Fix build of in-tree libcxx. libcxx doesn't actually
[clang.git] / lib / Checker / SimpleSValuator.cpp
blob782cd4f5e68b001be006346321fd292854a9241a
1 // SimpleSValuator.cpp - A basic SValuator ------------------------*- C++ -*--//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SimpleSValuator, a basic implementation of SValuator.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Checker/PathSensitive/SValuator.h"
15 #include "clang/Checker/PathSensitive/GRState.h"
17 using namespace clang;
19 namespace {
20 class SimpleSValuator : public SValuator {
21 protected:
22 virtual SVal EvalCastNL(NonLoc val, QualType castTy);
23 virtual SVal EvalCastL(Loc val, QualType castTy);
25 public:
26 SimpleSValuator(ValueManager &valMgr) : SValuator(valMgr) {}
27 virtual ~SimpleSValuator() {}
29 virtual SVal EvalMinus(NonLoc val);
30 virtual SVal EvalComplement(NonLoc val);
31 virtual SVal EvalBinOpNN(const GRState *state, BinaryOperator::Opcode op,
32 NonLoc lhs, NonLoc rhs, QualType resultTy);
33 virtual SVal EvalBinOpLL(const GRState *state, BinaryOperator::Opcode op,
34 Loc lhs, Loc rhs, QualType resultTy);
35 virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode op,
36 Loc lhs, NonLoc rhs, QualType resultTy);
38 /// getKnownValue - Evaluates a given SVal. If the SVal has only one possible
39 /// (integer) value, that value is returned. Otherwise, returns NULL.
40 virtual const llvm::APSInt *getKnownValue(const GRState *state, SVal V);
42 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
43 const llvm::APSInt &RHS, QualType resultTy);
45 } // end anonymous namespace
47 SValuator *clang::CreateSimpleSValuator(ValueManager &valMgr) {
48 return new SimpleSValuator(valMgr);
51 //===----------------------------------------------------------------------===//
52 // Transfer function for Casts.
53 //===----------------------------------------------------------------------===//
55 SVal SimpleSValuator::EvalCastNL(NonLoc val, QualType castTy) {
57 bool isLocType = Loc::IsLocType(castTy);
59 if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
60 if (isLocType)
61 return LI->getLoc();
63 // FIXME: Correctly support promotions/truncations.
64 ASTContext &Ctx = ValMgr.getContext();
65 unsigned castSize = Ctx.getTypeSize(castTy);
66 if (castSize == LI->getNumBits())
67 return val;
69 return ValMgr.makeLocAsInteger(LI->getLoc(), castSize);
72 if (const SymExpr *se = val.getAsSymbolicExpression()) {
73 ASTContext &Ctx = ValMgr.getContext();
74 QualType T = Ctx.getCanonicalType(se->getType(Ctx));
75 if (T == Ctx.getCanonicalType(castTy))
76 return val;
78 // FIXME: Remove this hack when we support symbolic truncation/extension.
79 // HACK: If both castTy and T are integers, ignore the cast. This is
80 // not a permanent solution. Eventually we want to precisely handle
81 // extension/truncation of symbolic integers. This prevents us from losing
82 // precision when we assign 'x = y' and 'y' is symbolic and x and y are
83 // different integer types.
84 if (T->isIntegerType() && castTy->isIntegerType())
85 return val;
87 return UnknownVal();
90 if (!isa<nonloc::ConcreteInt>(val))
91 return UnknownVal();
93 // Only handle casts from integers to integers.
94 if (!isLocType && !castTy->isIntegerType())
95 return UnknownVal();
97 llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
98 i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy));
99 i.extOrTrunc(ValMgr.getContext().getTypeSize(castTy));
101 if (isLocType)
102 return ValMgr.makeIntLocVal(i);
103 else
104 return ValMgr.makeIntVal(i);
107 SVal SimpleSValuator::EvalCastL(Loc val, QualType castTy) {
109 // Casts from pointers -> pointers, just return the lval.
111 // Casts from pointers -> references, just return the lval. These
112 // can be introduced by the frontend for corner cases, e.g
113 // casting from va_list* to __builtin_va_list&.
115 if (Loc::IsLocType(castTy) || castTy->isReferenceType())
116 return val;
118 // FIXME: Handle transparent unions where a value can be "transparently"
119 // lifted into a union type.
120 if (castTy->isUnionType())
121 return UnknownVal();
123 if (castTy->isIntegerType()) {
124 unsigned BitWidth = ValMgr.getContext().getTypeSize(castTy);
126 if (!isa<loc::ConcreteInt>(val))
127 return ValMgr.makeLocAsInteger(val, BitWidth);
129 llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
130 i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy));
131 i.extOrTrunc(BitWidth);
132 return ValMgr.makeIntVal(i);
135 // All other cases: return 'UnknownVal'. This includes casting pointers
136 // to floats, which is probably badness it itself, but this is a good
137 // intermediate solution until we do something better.
