When throwing an elidable object, first try to treat the subexpression
[clang.git] / lib / Parse / ParseExprCXX.cpp
blob5a16729d80a4ce835425e3186f024de300fa5025
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Parse/ParseDiagnostic.h"
15 #include "clang/Parse/Parser.h"
16 #include "RAIIObjectsForParser.h"
17 #include "clang/Sema/DeclSpec.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "llvm/Support/ErrorHandling.h"
21 using namespace clang;
23 /// \brief Parse global scope or nested-name-specifier if present.
24 ///
25 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
26 /// may be preceded by '::'). Note that this routine will not parse ::new or
27 /// ::delete; it will just leave them in the token stream.
28 ///
29 /// '::'[opt] nested-name-specifier
30 /// '::'
31 ///
32 /// nested-name-specifier:
33 /// type-name '::'
34 /// namespace-name '::'
35 /// nested-name-specifier identifier '::'
36 /// nested-name-specifier 'template'[opt] simple-template-id '::'
37 ///
38 ///
39 /// \param SS the scope specifier that will be set to the parsed
40 /// nested-name-specifier (or empty)
41 ///
42 /// \param ObjectType if this nested-name-specifier is being parsed following
43 /// the "." or "->" of a member access expression, this parameter provides the
44 /// type of the object whose members are being accessed.
45 ///
46 /// \param EnteringContext whether we will be entering into the context of
47 /// the nested-name-specifier after parsing it.
48 ///
49 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
50 /// indicates whether this nested-name-specifier may be part of a
51 /// pseudo-destructor name. In this case, the flag will be set false
52 /// if we don't actually end up parsing a destructor name. Moreorover,
53 /// if we do end up determining that we are parsing a destructor name,
54 /// the last component of the nested-name-specifier is not parsed as
55 /// part of the scope specifier.
57 /// member access expression, e.g., the \p T:: in \p p->T::m.
58 ///
59 /// \returns true if there was an error parsing a scope specifier
60 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
61 ParsedType ObjectType,
62 bool EnteringContext,
63 bool *MayBePseudoDestructor) {
64 assert(getLang().CPlusPlus &&
65 "Call sites of this function should be guarded by checking for C++");
67 if (Tok.is(tok::annot_cxxscope)) {
68 SS.setScopeRep(static_cast<NestedNameSpecifier*>(Tok.getAnnotationValue()));
69 SS.setRange(Tok.getAnnotationRange());
70 ConsumeToken();
71 return false;
74 bool HasScopeSpecifier = false;
76 if (Tok.is(tok::coloncolon)) {
77 // ::new and ::delete aren't nested-name-specifiers.
78 tok::TokenKind NextKind = NextToken().getKind();
79 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
80 return false;
82 // '::' - Global scope qualifier.
83 SourceLocation CCLoc = ConsumeToken();
84 SS.setBeginLoc(CCLoc);
85 SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), CCLoc));
86 SS.setEndLoc(CCLoc);
87 HasScopeSpecifier = true;
90 bool CheckForDestructor = false;
91 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
92 CheckForDestructor = true;
93 *MayBePseudoDestructor = false;
96 while (true) {
97 if (HasScopeSpecifier) {
98 // C++ [basic.lookup.classref]p5:
99 // If the qualified-id has the form
101 // ::class-name-or-namespace-name::...
103 // the class-name-or-namespace-name is looked up in global scope as a
104 // class-name or namespace-name.
106 // To implement this, we clear out the object type as soon as we've
107 // seen a leading '::' or part of a nested-name-specifier.
108 ObjectType = ParsedType();
110 if (Tok.is(tok::code_completion)) {
111 // Code completion for a nested-name-specifier, where the code
112 // code completion token follows the '::'.
113 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
114 ConsumeCodeCompletionToken();
118 // nested-name-specifier:
119 // nested-name-specifier 'template'[opt] simple-template-id '::'
121 // Parse the optional 'template' keyword, then make sure we have
122 // 'identifier <' after it.
123 if (Tok.is(tok::kw_template)) {
124 // If we don't have a scope specifier or an object type, this isn't a
125 // nested-name-specifier, since they aren't allowed to start with
126 // 'template'.
127 if (!HasScopeSpecifier && !ObjectType)
128 break;
130 TentativeParsingAction TPA(*this);
131 SourceLocation TemplateKWLoc = ConsumeToken();
133 UnqualifiedId TemplateName;
134 if (Tok.is(tok::identifier)) {
135 // Consume the identifier.
136 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
137 ConsumeToken();
138 } else if (Tok.is(tok::kw_operator)) {
139 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
140 TemplateName)) {
141 TPA.Commit();
142 break;
145 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
146 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
147 Diag(TemplateName.getSourceRange().getBegin(),
148 diag::err_id_after_template_in_nested_name_spec)
149 << TemplateName.getSourceRange();
150 TPA.Commit();
151 break;
153 } else {
154 TPA.Revert();
155 break;
158 // If the next token is not '<', we have a qualified-id that refers
159 // to a template name, such as T::template apply, but is not a
160 // template-id.
161 if (Tok.isNot(tok::less)) {
162 TPA.Revert();
163 break;
166 // Commit to parsing the template-id.
167 TPA.Commit();
168 TemplateTy Template;
169 if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(getCurScope(),
170 TemplateKWLoc,
171 SS,
172 TemplateName,
173 ObjectType,
174 EnteringContext,
175 Template)) {
176 if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
177 TemplateKWLoc, false))
178 return true;
179 } else
180 return true;
182 continue;
185 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
186 // We have
188 // simple-template-id '::'
190 // So we need to check whether the simple-template-id is of the
191 // right kind (it should name a type or be dependent), and then
192 // convert it into a type within the nested-name-specifier.
193 TemplateIdAnnotation *TemplateId
194 = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
195 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
196 *MayBePseudoDestructor = true;
197 return false;
200 if (TemplateId->Kind == TNK_Type_template ||
201 TemplateId->Kind == TNK_Dependent_template_name) {
202 AnnotateTemplateIdTokenAsType(&SS);
204 assert(Tok.is(tok::annot_typename) &&
205 "AnnotateTemplateIdTokenAsType isn't working");
206 Token TypeToken = Tok;
207 ConsumeToken();
208 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
209 SourceLocation CCLoc = ConsumeToken();
211 if (!HasScopeSpecifier) {
212 SS.setBeginLoc(TypeToken.getLocation());
213 HasScopeSpecifier = true;
216 if (ParsedType T = getTypeAnnotation(TypeToken)) {
217 CXXScopeTy *Scope =
218 Actions.ActOnCXXNestedNameSpecifier(getCurScope(), SS, T,
219 TypeToken.getAnnotationRange(),
220 CCLoc);
221 SS.setScopeRep(Scope);
222 } else
223 SS.setScopeRep(0);
224 SS.setEndLoc(CCLoc);
225 continue;
228 assert(false && "FIXME: Only type template names supported here");
232 // The rest of the nested-name-specifier possibilities start with
233 // tok::identifier.
234 if (Tok.isNot(tok::identifier))
235 break;
237 IdentifierInfo &II = *Tok.getIdentifierInfo();
239 // nested-name-specifier:
240 // type-name '::'
241 // namespace-name '::'
242 // nested-name-specifier identifier '::'
243 Token Next = NextToken();
245 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
246 // and emit a fixit hint for it.
247 if (Next.is(tok::colon) && !ColonIsSacred) {
248 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, ObjectType,
249 EnteringContext) &&
250 // If the token after the colon isn't an identifier, it's still an
251 // error, but they probably meant something else strange so don't
252 // recover like this.
