When throwing an elidable object, first try to treat the subexpression
[clang.git] / lib / CodeGen / TargetInfo.cpp
bloba1fdb87c183894bc245cc3edf3e64ebc5b83926a
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
13 //===----------------------------------------------------------------------===//
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "llvm/Type.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace clang;
24 using namespace CodeGen;
26 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27 llvm::Value *Array,
28 llvm::Value *Value,
29 unsigned FirstIndex,
30 unsigned LastIndex) {
31 // Alternatively, we could emit this as a loop in the source.
32 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34 Builder.CreateStore(Value, Cell);
38 static bool isAggregateTypeForABI(QualType T) {
39 return CodeGenFunction::hasAggregateLLVMType(T) ||
40 T->isMemberFunctionPointerType();
43 ABIInfo::~ABIInfo() {}
45 ASTContext &ABIInfo::getContext() const {
46 return CGT.getContext();
49 llvm::LLVMContext &ABIInfo::getVMContext() const {
50 return CGT.getLLVMContext();
53 const llvm::TargetData &ABIInfo::getTargetData() const {
54 return CGT.getTargetData();
58 void ABIArgInfo::dump() const {
59 llvm::raw_ostream &OS = llvm::errs();
60 OS << "(ABIArgInfo Kind=";
61 switch (TheKind) {
62 case Direct:
63 OS << "Direct Type=";
64 if (const llvm::Type *Ty = getCoerceToType())
65 Ty->print(OS);
66 else
67 OS << "null";
68 break;
69 case Extend:
70 OS << "Extend";
71 break;
72 case Ignore:
73 OS << "Ignore";
74 break;
75 case Indirect:
76 OS << "Indirect Align=" << getIndirectAlign()
77 << " Byal=" << getIndirectByVal()
78 << " Realign=" << getIndirectRealign();
79 break;
80 case Expand:
81 OS << "Expand";
82 break;
84 OS << ")\n";
87 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
91 /// isEmptyField - Return true iff a the field is "empty", that is it
92 /// is an unnamed bit-field or an (array of) empty record(s).
93 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94 bool AllowArrays) {
95 if (FD->isUnnamedBitfield())
96 return true;
98 QualType FT = FD->getType();
100 // Constant arrays of empty records count as empty, strip them off.
101 if (AllowArrays)
102 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103 FT = AT->getElementType();
105 const RecordType *RT = FT->getAs<RecordType>();
106 if (!RT)
107 return false;
109 // C++ record fields are never empty, at least in the Itanium ABI.
111 // FIXME: We should use a predicate for whether this behavior is true in the
112 // current ABI.
113 if (isa<CXXRecordDecl>(RT->getDecl()))
114 return false;
116 return isEmptyRecord(Context, FT, AllowArrays);
119 /// isEmptyRecord - Return true iff a structure contains only empty
120 /// fields. Note that a structure with a flexible array member is not
121 /// considered empty.
122 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123 const RecordType *RT = T->getAs<RecordType>();
124 if (!RT)
125 return 0;
126 const RecordDecl *RD = RT->getDecl();
127 if (RD->hasFlexibleArrayMember())
128 return false;
130 // If this is a C++ record, check the bases first.
131 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133 e = CXXRD->bases_end(); i != e; ++i)
134 if (!isEmptyRecord(Context, i->getType(), true))
135 return false;
137 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138 i != e; ++i)
139 if (!isEmptyField(Context, *i, AllowArrays))
140 return false;
141 return true;
144 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145 /// a non-trivial destructor or a non-trivial copy constructor.
146 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148 if (!RD)
149 return false;
151 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
154 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155 /// a record type with either a non-trivial destructor or a non-trivial copy
156 /// constructor.
157 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158 const RecordType *RT = T->getAs<RecordType>();
159 if (!RT)
160 return false;
162 return hasNonTrivialDestructorOrCopyConstructor(RT);
165 /// isSingleElementStruct - Determine if a structure is a "single
166 /// element struct", i.e. it has exactly one non-empty field or
167 /// exactly one field which is itself a single element
168 /// struct. Structures with flexible array members are never
169 /// considered single element structs.
171 /// \return The field declaration for the single non-empty field, if
172 /// it exists.
173 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174 const RecordType *RT = T->getAsStructureType();
175 if (!RT)
176 return 0;
178 const RecordDecl *RD = RT->getDecl();
179 if (RD->hasFlexibleArrayMember())
180 return 0;
182 const Type *Found = 0;
184 // If this is a C++ record, check the bases first.
185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187 e = CXXRD->bases_end(); i != e; ++i) {
188 // Ignore empty records.
189 if (isEmptyRecord(Context, i->getType(), true))
190 continue;
192 // If we already found an element then this isn't a single-element struct.
193 if (Found)
194 return 0;
196 // If this is non-empty and not a single element struct, the composite
197 // cannot be a single element struct.
198 Found = isSingleElementStruct(i->getType(), Context);
199 if (!Found)
200 return 0;
204 // Check for single element.
205 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206 i != e; ++i) {
207 const FieldDecl *FD = *i;
208 QualType FT = FD->getType();
210 // Ignore empty fields.
211 if (isEmptyField(Context, FD, true))
212 continue;
214 // If we already found an element then this isn't a single-element
215 // struct.
216 if (Found)
217 return 0;
219 // Treat single element arrays as the element.
220 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221 if (AT->getSize().getZExtValue() != 1)
222 break;
223 FT = AT->getElementType();
226 if (!isAggregateTypeForABI(FT)) {
227 Found = FT.getTypePtr();
228 } else {
229 Found = isSingleElementStruct(FT, Context);
230 if (!Found)
231 return 0;
235 return Found;
238 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241 !Ty->isBlockPointerType())
242 return false;
244 uint64_t Size = Context.getTypeSize(Ty);
245 return Size == 32 || Size == 64;
248 /// canExpandIndirectArgument - Test whether an argument type which is to be
249 /// passed indirectly (on the stack) would have the equivalent layout if it was
250 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
251 /// inhibiting optimizations.
253 // FIXME: This predicate is missing many cases, currently it just follows
254 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255 // should probably make this smarter, or better yet make the LLVM backend
256 // capable of handling it.
257 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258 // We can only expand structure types.
259 const RecordType *RT = Ty->getAs<RecordType>();
260 if (!RT)
261 return false;
263 // We can only expand (C) structures.
265 // FIXME: This needs to be generalized to handle classes as well.
266 const RecordDecl *RD = RT->getDecl();
267 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268 return false;
270 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271 i != e; ++i) {
272 const FieldDecl *FD = *i;
274 if (!is32Or64BitBasicType(FD->getType(), Context))
275 return false;
277 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278 // how to expand them yet, and the predicate for telling if a bitfield still
279 // counts as "basic" is more complicated than what we were doing previously.
280 if (FD->isBitField())
281 return false;
284 return true;
287 namespace {
288 /// DefaultABIInfo - The default implementation for ABI specific
289 /// details. This implementation provides information which results in
290 /// self-consistent and sensible LLVM IR generation, but does not
291 /// conform to any particular ABI.
292 class DefaultABIInfo : public ABIInfo {
293 public:
294 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
296 ABIArgInfo classifyReturnType(QualType RetTy) const;
297 ABIArgInfo classifyArgumentType(QualType RetTy) const;
299 virtual void computeInfo(CGFunctionInfo &FI) const {
300 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302 it != ie; ++it)
303 it->info = classifyArgumentType(it->type);
306 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307 CodeGenFunction &CGF) const;
310 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311 public:
312 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
316 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317 CodeGenFunction &CGF) const {
318 return 0;
321 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322 if (isAggregateTypeForABI(Ty))
323 return ABIArgInfo::getIndirect(0);
325 // Treat an enum type as its underlying type.
326 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327 Ty = EnumTy->getDecl()->getIntegerType();
329 return (Ty->isPromotableIntegerType() ?
330 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
333 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
334 if (RetTy->isVoidType())
335 return ABIArgInfo::getIgnore();
337 if (isAggregateTypeForABI(RetTy))
338 return ABIArgInfo::getIndirect(0);
340 // Treat an enum type as its underlying type.
341 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
342 RetTy = EnumTy->getDecl()->getIntegerType();
344 return (RetTy->isPromotableIntegerType() ?
345 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
348 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
349 /// x86_mmx type.
350 bool UseX86_MMXType(const llvm::Type *IRType) {
351 // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
352 // special x86_mmx type.
353 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
354 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
355 IRType->getScalarSizeInBits() != 64;
358 //===----------------------------------------------------------------------===//
359 // X86-32 ABI Implementation
360 //===----------------------------------------------------------------------===//
362 /// X86_32ABIInfo - The X86-32 ABI information.
363 class X86_32ABIInfo : public ABIInfo {
364 static const unsigned MinABIStackAlignInBytes = 4;
366 bool IsDarwinVectorABI;
367 bool IsSmallStructInRegABI;
369 static bool isRegisterSize(unsigned Size) {
370 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
373 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
375 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
376 /// such that the argument will be passed in memory.
377 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
379 /// \brief Return the alignment to use for the given type on the stack.
