stmt::IfStmtClass:
864 return VisitIfStmt(cast<IfStmt>(S));
866 case Stmt::ImplicitCastExprClass:
867 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
869 case Stmt::IndirectGotoStmtClass:
870 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
872 case Stmt::LabelStmtClass:
873 return VisitLabelStmt(cast<LabelStmt>(S));
875 case Stmt::MemberExprClass:
876 return VisitMemberExpr(cast<MemberExpr>(S), asc);
878 case Stmt::ObjCAtCatchStmtClass:
879 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
881 case Stmt::ObjCAtSynchronizedStmtClass:
882 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
884 case Stmt::ObjCAtThrowStmtClass:
885 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
887 case Stmt::ObjCAtTryStmtClass:
888 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
890 case Stmt::ObjCForCollectionStmtClass:
891 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
893 case Stmt::ParenExprClass:
894 S = cast<ParenExpr>(S)->getSubExpr();
895 goto tryAgain;
897 case Stmt::NullStmtClass:
898 return Block;
900 case Stmt::ReturnStmtClass:
901 return VisitReturnStmt(cast<ReturnStmt>(S));
903 case Stmt::SizeOfAlignOfExprClass:
904 return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
906 case Stmt::StmtExprClass:
907 return VisitStmtExpr(cast<StmtExpr>(S), asc);
909 case Stmt::SwitchStmtClass:
910 return VisitSwitchStmt(cast<SwitchStmt>(S));
912 case Stmt::UnaryOperatorClass:
913 return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
915 case Stmt::WhileStmtClass:
916 return VisitWhileStmt(cast<WhileStmt>(S));
920 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
921 if (asc.alwaysAdd()) {
922 autoCreateBlock();
923 appendStmt(Block, S, asc);
926 return VisitChildren(S);
929 /// VisitChildren - Visit the children of a Stmt.
930 CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
931 CFGBlock *B = Block;
932 for (Stmt::child_range I = Terminator->children(); I; ++I) {
933 if (*I) B = Visit(*I);
935 return B;
938 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
939 AddStmtChoice asc) {
940 AddressTakenLabels.insert(A->getLabel());
942 if (asc.alwaysAdd()) {
943 autoCreateBlock();
944 appendStmt(Block, A, asc);
947 return Block;
950 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
951 AddStmtChoice asc) {
952 if (asc.alwaysAdd()) {
953 autoCreateBlock();
954 appendStmt(Block, U, asc);
957 return Visit(U->getSubExpr(), AddStmtChoice());
960 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
961 AddStmtChoice asc) {
962 if (B->isLogicalOp()) { // && or ||
963 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
964 appendStmt(ConfluenceBlock, B, asc);
966 if (badCFG)
967 return 0;
969 // create the block evaluating the LHS
970 CFGBlock* LHSBlock = createBlock(false);
971 LHSBlock->setTerminator(B);
973 // create the block evaluating the RHS
974 Succ = ConfluenceBlock;
975 Block = NULL;
976 CFGBlock* RHSBlock = addStmt(B->getRHS());
978 if (RHSBlock) {
979 if (badCFG)
980 return 0;
981 } else {
982 // Create an empty block for cases where the RHS doesn't require
983 // any explicit statements in the CFG.
984 RHSBlock = createBlock();
987 // See if this is a known constant.
988 TryResult KnownVal = tryEvaluateBool(B->getLHS());
989 if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
990 KnownVal.negate();
992 // Now link the LHSBlock with RHSBlock.
993 if (B->getOpcode() == BO_LOr) {
994 addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
995 addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
996 } else {
997 assert(B->getOpcode() == BO_LAnd);
998 addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
999 addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1002 // Generate the blocks for evaluating the LHS.
1003 Block = LHSBlock;
1004 return addStmt(B->getLHS());
1007 if (B->getOpcode() == BO_Comma) { // ,
1008 autoCreateBlock();
1009 appendStmt(Block, B, asc);
1010 addStmt(B->getRHS());
1011 return addStmt(B->getLHS());
1014 if (B->isAssignmentOp()) {
1015 if (asc.alwaysAdd()) {
1016 autoCreateBlock();
1017 appendStmt(Block, B, asc);
1019 Visit(B->getLHS());
1020 return Visit(B->getRHS());
1023 if (asc.alwaysAdd()) {
1024 autoCreateBlock();
1025 appendStmt(Block, B, asc);
1028 CFGBlock *RBlock = Visit(B->getRHS());
1029 CFGBlock *LBlock = Visit(B->getLHS());
1030 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1031 // containing a DoStmt, and the LHS doesn't create a new block, then we should
1032 // return RBlock. Otherwise we'll incorrectly return NULL.
1033 return (LBlock ? LBlock : RBlock);
1036 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1037 if (asc.alwaysAdd()) {
1038 autoCreateBlock();
1039 appendStmt(Block, E, asc);
1041 return Block;
1044 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1045 // "break" is a control-flow statement. Thus we stop processing the current
1046 // block.
1047 if (badCFG)
1048 return 0;
1050 // Now create a new block that ends with the break statement.
1051 Block = createBlock(false);
1052 Block->setTerminator(B);
1054 // If there is no target for the break, then we are looking at an incomplete
1055 // AST. This means that the CFG cannot be constructed.
1056 if (BreakJumpTarget.block) {
1057 addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1058 addSuccessor(Block, BreakJumpTarget.block);
1059 } else
1060 badCFG = true;
1063 return Block;
1066 static bool CanThrow(Expr *E) {
1067 QualType Ty = E->getType();
1068 if (Ty->isFunctionPointerType())
1069 Ty = Ty->getAs<PointerType>()->getPointeeType();
1070 else if (Ty->isBlockPointerType())
1071 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1073 const FunctionType *FT = Ty->getAs<FunctionType>();
1074 if (FT) {
1075 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1076 if (Proto->hasEmptyExceptionSpec())
1077 return false;
1079 return true;
1082 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1083 // If this is a call to a no-return function, this stops the block here.
1084 bool NoReturn = false;
1085 if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
1086 NoReturn = true;
1089 bool AddEHEdge = false;
1091 // Languages without exceptions are assumed to not throw.
1092 if (Context->getLangOptions().Exceptions) {
1093 if (BuildOpts.AddEHEdges)
1094 AddEHEdge = true;
1097 if (FunctionDecl *FD = C->getDirectCallee()) {
1098 if (FD->hasAttr<NoReturnAttr>())
1099 NoReturn = true;
1100 if (FD->hasAttr<NoThrowAttr>())
1101 AddEHEdge = false;
1104 if (!CanThrow(C->getCallee()))
1105 AddEHEdge = false;
1107 if (!NoReturn && !AddEHEdge)
1108 return VisitStmt(C, asc.withAlwaysAdd(true));
1110 if (Block) {
1111 Succ = Block;
1112 if (badCFG)
1113 return 0;
1116 Block = createBlock(!NoReturn);
1117 appendStmt(Block, C, asc);
1119 if (NoReturn) {
1120 // Wire this to the exit block directly.
1121 addSuccessor(Block, &cfg->getExit());
1123 if (AddEHEdge) {
1124 // Add exceptional edges.
1125 if (TryTerminatedBlock)
1126 addSuccessor(Block, TryTerminatedBlock);
1127 else
1128 addSuccessor(Block, &cfg->getExit());
1131 return VisitChildren(C);
1134 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1135 AddStmtChoice asc) {
1136 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1137 appendStmt(ConfluenceBlock, C, asc);
1138 if (badCFG)
1139 return 0;
1141 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1142 Succ = ConfluenceBlock;
1143 Block = NULL;
1144 CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1145 if (badCFG)
1146 return 0;
1148 Succ = ConfluenceBlock;
1149 Block = NULL;
1150 CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1151 if (badCFG)
1152 return 0;
1154 Block = createBlock(false);
1155 // See if this is a known constant.
1156 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1157 addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1158 addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1159 Block->setTerminator(C);
1160 return addStmt(C->getCond());
1164 CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1165 addLocalScopeAndDtors(C);
1166 CFGBlock* LastBlock = Block;
1168 for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1169 I != E; ++I ) {
1170 // If we hit a segment of code just containing ';' (NullStmts), we can
1171 // get a null block back. In such cases, just use the LastBlock
1172 if (CFGBlock *newBlock = addStmt(*I))
1173 LastBlock = newBlock;
1175 if (badCFG)
1176 return NULL;
1179 return LastBlock;
1182 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1183 AddStmtChoice asc) {
1184 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1185 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1187 // Create the confluence block that will "merge" the results of the ternary
1188 // expression.
1189 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1190 appendStmt(ConfluenceBlock, C, asc);
1191 if (badCFG)
1192 return 0;
1194 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1196 // Create a block for the LHS expression if there is an LHS expression. A
1197 // GCC extension allows LHS to be NULL, causing the condition to be the
1198 // value that is returned instead.