253 PP.LookAhead(1).is(tok::identifier)) {
254 Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
255 << FixItHint::CreateReplacement(Next.getLocation(), "::");
257 // Recover as if the user wrote '::'.
258 Next.setKind(tok::coloncolon);
262 if (Next.is(tok::coloncolon)) {
263 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
264 !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
265 II, ObjectType)) {
266 *MayBePseudoDestructor = true;
267 return false;
270 // We have an identifier followed by a '::'. Lookup this name
271 // as the name in a nested-name-specifier.
272 SourceLocation IdLoc = ConsumeToken();
273 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
274 "NextToken() not working properly!");
275 SourceLocation CCLoc = ConsumeToken();
277 if (!HasScopeSpecifier) {
278 SS.setBeginLoc(IdLoc);
279 HasScopeSpecifier = true;
282 if (!SS.isInvalid())
283 SS.setScopeRep(
284 Actions.ActOnCXXNestedNameSpecifier(getCurScope(), SS, IdLoc, CCLoc, II,
285 ObjectType, EnteringContext));
286 SS.setEndLoc(CCLoc);
287 continue;
290 // nested-name-specifier:
291 // type-name '<'
292 if (Next.is(tok::less)) {
293 TemplateTy Template;
294 UnqualifiedId TemplateName;
295 TemplateName.setIdentifier(&II, Tok.getLocation());
296 bool MemberOfUnknownSpecialization;
297 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
298 /*hasTemplateKeyword=*/false,
299 TemplateName,
300 ObjectType,
301 EnteringContext,
302 Template,
303 MemberOfUnknownSpecialization)) {
304 // We have found a template name, so annotate this this token
305 // with a template-id annotation. We do not permit the
306 // template-id to be translated into a type annotation,
307 // because some clients (e.g., the parsing of class template
308 // specializations) still want to see the original template-id
309 // token.
310 ConsumeToken();
311 if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
312 SourceLocation(), false))
313 return true;
314 continue;
317 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
318 IsTemplateArgumentList(1)) {
319 // We have something like t::getAs<T>, where getAs is a
320 // member of an unknown specialization. However, this will only
321 // parse correctly as a template, so suggest the keyword 'template'
322 // before 'getAs' and treat this as a dependent template name.
323 Diag(Tok.getLocation(), diag::err_missing_dependent_template_keyword)
324 << II.getName()
325 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
327 if (TemplateNameKind TNK
328 = Actions.ActOnDependentTemplateName(getCurScope(),
329 Tok.getLocation(), SS,
330 TemplateName, ObjectType,
331 EnteringContext, Template)) {
332 // Consume the identifier.
333 ConsumeToken();
334 if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
335 SourceLocation(), false))
336 return true;
338 else
339 return true;
341 continue;
345 // We don't have any tokens that form the beginning of a
346 // nested-name-specifier, so we're done.
347 break;
350 // Even if we didn't see any pieces of a nested-name-specifier, we
351 // still check whether there is a tilde in this position, which
352 // indicates a potential pseudo-destructor.
353 if (CheckForDestructor && Tok.is(tok::tilde))
354 *MayBePseudoDestructor = true;
356 return false;
359 /// ParseCXXIdExpression - Handle id-expression.
361 /// id-expression:
362 /// unqualified-id
363 /// qualified-id
365 /// qualified-id:
366 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
367 /// '::' identifier
368 /// '::' operator-function-id
369 /// '::' template-id
371 /// NOTE: The standard specifies that, for qualified-id, the parser does not
372 /// expect:
374 /// '::' conversion-function-id
375 /// '::' '~' class-name
377 /// This may cause a slight inconsistency on diagnostics:
379 /// class C {};
380 /// namespace A {}
381 /// void f() {
382 /// :: A :: ~ C(); // Some Sema error about using destructor with a
383 /// // namespace.
384 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
385 /// }
387 /// We simplify the parser a bit and make it work like:
389 /// qualified-id:
390 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
391 /// '::' unqualified-id
393 /// That way Sema can handle and report similar errors for namespaces and the
394 /// global scope.
396 /// The isAddressOfOperand parameter indicates that this id-expression is a
397 /// direct operand of the address-of operator. This is, besides member contexts,
398 /// the only place where a qualified-id naming a non-static class member may
399 /// appear.
401 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
402 // qualified-id:
403 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
404 // '::' unqualified-id
406 CXXScopeSpec SS;
407 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
409 UnqualifiedId Name;
410 if (ParseUnqualifiedId(SS,
411 /*EnteringContext=*/false,
412 /*AllowDestructorName=*/false,
413 /*AllowConstructorName=*/false,
414 /*ObjectType=*/ ParsedType(),
415 Name))
416 return ExprError();
418 // This is only the direct operand of an & operator if it is not
419 // followed by a postfix-expression suffix.
420 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
421 isAddressOfOperand = false;
423 return Actions.ActOnIdExpression(getCurScope(), SS, Name, Tok.is(tok::l_paren),
424 isAddressOfOperand);
428 /// ParseCXXCasts - This handles the various ways to cast expressions to another
429 /// type.
431 /// postfix-expression: [C++ 5.2p1]
432 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
433 /// 'static_cast' '<' type-name '>' '(' expression ')'
434 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
435 /// 'const_cast' '<' type-name '>' '(' expression ')'
437 ExprResult Parser::ParseCXXCasts() {
438 tok::TokenKind Kind = Tok.getKind();
439 const char *CastName = 0; // For error messages
441 switch (Kind) {
442 default: assert(0 && "Unknown C++ cast!"); abort();
443 case tok::kw_const_cast: CastName = "const_cast"; break;
444 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
445 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
446 case tok::kw_static_cast: CastName = "static_cast"; break;
449 SourceLocation OpLoc = ConsumeToken();
450 SourceLocation LAngleBracketLoc = Tok.getLocation();
452 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
453 return ExprError();
455 TypeResult CastTy = ParseTypeName();
456 SourceLocation RAngleBracketLoc = Tok.getLocation();
458 if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
459 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
461 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
463 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
464 return ExprError();
466 ExprResult Result = ParseExpression();
468 // Match the ')'.
469 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
471 if (!Result.isInvalid() && !CastTy.isInvalid())
472 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
473 LAngleBracketLoc, CastTy.get(),
474 RAngleBracketLoc,
475 LParenLoc, Result.take(), RParenLoc);
477 return move(Result);
480 /// ParseCXXTypeid - This handles the C++ typeid expression.
482 /// postfix-expression: [C++ 5.2p1]
483 /// 'typeid' '(' expression ')'
484 /// 'typeid' '(' type-id ')'
486 ExprResult Parser::ParseCXXTypeid() {
487 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
489 SourceLocation OpLoc = ConsumeToken();
490 SourceLocation LParenLoc = Tok.getLocation();
491 SourceLocation RParenLoc;
493 // typeid expressions are always parenthesized.
494 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
495 "typeid"))
496 return ExprError();
498 ExprResult Result;
500 if (isTypeIdInParens()) {
501 TypeResult Ty = ParseTypeName();
503 // Match the ')'.
504 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
506 if (Ty.isInvalid() || RParenLoc.isInvalid())
507 return ExprError();
509 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
510 Ty.get().getAsOpaquePtr(), RParenLoc);
511 } else {
512 // C++0x [expr.typeid]p3:
513 // When typeid is applied to an expression other than an lvalue of a
514 // polymorphic class type [...] The expression is an unevaluated
515 // operand (Clause 5).