380 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
382 public:
384 ABIArgInfo classifyReturnType(QualType RetTy) const;
385 ABIArgInfo classifyArgumentType(QualType RetTy) const;
387 virtual void computeInfo(CGFunctionInfo &FI) const {
388 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
390 it != ie; ++it)
391 it->info = classifyArgumentType(it->type);
394 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
395 CodeGenFunction &CGF) const;
397 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
398 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
401 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
402 public:
403 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
404 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
406 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
407 CodeGen::CodeGenModule &CGM) const;
409 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
410 // Darwin uses different dwarf register numbers for EH.
411 if (CGM.isTargetDarwin()) return 5;
413 return 4;
416 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
417 llvm::Value *Address) const;
422 /// shouldReturnTypeInRegister - Determine if the given type should be
423 /// passed in a register (for the Darwin ABI).
424 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
425 ASTContext &Context) {
426 uint64_t Size = Context.getTypeSize(Ty);
428 // Type must be register sized.
429 if (!isRegisterSize(Size))
430 return false;
432 if (Ty->isVectorType()) {
433 // 64- and 128- bit vectors inside structures are not returned in
434 // registers.
435 if (Size == 64 || Size == 128)
436 return false;
438 return true;
441 // If this is a builtin, pointer, enum, complex type, member pointer, or
442 // member function pointer it is ok.
443 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
444 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
445 Ty->isBlockPointerType() || Ty->isMemberPointerType())
446 return true;
448 // Arrays are treated like records.
449 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
450 return shouldReturnTypeInRegister(AT->getElementType(), Context);
452 // Otherwise, it must be a record type.
453 const RecordType *RT = Ty->getAs<RecordType>();
454 if (!RT) return false;
456 // FIXME: Traverse bases here too.
458 // Structure types are passed in register if all fields would be
459 // passed in a register.
460 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
461 e = RT->getDecl()->field_end(); i != e; ++i) {
462 const FieldDecl *FD = *i;
464 // Empty fields are ignored.
465 if (isEmptyField(Context, FD, true))
466 continue;
468 // Check fields recursively.
469 if (!shouldReturnTypeInRegister(FD->getType(), Context))
470 return false;
473 return true;
476 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
477 if (RetTy->isVoidType())
478 return ABIArgInfo::getIgnore();
480 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
481 // On Darwin, some vectors are returned in registers.
482 if (IsDarwinVectorABI) {
483 uint64_t Size = getContext().getTypeSize(RetTy);
485 // 128-bit vectors are a special case; they are returned in
486 // registers and we need to make sure to pick a type the LLVM
487 // backend will like.
488 if (Size == 128)
489 return ABIArgInfo::getDirect(llvm::VectorType::get(
490 llvm::Type::getInt64Ty(getVMContext()), 2));
492 // Always return in register if it fits in a general purpose
493 // register, or if it is 64 bits and has a single element.
494 if ((Size == 8 || Size == 16 || Size == 32) ||
495 (Size == 64 && VT->getNumElements() == 1))
496 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
497 Size));
499 return ABIArgInfo::getIndirect(0);
502 return ABIArgInfo::getDirect();
505 if (isAggregateTypeForABI(RetTy)) {
506 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
507 // Structures with either a non-trivial destructor or a non-trivial
508 // copy constructor are always indirect.
509 if (hasNonTrivialDestructorOrCopyConstructor(RT))
510 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
512 // Structures with flexible arrays are always indirect.
513 if (RT->getDecl()->hasFlexibleArrayMember())
514 return ABIArgInfo::getIndirect(0);
517 // If specified, structs and unions are always indirect.
518 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
519 return ABIArgInfo::getIndirect(0);
521 // Classify "single element" structs as their element type.
522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
523 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
524 if (BT->isIntegerType()) {
525 // We need to use the size of the structure, padding
526 // bit-fields can adjust that to be larger than the single
527 // element type.
528 uint64_t Size = getContext().getTypeSize(RetTy);
529 return ABIArgInfo::getDirect(
530 llvm::IntegerType::get(getVMContext(), (unsigned)Size));
533 if (BT->getKind() == BuiltinType::Float) {
534 assert(getContext().getTypeSize(RetTy) ==
535 getContext().getTypeSize(SeltTy) &&
536 "Unexpect single element structure size!");
537 return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
540 if (BT->getKind() == BuiltinType::Double) {
541 assert(getContext().getTypeSize(RetTy) ==
542 getContext().getTypeSize(SeltTy) &&
543 "Unexpect single element structure size!");
544 return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
546 } else if (SeltTy->isPointerType()) {
547 // FIXME: It would be really nice if this could come out as the proper
548 // pointer type.
549 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
550 return ABIArgInfo::getDirect(PtrTy);
551 } else if (SeltTy->isVectorType()) {
552 // 64- and 128-bit vectors are never returned in a
553 // register when inside a structure.
554 uint64_t Size = getContext().getTypeSize(RetTy);
555 if (Size == 64 || Size == 128)
556 return ABIArgInfo::getIndirect(0);
558 return classifyReturnType(QualType(SeltTy, 0));
562 // Small structures which are register sized are generally returned
563 // in a register.
564 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
565 uint64_t Size = getContext().getTypeSize(RetTy);
566 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
569 return ABIArgInfo::getIndirect(0);
572 // Treat an enum type as its underlying type.
573 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
574 RetTy = EnumTy->getDecl()->getIntegerType();
576 return (RetTy->isPromotableIntegerType() ?
577 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
580 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
581 const RecordType *RT = Ty->getAs<RecordType>();
582 if (!RT)
583 return 0;
584 const RecordDecl *RD = RT->getDecl();
586 // If this is a C++ record, check the bases first.
587 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
588 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
589 e = CXXRD->bases_end(); i != e; ++i)
590 if (!isRecordWithSSEVectorType(Context, i->getType()))
591 return false;
593 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
594 i != e; ++i) {
595 QualType FT = i->getType();
597 if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
598 return true;
600 if (isRecordWithSSEVectorType(Context, FT))
601 return true;
604 return false;
607 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
608 unsigned Align) const {
609 // Otherwise, if the alignment is less than or equal to the minimum ABI
610 // alignment, just use the default; the backend will handle this.
611 if (Align <= MinABIStackAlignInBytes)
612 return 0; // Use default alignment.
614 // On non-Darwin, the stack type alignment is always 4.
615 if (!IsDarwinVectorABI) {
616 // Set explicit alignment, since we may need to realign the top.
617 return MinABIStackAlignInBytes;
620 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
621 if (isRecordWithSSEVectorType(getContext(), Ty))
622 return 16;
624 return MinABIStackAlignInBytes;
627 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
628 if (!ByVal)
629 return ABIArgInfo::getIndirect(0, false);
631 // Compute the byval alignment.
632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
634 if (StackAlign == 0)
635 return ABIArgInfo::getIndirect(0);
637 // If the stack alignment is less than the type alignment, realign the
638 // argument.
639 if (StackAlign < TypeAlign)
640 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
641 /*Realign=*/true);
643 return ABIArgInfo::getIndirect(StackAlign);
646 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
647 // FIXME: Set alignment on indirect arguments.
648 if (isAggregateTypeForABI(Ty)) {
649 // Structures with flexible arrays are always indirect.
650 if (const RecordType *RT = Ty->getAs<RecordType>()) {
651 // Structures with either a non-trivial destructor or a non-trivial
652 // copy constructor are always indirect.
653 if (hasNonTrivialDestructorOrCopyConstructor(RT))
654 return getIndirectResult(Ty, /*ByVal=*/false);
656 if (RT->getDecl()->hasFlexibleArrayMember())
657 return getIndirectResult(Ty);
660 // Ignore empty structs.
661 if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
662 return ABIArgInfo::getIgnore();
664 // Expand small (<= 128-bit) record types when we know that the stack layout
665 // of those arguments will match the struct. This is important because the
666 // LLVM backend isn't smart enough to remove byval, which inhibits many
667 // optimizations.
668 if (getContext().getTypeSize(Ty) <= 4*32 &&
669 canExpandIndirectArgument(Ty, getContext()))
670 return ABIArgInfo::getExpand();
672 return getIndirectResult(Ty);
675 if (const VectorType *VT = Ty->getAs<VectorType>()) {
676 // On Darwin, some vectors are passed in memory, we handle this by passing
677 // it as an i8/i16/i32/i64.
678 if (IsDarwinVectorABI) {
679 uint64_t Size = getContext().getTypeSize(Ty);
680 if ((Size == 8 || Size == 16 || Size == 32) ||
681 (Size == 64 && VT->getNumElements() == 1))
682 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
683 Size));
686 const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
687 if (UseX86_MMXType(IRType)) {
688 ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
689 AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
690 return AAI;
693 return ABIArgInfo::getDirect();
697 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
698 Ty = EnumTy->getDecl()->getIntegerType();
700 return (Ty->isPromotableIntegerType() ?