1199 // e.g: x ?: y is shorthand for: x ? x : y;
1200 Succ = ConfluenceBlock;
1201 Block = NULL;
1202 CFGBlock* LHSBlock = 0;
1203 const Expr *trueExpr = C->getTrueExpr();
1204 if (trueExpr != opaqueValue) {
1205 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1206 if (badCFG)
1207 return 0;
1208 Block = NULL;
1211 // Create the block for the RHS expression.
1212 Succ = ConfluenceBlock;
1213 CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1214 if (badCFG)
1215 return 0;
1217 // Create the block that will contain the condition.
1218 Block = createBlock(false);
1220 // See if this is a known constant.
1221 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1222 if (LHSBlock)
1223 addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1224 addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1225 Block->setTerminator(C);
1226 CFGBlock *result;
1227 Expr *condExpr = C->getCond();
1228 if (condExpr != opaqueValue) result = addStmt(condExpr);
1229 if (BCO) result = addStmt(BCO->getCommon());
1230 return result;
1233 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1234 if (DS->isSingleDecl())
1235 return VisitDeclSubExpr(DS);
1237 CFGBlock *B = 0;
1239 // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1240 typedef llvm::SmallVector<Decl*,10> BufTy;
1241 BufTy Buf(DS->decl_begin(), DS->decl_end());
1243 for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1244 // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1245 unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1246 ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1248 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
1249 // automatically freed with the CFG.
1250 DeclGroupRef DG(*I);
1251 Decl *D = *I;
1252 void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1253 DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1255 // Append the fake DeclStmt to block.
1256 B = VisitDeclSubExpr(DSNew);
1259 return B;
1262 /// VisitDeclSubExpr - Utility method to add block-level expressions for
1263 /// DeclStmts and initializers in them.
1264 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1265 assert(DS->isSingleDecl() && "Can handle single declarations only.");
1267 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1269 if (!VD) {
1270 autoCreateBlock();
1271 appendStmt(Block, DS);
1272 return Block;
1275 bool IsReference = false;
1276 bool HasTemporaries = false;
1278 // Destructors of temporaries in initialization expression should be called
1279 // after initialization finishes.
1280 Expr *Init = VD->getInit();
1281 if (Init) {
1282 IsReference = VD->getType()->isReferenceType();
1283 HasTemporaries = isa<ExprWithCleanups>(Init);
1285 if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1286 // Generate destructors for temporaries in initialization expression.
1287 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1288 IsReference);
1292 autoCreateBlock();
1293 appendStmt(Block, DS);
1295 if (Init) {
1296 if (HasTemporaries)
1297 // For expression with temporaries go directly to subexpression to omit
1298 // generating destructors for the second time.
1299 Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1300 else
1301 Visit(Init);
1304 // If the type of VD is a VLA, then we must process its size expressions.
1305 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1306 VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1307 Block = addStmt(VA->getSizeExpr());
1309 // Remove variable from local scope.
1310 if (ScopePos && VD == *ScopePos)
1311 ++ScopePos;
1313 return Block;
1316 CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1317 // We may see an if statement in the middle of a basic block, or it may be the
1318 // first statement we are processing. In either case, we create a new basic
1319 // block. First, we create the blocks for the then...else statements, and
1320 // then we create the block containing the if statement. If we were in the
1321 // middle of a block, we stop processing that block. That block is then the
1322 // implicit successor for the "then" and "else" clauses.
1324 // Save local scope position because in case of condition variable ScopePos
1325 // won't be restored when traversing AST.
1326 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1328 // Create local scope for possible condition variable.
1329 // Store scope position. Add implicit destructor.
1330 if (VarDecl* VD = I->getConditionVariable()) {
1331 LocalScope::const_iterator BeginScopePos = ScopePos;
1332 addLocalScopeForVarDecl(VD);
1333 addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1336 // The block we were proccessing is now finished. Make it the successor
1337 // block.
1338 if (Block) {
1339 Succ = Block;
1340 if (badCFG)
1341 return 0;
1344 // Process the false branch.
1345 CFGBlock* ElseBlock = Succ;
1347 if (Stmt* Else = I->getElse()) {
1348 SaveAndRestore<CFGBlock*> sv(Succ);
1350 // NULL out Block so that the recursive call to Visit will
1351 // create a new basic block.
1352 Block = NULL;
1354 // If branch is not a compound statement create implicit scope
1355 // and add destructors.
1356 if (!isa<CompoundStmt>(Else))
1357 addLocalScopeAndDtors(Else);
1359 ElseBlock = addStmt(Else);
1361 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1362 ElseBlock = sv.get();
1363 else if (Block) {
1364 if (badCFG)
1365 return 0;
1369 // Process the true branch.
1370 CFGBlock* ThenBlock;
1372 Stmt* Then = I->getThen();
1373 assert(Then);
1374 SaveAndRestore<CFGBlock*> sv(Succ);
1375 Block = NULL;
1377 // If branch is not a compound statement create implicit scope
1378 // and add destructors.
1379 if (!isa<CompoundStmt>(Then))
1380 addLocalScopeAndDtors(Then);
1382 ThenBlock = addStmt(Then);
1384 if (!ThenBlock) {
1385 // We can reach here if the "then" body has all NullStmts.
1386 // Create an empty block so we can distinguish between true and false
1387 // branches in path-sensitive analyses.
1388 ThenBlock = createBlock(false);
1389 addSuccessor(ThenBlock, sv.get());
1390 } else if (Block) {
1391 if (badCFG)
1392 return 0;
1396 // Now create a new block containing the if statement.
1397 Block = createBlock(false);
1399 // Set the terminator of the new block to the If statement.
1400 Block->setTerminator(I);
1402 // See if this is a known constant.
1403 const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1405 // Now add the successors.
1406 addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1407 addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1409 // Add the condition as the last statement in the new block. This may create
1410 // new blocks as the condition may contain control-flow. Any newly created
1411 // blocks will be pointed to be "Block".
1412 Block = addStmt(I->getCond());
1414 // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1415 // and the condition variable initialization to the CFG.
1416 if (VarDecl *VD = I->getConditionVariable()) {
1417 if (Expr *Init = VD->getInit()) {
1418 autoCreateBlock();
1419 appendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1420 addStmt(Init);
1424 return Block;
1428 CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1429 // If we were in the middle of a block we stop processing that block.
1431 // NOTE: If a "return" appears in the middle of a block, this means that the
1432 // code afterwards is DEAD (unreachable). We still keep a basic block
1433 // for that code; a simple "mark-and-sweep" from the entry block will be
1434 // able to report such dead blocks.
1436 // Create the new block.
1437 Block = createBlock(false);
1439 // The Exit block is the only successor.
1440 addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1441 addSuccessor(Block, &cfg->getExit());
1443 // Add the return statement to the block. This may create new blocks if R
1444 // contains control-flow (short-circuit operations).
1445 return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1448 CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1449 // Get the block of the labeled statement. Add it to our map.
1450 addStmt(L->getSubStmt());
1451 CFGBlock *LabelBlock = Block;
1453 if (!LabelBlock) // This can happen when the body is empty, i.e.
1454 LabelBlock = createBlock(); // scopes that only contains NullStmts.
1456 assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1457 "label already in map");
1458 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1460 // Labels partition blocks, so this is the end of the basic block we were
1461 // processing (L is the block's label). Because this is label (and we have
1462 // already processed the substatement) there is no extra control-flow to worry
1463 // about.
1464 LabelBlock->setLabel(L);
1465 if (badCFG)
1466 return 0;
1468 // We set Block to NULL to allow lazy creation of a new block (if necessary);
1469 Block = NULL;
1471 // This block is now the implicit successor of other blocks.
1472 Succ = LabelBlock;
1474 return LabelBlock;
1477 CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1478 // Goto is a control-flow statement. Thus we stop processing the current
1479 // block and create a new one.
1481 Block = createBlock(false);
1482 Block->setTerminator(G);
1484 // If we already know the mapping to the label block add the successor now.
1485 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1487 if (I == LabelMap.end())
1488 // We will need to backpatch this block later.
1489 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1490 else {
1491 JumpTarget JT = I->second;
1492 addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1493 addSuccessor(Block, JT.block);
1496 return Block;
1499 CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1500 CFGBlock* LoopSuccessor = NULL;
1502 // Save local scope position because in case of condition variable ScopePos
1503 // won't be restored when traversing AST.
1504 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1506 // Create local scope for init statement and possible condition variable.
1507 // Add destructor for init statement and condition variable.
1508 // Store scope position for continue statement.