517 // Note that we can't tell whether the expression is an lvalue of a
518 // polymorphic class type until after we've parsed the expression, so
519 // we the expression is potentially potentially evaluated.
520 EnterExpressionEvaluationContext Unevaluated(Actions,
521 Sema::PotentiallyPotentiallyEvaluated);
522 Result = ParseExpression();
524 // Match the ')'.
525 if (Result.isInvalid())
526 SkipUntil(tok::r_paren);
527 else {
528 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
529 if (RParenLoc.isInvalid())
530 return ExprError();
532 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
533 Result.release(), RParenLoc);
537 return move(Result);
540 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
542 /// '__uuidof' '(' expression ')'
543 /// '__uuidof' '(' type-id ')'
545 ExprResult Parser::ParseCXXUuidof() {
546 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
548 SourceLocation OpLoc = ConsumeToken();
549 SourceLocation LParenLoc = Tok.getLocation();
550 SourceLocation RParenLoc;
552 // __uuidof expressions are always parenthesized.
553 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
554 "__uuidof"))
555 return ExprError();
557 ExprResult Result;
559 if (isTypeIdInParens()) {
560 TypeResult Ty = ParseTypeName();
562 // Match the ')'.
563 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
565 if (Ty.isInvalid())
566 return ExprError();
568 Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/true,
569 Ty.get().getAsOpaquePtr(), RParenLoc);
570 } else {
571 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
572 Result = ParseExpression();
574 // Match the ')'.
575 if (Result.isInvalid())
576 SkipUntil(tok::r_paren);
577 else {
578 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
580 Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/false,
581 Result.release(), RParenLoc);
585 return move(Result);
588 /// \brief Parse a C++ pseudo-destructor expression after the base,
589 /// . or -> operator, and nested-name-specifier have already been
590 /// parsed.
592 /// postfix-expression: [C++ 5.2]
593 /// postfix-expression . pseudo-destructor-name
594 /// postfix-expression -> pseudo-destructor-name
596 /// pseudo-destructor-name:
597 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
598 /// ::[opt] nested-name-specifier template simple-template-id ::
599 /// ~type-name
600 /// ::[opt] nested-name-specifier[opt] ~type-name
601 ///
602 ExprResult
603 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
604 tok::TokenKind OpKind,
605 CXXScopeSpec &SS,
606 ParsedType ObjectType) {
607 // We're parsing either a pseudo-destructor-name or a dependent
608 // member access that has the same form as a
609 // pseudo-destructor-name. We parse both in the same way and let
610 // the action model sort them out.
612 // Note that the ::[opt] nested-name-specifier[opt] has already
613 // been parsed, and if there was a simple-template-id, it has
614 // been coalesced into a template-id annotation token.
615 UnqualifiedId FirstTypeName;
616 SourceLocation CCLoc;
617 if (Tok.is(tok::identifier)) {
618 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
619 ConsumeToken();
620 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
621 CCLoc = ConsumeToken();
622 } else if (Tok.is(tok::annot_template_id)) {
623 FirstTypeName.setTemplateId(
624 (TemplateIdAnnotation *)Tok.getAnnotationValue());
625 ConsumeToken();
626 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
627 CCLoc = ConsumeToken();
628 } else {
629 FirstTypeName.setIdentifier(0, SourceLocation());
632 // Parse the tilde.
633 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
634 SourceLocation TildeLoc = ConsumeToken();
635 if (!Tok.is(tok::identifier)) {
636 Diag(Tok, diag::err_destructor_tilde_identifier);
637 return ExprError();
640 // Parse the second type.
641 UnqualifiedId SecondTypeName;
642 IdentifierInfo *Name = Tok.getIdentifierInfo();
643 SourceLocation NameLoc = ConsumeToken();
644 SecondTypeName.setIdentifier(Name, NameLoc);
646 // If there is a '<', the second type name is a template-id. Parse
647 // it as such.
648 if (Tok.is(tok::less) &&
649 ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
650 SecondTypeName, /*AssumeTemplateName=*/true,
651 /*TemplateKWLoc*/SourceLocation()))
652 return ExprError();
654 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
655 OpLoc, OpKind,
656 SS, FirstTypeName, CCLoc,
657 TildeLoc, SecondTypeName,
658 Tok.is(tok::l_paren));
661 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
663 /// boolean-literal: [C++ 2.13.5]
664 /// 'true'
665 /// 'false'
666 ExprResult Parser::ParseCXXBoolLiteral() {
667 tok::TokenKind Kind = Tok.getKind();
668 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
671 /// ParseThrowExpression - This handles the C++ throw expression.
673 /// throw-expression: [C++ 15]
674 /// 'throw' assignment-expression[opt]
675 ExprResult Parser::ParseThrowExpression() {
676 assert(Tok.is(tok::kw_throw) && "Not throw!");
677 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
679 // If the current token isn't the start of an assignment-expression,
680 // then the expression is not present. This handles things like:
681 // "C ? throw : (void)42", which is crazy but legal.
682 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
683 case tok::semi:
684 case tok::r_paren:
685 case tok::r_square:
686 case tok::r_brace:
687 case tok::colon:
688 case tok::comma:
689 return Actions.ActOnCXXThrow(ThrowLoc, 0);
691 default:
692 ExprResult Expr(ParseAssignmentExpression());
693 if (Expr.isInvalid()) return move(Expr);
694 return Actions.ActOnCXXThrow(ThrowLoc, Expr.take());
698 /// ParseCXXThis - This handles the C++ 'this' pointer.
700 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
701 /// a non-lvalue expression whose value is the address of the object for which
702 /// the function is called.
703 ExprResult Parser::ParseCXXThis() {
704 assert(Tok.is(tok::kw_this) && "Not 'this'!");
705 SourceLocation ThisLoc = ConsumeToken();
706 return Actions.ActOnCXXThis(ThisLoc);
709 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
710 /// Can be interpreted either as function-style casting ("int(x)")
711 /// or class type construction ("ClassType(x,y,z)")
712 /// or creation of a value-initialized type ("int()").
714 /// postfix-expression: [C++ 5.2p1]
715 /// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
716 /// typename-specifier '(' expression-list[opt] ')' [TODO]
718 ExprResult
719 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
720 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
721 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
723 assert(Tok.is(tok::l_paren) && "Expected '('!");
724 GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
726 SourceLocation LParenLoc = ConsumeParen();
728 ExprVector Exprs(Actions);
729 CommaLocsTy CommaLocs;
731 if (Tok.isNot(tok::r_paren)) {
732 if (ParseExpressionList(Exprs, CommaLocs)) {
733 SkipUntil(tok::r_paren);
734 return ExprError();
738 // Match the ')'.
739 SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
741 // TypeRep could be null, if it references an invalid typedef.
742 if (!TypeRep)
743 return ExprError();
745 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
746 "Unexpected number of commas!");
747 return Actions.ActOnCXXTypeConstructExpr(TypeRep, LParenLoc, move_arg(Exprs),
748 RParenLoc);
751 /// ParseCXXCondition - if/switch/while condition expression.
753 /// condition:
754 /// expression
755 /// type-specifier-seq declarator '=' assignment-expression
756 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
757 /// '=' assignment-expression
759 /// \param ExprResult if the condition was parsed as an expression, the
760 /// parsed expression.
762 /// \param DeclResult if the condition was parsed as a declaration, the
763 /// parsed declaration.