701 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
704 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
705 CodeGenFunction &CGF) const {
706 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
707 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
709 CGBuilderTy &Builder = CGF.Builder;
710 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
711 "ap");
712 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
713 llvm::Type *PTy =
714 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
715 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
717 uint64_t Offset =
718 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
719 llvm::Value *NextAddr =
720 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
721 "ap.next");
722 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
724 return AddrTyped;
727 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
728 llvm::GlobalValue *GV,
729 CodeGen::CodeGenModule &CGM) const {
730 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
731 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
732 // Get the LLVM function.
733 llvm::Function *Fn = cast<llvm::Function>(GV);
735 // Now add the 'alignstack' attribute with a value of 16.
736 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
741 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
742 CodeGen::CodeGenFunction &CGF,
743 llvm::Value *Address) const {
744 CodeGen::CGBuilderTy &Builder = CGF.Builder;
745 llvm::LLVMContext &Context = CGF.getLLVMContext();
747 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
748 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
750 // 0-7 are the eight integer registers; the order is different
751 // on Darwin (for EH), but the range is the same.
752 // 8 is %eip.
753 AssignToArrayRange(Builder, Address, Four8, 0, 8);
755 if (CGF.CGM.isTargetDarwin()) {
756 // 12-16 are st(0..4). Not sure why we stop at 4.
757 // These have size 16, which is sizeof(long double) on
758 // platforms with 8-byte alignment for that type.
759 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
760 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
762 } else {
763 // 9 is %eflags, which doesn't get a size on Darwin for some
764 // reason.
765 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
767 // 11-16 are st(0..5). Not sure why we stop at 5.
768 // These have size 12, which is sizeof(long double) on
769 // platforms with 4-byte alignment for that type.
770 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
771 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
774 return false;
777 //===----------------------------------------------------------------------===//
778 // X86-64 ABI Implementation
779 //===----------------------------------------------------------------------===//
782 namespace {
783 /// X86_64ABIInfo - The X86_64 ABI information.
784 class X86_64ABIInfo : public ABIInfo {
785 enum Class {
786 Integer = 0,
787 SSE,
788 SSEUp,
789 X87,
790 X87Up,
791 ComplexX87,
792 NoClass,
793 Memory
796 /// merge - Implement the X86_64 ABI merging algorithm.
798 /// Merge an accumulating classification \arg Accum with a field
799 /// classification \arg Field.
801 /// \param Accum - The accumulating classification. This should
802 /// always be either NoClass or the result of a previous merge
803 /// call. In addition, this should never be Memory (the caller
804 /// should just return Memory for the aggregate).
805 static Class merge(Class Accum, Class Field);
807 /// classify - Determine the x86_64 register classes in which the
808 /// given type T should be passed.
810 /// \param Lo - The classification for the parts of the type
811 /// residing in the low word of the containing object.
813 /// \param Hi - The classification for the parts of the type
814 /// residing in the high word of the containing object.
816 /// \param OffsetBase - The bit offset of this type in the
817 /// containing object. Some parameters are classified different
818 /// depending on whether they straddle an eightbyte boundary.
820 /// If a word is unused its result will be NoClass; if a type should
821 /// be passed in Memory then at least the classification of \arg Lo
822 /// will be Memory.
824 /// The \arg Lo class will be NoClass iff the argument is ignored.
826 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
827 /// also be ComplexX87.
828 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
830 const llvm::Type *Get16ByteVectorType(QualType Ty) const;
831 const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
832 unsigned IROffset, QualType SourceTy,
833 unsigned SourceOffset) const;
834 const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
835 unsigned IROffset, QualType SourceTy,
836 unsigned SourceOffset) const;
838 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
839 /// such that the argument will be returned in memory.
840 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
842 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
843 /// such that the argument will be passed in memory.
844 ABIArgInfo getIndirectResult(QualType Ty) const;
846 ABIArgInfo classifyReturnType(QualType RetTy) const;
848 ABIArgInfo classifyArgumentType(QualType Ty,
849 unsigned &neededInt,
850 unsigned &neededSSE) const;
852 public:
853 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
855 virtual void computeInfo(CGFunctionInfo &FI) const;
857 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
858 CodeGenFunction &CGF) const;
861 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
862 class WinX86_64ABIInfo : public ABIInfo {
864 ABIArgInfo classify(QualType Ty) const;
866 public:
867 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
869 virtual void computeInfo(CGFunctionInfo &FI) const;
871 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
872 CodeGenFunction &CGF) const;
875 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
876 public:
877 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
878 : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
880 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
881 return 7;
884 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
885 llvm::Value *Address) const {
886 CodeGen::CGBuilderTy &Builder = CGF.Builder;
887 llvm::LLVMContext &Context = CGF.getLLVMContext();
889 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
890 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
892 // 0-15 are the 16 integer registers.
893 // 16 is %rip.
894 AssignToArrayRange(Builder, Address, Eight8, 0, 16);
896 return false;
900 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
901 public:
902 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
903 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
905 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
906 return 7;
909 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
910 llvm::Value *Address) const {
911 CodeGen::CGBuilderTy &Builder = CGF.Builder;
912 llvm::LLVMContext &Context = CGF.getLLVMContext();
914 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
915 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
917 // 0-15 are the 16 integer registers.
918 // 16 is %rip.
919 AssignToArrayRange(Builder, Address, Eight8, 0, 16);
921 return false;
927 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
928 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
929 // classified recursively so that always two fields are
930 // considered. The resulting class is calculated according to
931 // the classes of the fields in the eightbyte:
933 // (a) If both classes are equal, this is the resulting class.
935 // (b) If one of the classes is NO_CLASS, the resulting class is
936 // the other class.
938 // (c) If one of the classes is MEMORY, the result is the MEMORY
939 // class.
941 // (d) If one of the classes is INTEGER, the result is the
942 // INTEGER.
944 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
945 // MEMORY is used as class.
947 // (f) Otherwise class SSE is used.
949 // Accum should never be memory (we should have returned) or
950 // ComplexX87 (because this cannot be passed in a structure).
951 assert((Accum != Memory && Accum != ComplexX87) &&
952 "Invalid accumulated classification during merge.");
953 if (Accum == Field || Field == NoClass)
954 return Accum;
955 if (Field == Memory)
956 return Memory;
957 if (Accum == NoClass)
958 return Field;
959 if (Accum == Integer || Field == Integer)
960 return Integer;
961 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
962 Accum == X87 || Accum == X87Up)
963 return Memory;
964 return SSE;
967 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
968 Class &Lo, Class &Hi) const {
969 // FIXME: This code can be simplified by introducing a simple value class for
970 // Class pairs with appropriate constructor methods for the various
971 // situations.
973 // FIXME: Some of the split computations are wrong; unaligned vectors
974 // shouldn't be passed in registers for example, so there is no chance they
975 // can straddle an eightbyte. Verify & simplify.
977 Lo = Hi = NoClass;
979 Class &Current = OffsetBase < 64 ? Lo : Hi;
980 Current = Memory;
982 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
983 BuiltinType::Kind k = BT->getKind();
985 if (k == BuiltinType::Void) {
986 Current = NoClass;
987 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
988 Lo = Integer;
989 Hi = Integer;
990 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
991 Current = Integer;
992 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
993 Current = SSE;
994 } else if (k == BuiltinType::LongDouble) {
995 Lo = X87;
996 Hi = X87Up;
998 // FIXME: _Decimal32 and _Decimal64 are SSE.
999 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1000 return;
1003 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1004 // Classify the underlying integer type.
1005 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1006 return;
1009 if (Ty->hasPointerRepresentation()) {
1010 Current = Integer;
1011 return;
1014 if (Ty->isMemberPointerType()) {
1015 if (Ty->isMemberFunctionPointerType())
1016 Lo = Hi = Integer;
1017 else
1018 Current = Integer;
1019 return;
1022 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1023 uint64_t Size = getContext().getTypeSize(VT);
1024 if (Size == 32) {
1025 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1026 // float> as integer.
1027 Current = Integer;
1029 // If this type crosses an eightbyte boundary, it should be
1030 // split.
1031 uint64_t EB_Real = (OffsetBase) / 64;
1032 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1033 if (EB_Real != EB_Imag)
1034 Hi = Lo;
1035 } else if (Size == 64) {
1036 // gcc passes <1 x double> in memory. :(
1037 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1038 return;
1040 // gcc passes <1 x long long> as INTEGER.
1041 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1042 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1043 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1044 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1045 Current = Integer;
1046 else
1047 Current = SSE;
1049 // If this type crosses an eightbyte boundary, it should be
1050 // split.
1051 if (OffsetBase && OffsetBase != 64)
1052 Hi = Lo;
1053 } else if (Size == 128) {
1054 Lo = SSE;
1055 Hi = SSEUp;
1057 return;
1060 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1061 QualType ET = getContext().getCanonicalType(CT->getElementType());
1063 uint64_t Size = getContext().getTypeSize(Ty);
1064 if (ET->isIntegralOrEnumerationType()) {
1065 if (Size <= 64)
1066 Current = Integer;
1067 else if (Size <= 128)
1068 Lo = Hi = Integer;
1069 } else if (ET == getContext().FloatTy)
1070 Current = SSE;
1071 else if (ET == getContext().DoubleTy)
1072 Lo = Hi = SSE;
1073 else if (ET == getContext().LongDoubleTy)
1074 Current = ComplexX87;
1076 // If this complex type crosses an eightbyte boundary then it
1077 // should be split.