1509 if (Stmt* Init = F->getInit())
1510 addLocalScopeForStmt(Init);
1511 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1513 if (VarDecl* VD = F->getConditionVariable())
1514 addLocalScopeForVarDecl(VD);
1515 LocalScope::const_iterator ContinueScopePos = ScopePos;
1517 addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1519 // "for" is a control-flow statement. Thus we stop processing the current
1520 // block.
1521 if (Block) {
1522 if (badCFG)
1523 return 0;
1524 LoopSuccessor = Block;
1525 } else
1526 LoopSuccessor = Succ;
1528 // Save the current value for the break targets.
1529 // All breaks should go to the code following the loop.
1530 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1531 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1533 // Because of short-circuit evaluation, the condition of the loop can span
1534 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
1535 // evaluate the condition.
1536 CFGBlock* ExitConditionBlock = createBlock(false);
1537 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1539 // Set the terminator for the "exit" condition block.
1540 ExitConditionBlock->setTerminator(F);
1542 // Now add the actual condition to the condition block. Because the condition
1543 // itself may contain control-flow, new blocks may be created.
1544 if (Stmt* C = F->getCond()) {
1545 Block = ExitConditionBlock;
1546 EntryConditionBlock = addStmt(C);
1547 if (badCFG)
1548 return 0;
1549 assert(Block == EntryConditionBlock ||
1550 (Block == 0 && EntryConditionBlock == Succ));
1552 // If this block contains a condition variable, add both the condition
1553 // variable and initializer to the CFG.
1554 if (VarDecl *VD = F->getConditionVariable()) {
1555 if (Expr *Init = VD->getInit()) {
1556 autoCreateBlock();
1557 appendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1558 EntryConditionBlock = addStmt(Init);
1559 assert(Block == EntryConditionBlock);
1563 if (Block) {
1564 if (badCFG)
1565 return 0;
1569 // The condition block is the implicit successor for the loop body as well as
1570 // any code above the loop.
1571 Succ = EntryConditionBlock;
1573 // See if this is a known constant.
1574 TryResult KnownVal(true);
1576 if (F->getCond())
1577 KnownVal = tryEvaluateBool(F->getCond());
1579 // Now create the loop body.
1581 assert(F->getBody());
1583 // Save the current values for Block, Succ, and continue targets.
1584 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1585 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1587 // Create a new block to contain the (bottom) of the loop body.
1588 Block = NULL;
1590 // Loop body should end with destructor of Condition variable (if any).
1591 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1593 if (Stmt* I = F->getInc()) {
1594 // Generate increment code in its own basic block. This is the target of
1595 // continue statements.
1596 Succ = addStmt(I);
1597 } else {
1598 // No increment code. Create a special, empty, block that is used as the
1599 // target block for "looping back" to the start of the loop.
1600 assert(Succ == EntryConditionBlock);
1601 Succ = Block ? Block : createBlock();
1604 // Finish up the increment (or empty) block if it hasn't been already.
1605 if (Block) {
1606 assert(Block == Succ);
1607 if (badCFG)
1608 return 0;
1609 Block = 0;
1612 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1614 // The starting block for the loop increment is the block that should
1615 // represent the 'loop target' for looping back to the start of the loop.
1616 ContinueJumpTarget.block->setLoopTarget(F);
1618 // If body is not a compound statement create implicit scope
1619 // and add destructors.
1620 if (!isa<CompoundStmt>(F->getBody()))
1621 addLocalScopeAndDtors(F->getBody());
1623 // Now populate the body block, and in the process create new blocks as we
1624 // walk the body of the loop.
1625 CFGBlock* BodyBlock = addStmt(F->getBody());
1627 if (!BodyBlock)
1628 BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1629 else if (badCFG)
1630 return 0;
1632 // This new body block is a successor to our "exit" condition block.
1633 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1636 // Link up the condition block with the code that follows the loop. (the
1637 // false branch).
1638 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1640 // If the loop contains initialization, create a new block for those
1641 // statements. This block can also contain statements that precede the loop.
1642 if (Stmt* I = F->getInit()) {
1643 Block = createBlock();
1644 return addStmt(I);
1647 // There is no loop initialization. We are thus basically a while loop.
1648 // NULL out Block to force lazy block construction.
1649 Block = NULL;
1650 Succ = EntryConditionBlock;
1651 return EntryConditionBlock;
1654 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1655 if (asc.alwaysAdd()) {
1656 autoCreateBlock();
1657 appendStmt(Block, M, asc);
1659 return Visit(M->getBase());
1662 CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1663 // Objective-C fast enumeration 'for' statements:
1664 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1666 // for ( Type newVariable in collection_expression ) { statements }
1668 // becomes:
1670 // prologue:
1671 // 1. collection_expression
1672 // T. jump to loop_entry
1673 // loop_entry:
1674 // 1. side-effects of element expression
1675 // 1. ObjCForCollectionStmt [performs binding to newVariable]
1676 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
1677 // TB:
1678 // statements
1679 // T. jump to loop_entry
1680 // FB:
1681 // what comes after
1683 // and
1685 // Type existingItem;
1686 // for ( existingItem in expression ) { statements }
1688 // becomes:
1690 // the same with newVariable replaced with existingItem; the binding works
1691 // the same except that for one ObjCForCollectionStmt::getElement() returns
1692 // a DeclStmt and the other returns a DeclRefExpr.
1695 CFGBlock* LoopSuccessor = 0;
1697 if (Block) {
1698 if (badCFG)
1699 return 0;
1700 LoopSuccessor = Block;
1701 Block = 0;
1702 } else
1703 LoopSuccessor = Succ;
1705 // Build the condition blocks.
1706 CFGBlock* ExitConditionBlock = createBlock(false);
1707 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1709 // Set the terminator for the "exit" condition block.
1710 ExitConditionBlock->setTerminator(S);
1712 // The last statement in the block should be the ObjCForCollectionStmt, which
1713 // performs the actual binding to 'element' and determines if there are any
1714 // more items in the collection.
1715 appendStmt(ExitConditionBlock, S);
1716 Block = ExitConditionBlock;
1718 // Walk the 'element' expression to see if there are any side-effects. We
1719 // generate new blocks as necesary. We DON'T add the statement by default to
1720 // the CFG unless it contains control-flow.
1721 EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1722 if (Block) {
1723 if (badCFG)
1724 return 0;
1725 Block = 0;
1728 // The condition block is the implicit successor for the loop body as well as
1729 // any code above the loop.
1730 Succ = EntryConditionBlock;
1732 // Now create the true branch.
1734 // Save the current values for Succ, continue and break targets.
1735 SaveAndRestore<CFGBlock*> save_Succ(Succ);
1736 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1737 save_break(BreakJumpTarget);
1739 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1740 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1742 CFGBlock* BodyBlock = addStmt(S->getBody());
1744 if (!BodyBlock)
1745 BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1746 else if (Block) {
1747 if (badCFG)
1748 return 0;
1751 // This new body block is a successor to our "exit" condition block.
1752 addSuccessor(ExitConditionBlock, BodyBlock);
1755 // Link up the condition block with the code that follows the loop.
1756 // (the false branch).
1757 addSuccessor(ExitConditionBlock, LoopSuccessor);
1759 // Now create a prologue block to contain the collection expression.
1760 Block = createBlock();
1761 return addStmt(S->getCollection());
1764 CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1765 // FIXME: Add locking 'primitives' to CFG for @synchronized.
1767 // Inline the body.
1768 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1770 // The sync body starts its own basic block. This makes it a little easier
1771 // for diagnostic clients.
1772 if (SyncBlock) {
1773 if (badCFG)
1774 return 0;
1776 Block = 0;
1777 Succ = SyncBlock;
1780 // Add the @synchronized to the CFG.
1781 autoCreateBlock();
1782 appendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1784 // Inline the sync expression.
1785 return addStmt(S->getSynchExpr());
1788 CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1789 // FIXME
1790 return NYS();
1793 CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1794 CFGBlock* LoopSuccessor = NULL;
1796 // Save local scope position because in case of condition variable ScopePos
1797 // won't be restored when traversing AST.
1798 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1800 // Create local scope for possible condition variable.
1801 // Store scope position for continue statement.
1802 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1803 if (VarDecl* VD = W->getConditionVariable()) {
1804 addLocalScopeForVarDecl(VD);
1805 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1808 // "while" is a control-flow statement. Thus we stop processing the current
1809 // block.
1810 if (Block) {
1811 if (badCFG)
1812 return 0;
1813 LoopSuccessor = Block;
1814 } else
1815 LoopSuccessor = Succ;
1817 // Because of short-circuit evaluation, the condition of the loop can span
1818 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
1819 // evaluate the condition.
1820 CFGBlock* ExitConditionBlock = createBlock(false);
1821 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1823 // Set the terminator for the "exit" condition block.
1824 ExitConditionBlock->setTerminator(W);
1826 // Now add the actual condition to the condition block. Because the condition
1827 // itself may contain control-flow, new blocks may be created. Thus we update
1828 // "Succ" after adding the condition.