765 /// \param Loc The location of the start of the statement that requires this
766 /// condition, e.g., the "for" in a for loop.
768 /// \param ConvertToBoolean Whether the condition expression should be
769 /// converted to a boolean value.
771 /// \returns true if there was a parsing, false otherwise.
772 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
773 Decl *&DeclOut,
774 SourceLocation Loc,
775 bool ConvertToBoolean) {
776 if (Tok.is(tok::code_completion)) {
777 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
778 ConsumeCodeCompletionToken();
781 if (!isCXXConditionDeclaration()) {
782 // Parse the expression.
783 ExprOut = ParseExpression(); // expression
784 DeclOut = 0;
785 if (ExprOut.isInvalid())
786 return true;
788 // If required, convert to a boolean value.
789 if (ConvertToBoolean)
790 ExprOut
791 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
792 return ExprOut.isInvalid();
795 // type-specifier-seq
796 DeclSpec DS;
797 ParseSpecifierQualifierList(DS);
799 // declarator
800 Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
801 ParseDeclarator(DeclaratorInfo);
803 // simple-asm-expr[opt]
804 if (Tok.is(tok::kw_asm)) {
805 SourceLocation Loc;
806 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
807 if (AsmLabel.isInvalid()) {
808 SkipUntil(tok::semi);
809 return true;
811 DeclaratorInfo.setAsmLabel(AsmLabel.release());
812 DeclaratorInfo.SetRangeEnd(Loc);
815 // If attributes are present, parse them.
816 MaybeParseGNUAttributes(DeclaratorInfo);
818 // Type-check the declaration itself.
819 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
820 DeclaratorInfo);
821 DeclOut = Dcl.get();
822 ExprOut = ExprError();
824 // '=' assignment-expression
825 if (isTokenEqualOrMistypedEqualEqual(
826 diag::err_invalid_equalequal_after_declarator)) {
827 ConsumeToken();
828 ExprResult AssignExpr(ParseAssignmentExpression());
829 if (!AssignExpr.isInvalid())
830 Actions.AddInitializerToDecl(DeclOut, AssignExpr.take());
831 } else {
832 // FIXME: C++0x allows a braced-init-list
833 Diag(Tok, diag::err_expected_equal_after_declarator);
836 // FIXME: Build a reference to this declaration? Convert it to bool?
837 // (This is currently handled by Sema).
839 return false;
842 /// \brief Determine whether the current token starts a C++
843 /// simple-type-specifier.
844 bool Parser::isCXXSimpleTypeSpecifier() const {
845 switch (Tok.getKind()) {
846 case tok::annot_typename:
847 case tok::kw_short:
848 case tok::kw_long:
849 case tok::kw_signed:
850 case tok::kw_unsigned:
851 case tok::kw_void:
852 case tok::kw_char:
853 case tok::kw_int:
854 case tok::kw_float:
855 case tok::kw_double:
856 case tok::kw_wchar_t:
857 case tok::kw_char16_t:
858 case tok::kw_char32_t:
859 case tok::kw_bool:
860 // FIXME: C++0x decltype support.
861 // GNU typeof support.
862 case tok::kw_typeof:
863 return true;
865 default:
866 break;
869 return false;
872 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
873 /// This should only be called when the current token is known to be part of
874 /// simple-type-specifier.
876 /// simple-type-specifier:
877 /// '::'[opt] nested-name-specifier[opt] type-name
878 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
879 /// char
880 /// wchar_t
881 /// bool
882 /// short
883 /// int
884 /// long
885 /// signed
886 /// unsigned
887 /// float
888 /// double
889 /// void
890 /// [GNU] typeof-specifier
891 /// [C++0x] auto [TODO]
893 /// type-name:
894 /// class-name
895 /// enum-name
896 /// typedef-name
898 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
899 DS.SetRangeStart(Tok.getLocation());
900 const char *PrevSpec;
901 unsigned DiagID;
902 SourceLocation Loc = Tok.getLocation();
904 switch (Tok.getKind()) {
905 case tok::identifier: // foo::bar
906 case tok::coloncolon: // ::foo::bar
907 assert(0 && "Annotation token should already be formed!");
908 default:
909 assert(0 && "Not a simple-type-specifier token!");
910 abort();
912 // type-name
913 case tok::annot_typename: {
914 if (getTypeAnnotation(Tok))
915 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
916 getTypeAnnotation(Tok));
917 else
918 DS.SetTypeSpecError();
920 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
921 ConsumeToken();
923 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
924 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
925 // Objective-C interface. If we don't have Objective-C or a '<', this is
926 // just a normal reference to a typedef name.
927 if (Tok.is(tok::less) && getLang().ObjC1)
928 ParseObjCProtocolQualifiers(DS);
930 DS.Finish(Diags, PP);
931 return;
934 // builtin types
935 case tok::kw_short:
936 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
937 break;
938 case tok::kw_long:
939 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
940 break;
941 case tok::kw_signed:
942 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
943 break;
944 case tok::kw_unsigned:
945 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
946 break;
947 case tok::kw_void:
948 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
949 break;
950 case tok::kw_char:
951 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
952 break;
953 case tok::kw_int:
954 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
955 break;
956 case tok::kw_float:
957 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
958 break;
959 case tok::kw_double:
960 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
961 break;
962 case tok::kw_wchar_t:
963 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
964 break;
965 case tok::kw_char16_t:
966 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
967 break;
968 case tok::kw_char32_t:
969 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
970 break;
971 case tok::kw_bool:
972 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
973 break;
975 // FIXME: C++0x decltype support.
976 // GNU typeof support.
977 case tok::kw_typeof:
978 ParseTypeofSpecifier(DS);
979 DS.Finish(Diags, PP);
980 return;
982 if (Tok.is(tok::annot_typename))
983 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
984 else
985 DS.SetRangeEnd(Tok.getLocation());
986 ConsumeToken();
987 DS.Finish(Diags, PP);
990 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
991 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
992 /// e.g., "const short int". Note that the DeclSpec is *not* finished
993 /// by parsing the type-specifier-seq, because these sequences are
994 /// typically followed by some form of declarator. Returns true and
995 /// emits diagnostics if this is not a type-specifier-seq, false
996 /// otherwise.
998 /// type-specifier-seq: [C++ 8.1]
999 /// type-specifier type-specifier-seq[opt]
1001 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1002 DS.SetRangeStart(Tok.getLocation());
1003 const char *PrevSpec = 0;
1004 unsigned DiagID;
1005 bool isInvalid = 0;
1007 // Parse one or more of the type specifiers.
1008 if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1009 ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
1010 Diag(Tok, diag::err_expected_type);
1011 return true;
1014 while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1015 ParsedTemplateInfo(), /*SuppressDeclarations*/true))
1018 DS.Finish(Diags, PP);
1019 return false;
1022 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1023 /// some form.
1025 /// This routine is invoked when a '<' is encountered after an identifier or
1026 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1027 /// whether the unqualified-id is actually a template-id. This routine will
1028 /// then parse the template arguments and form the appropriate template-id to
1029 /// return to the caller.
1031 /// \param SS the nested-name-specifier that precedes this template-id, if
1032 /// we're actually parsing a qualified-id.
1034 /// \param Name for constructor and destructor names, this is the actual
1035 /// identifier that may be a template-name.
1037 /// \param NameLoc the location of the class-name in a constructor or
1038 /// destructor.
1040 /// \param EnteringContext whether we're entering the scope of the
1041 /// nested-name-specifier.
1043 /// \param ObjectType if this unqualified-id occurs within a member access
1044 /// expression, the type of the base object whose member is being accessed.