1078 uint64_t EB_Real = (OffsetBase) / 64;
1079 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1080 if (Hi == NoClass && EB_Real != EB_Imag)
1081 Hi = Lo;
1083 return;
1086 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1087 // Arrays are treated like structures.
1089 uint64_t Size = getContext().getTypeSize(Ty);
1091 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1092 // than two eightbytes, ..., it has class MEMORY.
1093 if (Size > 128)
1094 return;
1096 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1097 // fields, it has class MEMORY.
1099 // Only need to check alignment of array base.
1100 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1101 return;
1103 // Otherwise implement simplified merge. We could be smarter about
1104 // this, but it isn't worth it and would be harder to verify.
1105 Current = NoClass;
1106 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1107 uint64_t ArraySize = AT->getSize().getZExtValue();
1108 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1109 Class FieldLo, FieldHi;
1110 classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1111 Lo = merge(Lo, FieldLo);
1112 Hi = merge(Hi, FieldHi);
1113 if (Lo == Memory || Hi == Memory)
1114 break;
1117 // Do post merger cleanup (see below). Only case we worry about is Memory.
1118 if (Hi == Memory)
1119 Lo = Memory;
1120 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1121 return;
1124 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1125 uint64_t Size = getContext().getTypeSize(Ty);
1127 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1128 // than two eightbytes, ..., it has class MEMORY.
1129 if (Size > 128)
1130 return;
1132 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1133 // copy constructor or a non-trivial destructor, it is passed by invisible
1134 // reference.
1135 if (hasNonTrivialDestructorOrCopyConstructor(RT))
1136 return;
1138 const RecordDecl *RD = RT->getDecl();
1140 // Assume variable sized types are passed in memory.
1141 if (RD->hasFlexibleArrayMember())
1142 return;
1144 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1146 // Reset Lo class, this will be recomputed.
1147 Current = NoClass;
1149 // If this is a C++ record, classify the bases first.
1150 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1151 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1152 e = CXXRD->bases_end(); i != e; ++i) {
1153 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1154 "Unexpected base class!");
1155 const CXXRecordDecl *Base =
1156 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1158 // Classify this field.
1160 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1161 // single eightbyte, each is classified separately. Each eightbyte gets
1162 // initialized to class NO_CLASS.
1163 Class FieldLo, FieldHi;
1164 uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1165 classify(i->getType(), Offset, FieldLo, FieldHi);
1166 Lo = merge(Lo, FieldLo);
1167 Hi = merge(Hi, FieldHi);
1168 if (Lo == Memory || Hi == Memory)
1169 break;
1173 // Classify the fields one at a time, merging the results.
1174 unsigned idx = 0;
1175 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1176 i != e; ++i, ++idx) {
1177 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1178 bool BitField = i->isBitField();
1180 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1181 // fields, it has class MEMORY.
1183 // Note, skip this test for bit-fields, see below.
1184 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1185 Lo = Memory;
1186 return;
1189 // Classify this field.
1191 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1192 // exceeds a single eightbyte, each is classified
1193 // separately. Each eightbyte gets initialized to class
1194 // NO_CLASS.
1195 Class FieldLo, FieldHi;
1197 // Bit-fields require special handling, they do not force the
1198 // structure to be passed in memory even if unaligned, and
1199 // therefore they can straddle an eightbyte.
1200 if (BitField) {
1201 // Ignore padding bit-fields.
1202 if (i->isUnnamedBitfield())
1203 continue;
1205 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1206 uint64_t Size =
1207 i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1209 uint64_t EB_Lo = Offset / 64;
1210 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1211 FieldLo = FieldHi = NoClass;
1212 if (EB_Lo) {
1213 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1214 FieldLo = NoClass;
1215 FieldHi = Integer;
1216 } else {
1217 FieldLo = Integer;
1218 FieldHi = EB_Hi ? Integer : NoClass;
1220 } else
1221 classify(i->getType(), Offset, FieldLo, FieldHi);
1222 Lo = merge(Lo, FieldLo);
1223 Hi = merge(Hi, FieldHi);
1224 if (Lo == Memory || Hi == Memory)
1225 break;
1228 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1230 // (a) If one of the classes is MEMORY, the whole argument is
1231 // passed in memory.
1233 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1235 // The first of these conditions is guaranteed by how we implement
1236 // the merge (just bail).
1238 // The second condition occurs in the case of unions; for example
1239 // union { _Complex double; unsigned; }.
1240 if (Hi == Memory)
1241 Lo = Memory;
1242 if (Hi == SSEUp && Lo != SSE)
1243 Hi = SSE;
1247 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1248 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1249 // place naturally.
1250 if (!isAggregateTypeForABI(Ty)) {
1251 // Treat an enum type as its underlying type.
1252 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1253 Ty = EnumTy->getDecl()->getIntegerType();
1255 return (Ty->isPromotableIntegerType() ?
1256 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1259 return ABIArgInfo::getIndirect(0);
1262 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1263 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1264 // place naturally.
1265 if (!isAggregateTypeForABI(Ty)) {
1266 // Treat an enum type as its underlying type.
1267 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1268 Ty = EnumTy->getDecl()->getIntegerType();
1270 return (Ty->isPromotableIntegerType() ?
1271 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1274 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1275 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1277 // Compute the byval alignment. We trust the back-end to honor the
1278 // minimum ABI alignment for byval, to make cleaner IR.
1279 const unsigned MinABIAlign = 8;
1280 unsigned Align = getContext().getTypeAlign(Ty) / 8;
1281 if (Align > MinABIAlign)
1282 return ABIArgInfo::getIndirect(Align);
1283 return ABIArgInfo::getIndirect(0);
1286 /// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1287 /// full vector XMM register. Pick an LLVM IR type that will be passed as a
1288 /// vector register.
1289 const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1290 const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1292 // Wrapper structs that just contain vectors are passed just like vectors,
1293 // strip them off if present.
1294 const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1295 while (STy && STy->getNumElements() == 1) {
1296 IRType = STy->getElementType(0);
1297 STy = dyn_cast<llvm::StructType>(IRType);
1300 // If the preferred type is a 16-byte vector, prefer to pass it.
1301 if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1302 const llvm::Type *EltTy = VT->getElementType();
1303 if (VT->getBitWidth() == 128 &&
1304 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1305 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1306 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1307 EltTy->isIntegerTy(128)))
1308 return VT;
1311 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1314 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1315 /// is known to either be off the end of the specified type or being in
1316 /// alignment padding. The user type specified is known to be at most 128 bits
1317 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1318 /// classification that put one of the two halves in the INTEGER class.
1320 /// It is conservatively correct to return false.
1321 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1322 unsigned EndBit, ASTContext &Context) {
1323 // If the bytes being queried are off the end of the type, there is no user
1324 // data hiding here. This handles analysis of builtins, vectors and other
1325 // types that don't contain interesting padding.
1326 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1327 if (TySize <= StartBit)
1328 return true;
1330 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1331 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1332 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1334 // Check each element to see if the element overlaps with the queried range.
1335 for (unsigned i = 0; i != NumElts; ++i) {
1336 // If the element is after the span we care about, then we're done..
1337 unsigned EltOffset = i*EltSize;
1338 if (EltOffset >= EndBit) break;
1340 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1341 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1342 EndBit-EltOffset, Context))
1343 return false;
1345 // If it overlaps no elements, then it is safe to process as padding.
1346 return true;
1349 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1350 const RecordDecl *RD = RT->getDecl();
1351 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1353 // If this is a C++ record, check the bases first.
1354 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1355 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1356 e = CXXRD->bases_end(); i != e; ++i) {
1357 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1358 "Unexpected base class!");
1359 const CXXRecordDecl *Base =
1360 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1362 // If the base is after the span we care about, ignore it.
1363 unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1364 if (BaseOffset >= EndBit) continue;
1366 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1367 if (!BitsContainNoUserData(i->getType(), BaseStart,
1368 EndBit-BaseOffset, Context))
1369 return false;
1373 // Verify that no field has data that overlaps the region of interest. Yes
1374 // this could be sped up a lot by being smarter about queried fields,
1375 // however we're only looking at structs up to 16 bytes, so we don't care
1376 // much.
1377 unsigned idx = 0;
1378 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1379 i != e; ++i, ++idx) {
1380 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1382 // If we found a field after the region we care about, then we're done.
1383 if (FieldOffset >= EndBit) break;
1385 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1386 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1387 Context))
1388 return false;
1391 // If nothing in this record overlapped the area of interest, then we're
1392 // clean.
1393 return true;
1396 return false;
1399 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1400 /// float member at the specified offset. For example, {int,{float}} has a
1401 /// float at offset 4. It is conservatively correct for this routine to return
1402 /// false.
1403 static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1404 const llvm::TargetData &TD) {
1405 // Base case if we find a float.
1406 if (IROffset == 0 && IRType->isFloatTy())
1407 return true;
1409 // If this is a struct, recurse into the field at the specified offset.
1410 if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1411 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1412 unsigned Elt = SL->getElementContainingOffset(IROffset);
1413 IROffset -= SL->getElementOffset(Elt);
1414 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1417 // If this is an array, recurse into the field at the specified offset.