138 return UnknownVal();
141 //===----------------------------------------------------------------------===//
142 // Transfer function for unary operators.
143 //===----------------------------------------------------------------------===//
145 SVal SimpleSValuator::EvalMinus(NonLoc val) {
146 switch (val.getSubKind()) {
147 case nonloc::ConcreteIntKind:
148 return cast<nonloc::ConcreteInt>(val).evalMinus(ValMgr);
149 default:
150 return UnknownVal();
154 SVal SimpleSValuator::EvalComplement(NonLoc X) {
155 switch (X.getSubKind()) {
156 case nonloc::ConcreteIntKind:
157 return cast<nonloc::ConcreteInt>(X).evalComplement(ValMgr);
158 default:
159 return UnknownVal();
163 //===----------------------------------------------------------------------===//
164 // Transfer function for binary operators.
165 //===----------------------------------------------------------------------===//
167 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
168 switch (op) {
169 default:
170 assert(false && "Invalid opcode.");
171 case BO_LT: return BO_GE;
172 case BO_GT: return BO_LE;
173 case BO_LE: return BO_GT;
174 case BO_GE: return BO_LT;
175 case BO_EQ: return BO_NE;
176 case BO_NE: return BO_EQ;
180 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
181 switch (op) {
182 default:
183 assert(false && "Invalid opcode.");
184 case BO_LT: return BO_GT;
185 case BO_GT: return BO_LT;
186 case BO_LE: return BO_GE;
187 case BO_GE: return BO_LE;
188 case BO_EQ:
189 case BO_NE:
190 return op;
194 SVal SimpleSValuator::MakeSymIntVal(const SymExpr *LHS,
195 BinaryOperator::Opcode op,
196 const llvm::APSInt &RHS,
197 QualType resultTy) {
198 bool isIdempotent = false;
200 // Check for a few special cases with known reductions first.
201 switch (op) {
202 default:
203 // We can't reduce this case; just treat it normally.
204 break;
205 case BO_Mul:
206 // a*0 and a*1
207 if (RHS == 0)
208 return ValMgr.makeIntVal(0, resultTy);
209 else if (RHS == 1)
210 isIdempotent = true;
211 break;
212 case BO_Div:
213 // a/0 and a/1
214 if (RHS == 0)
215 // This is also handled elsewhere.
216 return UndefinedVal();
217 else if (RHS == 1)
218 isIdempotent = true;
219 break;
220 case BO_Rem:
221 // a%0 and a%1
222 if (RHS == 0)
223 // This is also handled elsewhere.
224 return UndefinedVal();
225 else if (RHS == 1)
226 return ValMgr.makeIntVal(0, resultTy);
227 break;
228 case BO_Add:
229 case BO_Sub:
230 case BO_Shl:
231 case BO_Shr:
232 case BO_Xor:
233 // a+0, a-0, a<<0, a>>0, a^0
234 if (RHS == 0)
235 isIdempotent = true;
236 break;
237 case BO_And:
238 // a&0 and a&(~0)
239 if (RHS == 0)
240 return ValMgr.makeIntVal(0, resultTy);
241 else if (RHS.isAllOnesValue())
242 isIdempotent = true;
243 break;
244 case BO_Or:
245 // a|0 and a|(~0)
246 if (RHS == 0)
247 isIdempotent = true;
248 else if (RHS.isAllOnesValue()) {
249 BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
250 const llvm::APSInt &Result = BVF.Convert(resultTy, RHS);
251 return nonloc::ConcreteInt(Result);
253 break;
256 // Idempotent ops (like a*1) can still change the type of an expression.
257 // Wrap the LHS up in a NonLoc again and let EvalCastNL do the dirty work.
258 if (isIdempotent) {
259 if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
260 return EvalCastNL(nonloc::SymbolVal(LHSSym), resultTy);
261 return EvalCastNL(nonloc::SymExprVal(LHS), resultTy);
264 // If we reach this point, the expression cannot be simplified.
265 // Make a SymExprVal for the entire thing.
266 return ValMgr.makeNonLoc(LHS, op, RHS, resultTy);
269 SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
270 BinaryOperator::Opcode op,
271 NonLoc lhs, NonLoc rhs,
272 QualType resultTy) {
273 // Handle trivial case where left-side and right-side are the same.