1829 if (Stmt* C = W->getCond()) {
1830 Block = ExitConditionBlock;
1831 EntryConditionBlock = addStmt(C);
1832 // The condition might finish the current 'Block'.
1833 Block = EntryConditionBlock;
1835 // If this block contains a condition variable, add both the condition
1836 // variable and initializer to the CFG.
1837 if (VarDecl *VD = W->getConditionVariable()) {
1838 if (Expr *Init = VD->getInit()) {
1839 autoCreateBlock();
1840 appendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1841 EntryConditionBlock = addStmt(Init);
1842 assert(Block == EntryConditionBlock);
1846 if (Block) {
1847 if (badCFG)
1848 return 0;
1852 // The condition block is the implicit successor for the loop body as well as
1853 // any code above the loop.
1854 Succ = EntryConditionBlock;
1856 // See if this is a known constant.
1857 const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1859 // Process the loop body.
1861 assert(W->getBody());
1863 // Save the current values for Block, Succ, and continue and break targets
1864 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1865 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1866 save_break(BreakJumpTarget);
1868 // Create an empty block to represent the transition block for looping back
1869 // to the head of the loop.
1870 Block = 0;
1871 assert(Succ == EntryConditionBlock);
1872 Succ = createBlock();
1873 Succ->setLoopTarget(W);
1874 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1876 // All breaks should go to the code following the loop.
1877 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1879 // NULL out Block to force lazy instantiation of blocks for the body.
1880 Block = NULL;
1882 // Loop body should end with destructor of Condition variable (if any).
1883 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1885 // If body is not a compound statement create implicit scope
1886 // and add destructors.
1887 if (!isa<CompoundStmt>(W->getBody()))
1888 addLocalScopeAndDtors(W->getBody());
1890 // Create the body. The returned block is the entry to the loop body.
1891 CFGBlock* BodyBlock = addStmt(W->getBody());
1893 if (!BodyBlock)
1894 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1895 else if (Block) {
1896 if (badCFG)
1897 return 0;
1900 // Add the loop body entry as a successor to the condition.
1901 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1904 // Link up the condition block with the code that follows the loop. (the
1905 // false branch).
1906 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1908 // There can be no more statements in the condition block since we loop back
1909 // to this block. NULL out Block to force lazy creation of another block.
1910 Block = NULL;
1912 // Return the condition block, which is the dominating block for the loop.
1913 Succ = EntryConditionBlock;
1914 return EntryConditionBlock;
1918 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1919 // FIXME: For now we pretend that @catch and the code it contains does not
1920 // exit.
1921 return Block;
1924 CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1925 // FIXME: This isn't complete. We basically treat @throw like a return
1926 // statement.
1928 // If we were in the middle of a block we stop processing that block.
1929 if (badCFG)
1930 return 0;
1932 // Create the new block.
1933 Block = createBlock(false);
1935 // The Exit block is the only successor.
1936 addSuccessor(Block, &cfg->getExit());
1938 // Add the statement to the block. This may create new blocks if S contains
1939 // control-flow (short-circuit operations).
1940 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1943 CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1944 // If we were in the middle of a block we stop processing that block.
1945 if (badCFG)
1946 return 0;
1948 // Create the new block.
1949 Block = createBlock(false);
1951 if (TryTerminatedBlock)
1952 // The current try statement is the only successor.
1953 addSuccessor(Block, TryTerminatedBlock);
1954 else
1955 // otherwise the Exit block is the only successor.
1956 addSuccessor(Block, &cfg->getExit());
1958 // Add the statement to the block. This may create new blocks if S contains
1959 // control-flow (short-circuit operations).
1960 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1963 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1964 CFGBlock* LoopSuccessor = NULL;
1966 // "do...while" is a control-flow statement. Thus we stop processing the
1967 // current block.
1968 if (Block) {
1969 if (badCFG)
1970 return 0;
1971 LoopSuccessor = Block;
1972 } else
1973 LoopSuccessor = Succ;
1975 // Because of short-circuit evaluation, the condition of the loop can span
1976 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
1977 // evaluate the condition.
1978 CFGBlock* ExitConditionBlock = createBlock(false);
1979 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1981 // Set the terminator for the "exit" condition block.
1982 ExitConditionBlock->setTerminator(D);
1984 // Now add the actual condition to the condition block. Because the condition
1985 // itself may contain control-flow, new blocks may be created.
1986 if (Stmt* C = D->getCond()) {
1987 Block = ExitConditionBlock;
1988 EntryConditionBlock = addStmt(C);
1989 if (Block) {
1990 if (badCFG)
1991 return 0;
1995 // The condition block is the implicit successor for the loop body.
1996 Succ = EntryConditionBlock;
1998 // See if this is a known constant.
1999 const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2001 // Process the loop body.
2002 CFGBlock* BodyBlock = NULL;
2004 assert(D->getBody());
2006 // Save the current values for Block, Succ, and continue and break targets
2007 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2008 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2009 save_break(BreakJumpTarget);
2011 // All continues within this loop should go to the condition block
2012 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2014 // All breaks should go to the code following the loop.
2015 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2017 // NULL out Block to force lazy instantiation of blocks for the body.
2018 Block = NULL;
2020 // If body is not a compound statement create implicit scope
2021 // and add destructors.
2022 if (!isa<CompoundStmt>(D->getBody()))
2023 addLocalScopeAndDtors(D->getBody());
2025 // Create the body. The returned block is the entry to the loop body.
2026 BodyBlock = addStmt(D->getBody());
2028 if (!BodyBlock)
2029 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2030 else if (Block) {
2031 if (badCFG)
2032 return 0;
2035 if (!KnownVal.isFalse()) {
2036 // Add an intermediate block between the BodyBlock and the
2037 // ExitConditionBlock to represent the "loop back" transition. Create an
2038 // empty block to represent the transition block for looping back to the
2039 // head of the loop.
2040 // FIXME: Can we do this more efficiently without adding another block?
2041 Block = NULL;
2042 Succ = BodyBlock;
2043 CFGBlock *LoopBackBlock = createBlock();
2044 LoopBackBlock->setLoopTarget(D);
2046 // Add the loop body entry as a successor to the condition.
2047 addSuccessor(ExitConditionBlock, LoopBackBlock);
2049 else
2050 addSuccessor(ExitConditionBlock, NULL);
2053 // Link up the condition block with the code that follows the loop.
2054 // (the false branch).
2055 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2057 // There can be no more statements in the body block(s) since we loop back to
2058 // the body. NULL out Block to force lazy creation of another block.
2059 Block = NULL;
2061 // Return the loop body, which is the dominating block for the loop.
2062 Succ = BodyBlock;
2063 return BodyBlock;
2066 CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2067 // "continue" is a control-flow statement. Thus we stop processing the
2068 // current block.
2069 if (badCFG)
2070 return 0;
2072 // Now create a new block that ends with the continue statement.
2073 Block = createBlock(false);
2074 Block->setTerminator(C);
2076 // If there is no target for the continue, then we are looking at an
2077 // incomplete AST. This means the CFG cannot be constructed.
2078 if (ContinueJumpTarget.block) {
2079 addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2080 addSuccessor(Block, ContinueJumpTarget.block);
2081 } else
2082 badCFG = true;
2084 return Block;
2087 CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
2088 AddStmtChoice asc) {
2090 if (asc.alwaysAdd()) {
2091 autoCreateBlock();
2092 appendStmt(Block, E);
2095 // VLA types have expressions that must be evaluated.
2096 if (E->isArgumentType()) {
2097 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2098 VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2099 addStmt(VA->getSizeExpr());
2102 return Block;
2105 /// VisitStmtExpr - Utility method to handle (nested) statement
2106 /// expressions (a GCC extension).
2107 CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2108 if (asc.alwaysAdd()) {
2109 autoCreateBlock();
2110 appendStmt(Block, SE);
2112 return VisitCompoundStmt(SE->getSubStmt());
2115 CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2116 // "switch" is a control-flow statement. Thus we stop processing the current
2117 // block.
2118 CFGBlock* SwitchSuccessor = NULL;
2120 // Save local scope position because in case of condition variable ScopePos
2121 // won't be restored when traversing AST.
2122 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2124 // Create local scope for possible condition variable.
2125 // Store scope position. Add implicit destructor.
2126 if (VarDecl* VD = Terminator->getConditionVariable()) {
2127 LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2128 addLocalScopeForVarDecl(VD);
2129 addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2132 if (Block) {
2133 if (badCFG)
2134 return 0;
2135 SwitchSuccessor = Block;
2136 } else SwitchSuccessor = Succ;
2138 // Save the current "switch" context.
2139 SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2140 save_default(DefaultCaseBlock);
2141 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2143 // Set the "default" case to be the block after the switch statement. If the
2144 // switch statement contains a "default:", this value will be overwritten with
2145 // the block for that code.