1418 if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1419 const llvm::Type *EltTy = ATy->getElementType();
1420 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1421 IROffset -= IROffset/EltSize*EltSize;
1422 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1425 return false;
1429 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1430 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1431 const llvm::Type *X86_64ABIInfo::
1432 GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1433 QualType SourceTy, unsigned SourceOffset) const {
1434 // The only three choices we have are either double, <2 x float>, or float. We
1435 // pass as float if the last 4 bytes is just padding. This happens for
1436 // structs that contain 3 floats.
1437 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1438 SourceOffset*8+64, getContext()))
1439 return llvm::Type::getFloatTy(getVMContext());
1441 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1442 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1443 // case.
1444 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1445 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1446 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1448 return llvm::Type::getDoubleTy(getVMContext());
1452 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1453 /// an 8-byte GPR. This means that we either have a scalar or we are talking
1454 /// about the high or low part of an up-to-16-byte struct. This routine picks
1455 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1456 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1457 /// etc).
1459 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1460 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
1461 /// the 8-byte value references. PrefType may be null.
1463 /// SourceTy is the source level type for the entire argument. SourceOffset is
1464 /// an offset into this that we're processing (which is always either 0 or 8).
1466 const llvm::Type *X86_64ABIInfo::
1467 GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1468 QualType SourceTy, unsigned SourceOffset) const {
1469 // If we're dealing with an un-offset LLVM IR type, then it means that we're
1470 // returning an 8-byte unit starting with it. See if we can safely use it.
1471 if (IROffset == 0) {
1472 // Pointers and int64's always fill the 8-byte unit.
1473 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1474 return IRType;
1476 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1477 // goodness in the source type is just tail padding. This is allowed to
1478 // kick in for struct {double,int} on the int, but not on
1479 // struct{double,int,int} because we wouldn't return the second int. We
1480 // have to do this analysis on the source type because we can't depend on
1481 // unions being lowered a specific way etc.
1482 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1483 IRType->isIntegerTy(32)) {
1484 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1486 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1487 SourceOffset*8+64, getContext()))
1488 return IRType;
1492 if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1493 // If this is a struct, recurse into the field at the specified offset.
1494 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1495 if (IROffset < SL->getSizeInBytes()) {
1496 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1497 IROffset -= SL->getElementOffset(FieldIdx);
1499 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1500 SourceTy, SourceOffset);
1504 if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1505 const llvm::Type *EltTy = ATy->getElementType();
1506 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1507 unsigned EltOffset = IROffset/EltSize*EltSize;
1508 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1509 SourceOffset);
1512 // Okay, we don't have any better idea of what to pass, so we pass this in an
1513 // integer register that isn't too big to fit the rest of the struct.
1514 unsigned TySizeInBytes =
1515 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1517 assert(TySizeInBytes != SourceOffset && "Empty field?");
1519 // It is always safe to classify this as an integer type up to i64 that
1520 // isn't larger than the structure.
1521 return llvm::IntegerType::get(getVMContext(),
1522 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1526 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1527 /// be used as elements of a two register pair to pass or return, return a
1528 /// first class aggregate to represent them. For example, if the low part of
1529 /// a by-value argument should be passed as i32* and the high part as float,
1530 /// return {i32*, float}.
1531 static const llvm::Type *
1532 GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1533 const llvm::TargetData &TD) {
1534 // In order to correctly satisfy the ABI, we need to the high part to start
1535 // at offset 8. If the high and low parts we inferred are both 4-byte types
1536 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1537 // the second element at offset 8. Check for this:
1538 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1539 unsigned HiAlign = TD.getABITypeAlignment(Hi);
1540 unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1541 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1543 // To handle this, we have to increase the size of the low part so that the
1544 // second element will start at an 8 byte offset. We can't increase the size
1545 // of the second element because it might make us access off the end of the
1546 // struct.
1547 if (HiStart != 8) {
1548 // There are only two sorts of types the ABI generation code can produce for
1549 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1550 // Promote these to a larger type.
1551 if (Lo->isFloatTy())
1552 Lo = llvm::Type::getDoubleTy(Lo->getContext());
1553 else {
1554 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1555 Lo = llvm::Type::getInt64Ty(Lo->getContext());
1559 const llvm::StructType *Result =
1560 llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1563 // Verify that the second element is at an 8-byte offset.
1564 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1565 "Invalid x86-64 argument pair!");
1566 return Result;
1569 ABIArgInfo X86_64ABIInfo::
1570 classifyReturnType(QualType RetTy) const {
1571 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1572 // classification algorithm.
1573 X86_64ABIInfo::Class Lo, Hi;
1574 classify(RetTy, 0, Lo, Hi);
1576 // Check some invariants.
1577 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1578 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1580 const llvm::Type *ResType = 0;
1581 switch (Lo) {
1582 case NoClass:
1583 if (Hi == NoClass)
1584 return ABIArgInfo::getIgnore();
1585 // If the low part is just padding, it takes no register, leave ResType
1586 // null.
1587 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1588 "Unknown missing lo part");
1589 break;
1591 case SSEUp:
1592 case X87Up:
1593 assert(0 && "Invalid classification for lo word.");
1595 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1596 // hidden argument.
1597 case Memory:
1598 return getIndirectReturnResult(RetTy);
1600 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1601 // available register of the sequence %rax, %rdx is used.
1602 case Integer:
1603 ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1604 RetTy, 0);
1606 // If we have a sign or zero extended integer, make sure to return Extend
1607 // so that the parameter gets the right LLVM IR attributes.
1608 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1609 // Treat an enum type as its underlying type.
1610 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1611 RetTy = EnumTy->getDecl()->getIntegerType();
1613 if (RetTy->isIntegralOrEnumerationType() &&
1614 RetTy->isPromotableIntegerType())
1615 return ABIArgInfo::getExtend();
1617 break;
1619 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1620 // available SSE register of the sequence %xmm0, %xmm1 is used.
1621 case SSE:
1622 ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1623 break;
1625 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1626 // returned on the X87 stack in %st0 as 80-bit x87 number.
1627 case X87:
1628 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1629 break;
1631 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1632 // part of the value is returned in %st0 and the imaginary part in
1633 // %st1.
1634 case ComplexX87:
1635 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1636 ResType = llvm::StructType::get(getVMContext(),
1637 llvm::Type::getX86_FP80Ty(getVMContext()),
1638 llvm::Type::getX86_FP80Ty(getVMContext()),
1639 NULL);
1640 break;
1643 const llvm::Type *HighPart = 0;
1644 switch (Hi) {
1645 // Memory was handled previously and X87 should
1646 // never occur as a hi class.
1647 case Memory:
1648 case X87:
1649 assert(0 && "Invalid classification for hi word.");
1651 case ComplexX87: // Previously handled.
1652 case NoClass:
1653 break;
1655 case Integer:
1656 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1657 8, RetTy, 8);
1658 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1659 return ABIArgInfo::getDirect(HighPart, 8);
1660 break;
1661 case SSE:
1662 HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1663 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1664 return ABIArgInfo::getDirect(HighPart, 8);
1665 break;
1667 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1668 // is passed in the upper half of the last used SSE register.
1670 // SSEUP should always be preceeded by SSE, just widen.
1671 case SSEUp:
1672 assert(Lo == SSE && "Unexpected SSEUp classification.");
1673 ResType = Get16ByteVectorType(RetTy);
1674 break;
1676 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1677 // returned together with the previous X87 value in %st0.
1678 case X87Up:
1679 // If X87Up is preceeded by X87, we don't need to do
1680 // anything. However, in some cases with unions it may not be
1681 // preceeded by X87. In such situations we follow gcc and pass the
1682 // extra bits in an SSE reg.
1683 if (Lo != X87) {
1684 HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1685 8, RetTy, 8);
1686 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1687 return ABIArgInfo::getDirect(HighPart, 8);
1689 break;
1692 // If a high part was specified, merge it together with the low part. It is
1693 // known to pass in the high eightbyte of the result. We do this by forming a
1694 // first class struct aggregate with the high and low part: {low, high}
1695 if (HighPart)
1696 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1698 return ABIArgInfo::getDirect(ResType);
1701 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1702 unsigned &neededSSE) const {
1703 X86_64ABIInfo::Class Lo, Hi;
1704 classify(Ty, 0, Lo, Hi);
1706 // Check some invariants.
1707 // FIXME: Enforce these by construction.
1708 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1709 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1711 neededInt = 0;
1712 neededSSE = 0;
1713 const llvm::Type *ResType = 0;
1714 switch (Lo) {
1715 case NoClass:
1716 if (Hi == NoClass)
1717 return ABIArgInfo::getIgnore();
1718 // If the low part is just padding, it takes no register, leave ResType
1719 // null.
1720 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1721 "Unknown missing lo part");
1722 break;
1724 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1725 // on the stack.
1726 case Memory:
1728 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1729 // COMPLEX_X87, it is passed in memory.