274 if (lhs == rhs)
275 switch (op) {
276 default:
277 break;
278 case BO_EQ:
279 case BO_LE:
280 case BO_GE:
281 return ValMgr.makeTruthVal(true, resultTy);
282 case BO_LT:
283 case BO_GT:
284 case BO_NE:
285 return ValMgr.makeTruthVal(false, resultTy);
286 case BO_Xor:
287 case BO_Sub:
288 return ValMgr.makeIntVal(0, resultTy);
289 case BO_Or:
290 case BO_And:
291 return EvalCastNL(lhs, resultTy);
294 while (1) {
295 switch (lhs.getSubKind()) {
296 default:
297 return UnknownVal();
298 case nonloc::LocAsIntegerKind: {
299 Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
300 switch (rhs.getSubKind()) {
301 case nonloc::LocAsIntegerKind:
302 return EvalBinOpLL(state, op, lhsL,
303 cast<nonloc::LocAsInteger>(rhs).getLoc(),
304 resultTy);
305 case nonloc::ConcreteIntKind: {
306 // Transform the integer into a location and compare.
307 ASTContext& Ctx = ValMgr.getContext();
308 llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
309 i.setIsUnsigned(true);
310 i.extOrTrunc(Ctx.getTypeSize(Ctx.VoidPtrTy));
311 return EvalBinOpLL(state, op, lhsL, ValMgr.makeLoc(i), resultTy);
313 default:
314 switch (op) {
315 case BO_EQ:
316 return ValMgr.makeTruthVal(false, resultTy);
317 case BO_NE:
318 return ValMgr.makeTruthVal(true, resultTy);
319 default:
320 // This case also handles pointer arithmetic.
321 return UnknownVal();
325 case nonloc::SymExprValKind: {
326 nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
328 // Only handle LHS of the form "$sym op constant", at least for now.
329 const SymIntExpr *symIntExpr =
330 dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
332 if (!symIntExpr)
333 return UnknownVal();
335 // Is this a logical not? (!x is represented as x == 0.)
336 if (op == BO_EQ && rhs.isZeroConstant()) {
337 // We know how to negate certain expressions. Simplify them here.
339 BinaryOperator::Opcode opc = symIntExpr->getOpcode();
340 switch (opc) {
341 default:
342 // We don't know how to negate this operation.
343 // Just handle it as if it were a normal comparison to 0.
344 break;
345 case BO_LAnd:
346 case BO_LOr:
347 assert(false && "Logical operators handled by branching logic.");
348 return UnknownVal();
349 case BO_Assign:
350 case BO_MulAssign:
351 case BO_DivAssign:
352 case BO_RemAssign:
353 case BO_AddAssign:
354 case BO_SubAssign:
355 case BO_ShlAssign:
356 case BO_ShrAssign:
357 case BO_AndAssign:
358 case BO_XorAssign:
359 case BO_OrAssign:
360 case BO_Comma:
361 assert(false && "'=' and ',' operators handled by GRExprEngine.");
362 return UnknownVal();
363 case BO_PtrMemD:
364 case BO_PtrMemI:
365 assert(false && "Pointer arithmetic not handled here.");
366 return UnknownVal();
367 case BO_LT:
368 case BO_GT:
369 case BO_LE:
370 case BO_GE:
371 case BO_EQ:
372 case BO_NE:
373 // Negate the comparison and make a value.
374 opc = NegateComparison(opc);
375 assert(symIntExpr->getType(ValMgr.getContext()) == resultTy);
376 return ValMgr.makeNonLoc(symIntExpr->getLHS(), opc,
377 symIntExpr->getRHS(), resultTy);
381 // For now, only handle expressions whose RHS is a constant.
382 const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
383 if (!rhsInt)
384 return UnknownVal();
386 // If both the LHS and the current expression are additive,
387 // fold their constants.
388 if (BinaryOperator::isAdditiveOp(op)) {
389 BinaryOperator::Opcode lop = symIntExpr->getOpcode();
390 if (BinaryOperator::isAdditiveOp(lop)) {
391 BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
393 // resultTy may not be the best type to convert to, but it's
394 // probably the best choice in expressions with mixed type
395 // (such as x+1U+2LL). The rules for implicit conversions should
396 // choose a reasonable type to preserve the expression, and will
397 // at least match how the value is going to be used.
398 const llvm::APSInt &first =
399 BVF.Convert(resultTy, symIntExpr->getRHS());
400 const llvm::APSInt &second =
401 BVF.Convert(resultTy, rhsInt->getValue());
403 const llvm::APSInt *newRHS;
404 if (lop == op)
405 newRHS = BVF.EvaluateAPSInt(BO_Add, first, second);
406 else
407 newRHS = BVF.EvaluateAPSInt(BO_Sub, first, second);
408 return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
412 // Otherwise, make a SymExprVal out of the expression.