2146 DefaultCaseBlock = SwitchSuccessor;
2148 // Create a new block that will contain the switch statement.
2149 SwitchTerminatedBlock = createBlock(false);
2151 // Now process the switch body. The code after the switch is the implicit
2152 // successor.
2153 Succ = SwitchSuccessor;
2154 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2156 // When visiting the body, the case statements should automatically get linked
2157 // up to the switch. We also don't keep a pointer to the body, since all
2158 // control-flow from the switch goes to case/default statements.
2159 assert(Terminator->getBody() && "switch must contain a non-NULL body");
2160 Block = NULL;
2162 // If body is not a compound statement create implicit scope
2163 // and add destructors.
2164 if (!isa<CompoundStmt>(Terminator->getBody()))
2165 addLocalScopeAndDtors(Terminator->getBody());
2167 addStmt(Terminator->getBody());
2168 if (Block) {
2169 if (badCFG)
2170 return 0;
2173 // If we have no "default:" case, the default transition is to the code
2174 // following the switch body.
2175 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
2177 // Add the terminator and condition in the switch block.
2178 SwitchTerminatedBlock->setTerminator(Terminator);
2179 assert(Terminator->getCond() && "switch condition must be non-NULL");
2180 Block = SwitchTerminatedBlock;
2181 Block = addStmt(Terminator->getCond());
2183 // Finally, if the SwitchStmt contains a condition variable, add both the
2184 // SwitchStmt and the condition variable initialization to the CFG.
2185 if (VarDecl *VD = Terminator->getConditionVariable()) {
2186 if (Expr *Init = VD->getInit()) {
2187 autoCreateBlock();
2188 appendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
2189 addStmt(Init);
2193 return Block;
2196 CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2197 // CaseStmts are essentially labels, so they are the first statement in a
2198 // block.
2199 CFGBlock *TopBlock = 0, *LastBlock = 0;
2201 if (Stmt *Sub = CS->getSubStmt()) {
2202 // For deeply nested chains of CaseStmts, instead of doing a recursion
2203 // (which can blow out the stack), manually unroll and create blocks
2204 // along the way.
2205 while (isa<CaseStmt>(Sub)) {
2206 CFGBlock *currentBlock = createBlock(false);
2207 currentBlock->setLabel(CS);
2209 if (TopBlock)
2210 addSuccessor(LastBlock, currentBlock);
2211 else
2212 TopBlock = currentBlock;
2214 addSuccessor(SwitchTerminatedBlock, currentBlock);
2215 LastBlock = currentBlock;
2217 CS = cast<CaseStmt>(Sub);
2218 Sub = CS->getSubStmt();
2221 addStmt(Sub);
2224 CFGBlock* CaseBlock = Block;
2225 if (!CaseBlock)
2226 CaseBlock = createBlock();
2228 // Cases statements partition blocks, so this is the top of the basic block we
2229 // were processing (the "case XXX:" is the label).
2230 CaseBlock->setLabel(CS);
2232 if (badCFG)
2233 return 0;
2235 // Add this block to the list of successors for the block with the switch
2236 // statement.
2237 assert(SwitchTerminatedBlock);
2238 addSuccessor(SwitchTerminatedBlock, CaseBlock);
2240 // We set Block to NULL to allow lazy creation of a new block (if necessary)
2241 Block = NULL;
2243 if (TopBlock) {
2244 addSuccessor(LastBlock, CaseBlock);
2245 Succ = TopBlock;
2246 } else {
2247 // This block is now the implicit successor of other blocks.
2248 Succ = CaseBlock;
2251 return Succ;
2254 CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2255 if (Terminator->getSubStmt())
2256 addStmt(Terminator->getSubStmt());
2258 DefaultCaseBlock = Block;
2260 if (!DefaultCaseBlock)
2261 DefaultCaseBlock = createBlock();
2263 // Default statements partition blocks, so this is the top of the basic block
2264 // we were processing (the "default:" is the label).
2265 DefaultCaseBlock->setLabel(Terminator);
2267 if (badCFG)
2268 return 0;
2270 // Unlike case statements, we don't add the default block to the successors
2271 // for the switch statement immediately. This is done when we finish
2272 // processing the switch statement. This allows for the default case
2273 // (including a fall-through to the code after the switch statement) to always
2274 // be the last successor of a switch-terminated block.
2276 // We set Block to NULL to allow lazy creation of a new block (if necessary)
2277 Block = NULL;
2279 // This block is now the implicit successor of other blocks.
2280 Succ = DefaultCaseBlock;
2282 return DefaultCaseBlock;
2285 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2286 // "try"/"catch" is a control-flow statement. Thus we stop processing the
2287 // current block.
2288 CFGBlock* TrySuccessor = NULL;
2290 if (Block) {
2291 if (badCFG)
2292 return 0;
2293 TrySuccessor = Block;
2294 } else TrySuccessor = Succ;
2296 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2298 // Create a new block that will contain the try statement.
2299 CFGBlock *NewTryTerminatedBlock = createBlock(false);
2300 // Add the terminator in the try block.
2301 NewTryTerminatedBlock->setTerminator(Terminator);
2303 bool HasCatchAll = false;
2304 for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2305 // The code after the try is the implicit successor.
2306 Succ = TrySuccessor;
2307 CXXCatchStmt *CS = Terminator->getHandler(h);
2308 if (CS->getExceptionDecl() == 0) {
2309 HasCatchAll = true;
2311 Block = NULL;
2312 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2313 if (CatchBlock == 0)
2314 return 0;
2315 // Add this block to the list of successors for the block with the try
2316 // statement.
2317 addSuccessor(NewTryTerminatedBlock, CatchBlock);
2319 if (!HasCatchAll) {
2320 if (PrevTryTerminatedBlock)
2321 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2322 else
2323 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2326 // The code after the try is the implicit successor.
2327 Succ = TrySuccessor;
2329 // Save the current "try" context.
2330 SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2331 TryTerminatedBlock = NewTryTerminatedBlock;
2333 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2334 Block = NULL;
2335 Block = addStmt(Terminator->getTryBlock());
2336 return Block;
2339 CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2340 // CXXCatchStmt are treated like labels, so they are the first statement in a
2341 // block.
2343 // Save local scope position because in case of exception variable ScopePos
2344 // won't be restored when traversing AST.
2345 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2347 // Create local scope for possible exception variable.
2348 // Store scope position. Add implicit destructor.
2349 if (VarDecl* VD = CS->getExceptionDecl()) {
2350 LocalScope::const_iterator BeginScopePos = ScopePos;
2351 addLocalScopeForVarDecl(VD);
2352 addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2355 if (CS->getHandlerBlock())
2356 addStmt(CS->getHandlerBlock());
2358 CFGBlock* CatchBlock = Block;
2359 if (!CatchBlock)
2360 CatchBlock = createBlock();
2362 CatchBlock->setLabel(CS);
2364 if (badCFG)
2365 return 0;
2367 // We set Block to NULL to allow lazy creation of a new block (if necessary)
2368 Block = NULL;
2370 return CatchBlock;
2373 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2374 AddStmtChoice asc) {
2375 if (BuildOpts.AddImplicitDtors) {
2376 // If adding implicit destructors visit the full expression for adding
2377 // destructors of temporaries.
2378 VisitForTemporaryDtors(E->getSubExpr());
2380 // Full expression has to be added as CFGStmt so it will be sequenced
2381 // before destructors of it's temporaries.
2382 asc = asc.withAlwaysAdd(true);
2384 return Visit(E->getSubExpr(), asc);
2387 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2388 AddStmtChoice asc) {
2389 if (asc.alwaysAdd()) {
2390 autoCreateBlock();
2391 appendStmt(Block, E, asc);
2393 // We do not want to propagate the AlwaysAdd property.
2394 asc = asc.withAlwaysAdd(false);
2396 return Visit(E->getSubExpr(), asc);
2399 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2400 AddStmtChoice asc) {
2401 autoCreateBlock();
2402 if (!C->isElidable())
2403 appendStmt(Block, C, asc.withAlwaysAdd(true));
2405 return VisitChildren(C);
2408 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2409 AddStmtChoice asc) {
2410 if (asc.alwaysAdd()) {
2411 autoCreateBlock();
2412 appendStmt(Block, E, asc);
2413 // We do not want to propagate the AlwaysAdd property.