1730 case X87:
1731 case ComplexX87:
1732 return getIndirectResult(Ty);
1734 case SSEUp:
1735 case X87Up:
1736 assert(0 && "Invalid classification for lo word.");
1738 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1739 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1740 // and %r9 is used.
1741 case Integer:
1742 ++neededInt;
1744 // Pick an 8-byte type based on the preferred type.
1745 ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1747 // If we have a sign or zero extended integer, make sure to return Extend
1748 // so that the parameter gets the right LLVM IR attributes.
1749 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1750 // Treat an enum type as its underlying type.
1751 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1752 Ty = EnumTy->getDecl()->getIntegerType();
1754 if (Ty->isIntegralOrEnumerationType() &&
1755 Ty->isPromotableIntegerType())
1756 return ABIArgInfo::getExtend();
1759 break;
1761 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1762 // available SSE register is used, the registers are taken in the
1763 // order from %xmm0 to %xmm7.
1764 case SSE: {
1765 const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1766 if (Hi != NoClass || !UseX86_MMXType(IRType))
1767 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1768 else
1769 // This is an MMX type. Treat it as such.
1770 ResType = llvm::Type::getX86_MMXTy(getVMContext());
1772 ++neededSSE;
1773 break;
1777 const llvm::Type *HighPart = 0;
1778 switch (Hi) {
1779 // Memory was handled previously, ComplexX87 and X87 should
1780 // never occur as hi classes, and X87Up must be preceed by X87,
1781 // which is passed in memory.
1782 case Memory:
1783 case X87:
1784 case ComplexX87:
1785 assert(0 && "Invalid classification for hi word.");
1786 break;
1788 case NoClass: break;
1790 case Integer:
1791 ++neededInt;
1792 // Pick an 8-byte type based on the preferred type.
1793 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1795 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
1796 return ABIArgInfo::getDirect(HighPart, 8);
1797 break;
1799 // X87Up generally doesn't occur here (long double is passed in
1800 // memory), except in situations involving unions.
1801 case X87Up:
1802 case SSE:
1803 HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1805 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
1806 return ABIArgInfo::getDirect(HighPart, 8);
1808 ++neededSSE;
1809 break;
1811 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1812 // eightbyte is passed in the upper half of the last used SSE
1813 // register. This only happens when 128-bit vectors are passed.
1814 case SSEUp:
1815 assert(Lo == SSE && "Unexpected SSEUp classification");
1816 ResType = Get16ByteVectorType(Ty);
1817 break;
1820 // If a high part was specified, merge it together with the low part. It is
1821 // known to pass in the high eightbyte of the result. We do this by forming a
1822 // first class struct aggregate with the high and low part: {low, high}
1823 if (HighPart)
1824 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1826 return ABIArgInfo::getDirect(ResType);
1829 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1831 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1833 // Keep track of the number of assigned registers.
1834 unsigned freeIntRegs = 6, freeSSERegs = 8;
1836 // If the return value is indirect, then the hidden argument is consuming one
1837 // integer register.
1838 if (FI.getReturnInfo().isIndirect())
1839 --freeIntRegs;
1841 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1842 // get assigned (in left-to-right order) for passing as follows...
1843 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1844 it != ie; ++it) {
1845 unsigned neededInt, neededSSE;
1846 it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1848 // AMD64-ABI 3.2.3p3: If there are no registers available for any
1849 // eightbyte of an argument, the whole argument is passed on the
1850 // stack. If registers have already been assigned for some
1851 // eightbytes of such an argument, the assignments get reverted.
1852 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1853 freeIntRegs -= neededInt;
1854 freeSSERegs -= neededSSE;
1855 } else {
1856 it->info = getIndirectResult(it->type);
1861 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1862 QualType Ty,
1863 CodeGenFunction &CGF) {
1864 llvm::Value *overflow_arg_area_p =
1865 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1866 llvm::Value *overflow_arg_area =
1867 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1869 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1870 // byte boundary if alignment needed by type exceeds 8 byte boundary.
1871 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1872 if (Align > 8) {
1873 // Note that we follow the ABI & gcc here, even though the type
1874 // could in theory have an alignment greater than 16. This case
1875 // shouldn't ever matter in practice.
1877 // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1878 llvm::Value *Offset =
1879 llvm::ConstantInt::get(CGF.Int32Ty, 15);
1880 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1881 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1882 CGF.Int64Ty);
1883 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1884 overflow_arg_area =
1885 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1886 overflow_arg_area->getType(),
1887 "overflow_arg_area.align");
1890 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1891 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1892 llvm::Value *Res =
1893 CGF.Builder.CreateBitCast(overflow_arg_area,
1894 llvm::PointerType::getUnqual(LTy));
1896 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1897 // l->overflow_arg_area + sizeof(type).
1898 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1899 // an 8 byte boundary.
1901 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1902 llvm::Value *Offset =
1903 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
1904 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1905 "overflow_arg_area.next");
1906 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1908 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1909 return Res;
1912 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1913 CodeGenFunction &CGF) const {
1914 llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1916 // Assume that va_list type is correct; should be pointer to LLVM type:
1917 // struct {
1918 // i32 gp_offset;
1919 // i32 fp_offset;
1920 // i8* overflow_arg_area;
1921 // i8* reg_save_area;
1922 // };
1923 unsigned neededInt, neededSSE;
1925 Ty = CGF.getContext().getCanonicalType(Ty);
1926 ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1928 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1929 // in the registers. If not go to step 7.
1930 if (!neededInt && !neededSSE)
1931 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1933 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1934 // general purpose registers needed to pass type and num_fp to hold
1935 // the number of floating point registers needed.
1937 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1938 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1939 // l->fp_offset > 304 - num_fp * 16 go to step 7.
1941 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1942 // register save space).
1944 llvm::Value *InRegs = 0;
1945 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1946 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1947 if (neededInt) {
1948 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1949 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1950 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1951 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1954 if (neededSSE) {
1955 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1956 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1957 llvm::Value *FitsInFP =
1958 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1959 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1960 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1963 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1964 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1965 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1966 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1968 // Emit code to load the value if it was passed in registers.
1970 CGF.EmitBlock(InRegBlock);
1972 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1973 // an offset of l->gp_offset and/or l->fp_offset. This may require
1974 // copying to a temporary location in case the parameter is passed
1975 // in different register classes or requires an alignment greater
1976 // than 8 for general purpose registers and 16 for XMM registers.
1978 // FIXME: This really results in shameful code when we end up needing to
1979 // collect arguments from different places; often what should result in a
1980 // simple assembling of a structure from scattered addresses has many more
1981 // loads than necessary. Can we clean this up?
1982 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1983 llvm::Value *RegAddr =
1984 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1985 "reg_save_area");
1986 if (neededInt && neededSSE) {
1987 // FIXME: Cleanup.
1988 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1989 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1990 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1991 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1992 const llvm::Type *TyLo = ST->getElementType(0);
1993 const llvm::Type *TyHi = ST->getElementType(1);
1994 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
1995 "Unexpected ABI info for mixed regs");
1996 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1997 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1998 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1999 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2000 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2001 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2002 llvm::Value *V =
2003 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2004 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2005 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2006 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2008 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2009 llvm::PointerType::getUnqual(LTy));
2010 } else if (neededInt) {
2011 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2012 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2013 llvm::PointerType::getUnqual(LTy));
2014 } else if (neededSSE == 1) {
2015 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2016 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2017 llvm::PointerType::getUnqual(LTy));
2018 } else {
2019 assert(neededSSE == 2 && "Invalid number of needed registers!");
2020 // SSE registers are spaced 16 bytes apart in the register save
2021 // area, we need to collect the two eightbytes together.
2022 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2023 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2024 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2025 const llvm::Type *DblPtrTy =
2026 llvm::PointerType::getUnqual(DoubleTy);
2027 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2028 DoubleTy, NULL);
2029 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2030 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2031 DblPtrTy));
2032 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2033 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2034 DblPtrTy));
2035 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2036 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2037 llvm::PointerType::getUnqual(LTy));
2040 // AMD64-ABI 3.5.7p5: Step 5. Set:
2041 // l->gp_offset = l->gp_offset + num_gp * 8
2042 // l->fp_offset = l->fp_offset + num_fp * 16.
2043 if (neededInt) {
2044 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2045 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2046 gp_offset_p);
2048 if (neededSSE) {
2049 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2050 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2051 fp_offset_p);
2053 CGF.EmitBranch(ContBlock);
2055 // Emit code to load the value if it was passed in memory.
2057 CGF.EmitBlock(InMemBlock);
2058 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2060 // Return the appropriate result.