1046 /// \param Id as input, describes the template-name or operator-function-id
1047 /// that precedes the '<'. If template arguments were parsed successfully,
1048 /// will be updated with the template-id.
1049 ///
1050 /// \param AssumeTemplateId When true, this routine will assume that the name
1051 /// refers to a template without performing name lookup to verify.
1053 /// \returns true if a parse error occurred, false otherwise.
1054 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1055 IdentifierInfo *Name,
1056 SourceLocation NameLoc,
1057 bool EnteringContext,
1058 ParsedType ObjectType,
1059 UnqualifiedId &Id,
1060 bool AssumeTemplateId,
1061 SourceLocation TemplateKWLoc) {
1062 assert((AssumeTemplateId || Tok.is(tok::less)) &&
1063 "Expected '<' to finish parsing a template-id");
1065 TemplateTy Template;
1066 TemplateNameKind TNK = TNK_Non_template;
1067 switch (Id.getKind()) {
1068 case UnqualifiedId::IK_Identifier:
1069 case UnqualifiedId::IK_OperatorFunctionId:
1070 case UnqualifiedId::IK_LiteralOperatorId:
1071 if (AssumeTemplateId) {
1072 TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1073 Id, ObjectType, EnteringContext,
1074 Template);
1075 if (TNK == TNK_Non_template)
1076 return true;
1077 } else {
1078 bool MemberOfUnknownSpecialization;
1079 TNK = Actions.isTemplateName(getCurScope(), SS,
1080 TemplateKWLoc.isValid(), Id,
1081 ObjectType, EnteringContext, Template,
1082 MemberOfUnknownSpecialization);
1084 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1085 ObjectType && IsTemplateArgumentList()) {
1086 // We have something like t->getAs<T>(), where getAs is a
1087 // member of an unknown specialization. However, this will only
1088 // parse correctly as a template, so suggest the keyword 'template'
1089 // before 'getAs' and treat this as a dependent template name.
1090 std::string Name;
1091 if (Id.getKind() == UnqualifiedId::IK_Identifier)
1092 Name = Id.Identifier->getName();
1093 else {
1094 Name = "operator ";
1095 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1096 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1097 else
1098 Name += Id.Identifier->getName();
1100 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1101 << Name
1102 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1103 TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc,
1104 SS, Id, ObjectType,
1105 EnteringContext, Template);
1106 if (TNK == TNK_Non_template)
1107 return true;
1110 break;
1112 case UnqualifiedId::IK_ConstructorName: {
1113 UnqualifiedId TemplateName;
1114 bool MemberOfUnknownSpecialization;
1115 TemplateName.setIdentifier(Name, NameLoc);
1116 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1117 TemplateName, ObjectType,
1118 EnteringContext, Template,
1119 MemberOfUnknownSpecialization);
1120 break;
1123 case UnqualifiedId::IK_DestructorName: {
1124 UnqualifiedId TemplateName;
1125 bool MemberOfUnknownSpecialization;
1126 TemplateName.setIdentifier(Name, NameLoc);
1127 if (ObjectType) {
1128 TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1129 TemplateName, ObjectType,
1130 EnteringContext, Template);
1131 if (TNK == TNK_Non_template)
1132 return true;
1133 } else {
1134 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1135 TemplateName, ObjectType,
1136 EnteringContext, Template,
1137 MemberOfUnknownSpecialization);
1139 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1140 Diag(NameLoc, diag::err_destructor_template_id)
1141 << Name << SS.getRange();
1142 return true;
1145 break;
1148 default:
1149 return false;
1152 if (TNK == TNK_Non_template)
1153 return false;
1155 // Parse the enclosed template argument list.
1156 SourceLocation LAngleLoc, RAngleLoc;
1157 TemplateArgList TemplateArgs;
1158 if (Tok.is(tok::less) &&
1159 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1160 &SS, true, LAngleLoc,
1161 TemplateArgs,
1162 RAngleLoc))
1163 return true;
1165 if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1166 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1167 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1168 // Form a parsed representation of the template-id to be stored in the
1169 // UnqualifiedId.
1170 TemplateIdAnnotation *TemplateId
1171 = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1173 if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1174 TemplateId->Name = Id.Identifier;
1175 TemplateId->Operator = OO_None;
1176 TemplateId->TemplateNameLoc = Id.StartLocation;
1177 } else {
1178 TemplateId->Name = 0;
1179 TemplateId->Operator = Id.OperatorFunctionId.Operator;
1180 TemplateId->TemplateNameLoc = Id.StartLocation;
1183 TemplateId->Template = Template;
1184 TemplateId->Kind = TNK;
1185 TemplateId->LAngleLoc = LAngleLoc;
1186 TemplateId->RAngleLoc = RAngleLoc;
1187 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1188 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1189 Arg != ArgEnd; ++Arg)
1190 Args[Arg] = TemplateArgs[Arg];
1192 Id.setTemplateId(TemplateId);
1193 return false;
1196 // Bundle the template arguments together.
1197 ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1198 TemplateArgs.size());
1200 // Constructor and destructor names.
1201 TypeResult Type
1202 = Actions.ActOnTemplateIdType(Template, NameLoc,
1203 LAngleLoc, TemplateArgsPtr,
1204 RAngleLoc);
1205 if (Type.isInvalid())
1206 return true;
1208 if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1209 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1210 else
1211 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1213 return false;
1216 /// \brief Parse an operator-function-id or conversion-function-id as part
1217 /// of a C++ unqualified-id.
1219 /// This routine is responsible only for parsing the operator-function-id or
1220 /// conversion-function-id; it does not handle template arguments in any way.
1222 /// \code
1223 /// operator-function-id: [C++ 13.5]
1224 /// 'operator' operator
1226 /// operator: one of
1227 /// new delete new[] delete[]
1228 /// + - * / % ^ & | ~
1229 /// ! = < > += -= *= /= %=
1230 /// ^= &= |= << >> >>= <<= == !=
1231 /// <= >= && || ++ -- , ->* ->
1232 /// () []
1234 /// conversion-function-id: [C++ 12.3.2]
1235 /// operator conversion-type-id
1237 /// conversion-type-id:
1238 /// type-specifier-seq conversion-declarator[opt]
1240 /// conversion-declarator:
1241 /// ptr-operator conversion-declarator[opt]
1242 /// \endcode
1244 /// \param The nested-name-specifier that preceded this unqualified-id. If
1245 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
1247 /// \param EnteringContext whether we are entering the scope of the
1248 /// nested-name-specifier.
1250 /// \param ObjectType if this unqualified-id occurs within a member access
1251 /// expression, the type of the base object whose member is being accessed.
1253 /// \param Result on a successful parse, contains the parsed unqualified-id.
1255 /// \returns true if parsing fails, false otherwise.
1256 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1257 ParsedType ObjectType,
1258 UnqualifiedId &Result) {
1259 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1261 // Consume the 'operator' keyword.
1262 SourceLocation KeywordLoc = ConsumeToken();
1264 // Determine what kind of operator name we have.
1265 unsigned SymbolIdx = 0;
1266 SourceLocation SymbolLocations[3];
1267 OverloadedOperatorKind Op = OO_None;
1268 switch (Tok.getKind()) {
1269 case tok::kw_new:
1270 case tok::kw_delete: {
1271 bool isNew = Tok.getKind() == tok::kw_new;
1272 // Consume the 'new' or 'delete'.