2414 asc = asc.withAlwaysAdd(false);
2416 return Visit(E->getSubExpr(), asc);
2419 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2420 AddStmtChoice asc) {
2421 autoCreateBlock();
2422 appendStmt(Block, C, asc.withAlwaysAdd(true));
2423 return VisitChildren(C);
2426 CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2427 AddStmtChoice asc) {
2428 autoCreateBlock();
2429 appendStmt(Block, C, asc.withAlwaysAdd(true));
2430 return VisitChildren(C);
2433 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2434 AddStmtChoice asc) {
2435 if (asc.alwaysAdd()) {
2436 autoCreateBlock();
2437 appendStmt(Block, E, asc);
2439 return Visit(E->getSubExpr(), AddStmtChoice());
2442 CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2443 // Lazily create the indirect-goto dispatch block if there isn't one already.
2444 CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2446 if (!IBlock) {
2447 IBlock = createBlock(false);
2448 cfg->setIndirectGotoBlock(IBlock);
2451 // IndirectGoto is a control-flow statement. Thus we stop processing the
2452 // current block and create a new one.
2453 if (badCFG)
2454 return 0;
2456 Block = createBlock(false);
2457 Block->setTerminator(I);
2458 addSuccessor(Block, IBlock);
2459 return addStmt(I->getTarget());
2462 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2463 tryAgain:
2464 if (!E) {
2465 badCFG = true;
2466 return NULL;
2468 switch (E->getStmtClass()) {
2469 default:
2470 return VisitChildrenForTemporaryDtors(E);
2472 case Stmt::BinaryOperatorClass:
2473 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2475 case Stmt::CXXBindTemporaryExprClass:
2476 return VisitCXXBindTemporaryExprForTemporaryDtors(
2477 cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2479 case Stmt::BinaryConditionalOperatorClass:
2480 case Stmt::ConditionalOperatorClass:
2481 return VisitConditionalOperatorForTemporaryDtors(
2482 cast<AbstractConditionalOperator>(E), BindToTemporary);
2484 case Stmt::ImplicitCastExprClass:
2485 // For implicit cast we want BindToTemporary to be passed further.
2486 E = cast<CastExpr>(E)->getSubExpr();
2487 goto tryAgain;
2489 case Stmt::ParenExprClass:
2490 E = cast<ParenExpr>(E)->getSubExpr();
2491 goto tryAgain;
2495 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2496 // When visiting children for destructors we want to visit them in reverse
2497 // order. Because there's no reverse iterator for children must to reverse
2498 // them in helper vector.
2499 typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2500 ChildrenVect ChildrenRev;
2501 for (Stmt::child_range I = E->children(); I; ++I) {
2502 if (*I) ChildrenRev.push_back(*I);
2505 CFGBlock *B = Block;
2506 for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2507 L = ChildrenRev.rend(); I != L; ++I) {
2508 if (CFGBlock *R = VisitForTemporaryDtors(*I))
2509 B = R;
2511 return B;
2514 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2515 if (E->isLogicalOp()) {
2516 // Destructors for temporaries in LHS expression should be called after
2517 // those for RHS expression. Even if this will unnecessarily create a block,
2518 // this block will be used at least by the full expression.
2519 autoCreateBlock();
2520 CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2521 if (badCFG)
2522 return NULL;
2524 Succ = ConfluenceBlock;
2525 Block = NULL;
2526 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2528 if (RHSBlock) {
2529 if (badCFG)
2530 return NULL;
2532 // If RHS expression did produce destructors we need to connect created
2533 // blocks to CFG in same manner as for binary operator itself.
2534 CFGBlock *LHSBlock = createBlock(false);
2535 LHSBlock->setTerminator(CFGTerminator(E, true));
2537 // For binary operator LHS block is before RHS in list of predecessors
2538 // of ConfluenceBlock.
2539 std::reverse(ConfluenceBlock->pred_begin(),
2540 ConfluenceBlock->pred_end());
2542 // See if this is a known constant.
2543 TryResult KnownVal = tryEvaluateBool(E->getLHS());
2544 if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2545 KnownVal.negate();
2547 // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2548 // itself.
2549 if (E->getOpcode() == BO_LOr) {
2550 addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2551 addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2552 } else {
2553 assert (E->getOpcode() == BO_LAnd);
2554 addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2555 addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2558 Block = LHSBlock;
2559 return LHSBlock;
2562 Block = ConfluenceBlock;
2563 return ConfluenceBlock;
2566 if (E->isAssignmentOp()) {
2567 // For assignment operator (=) LHS expression is visited
2568 // before RHS expression. For destructors visit them in reverse order.
2569 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2570 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2571 return LHSBlock ? LHSBlock : RHSBlock;
2574 // For any other binary operator RHS expression is visited before
2575 // LHS expression (order of children). For destructors visit them in reverse
2576 // order.
2577 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2578 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2579 return RHSBlock ? RHSBlock : LHSBlock;
2582 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2583 CXXBindTemporaryExpr *E, bool BindToTemporary) {
2584 // First add destructors for temporaries in subexpression.
2585 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2586 if (!BindToTemporary) {
2587 // If lifetime of temporary is not prolonged (by assigning to constant
2588 // reference) add destructor for it.
2589 autoCreateBlock();
2590 appendTemporaryDtor(Block, E);
2591 B = Block;
2593 return B;
2596 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2597 AbstractConditionalOperator *E, bool BindToTemporary) {
2598 // First add destructors for condition expression. Even if this will
2599 // unnecessarily create a block, this block will be used at least by the full
2600 // expression.
2601 autoCreateBlock();
2602 CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2603 if (badCFG)
2604 return NULL;
2605 if (BinaryConditionalOperator *BCO
2606 = dyn_cast<BinaryConditionalOperator>(E)) {
2607 ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2608 if (badCFG)
2609 return NULL;
2612 // Try to add block with destructors for LHS expression.
2613 CFGBlock *LHSBlock = NULL;
2614 Succ = ConfluenceBlock;
2615 Block = NULL;
2616 LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2617 if (badCFG)
2618 return NULL;
2620 // Try to add block with destructors for RHS expression;
2621 Succ = ConfluenceBlock;
2622 Block = NULL;
2623 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2624 BindToTemporary);
2625 if (badCFG)
2626 return NULL;
2628 if (!RHSBlock && !LHSBlock) {
2629 // If neither LHS nor RHS expression had temporaries to destroy don't create
2630 // more blocks.
2631 Block = ConfluenceBlock;
2632 return Block;
2635 Block = createBlock(false);
2636 Block->setTerminator(CFGTerminator(E, true));
2638 // See if this is a known constant.
2639 const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2641 if (LHSBlock) {
2642 addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2643 } else if (KnownVal.isFalse()) {
2644 addSuccessor(Block, NULL);
2645 } else {
2646 addSuccessor(Block, ConfluenceBlock);
2647 std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2650 if (!RHSBlock)
2651 RHSBlock = ConfluenceBlock;
2652 addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2654 return Block;
2657 } // end anonymous namespace
2659 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
2660 /// no successors or predecessors. If this is the first block created in the
2661 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
2662 CFGBlock* CFG::createBlock() {
2663 bool first_block = begin() == end();
2665 // Create the block.
2666 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2667 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2668 Blocks.push_back(Mem, BlkBVC);
2670 // If this is the first block, set it as the Entry and Exit.
2671 if (first_block)
2672 Entry = Exit = &back();
2674 // Return the block.
2675 return &back();
2678 /// buildCFG - Constructs a CFG from an AST. Ownership of the returned
2679 /// CFG is returned to the caller.
2680 CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2681 BuildOptions BO) {
2682 CFGBuilder Builder;
2683 return Builder.buildCFG(D, Statement, C, BO);
2686 //===----------------------------------------------------------------------===//
2687 // CFG: Queries for BlkExprs.
2688 //===----------------------------------------------------------------------===//
2690 namespace {
2691 typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2694 static void FindSubExprAssignments(Stmt *S,
2695 llvm::SmallPtrSet<Expr*,50>& Set) {
2696 if (!S)
2697 return;
2699 for (Stmt::child_range I = S->children(); I; ++I) {
2700 Stmt *child = *I;
2701 if (!child)
2702 continue;
2704 if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2705 if (B->isAssignmentOp()) Set.insert(B);
2707 FindSubExprAssignments(child, Set);
2711 static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2712 BlkExprMapTy* M = new BlkExprMapTy();
2714 // Look for assignments that are used as subexpressions. These are the only
2715 // assignments that we want to *possibly* register as a block-level
2716 // expression. Basically, if an assignment occurs both in a subexpression and
2717 // at the block-level, it is a block-level expression.
2718 llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2720 for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2721 for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2722 if (CFGStmt S = BI->getAs<CFGStmt>())
2723 FindSubExprAssignments(S, SubExprAssignments);
2725 for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2727 // Iterate over the statements again on identify the Expr* and Stmt* at the
2728 // block-level that are block-level expressions.
2730 for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2731 CFGStmt CS = BI->getAs<CFGStmt>();
2732 if (!CS.isValid())
2733 continue;
2734 if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2736 if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2737 // Assignment expressions that are not nested within another
2738 // expression are really "statements" whose value is never used by
2739 // another expression.