2062 CGF.EmitBlock(ContBlock);
2063 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
2064 "vaarg.addr");
2065 ResAddr->reserveOperandSpace(2);
2066 ResAddr->addIncoming(RegAddr, InRegBlock);
2067 ResAddr->addIncoming(MemAddr, InMemBlock);
2068 return ResAddr;
2071 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2073 if (Ty->isVoidType())
2074 return ABIArgInfo::getIgnore();
2076 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2077 Ty = EnumTy->getDecl()->getIntegerType();
2079 uint64_t Size = getContext().getTypeSize(Ty);
2081 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2082 if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2083 RT->getDecl()->hasFlexibleArrayMember())
2084 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2086 // FIXME: mingw64-gcc emits 128-bit struct as i128
2087 if (Size <= 128 &&
2088 (Size & (Size - 1)) == 0)
2089 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2090 Size));
2092 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2095 if (Ty->isPromotableIntegerType())
2096 return ABIArgInfo::getExtend();
2098 return ABIArgInfo::getDirect();
2101 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2103 QualType RetTy = FI.getReturnType();
2104 FI.getReturnInfo() = classify(RetTy);
2106 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2107 it != ie; ++it)
2108 it->info = classify(it->type);
2111 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2112 CodeGenFunction &CGF) const {
2113 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2114 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2116 CGBuilderTy &Builder = CGF.Builder;
2117 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2118 "ap");
2119 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2120 llvm::Type *PTy =
2121 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2122 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2124 uint64_t Offset =
2125 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2126 llvm::Value *NextAddr =
2127 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2128 "ap.next");
2129 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2131 return AddrTyped;
2134 // PowerPC-32
2136 namespace {
2137 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2138 public:
2139 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2141 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2142 // This is recovered from gcc output.
2143 return 1; // r1 is the dedicated stack pointer
2146 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2147 llvm::Value *Address) const;
2152 bool
2153 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2154 llvm::Value *Address) const {
2155 // This is calculated from the LLVM and GCC tables and verified
2156 // against gcc output. AFAIK all ABIs use the same encoding.
2158 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2159 llvm::LLVMContext &Context = CGF.getLLVMContext();
2161 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2162 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2163 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2164 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2166 // 0-31: r0-31, the 4-byte general-purpose registers
2167 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2169 // 32-63: fp0-31, the 8-byte floating-point registers
2170 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2172 // 64-76 are various 4-byte special-purpose registers:
2173 // 64: mq
2174 // 65: lr
2175 // 66: ctr
2176 // 67: ap
2177 // 68-75 cr0-7
2178 // 76: xer
2179 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2181 // 77-108: v0-31, the 16-byte vector registers
2182 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2184 // 109: vrsave
2185 // 110: vscr
2186 // 111: spe_acc
2187 // 112: spefscr
2188 // 113: sfp
2189 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2191 return false;
2195 //===----------------------------------------------------------------------===//
2196 // ARM ABI Implementation
2197 //===----------------------------------------------------------------------===//
2199 namespace {
2201 class ARMABIInfo : public ABIInfo {
2202 public:
2203 enum ABIKind {
2204 APCS = 0,
2205 AAPCS = 1,
2206 AAPCS_VFP
2209 private:
2210 ABIKind Kind;
2212 public:
2213 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2215 private:
2216 ABIKind getABIKind() const { return Kind; }
2218 ABIArgInfo classifyReturnType(QualType RetTy) const;
2219 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2221 virtual void computeInfo(CGFunctionInfo &FI) const;
2223 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2224 CodeGenFunction &CGF) const;
2227 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2228 public:
2229 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2230 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2232 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2233 return 13;
2239 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2240 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2241 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2242 it != ie; ++it)
2243 it->info = classifyArgumentType(it->type);
2245 const llvm::Triple &Triple(getContext().Target.getTriple());
2246 llvm::CallingConv::ID DefaultCC;
2247 if (Triple.getEnvironmentName() == "gnueabi" ||
2248 Triple.getEnvironmentName() == "eabi")
2249 DefaultCC = llvm::CallingConv::ARM_AAPCS;
2250 else
2251 DefaultCC = llvm::CallingConv::ARM_APCS;
2253 switch (getABIKind()) {
2254 case APCS:
2255 if (DefaultCC != llvm::CallingConv::ARM_APCS)
2256 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2257 break;
2259 case AAPCS:
2260 if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2261 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2262 break;
2264 case AAPCS_VFP:
2265 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2266 break;
2270 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2271 if (!isAggregateTypeForABI(Ty)) {
2272 // Treat an enum type as its underlying type.
2273 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2274 Ty = EnumTy->getDecl()->getIntegerType();
2276 return (Ty->isPromotableIntegerType() ?
2277 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2280 // Ignore empty records.
2281 if (isEmptyRecord(getContext(), Ty, true))
2282 return ABIArgInfo::getIgnore();
2284 // Structures with either a non-trivial destructor or a non-trivial
2285 // copy constructor are always indirect.
2286 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2287 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2289 // Otherwise, pass by coercing to a structure of the appropriate size.
2291 // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2292 // backend doesn't support byval.
2293 // FIXME: This doesn't handle alignment > 64 bits.
2294 const llvm::Type* ElemTy;
2295 unsigned SizeRegs;
2296 if (getContext().getTypeAlign(Ty) > 32) {
2297 ElemTy = llvm::Type::getInt64Ty(getVMContext());
2298 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2299 } else {
2300 ElemTy = llvm::Type::getInt32Ty(getVMContext());
2301 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2303 std::vector<const llvm::Type*> LLVMFields;
2304 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2305 const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2306 true);
2307 return ABIArgInfo::getDirect(STy);
2310 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2311 llvm::LLVMContext &VMContext) {
2312 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2313 // is called integer-like if its size is less than or equal to one word, and
2314 // the offset of each of its addressable sub-fields is zero.
2316 uint64_t Size = Context.getTypeSize(Ty);
2318 // Check that the type fits in a word.
2319 if (Size > 32)
2320 return false;
2322 // FIXME: Handle vector types!
2323 if (Ty->isVectorType())
2324 return false;
2326 // Float types are never treated as "integer like".
2327 if (Ty->isRealFloatingType())
2328 return false;
2330 // If this is a builtin or pointer type then it is ok.
2331 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2332 return true;
2334 // Small complex integer types are "integer like".
2335 if (const ComplexType *CT = Ty->getAs<ComplexType>())
2336 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2338 // Single element and zero sized arrays should be allowed, by the definition
2339 // above, but they are not.
2341 // Otherwise, it must be a record type.
2342 const RecordType *RT = Ty->getAs<RecordType>();
2343 if (!RT) return false;
2345 // Ignore records with flexible arrays.
2346 const RecordDecl *RD = RT->getDecl();
2347 if (RD->hasFlexibleArrayMember())
2348 return false;
2350 // Check that all sub-fields are at offset 0, and are themselves "integer
2351 // like".
2352 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2354 bool HadField = false;
2355 unsigned idx = 0;
2356 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2357 i != e; ++i, ++idx) {
2358 const FieldDecl *FD = *i;
2360 // Bit-fields are not addressable, we only need to verify they are "integer
2361 // like". We still have to disallow a subsequent non-bitfield, for example:
2362 // struct { int : 0; int x }
2363 // is non-integer like according to gcc.
2364 if (FD->isBitField()) {
2365 if (!RD->isUnion())
2366 HadField = true;
2368 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2369 return false;
2371 continue;
2374 // Check if this field is at offset 0.
2375 if (Layout.getFieldOffset(idx) != 0)
2376 return false;
2378 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2379 return false;
2381 // Only allow at most one field in a structure. This doesn't match the
2382 // wording above, but follows gcc in situations with a field following an
2383 // empty structure.
2384 if (!RD->isUnion()) {
2385 if (HadField)
2386 return false;
2388 HadField = true;
2392 return true;
2395 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2396 if (RetTy->isVoidType())
2397 return ABIArgInfo::getIgnore();
2399 // Large vector types should be returned via memory.
2400 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2401 return ABIArgInfo::getIndirect(0);
2403 if (!isAggregateTypeForABI(RetTy)) {
2404 // Treat an enum type as its underlying type.
2405 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2406 RetTy = EnumTy->getDecl()->getIntegerType();
2408 return (RetTy->isPromotableIntegerType() ?
2409 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2412 // Structures with either a non-trivial destructor or a non-trivial
2413 // copy constructor are always indirect.
2414 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2415 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2417 // Are we following APCS?
2418 if (getABIKind() == APCS) {
2419 if (isEmptyRecord(getContext(), RetTy, false))
2420 return ABIArgInfo::getIgnore();
2422 // Complex types are all returned as packed integers.
2424 // FIXME: Consider using 2 x vector types if the back end handles them
2425 // correctly.
2426 if (RetTy->isAnyComplexType())
2427 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2428 getContext().getTypeSize(RetTy)));
2430 // Integer like structures are returned in r0.
2431 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2432 // Return in the smallest viable integer type.
2433 uint64_t Size = getContext().getTypeSize(RetTy);
2434 if (Size <= 8)
2435 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2436 if (Size <= 16)
2437 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2438 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2441 // Otherwise return in memory.
2442 return ABIArgInfo::getIndirect(0);
2445 // Otherwise this is an AAPCS variant.
2447 if (isEmptyRecord(getContext(), RetTy, true))
2448 return ABIArgInfo::getIgnore();
2450 // Aggregates <= 4 bytes are returned in r0; other aggregates
2451 // are returned indirectly.
2452 uint64_t Size = getContext().getTypeSize(RetTy);
2453 if (Size <= 32) {
2454 // Return in the smallest viable integer type.