413 return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
415 case nonloc::ConcreteIntKind: {
416 const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
418 if (isa<nonloc::ConcreteInt>(rhs)) {
419 return lhsInt.evalBinOp(ValMgr, op, cast<nonloc::ConcreteInt>(rhs));
420 } else {
421 const llvm::APSInt& lhsValue = lhsInt.getValue();
423 // Swap the left and right sides and flip the operator if doing so
424 // allows us to better reason about the expression (this is a form
425 // of expression canonicalization).
426 // While we're at it, catch some special cases for non-commutative ops.
427 NonLoc tmp = rhs;
428 rhs = lhs;
429 lhs = tmp;
431 switch (op) {
432 case BO_LT:
433 case BO_GT:
434 case BO_LE:
435 case BO_GE:
436 op = ReverseComparison(op);
437 continue;
438 case BO_EQ:
439 case BO_NE:
440 case BO_Add:
441 case BO_Mul:
442 case BO_And:
443 case BO_Xor:
444 case BO_Or:
445 continue;
446 case BO_Shr:
447 if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
448 // At this point lhs and rhs have been swapped.
449 return rhs;
450 // FALL-THROUGH
451 case BO_Shl:
452 if (lhsValue == 0)
453 // At this point lhs and rhs have been swapped.
454 return rhs;
455 return UnknownVal();
456 default:
457 return UnknownVal();
461 case nonloc::SymbolValKind: {
462 nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
463 SymbolRef Sym = slhs->getSymbol();
465 ASTContext& Ctx = ValMgr.getContext();
467 // Does the symbol simplify to a constant? If so, "fold" the constant
468 // by setting 'lhs' to a ConcreteInt and try again.
469 if (Sym->getType(Ctx)->isIntegerType())
470 if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
471 // The symbol evaluates to a constant. If necessary, promote the
472 // folded constant (LHS) to the result type.
473 BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
474 const llvm::APSInt &lhs_I = BVF.Convert(resultTy, *Constant);
475 lhs = nonloc::ConcreteInt(lhs_I);
477 // Also promote the RHS (if necessary).
479 // For shifts, it is not necessary to promote the RHS.
480 if (BinaryOperator::isShiftOp(op))
481 continue;
483 // Other operators: do an implicit conversion. This shouldn't be
484 // necessary once we support truncation/extension of symbolic values.
485 if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
486 rhs = nonloc::ConcreteInt(BVF.Convert(resultTy, rhs_I->getValue()));
489 continue;
492 // Is the RHS a symbol we can simplify?
493 if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
494 SymbolRef RSym = srhs->getSymbol();
495 if (RSym->getType(Ctx)->isIntegerType()) {
496 if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
497 // The symbol evaluates to a constant.
498 BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
499 const llvm::APSInt &rhs_I = BVF.Convert(resultTy, *Constant);
500 rhs = nonloc::ConcreteInt(rhs_I);
505 if (isa<nonloc::ConcreteInt>(rhs)) {
506 return MakeSymIntVal(slhs->getSymbol(), op,
507 cast<nonloc::ConcreteInt>(rhs).getValue(),
508 resultTy);
511 return UnknownVal();
517 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
518 SVal SimpleSValuator::EvalBinOpLL(const GRState *state,
519 BinaryOperator::Opcode op,
520 Loc lhs, Loc rhs,
521 QualType resultTy) {
522 // Only comparisons and subtractions are valid operations on two pointers.
523 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
524 // However, if a pointer is casted to an integer, EvalBinOpNN may end up
525 // calling this function with another operation (PR7527). We don't attempt to
526 // model this for now, but it could be useful, particularly when the
527 // "location" is actually an integer value that's been passed through a void*.
528 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
529 return UnknownVal();
531 // Special cases for when both sides are identical.
532 if (lhs == rhs) {
533 switch (op) {
534 default:
535 assert(false && "Unimplemented operation for two identical values");
536 return UnknownVal();
537 case BO_Sub:
538 return ValMgr.makeZeroVal(resultTy);
539 case BO_EQ:
540 case BO_LE:
541 case BO_GE:
542 return ValMgr.makeTruthVal(true, resultTy);
543 case BO_NE:
544 case BO_LT:
545 case BO_GT:
546 return ValMgr.makeTruthVal(false, resultTy);
550 switch (lhs.getSubKind()) {
551 default:
552 assert(false && "Ordering not implemented for this Loc.");
553 return UnknownVal();
555 case loc::GotoLabelKind:
556 // The only thing we know about labels is that they're non-null.