2740 if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2741 continue;
2742 } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2743 // Special handling for statement expressions. The last statement in
2744 // the statement expression is also a block-level expr.
2745 const CompoundStmt* C = Terminator->getSubStmt();
2746 if (!C->body_empty()) {
2747 unsigned x = M->size();
2748 (*M)[C->body_back()] = x;
2752 unsigned x = M->size();
2753 (*M)[Exp] = x;
2757 // Look at terminators. The condition is a block-level expression.
2759 Stmt* S = (*I)->getTerminatorCondition();
2761 if (S && M->find(S) == M->end()) {
2762 unsigned x = M->size();
2763 (*M)[S] = x;
2767 return M;
2770 CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2771 assert(S != NULL);
2772 if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2774 BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2775 BlkExprMapTy::iterator I = M->find(S);
2776 return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2779 unsigned CFG::getNumBlkExprs() {
2780 if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2781 return M->size();
2783 // We assume callers interested in the number of BlkExprs will want
2784 // the map constructed if it doesn't already exist.
2785 BlkExprMap = (void*) PopulateBlkExprMap(*this);
2786 return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2789 //===----------------------------------------------------------------------===//
2790 // Filtered walking of the CFG.
2791 //===----------------------------------------------------------------------===//
2793 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2794 const CFGBlock *From, const CFGBlock *To) {
2796 if (F.IgnoreDefaultsWithCoveredEnums) {
2797 // If the 'To' has no label or is labeled but the label isn't a
2798 // CaseStmt then filter this edge.
2799 if (const SwitchStmt *S =
2800 dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
2801 if (S->isAllEnumCasesCovered()) {
2802 const Stmt *L = To->getLabel();
2803 if (!L || !isa<CaseStmt>(L))
2804 return true;
2809 return false;
2812 //===----------------------------------------------------------------------===//
2813 // Cleanup: CFG dstor.
2814 //===----------------------------------------------------------------------===//
2816 CFG::~CFG() {
2817 delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2820 //===----------------------------------------------------------------------===//
2821 // CFG pretty printing
2822 //===----------------------------------------------------------------------===//
2824 namespace {
2826 class StmtPrinterHelper : public PrinterHelper {
2827 typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2828 typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2829 StmtMapTy StmtMap;
2830 DeclMapTy DeclMap;
2831 signed currentBlock;
2832 unsigned currentStmt;
2833 const LangOptions &LangOpts;
2834 public:
2836 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2837 : currentBlock(0), currentStmt(0), LangOpts(LO) {
2838 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2839 unsigned j = 1;
2840 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2841 BI != BEnd; ++BI, ++j ) {
2842 if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2843 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2844 StmtMap[SE] = P;
2846 if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2847 DeclMap[DS->getSingleDecl()] = P;
2849 } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2850 if (VarDecl* VD = IS->getConditionVariable())
2851 DeclMap[VD] = P;
2853 } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2854 if (VarDecl* VD = FS->getConditionVariable())
2855 DeclMap[VD] = P;
2857 } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2858 if (VarDecl* VD = WS->getConditionVariable())
2859 DeclMap[VD] = P;
2861 } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2862 if (VarDecl* VD = SS->getConditionVariable())
2863 DeclMap[VD] = P;
2865 } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2866 if (VarDecl* VD = CS->getExceptionDecl())
2867 DeclMap[VD] = P;
2874 virtual ~StmtPrinterHelper() {}
2876 const LangOptions &getLangOpts() const { return LangOpts; }
2877 void setBlockID(signed i) { currentBlock = i; }
2878 void setStmtID(unsigned i) { currentStmt = i; }
2880 virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2881 StmtMapTy::iterator I = StmtMap.find(S);
2883 if (I == StmtMap.end())
2884 return false;
2886 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
2887 && I->second.second == currentStmt) {
2888 return false;
2891 OS << "[B" << I->second.first << "." << I->second.second << "]";
2892 return true;
2895 bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2896 DeclMapTy::iterator I = DeclMap.find(D);
2898 if (I == DeclMap.end())
2899 return false;
2901 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
2902 && I->second.second == currentStmt) {
2903 return false;
2906 OS << "[B" << I->second.first << "." << I->second.second << "]";
2907 return true;
2910 } // end anonymous namespace
2913 namespace {
2914 class CFGBlockTerminatorPrint
2915 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2917 llvm::raw_ostream& OS;
2918 StmtPrinterHelper* Helper;
2919 PrintingPolicy Policy;
2920 public:
2921 CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2922 const PrintingPolicy &Policy)
2923 : OS(os), Helper(helper), Policy(Policy) {}
2925 void VisitIfStmt(IfStmt* I) {
2926 OS << "if ";
2927 I->getCond()->printPretty(OS,Helper,Policy);
2930 // Default case.
2931 void VisitStmt(Stmt* Terminator) {
2932 Terminator->printPretty(OS, Helper, Policy);
2935 void VisitForStmt(ForStmt* F) {
2936 OS << "for (" ;
2937 if (F->getInit())
2938 OS << "...";
2939 OS << "; ";
2940 if (Stmt* C = F->getCond())
2941 C->printPretty(OS, Helper, Policy);
2942 OS << "; ";
2943 if (F->getInc())
2944 OS << "...";
2945 OS << ")";
2948 void VisitWhileStmt(WhileStmt* W) {
2949 OS << "while " ;
2950 if (Stmt* C = W->getCond())
2951 C->printPretty(OS, Helper, Policy);
2954 void VisitDoStmt(DoStmt* D) {
2955 OS << "do ... while ";
2956 if (Stmt* C = D->getCond())
2957 C->printPretty(OS, Helper, Policy);
2960 void VisitSwitchStmt(SwitchStmt* Terminator) {
2961 OS << "switch ";
2962 Terminator->getCond()->printPretty(OS, Helper, Policy);
2965 void VisitCXXTryStmt(CXXTryStmt* CS) {
2966 OS << "try ...";
2969 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
2970 C->getCond()->printPretty(OS, Helper, Policy);
2971 OS << " ? ... : ...";
2974 void VisitChooseExpr(ChooseExpr* C) {
2975 OS << "__builtin_choose_expr( ";
2976 C->getCond()->printPretty(OS, Helper, Policy);
2977 OS << " )";
2980 void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2981 OS << "goto *";
2982 I->getTarget()->printPretty(OS, Helper, Policy);
2985 void VisitBinaryOperator(BinaryOperator* B) {
2986 if (!B->isLogicalOp()) {
2987 VisitExpr(B);
2988 return;
2991 B->getLHS()->printPretty(OS, Helper, Policy);
2993 switch (B->getOpcode()) {
2994 case BO_LOr:
2995 OS << " || ...";
2996 return;
2997 case BO_LAnd:
2998 OS << " && ...";
2999 return;
3000 default:
3001 assert(false && "Invalid logical operator.");
3005 void VisitExpr(Expr* E) {
3006 E->printPretty(OS, Helper, Policy);
3009 } // end anonymous namespace
3011 static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3012 const CFGElement &E) {
3013 if (CFGStmt CS = E.getAs<CFGStmt>()) {
3014 Stmt *S = CS;
3016 if (Helper) {
3018 // special printing for statement-expressions.
3019 if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3020 CompoundStmt* Sub = SE->getSubStmt();
3022 if (Sub->children()) {
3023 OS << "({ ... ; ";
3024 Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3025 OS << " })\n";
3026 return;
3029 // special printing for comma expressions.
3030 if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3031 if (B->getOpcode() == BO_Comma) {
3032 OS << "... , ";
3033 Helper->handledStmt(B->getRHS(),OS);
3034 OS << '\n';
3035 return;
3039 S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3041 if (isa<CXXOperatorCallExpr>(S)) {
3042 OS << " (OperatorCall)";
3043 } else if (isa<CXXBindTemporaryExpr>(S)) {
3044 OS << " (BindTemporary)";
3047 // Expressions need a newline.