1273 SymbolLocations[SymbolIdx++] = ConsumeToken();
1274 if (Tok.is(tok::l_square)) {
1275 // Consume the '['.
1276 SourceLocation LBracketLoc = ConsumeBracket();
1277 // Consume the ']'.
1278 SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1279 LBracketLoc);
1280 if (RBracketLoc.isInvalid())
1281 return true;
1283 SymbolLocations[SymbolIdx++] = LBracketLoc;
1284 SymbolLocations[SymbolIdx++] = RBracketLoc;
1285 Op = isNew? OO_Array_New : OO_Array_Delete;
1286 } else {
1287 Op = isNew? OO_New : OO_Delete;
1289 break;
1292 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1293 case tok::Token: \
1294 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
1295 Op = OO_##Name; \
1296 break;
1297 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1298 #include "clang/Basic/OperatorKinds.def"
1300 case tok::l_paren: {
1301 // Consume the '('.
1302 SourceLocation LParenLoc = ConsumeParen();
1303 // Consume the ')'.
1304 SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1305 LParenLoc);
1306 if (RParenLoc.isInvalid())
1307 return true;
1309 SymbolLocations[SymbolIdx++] = LParenLoc;
1310 SymbolLocations[SymbolIdx++] = RParenLoc;
1311 Op = OO_Call;
1312 break;
1315 case tok::l_square: {
1316 // Consume the '['.
1317 SourceLocation LBracketLoc = ConsumeBracket();
1318 // Consume the ']'.
1319 SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1320 LBracketLoc);
1321 if (RBracketLoc.isInvalid())
1322 return true;
1324 SymbolLocations[SymbolIdx++] = LBracketLoc;
1325 SymbolLocations[SymbolIdx++] = RBracketLoc;
1326 Op = OO_Subscript;
1327 break;
1330 case tok::code_completion: {
1331 // Code completion for the operator name.
1332 Actions.CodeCompleteOperatorName(getCurScope());
1334 // Consume the operator token.
1335 ConsumeCodeCompletionToken();
1337 // Don't try to parse any further.
1338 return true;
1341 default:
1342 break;
1345 if (Op != OO_None) {
1346 // We have parsed an operator-function-id.
1347 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1348 return false;
1351 // Parse a literal-operator-id.
1353 // literal-operator-id: [C++0x 13.5.8]
1354 // operator "" identifier
1356 if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1357 if (Tok.getLength() != 2)
1358 Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1359 ConsumeStringToken();
1361 if (Tok.isNot(tok::identifier)) {
1362 Diag(Tok.getLocation(), diag::err_expected_ident);
1363 return true;
1366 IdentifierInfo *II = Tok.getIdentifierInfo();
1367 Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1368 return false;
1371 // Parse a conversion-function-id.
1373 // conversion-function-id: [C++ 12.3.2]
1374 // operator conversion-type-id
1376 // conversion-type-id:
1377 // type-specifier-seq conversion-declarator[opt]
1379 // conversion-declarator:
1380 // ptr-operator conversion-declarator[opt]
1382 // Parse the type-specifier-seq.
1383 DeclSpec DS;
1384 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1385 return true;
1387 // Parse the conversion-declarator, which is merely a sequence of
1388 // ptr-operators.
1389 Declarator D(DS, Declarator::TypeNameContext);
1390 ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1392 // Finish up the type.
1393 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1394 if (Ty.isInvalid())
1395 return true;
1397 // Note that this is a conversion-function-id.
1398 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1399 D.getSourceRange().getEnd());
1400 return false;
1403 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1404 /// name of an entity.
1406 /// \code
1407 /// unqualified-id: [C++ expr.prim.general]
1408 /// identifier
1409 /// operator-function-id
1410 /// conversion-function-id
1411 /// [C++0x] literal-operator-id [TODO]
1412 /// ~ class-name
1413 /// template-id
1415 /// \endcode
1417 /// \param The nested-name-specifier that preceded this unqualified-id. If
1418 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
1420 /// \param EnteringContext whether we are entering the scope of the
1421 /// nested-name-specifier.
1423 /// \param AllowDestructorName whether we allow parsing of a destructor name.
1425 /// \param AllowConstructorName whether we allow parsing a constructor name.
1427 /// \param ObjectType if this unqualified-id occurs within a member access
1428 /// expression, the type of the base object whose member is being accessed.
1430 /// \param Result on a successful parse, contains the parsed unqualified-id.
1432 /// \returns true if parsing fails, false otherwise.
1433 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1434 bool AllowDestructorName,
1435 bool AllowConstructorName,
1436 ParsedType ObjectType,
1437 UnqualifiedId &Result) {
1439 // Handle 'A::template B'. This is for template-ids which have not
1440 // already been annotated by ParseOptionalCXXScopeSpecifier().
1441 bool TemplateSpecified = false;
1442 SourceLocation TemplateKWLoc;
1443 if (getLang().CPlusPlus && Tok.is(tok::kw_template) &&
1444 (ObjectType || SS.isSet())) {
1445 TemplateSpecified = true;
1446 TemplateKWLoc = ConsumeToken();
1449 // unqualified-id:
1450 // identifier
1451 // template-id (when it hasn't already been annotated)
1452 if (Tok.is(tok::identifier)) {
1453 // Consume the identifier.
1454 IdentifierInfo *Id = Tok.getIdentifierInfo();
1455 SourceLocation IdLoc = ConsumeToken();
1457 if (!getLang().CPlusPlus) {
1458 // If we're not in C++, only identifiers matter. Record the
1459 // identifier and return.
1460 Result.setIdentifier(Id, IdLoc);
1461 return false;
1464 if (AllowConstructorName &&
1465 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
1466 // We have parsed a constructor name.
1467 Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, getCurScope(),
1468 &SS, false),
1469 IdLoc, IdLoc);
1470 } else {
1471 // We have parsed an identifier.
1472 Result.setIdentifier(Id, IdLoc);
1475 // If the next token is a '<', we may have a template.
1476 if (TemplateSpecified || Tok.is(tok::less))
1477 return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1478 ObjectType, Result,
1479 TemplateSpecified, TemplateKWLoc);
1481 return false;
1484 // unqualified-id:
1485 // template-id (already parsed and annotated)
1486 if (Tok.is(tok::annot_template_id)) {
1487 TemplateIdAnnotation *TemplateId
1488 = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1490 // If the template-name names the current class, then this is a constructor
1491 if (AllowConstructorName && TemplateId->Name &&
1492 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1493 if (SS.isSet()) {
1494 // C++ [class.qual]p2 specifies that a qualified template-name
1495 // is taken as the constructor name where a constructor can be
1496 // declared. Thus, the template arguments are extraneous, so
1497 // complain about them and remove them entirely.
1498 Diag(TemplateId->TemplateNameLoc,
1499 diag::err_out_of_line_constructor_template_id)
1500 << TemplateId->Name
1501 << FixItHint::CreateRemoval(
1502 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1503 Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1504 TemplateId->TemplateNameLoc,
1505 getCurScope(),
1506 &SS, false),
1507 TemplateId->TemplateNameLoc,
1508 TemplateId->RAngleLoc);
1509 TemplateId->Destroy();
1510 ConsumeToken();
1511 return false;
1514 Result.setConstructorTemplateId(TemplateId);
1515 ConsumeToken();
1516 return false;
1519 // We have already parsed a template-id; consume the annotation token as
1520 // our unqualified-id.