2455 if (Size <= 8)
2456 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2457 if (Size <= 16)
2458 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2459 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2462 return ABIArgInfo::getIndirect(0);
2465 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2466 CodeGenFunction &CGF) const {
2467 // FIXME: Need to handle alignment
2468 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2469 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2471 CGBuilderTy &Builder = CGF.Builder;
2472 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2473 "ap");
2474 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2475 llvm::Type *PTy =
2476 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2477 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2479 uint64_t Offset =
2480 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2481 llvm::Value *NextAddr =
2482 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2483 "ap.next");
2484 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2486 return AddrTyped;
2489 //===----------------------------------------------------------------------===//
2490 // SystemZ ABI Implementation
2491 //===----------------------------------------------------------------------===//
2493 namespace {
2495 class SystemZABIInfo : public ABIInfo {
2496 public:
2497 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2499 bool isPromotableIntegerType(QualType Ty) const;
2501 ABIArgInfo classifyReturnType(QualType RetTy) const;
2502 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2504 virtual void computeInfo(CGFunctionInfo &FI) const {
2505 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2506 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2507 it != ie; ++it)
2508 it->info = classifyArgumentType(it->type);
2511 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2512 CodeGenFunction &CGF) const;
2515 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2516 public:
2517 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2518 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2523 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2524 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2525 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2526 switch (BT->getKind()) {
2527 case BuiltinType::Bool:
2528 case BuiltinType::Char_S:
2529 case BuiltinType::Char_U:
2530 case BuiltinType::SChar:
2531 case BuiltinType::UChar:
2532 case BuiltinType::Short:
2533 case BuiltinType::UShort:
2534 case BuiltinType::Int:
2535 case BuiltinType::UInt:
2536 return true;
2537 default:
2538 return false;
2540 return false;
2543 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2544 CodeGenFunction &CGF) const {
2545 // FIXME: Implement
2546 return 0;
2550 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2551 if (RetTy->isVoidType())
2552 return ABIArgInfo::getIgnore();
2553 if (isAggregateTypeForABI(RetTy))
2554 return ABIArgInfo::getIndirect(0);
2556 return (isPromotableIntegerType(RetTy) ?
2557 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2560 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2561 if (isAggregateTypeForABI(Ty))
2562 return ABIArgInfo::getIndirect(0);
2564 return (isPromotableIntegerType(Ty) ?
2565 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2568 //===----------------------------------------------------------------------===//
2569 // MBlaze ABI Implementation
2570 //===----------------------------------------------------------------------===//
2572 namespace {
2574 class MBlazeABIInfo : public ABIInfo {
2575 public:
2576 MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2578 bool isPromotableIntegerType(QualType Ty) const;
2580 ABIArgInfo classifyReturnType(QualType RetTy) const;
2581 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2583 virtual void computeInfo(CGFunctionInfo &FI) const {
2584 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2585 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2586 it != ie; ++it)
2587 it->info = classifyArgumentType(it->type);
2590 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2591 CodeGenFunction &CGF) const;
2594 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2595 public:
2596 MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2597 : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2598 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2599 CodeGen::CodeGenModule &M) const;
2604 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2605 // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2606 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2607 switch (BT->getKind()) {
2608 case BuiltinType::Bool:
2609 case BuiltinType::Char_S:
2610 case BuiltinType::Char_U:
2611 case BuiltinType::SChar:
2612 case BuiltinType::UChar:
2613 case BuiltinType::Short:
2614 case BuiltinType::UShort:
2615 return true;
2616 default:
2617 return false;
2619 return false;
2622 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2623 CodeGenFunction &CGF) const {
2624 // FIXME: Implement
2625 return 0;
2629 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2630 if (RetTy->isVoidType())
2631 return ABIArgInfo::getIgnore();
2632 if (isAggregateTypeForABI(RetTy))
2633 return ABIArgInfo::getIndirect(0);
2635 return (isPromotableIntegerType(RetTy) ?
2636 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2639 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2640 if (isAggregateTypeForABI(Ty))
2641 return ABIArgInfo::getIndirect(0);
2643 return (isPromotableIntegerType(Ty) ?
2644 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2647 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2648 llvm::GlobalValue *GV,
2649 CodeGen::CodeGenModule &M)
2650 const {
2651 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2652 if (!FD) return;
2654 llvm::CallingConv::ID CC = llvm::CallingConv::C;
2655 if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2656 CC = llvm::CallingConv::MBLAZE_INTR;
2657 else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2658 CC = llvm::CallingConv::MBLAZE_SVOL;
2660 if (CC != llvm::CallingConv::C) {
2661 // Handle 'interrupt_handler' attribute:
2662 llvm::Function *F = cast<llvm::Function>(GV);
2664 // Step 1: Set ISR calling convention.
2665 F->setCallingConv(CC);
2667 // Step 2: Add attributes goodness.
2668 F->addFnAttr(llvm::Attribute::NoInline);
2671 // Step 3: Emit _interrupt_handler alias.
2672 if (CC == llvm::CallingConv::MBLAZE_INTR)
2673 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2674 "_interrupt_handler", GV, &M.getModule());
2678 //===----------------------------------------------------------------------===//
2679 // MSP430 ABI Implementation
2680 //===----------------------------------------------------------------------===//
2682 namespace {
2684 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2685 public:
2686 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2687 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2688 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2689 CodeGen::CodeGenModule &M) const;
2694 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2695 llvm::GlobalValue *GV,
2696 CodeGen::CodeGenModule &M) const {
2697 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2698 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2699 // Handle 'interrupt' attribute:
2700 llvm::Function *F = cast<llvm::Function>(GV);
2702 // Step 1: Set ISR calling convention.
2703 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2705 // Step 2: Add attributes goodness.
2706 F->addFnAttr(llvm::Attribute::NoInline);
2708 // Step 3: Emit ISR vector alias.
2709 unsigned Num = attr->getNumber() + 0xffe0;
2710 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2711 "vector_" + llvm::Twine::utohexstr(Num),
2712 GV, &M.getModule());
2717 //===----------------------------------------------------------------------===//
2718 // MIPS ABI Implementation. This works for both little-endian and
2719 // big-endian variants.
2720 //===----------------------------------------------------------------------===//
2722 namespace {
2723 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2724 public:
2725 MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2726 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2728 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2729 return 29;
2732 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2733 llvm::Value *Address) const;
2737 bool
2738 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2739 llvm::Value *Address) const {
2740 // This information comes from gcc's implementation, which seems to
2741 // as canonical as it gets.
2743 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2744 llvm::LLVMContext &Context = CGF.getLLVMContext();
2746 // Everything on MIPS is 4 bytes. Double-precision FP registers
2747 // are aliased to pairs of single-precision FP registers.
2748 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2749 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2751 // 0-31 are the general purpose registers, $0 - $31.
2752 // 32-63 are the floating-point registers, $f0 - $f31.
2753 // 64 and 65 are the multiply/divide registers, $hi and $lo.
2754 // 66 is the (notional, I think) register for signal-handler return.
2755 AssignToArrayRange(Builder, Address, Four8, 0, 65);
2757 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2758 // They are one bit wide and ignored here.
2760 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2761 // (coprocessor 1 is the FP unit)
2762 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2763 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2764 // 176-181 are the DSP accumulator registers.
2765 AssignToArrayRange(Builder, Address, Four8, 80, 181);
2767 return false;
2771 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2772 if (TheTargetCodeGenInfo)
2773 return *TheTargetCodeGenInfo;
2775 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2776 // free it.
2778 const llvm::Triple &Triple = getContext().Target.getTriple();
2779 switch (Triple.getArch()) {
2780 default:
2781 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2783 case llvm::Triple::mips:
2784 case llvm::Triple::mipsel:
2785 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2787 case llvm::Triple::arm:
2788 case llvm::Triple::thumb:
2789 // FIXME: We want to know the float calling convention as well.
2790 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2791 return *(TheTargetCodeGenInfo =
2792 new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2794 return *(TheTargetCodeGenInfo =
2795 new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2797 case llvm::Triple::ppc:
2798 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2800 case llvm::Triple::systemz:
2801 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2803 case llvm::Triple::mblaze:
2804 return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2806 case llvm::Triple::msp430:
2807 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2809 case llvm::Triple::x86:
2810 switch (Triple.getOS()) {
2811 case llvm::Triple::Darwin:
2812 return *(TheTargetCodeGenInfo =
2813 new X86_32TargetCodeGenInfo(Types, true, true));
2814 case llvm::Triple::Cygwin:
2815 case llvm::Triple::MinGW32:
2816 case llvm::Triple::AuroraUX:
2817 case llvm::Triple::DragonFly:
2818 case llvm::Triple::FreeBSD:
2819 case llvm::Triple::OpenBSD:
2820 return *(TheTargetCodeGenInfo =
2821 new X86_32TargetCodeGenInfo(Types, false, true));
2823 default:
2824 return *(TheTargetCodeGenInfo =
2825 new X86_32TargetCodeGenInfo(Types, false, false));
2828 case llvm::Triple::x86_64:
2829 switch (Triple.getOS()) {
2830 case llvm::Triple::Win32:
2831 case llvm::Triple::MinGW64:
2832 case llvm::Triple::Cygwin:
2833 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2834 default:
2835 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));