3048 if (isa<Expr>(S))
3049 OS << '\n';
3051 } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
3052 CXXCtorInitializer* I = IE;
3053 if (I->isBaseInitializer())
3054 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3055 else OS << I->getAnyMember()->getName();
3057 OS << "(";
3058 if (Expr* IE = I->getInit())
3059 IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3060 OS << ")";
3062 if (I->isBaseInitializer())
3063 OS << " (Base initializer)\n";
3064 else OS << " (Member initializer)\n";
3066 } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
3067 VarDecl* VD = DE.getVarDecl();
3068 Helper->handleDecl(VD, OS);
3070 const Type* T = VD->getType().getTypePtr();
3071 if (const ReferenceType* RT = T->getAs<ReferenceType>())
3072 T = RT->getPointeeType().getTypePtr();
3073 else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3074 T = ET;
3076 OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3077 OS << " (Implicit destructor)\n";
3079 } else if (CFGBaseDtor BE = E.getAs<CFGBaseDtor>()) {
3080 const CXXBaseSpecifier *BS = BE.getBaseSpecifier();
3081 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3082 OS << " (Base object destructor)\n";
3084 } else if (CFGMemberDtor ME = E.getAs<CFGMemberDtor>()) {
3085 FieldDecl *FD = ME.getFieldDecl();
3087 const Type *T = FD->getType().getTypePtr();
3088 if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3089 T = ET;
3091 OS << "this->" << FD->getName();
3092 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3093 OS << " (Member object destructor)\n";
3095 } else if (CFGTemporaryDtor TE = E.getAs<CFGTemporaryDtor>()) {
3096 CXXBindTemporaryExpr *BT = TE.getBindTemporaryExpr();
3097 OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3098 OS << " (Temporary object destructor)\n";
3102 static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3103 const CFGBlock& B,
3104 StmtPrinterHelper* Helper, bool print_edges) {
3106 if (Helper) Helper->setBlockID(B.getBlockID());
3108 // Print the header.
3109 OS << "\n [ B" << B.getBlockID();
3111 if (&B == &cfg->getEntry())
3112 OS << " (ENTRY) ]\n";
3113 else if (&B == &cfg->getExit())
3114 OS << " (EXIT) ]\n";
3115 else if (&B == cfg->getIndirectGotoBlock())
3116 OS << " (INDIRECT GOTO DISPATCH) ]\n";
3117 else
3118 OS << " ]\n";
3120 // Print the label of this block.
3121 if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3123 if (print_edges)
3124 OS << " ";
3126 if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3127 OS << L->getName();
3128 else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3129 OS << "case ";
3130 C->getLHS()->printPretty(OS, Helper,
3131 PrintingPolicy(Helper->getLangOpts()));
3132 if (C->getRHS()) {
3133 OS << " ... ";
3134 C->getRHS()->printPretty(OS, Helper,
3135 PrintingPolicy(Helper->getLangOpts()));
3137 } else if (isa<DefaultStmt>(Label))
3138 OS << "default";
3139 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3140 OS << "catch (";
3141 if (CS->getExceptionDecl())
3142 CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3144 else
3145 OS << "...";
3146 OS << ")";
3148 } else
3149 assert(false && "Invalid label statement in CFGBlock.");
3151 OS << ":\n";
3154 // Iterate through the statements in the block and print them.
3155 unsigned j = 1;
3157 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3158 I != E ; ++I, ++j ) {
3160 // Print the statement # in the basic block and the statement itself.
3161 if (print_edges)
3162 OS << " ";
3164 OS << llvm::format("%3d", j) << ": ";
3166 if (Helper)
3167 Helper->setStmtID(j);
3169 print_elem(OS,Helper,*I);
3172 // Print the terminator of this block.
3173 if (B.getTerminator()) {
3174 if (print_edges)
3175 OS << " ";
3177 OS << " T: ";
3179 if (Helper) Helper->setBlockID(-1);
3181 CFGBlockTerminatorPrint TPrinter(OS, Helper,
3182 PrintingPolicy(Helper->getLangOpts()));
3183 TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3184 OS << '\n';
3187 if (print_edges) {
3188 // Print the predecessors of this block.
3189 OS << " Predecessors (" << B.pred_size() << "):";
3190 unsigned i = 0;
3192 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3193 I != E; ++I, ++i) {
3195 if (i == 8 || (i-8) == 0)
3196 OS << "\n ";
3198 OS << " B" << (*I)->getBlockID();
3201 OS << '\n';
3203 // Print the successors of this block.
3204 OS << " Successors (" << B.succ_size() << "):";
3205 i = 0;
3207 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3208 I != E; ++I, ++i) {
3210 if (i == 8 || (i-8) % 10 == 0)
3211 OS << "\n ";
3213 if (*I)
3214 OS << " B" << (*I)->getBlockID();
3215 else
3216 OS << " NULL";
3219 OS << '\n';
3224 /// dump - A simple pretty printer of a CFG that outputs to stderr.
3225 void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3227 /// print - A simple pretty printer of a CFG that outputs to an ostream.
3228 void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3229 StmtPrinterHelper Helper(this, LO);
3231 // Print the entry block.
3232 print_block(OS, this, getEntry(), &Helper, true);
3234 // Iterate through the CFGBlocks and print them one by one.
3235 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3236 // Skip the entry block, because we already printed it.
3237 if (&(**I) == &getEntry() || &(**I) == &getExit())
3238 continue;
3240 print_block(OS, this, **I, &Helper, true);
3243 // Print the exit block.
3244 print_block(OS, this, getExit(), &Helper, true);
3245 OS.flush();
3248 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3249 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3250 print(llvm::errs(), cfg, LO);
3253 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3254 /// Generally this will only be called from CFG::print.
3255 void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3256 const LangOptions &LO) const {
3257 StmtPrinterHelper Helper(cfg, LO);
3258 print_block(OS, cfg, *this, &Helper, true);
3261 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3262 void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3263 const LangOptions &LO) const {
3264 CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3265 TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3268 Stmt* CFGBlock::getTerminatorCondition() {
3269 Stmt *Terminator = this->Terminator;
3270 if (!Terminator)
3271 return NULL;
3273 Expr* E = NULL;
3275 switch (Terminator->getStmtClass()) {
3276 default:
3277 break;
3279 case Stmt::ForStmtClass:
3280 E = cast<ForStmt>(Terminator)->getCond();
3281 break;
3283 case Stmt::WhileStmtClass:
3284 E = cast<WhileStmt>(Terminator)->getCond();
3285 break;
3287 case Stmt::DoStmtClass:
3288 E = cast<DoStmt>(Terminator)->getCond();
3289 break;
3291 case Stmt::IfStmtClass:
3292 E = cast<IfStmt>(Terminator)->getCond();
3293 break;
3295 case Stmt::ChooseExprClass:
3296 E = cast<ChooseExpr>(Terminator)->getCond();
3297 break;
3299 case Stmt::IndirectGotoStmtClass:
3300 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3301 break;
3303 case Stmt::SwitchStmtClass:
3304 E = cast<SwitchStmt>(Terminator)->getCond();
3305 break;
3307 case Stmt::BinaryConditionalOperatorClass:
3308 E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3309 break;
3311 case Stmt::ConditionalOperatorClass:
3312 E = cast<ConditionalOperator>(Terminator)->getCond();
3313 break;
3315 case Stmt::BinaryOperatorClass: // '&&' and '||'
3316 E = cast<BinaryOperator>(Terminator)->getLHS();
3317 break;
3319 case Stmt::ObjCForCollectionStmtClass:
3320 return Terminator;
3323 return E ? E->IgnoreParens() : NULL;
3326 bool CFGBlock::hasBinaryBranchTerminator() const {
3327 const Stmt *Terminator = this->Terminator;
3328 if (!Terminator)
3329 return false;
3331 Expr* E = NULL;
3333 switch (Terminator->getStmtClass()) {
3334 default:
3335 return false;
3337 case Stmt::ForStmtClass:
3338 case Stmt::WhileStmtClass:
3339 case Stmt::DoStmtClass:
3340 case Stmt::IfStmtClass:
3341 case Stmt::ChooseExprClass:
3342 case Stmt::BinaryConditionalOperatorClass:
3343 case Stmt::ConditionalOperatorClass:
3344 case Stmt::BinaryOperatorClass:
3345 return true;
3348 return E ? E->IgnoreParens() : NULL;
3352 //===----------------------------------------------------------------------===//
3353 // CFG Graphviz Visualization
3354 //===----------------------------------------------------------------------===//
3357 #ifndef NDEBUG
3358 static StmtPrinterHelper* GraphHelper;
3359 #endif
3361 void CFG::viewCFG(const LangOptions &LO) const {
3362 #ifndef NDEBUG
3363 StmtPrinterHelper H(this, LO);
3364 GraphHelper = &H;
3365 llvm::ViewGraph(this,"CFG");
3366 GraphHelper = NULL;
3367 #endif
3370 namespace llvm {
3371 template<>
3372 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3374 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3376 static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3378 #ifndef NDEBUG
3379 std::string OutSStr;
3380 llvm::raw_string_ostream Out(OutSStr);
3381 print_block(Out,Graph, *Node, GraphHelper, false);
3382 std::string& OutStr = Out.str();
3384 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3386 // Process string output to make it nicer...
3387 for (unsigned i = 0; i != OutStr.length(); ++i)
3388 if (OutStr[i] == '\n') { // Left justify
3389 OutStr[i] = '\\';
3390 OutStr.insert(OutStr.begin()+i+1, 'l');
3393 return OutStr;
3394 #else
3395 return "";
3396 #endif
3399 } // end namespace llvm