1521 Result.setTemplateId(TemplateId);
1522 ConsumeToken();
1523 return false;
1526 // unqualified-id:
1527 // operator-function-id
1528 // conversion-function-id
1529 if (Tok.is(tok::kw_operator)) {
1530 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1531 return true;
1533 // If we have an operator-function-id or a literal-operator-id and the next
1534 // token is a '<', we may have a
1536 // template-id:
1537 // operator-function-id < template-argument-list[opt] >
1538 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1539 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1540 (TemplateSpecified || Tok.is(tok::less)))
1541 return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1542 EnteringContext, ObjectType,
1543 Result,
1544 TemplateSpecified, TemplateKWLoc);
1546 return false;
1549 if (getLang().CPlusPlus &&
1550 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1551 // C++ [expr.unary.op]p10:
1552 // There is an ambiguity in the unary-expression ~X(), where X is a
1553 // class-name. The ambiguity is resolved in favor of treating ~ as a
1554 // unary complement rather than treating ~X as referring to a destructor.
1556 // Parse the '~'.
1557 SourceLocation TildeLoc = ConsumeToken();
1559 // Parse the class-name.
1560 if (Tok.isNot(tok::identifier)) {
1561 Diag(Tok, diag::err_destructor_tilde_identifier);
1562 return true;
1565 // Parse the class-name (or template-name in a simple-template-id).
1566 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1567 SourceLocation ClassNameLoc = ConsumeToken();
1569 if (TemplateSpecified || Tok.is(tok::less)) {
1570 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
1571 return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1572 EnteringContext, ObjectType, Result,
1573 TemplateSpecified, TemplateKWLoc);
1576 // Note that this is a destructor name.
1577 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
1578 ClassNameLoc, getCurScope(),
1579 SS, ObjectType,
1580 EnteringContext);
1581 if (!Ty)
1582 return true;
1584 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1585 return false;
1588 Diag(Tok, diag::err_expected_unqualified_id)
1589 << getLang().CPlusPlus;
1590 return true;
1593 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1594 /// memory in a typesafe manner and call constructors.
1596 /// This method is called to parse the new expression after the optional :: has
1597 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
1598 /// is its location. Otherwise, "Start" is the location of the 'new' token.
1600 /// new-expression:
1601 /// '::'[opt] 'new' new-placement[opt] new-type-id
1602 /// new-initializer[opt]
1603 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1604 /// new-initializer[opt]
1606 /// new-placement:
1607 /// '(' expression-list ')'
1609 /// new-type-id:
1610 /// type-specifier-seq new-declarator[opt]
1612 /// new-declarator:
1613 /// ptr-operator new-declarator[opt]
1614 /// direct-new-declarator
1616 /// new-initializer:
1617 /// '(' expression-list[opt] ')'
1618 /// [C++0x] braced-init-list [TODO]
1620 ExprResult
1621 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1622 assert(Tok.is(tok::kw_new) && "expected 'new' token");
1623 ConsumeToken(); // Consume 'new'
1625 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1626 // second form of new-expression. It can't be a new-type-id.
1628 ExprVector PlacementArgs(Actions);
1629 SourceLocation PlacementLParen, PlacementRParen;
1631 SourceRange TypeIdParens;
1632 DeclSpec DS;
1633 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1634 if (Tok.is(tok::l_paren)) {
1635 // If it turns out to be a placement, we change the type location.
1636 PlacementLParen = ConsumeParen();
1637 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1638 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1639 return ExprError();
1642 PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1643 if (PlacementRParen.isInvalid()) {
1644 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1645 return ExprError();
1648 if (PlacementArgs.empty()) {
1649 // Reset the placement locations. There was no placement.
1650 TypeIdParens = SourceRange(PlacementLParen, PlacementRParen);
1651 PlacementLParen = PlacementRParen = SourceLocation();
1652 } else {
1653 // We still need the type.
1654 if (Tok.is(tok::l_paren)) {
1655 TypeIdParens.setBegin(ConsumeParen());
1656 ParseSpecifierQualifierList(DS);
1657 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1658 ParseDeclarator(DeclaratorInfo);
1659 TypeIdParens.setEnd(MatchRHSPunctuation(tok::r_paren,
1660 TypeIdParens.getBegin()));
1661 } else {
1662 if (ParseCXXTypeSpecifierSeq(DS))
1663 DeclaratorInfo.setInvalidType(true);
1664 else {
1665 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1666 ParseDeclaratorInternal(DeclaratorInfo,
1667 &Parser::ParseDirectNewDeclarator);
1671 } else {
1672 // A new-type-id is a simplified type-id, where essentially the
1673 // direct-declarator is replaced by a direct-new-declarator.
1674 if (ParseCXXTypeSpecifierSeq(DS))
1675 DeclaratorInfo.setInvalidType(true);
1676 else {
1677 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1678 ParseDeclaratorInternal(DeclaratorInfo,
1679 &Parser::ParseDirectNewDeclarator);
1682 if (DeclaratorInfo.isInvalidType()) {
1683 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1684 return ExprError();
1687 ExprVector ConstructorArgs(Actions);
1688 SourceLocation ConstructorLParen, ConstructorRParen;
1690 if (Tok.is(tok::l_paren)) {
1691 ConstructorLParen = ConsumeParen();
1692 if (Tok.isNot(tok::r_paren)) {
1693 CommaLocsTy CommaLocs;
1694 if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1695 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1696 return ExprError();
1699 ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1700 if (ConstructorRParen.isInvalid()) {
1701 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1702 return ExprError();
1706 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1707 move_arg(PlacementArgs), PlacementRParen,
1708 TypeIdParens, DeclaratorInfo, ConstructorLParen,
1709 move_arg(ConstructorArgs), ConstructorRParen);
1712 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1713 /// passed to ParseDeclaratorInternal.
1715 /// direct-new-declarator:
1716 /// '[' expression ']'
1717 /// direct-new-declarator '[' constant-expression ']'
1719 void Parser::ParseDirectNewDeclarator(Declarator &D) {
1720 // Parse the array dimensions.
1721 bool first = true;
1722 while (Tok.is(tok::l_square)) {
1723 SourceLocation LLoc = ConsumeBracket();
1724 ExprResult Size(first ? ParseExpression()
1725 : ParseConstantExpression());
1726 if (Size.isInvalid()) {
1727 // Recover
1728 SkipUntil(tok::r_square);
1729 return;
1731 first = false;
1733 SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1734 D.AddTypeInfo(DeclaratorChunk::getArray(0, ParsedAttributes(),
1735 /*static=*/false, /*star=*/false,
1736 Size.release(), LLoc, RLoc),
1737 RLoc);
1739 if (RLoc.isInvalid())
1740 return;
1744 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1745 /// This ambiguity appears in the syntax of the C++ new operator.
1747 /// new-expression:
1748 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1749 /// new-initializer[opt]
1751 /// new-placement:
1752 /// '(' expression-list ')'
1754 bool Parser::ParseExpressionListOrTypeId(
1755 llvm::SmallVectorImpl<Expr*> &PlacementArgs,
1756 Declarator &D) {
1757 // The '(' was already consumed.
1758 if (isTypeIdInParens()) {
1759 ParseSpecifierQualifierList(D.getMutableDeclSpec());
1760 D.SetSourceRange(D.getDeclSpec().getSourceRange());
1761 ParseDeclarator(D);
1762 return D.isInvalidType();
1765 // It's not a type, it has to be an expression list.
1766 // Discard the comma locations - ActOnCXXNew has enough parameters.
1767 CommaLocsTy CommaLocs;
1768 return ParseExpressionList(PlacementArgs, CommaLocs);
1771 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1772 /// to free memory allocated by new.
1774 /// This method is called to parse the 'delete' expression after the optional
1775 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
1776 /// and "Start" is its location. Otherwise, "Start" is the location of the
1777 /// 'delete' token.
1779 /// delete-expression:
1780 /// '::'[opt] 'delete' cast-expression
1781 /// '::'[opt] 'delete' '[' ']' cast-expression
1782 ExprResult
1783 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1784 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1785 ConsumeToken(); // Consume 'delete'
1787 // Array delete?
1788 bool ArrayDelete = false;
1789 if (Tok.is(tok::l_square)) {
1790 ArrayDelete = true;
1791 SourceLocation LHS = ConsumeBracket();
1792 SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1793 if (RHS.isInvalid())
1794 return ExprError();
1797 ExprResult Operand(ParseCastExpression(false));
1798 if (Operand.isInvalid())
1799 return move(Operand);
1801 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
1804 static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1805 switch(kind) {
1806 default: llvm_unreachable("Not a known unary type trait");
1807 case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
1808 case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
1809 case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1810 case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
1811 case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
1812 case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1813 case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
1814 case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
1815 case tok::kw___is_abstract: return UTT_IsAbstract;
1816 case tok::kw___is_class: return UTT_IsClass;
1817 case tok::kw___is_empty: return UTT_IsEmpty;
1818 case tok::kw___is_enum: return UTT_IsEnum;
1819 case tok::kw___is_pod: return UTT_IsPOD;
1820 case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
1821 case tok::kw___is_union: return UTT_IsUnion;
1822 case tok::kw___is_literal: return UTT_IsLiteral;
1826 static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
1827 switch(kind) {
1828 default: llvm_unreachable("Not a known binary type trait");
1829 case tok::kw___is_base_of: return BTT_IsBaseOf;
1830 case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
1834 /// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1835 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
1836 /// templates.
1838 /// primary-expression:
1839 /// [GNU] unary-type-trait '(' type-id ')'
1841 ExprResult Parser::ParseUnaryTypeTrait() {
1842 UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1843 SourceLocation Loc = ConsumeToken();
1845 SourceLocation LParen = Tok.getLocation();
1846 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1847 return ExprError();
1849 // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1850 // there will be cryptic errors about mismatched parentheses and missing
1851 // specifiers.
1852 TypeResult Ty = ParseTypeName();
1854 SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1856 if (Ty.isInvalid())
1857 return ExprError();
1859 return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), RParen);
1862 /// ParseBinaryTypeTrait - Parse the built-in binary type-trait
1863 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
1864 /// templates.
1866 /// primary-expression:
1867 /// [GNU] binary-type-trait '(' type-id ',' type-id ')'
1869 ExprResult Parser::ParseBinaryTypeTrait() {
1870 BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
1871 SourceLocation Loc = ConsumeToken();
1873 SourceLocation LParen = Tok.getLocation();
1874 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1875 return ExprError();
1877 TypeResult LhsTy = ParseTypeName();
1878 if (LhsTy.isInvalid()) {
1879 SkipUntil(tok::r_paren);
1880 return ExprError();
1883 if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
1884 SkipUntil(tok::r_paren);
1885 return ExprError();
1888 TypeResult RhsTy = ParseTypeName();
1889 if (RhsTy.isInvalid()) {
1890 SkipUntil(tok::r_paren);
1891 return ExprError();
1894 SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1896 return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(), RParen);
1899 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
1900 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
1901 /// based on the context past the parens.
1902 ExprResult
1903 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
1904 ParsedType &CastTy,
1905 SourceLocation LParenLoc,
1906 SourceLocation &RParenLoc) {
1907 assert(getLang().CPlusPlus && "Should only be called for C++!");
1908 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
1909 assert(isTypeIdInParens() && "Not a type-id!");
1911 ExprResult Result(true);
1912 CastTy = ParsedType();
1914 // We need to disambiguate a very ugly part of the C++ syntax:
1916 // (T())x; - type-id
1917 // (T())*x; - type-id
1918 // (T())/x; - expression
1919 // (T()); - expression
1921 // The bad news is that we cannot use the specialized tentative parser, since
1922 // it can only verify that the thing inside the parens can be parsed as
1923 // type-id, it is not useful for determining the context past the parens.
1925 // The good news is that the parser can disambiguate this part without
1926 // making any unnecessary Action calls.
1928 // It uses a scheme similar to parsing inline methods. The parenthesized
1929 // tokens are cached, the context that follows is determined (possibly by
1930 // parsing a cast-expression), and then we re-introduce the cached tokens
1931 // into the token stream and parse them appropriately.
1933 ParenParseOption ParseAs;
1934 CachedTokens Toks;
1936 // Store the tokens of the parentheses. We will parse them after we determine
1937 // the context that follows them.
1938 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
1939 // We didn't find the ')' we expected.
1940 MatchRHSPunctuation(tok::r_paren, LParenLoc);
1941 return ExprError();
1944 if (Tok.is(tok::l_brace)) {
1945 ParseAs = CompoundLiteral;
1946 } else {
1947 bool NotCastExpr;
1948 // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
1949 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
1950 NotCastExpr = true;
1951 } else {
1952 // Try parsing the cast-expression that may follow.
1953 // If it is not a cast-expression, NotCastExpr will be true and no token
1954 // will be consumed.
1955 Result = ParseCastExpression(false/*isUnaryExpression*/,
1956 false/*isAddressofOperand*/,
1957 NotCastExpr,
1958 ParsedType()/*TypeOfCast*/);
1961 // If we parsed a cast-expression, it's really a type-id, otherwise it's
1962 // an expression.
1963 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
1966 // The current token should go after the cached tokens.
1967 Toks.push_back(Tok);
1968 // Re-enter the stored parenthesized tokens into the token stream, so we may
1969 // parse them now.
1970 PP.EnterTokenStream(Toks.data(), Toks.size(),
1971 true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
1972 // Drop the current token and bring the first cached one. It's the same token
1973 // as when we entered this function.
1974 ConsumeAnyToken();
1976 if (ParseAs >= CompoundLiteral) {
1977 TypeResult Ty = ParseTypeName();
1979 // Match the ')'.
1980 if (Tok.is(tok::r_paren))
1981 RParenLoc = ConsumeParen();
1982 else
1983 MatchRHSPunctuation(tok::r_paren, LParenLoc);
1985 if (ParseAs == CompoundLiteral) {
1986 ExprType = CompoundLiteral;
1987 return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
1990 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
1991 assert(ParseAs == CastExpr);
1993 if (Ty.isInvalid())
1994 return ExprError();
1996 CastTy = Ty.get();
1998 // Result is what ParseCastExpression returned earlier.
1999 if (!Result.isInvalid())
2000 Result = Actions.ActOnCastExpr(getCurScope(), LParenLoc, CastTy, RParenLoc,
2001 Result.take());
2002 return move(Result);
2005 // Not a compound literal, and not followed by a cast-expression.
2006 assert(ParseAs == SimpleExpr);
2008 ExprType = SimpleExpr;
2009 Result = ParseExpression();
2010 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2011 Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), Result.take());
2013 // Match the ')'.
2014 if (Result.isInvalid()) {
2015 SkipUntil(tok::r_paren);
2016 return ExprError();
2019 if (Tok.is(tok::r_paren))
2020 RParenLoc = ConsumeParen();
2021 else
2022 MatchRHSPunctuation(tok::r_paren, LParenLoc);
2024 return move(Result);