557 if (rhs.isZeroConstant()) {
558 switch (op) {
559 default:
560 break;
561 case BO_Sub:
562 return EvalCastL(lhs, resultTy);
563 case BO_EQ:
564 case BO_LE:
565 case BO_LT:
566 return ValMgr.makeTruthVal(false, resultTy);
567 case BO_NE:
568 case BO_GT:
569 case BO_GE:
570 return ValMgr.makeTruthVal(true, resultTy);
573 // There may be two labels for the same location, and a function region may
574 // have the same address as a label at the start of the function (depending
575 // on the ABI).
576 // FIXME: we can probably do a comparison against other MemRegions, though.
577 // FIXME: is there a way to tell if two labels refer to the same location?
578 return UnknownVal();
580 case loc::ConcreteIntKind: {
581 // If one of the operands is a symbol and the other is a constant,
582 // build an expression for use by the constraint manager.
583 if (SymbolRef rSym = rhs.getAsLocSymbol()) {
584 // We can only build expressions with symbols on the left,
585 // so we need a reversible operator.
586 if (!BinaryOperator::isComparisonOp(op))
587 return UnknownVal();
589 const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
590 return ValMgr.makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
593 // If both operands are constants, just perform the operation.
594 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
595 BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
596 SVal ResultVal = cast<loc::ConcreteInt>(lhs).EvalBinOp(BVF, op, *rInt);
597 if (Loc *Result = dyn_cast<Loc>(&ResultVal))
598 return EvalCastL(*Result, resultTy);
599 else
600 return UnknownVal();
603 // Special case comparisons against NULL.
604 // This must come after the test if the RHS is a symbol, which is used to
605 // build constraints. The address of any non-symbolic region is guaranteed
606 // to be non-NULL, as is any label.
607 assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
608 if (lhs.isZeroConstant()) {
609 switch (op) {
610 default:
611 break;
612 case BO_EQ:
613 case BO_GT:
614 case BO_GE:
615 return ValMgr.makeTruthVal(false, resultTy);
616 case BO_NE:
617 case BO_LT:
618 case BO_LE:
619 return ValMgr.makeTruthVal(true, resultTy);
623 // Comparing an arbitrary integer to a region or label address is
624 // completely unknowable.
625 return UnknownVal();
627 case loc::MemRegionKind: {
628 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
629 // If one of the operands is a symbol and the other is a constant,
630 // build an expression for use by the constraint manager.
631 if (SymbolRef lSym = lhs.getAsLocSymbol())
632 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
634 // Special case comparisons to NULL.
635 // This must come after the test if the LHS is a symbol, which is used to
636 // build constraints. The address of any non-symbolic region is guaranteed
637 // to be non-NULL.
638 if (rInt->isZeroConstant()) {
639 switch (op) {
640 default:
641 break;
642 case BO_Sub:
643 return EvalCastL(lhs, resultTy);
644 case BO_EQ:
645 case BO_LT:
646 case BO_LE:
647 return ValMgr.makeTruthVal(false, resultTy);
648 case BO_NE:
649 case BO_GT:
650 case BO_GE:
651 return ValMgr.makeTruthVal(true, resultTy);
655 // Comparing a region to an arbitrary integer is completely unknowable.
656 return UnknownVal();
659 // Get both values as regions, if possible.
660 const MemRegion *LeftMR = lhs.getAsRegion();
661 assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
663 const MemRegion *RightMR = rhs.getAsRegion();
664 if (!RightMR)
665 // The RHS is probably a label, which in theory could address a region.
666 // FIXME: we can probably make a more useful statement about non-code
667 // regions, though.
668 return UnknownVal();
670 // If both values wrap regions, see if they're from different base regions.
671 const MemRegion *LeftBase = LeftMR->getBaseRegion();
672 const MemRegion *RightBase = RightMR->getBaseRegion();
673 if (LeftBase != RightBase &&
674 !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
675 switch (op) {
676 default:
677 return UnknownVal();
678 case BO_EQ:
679 return ValMgr.makeTruthVal(false, resultTy);
680 case BO_NE:
681 return ValMgr.makeTruthVal(true, resultTy);
685 // The two regions are from the same base region. See if they're both a
686 // type of region we know how to compare.
688 // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
689 // ElementRegion path and the FieldRegion path below should be unified.
690 if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
691 // First see if the right region is also an ElementRegion.
692 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
693 if (!RightER)
694 return UnknownVal();
696 // Next, see if the two ERs have the same super-region and matching types.
697 // FIXME: This should do something useful even if the types don't match,
698 // though if both indexes are constant the RegionRawOffset path will
699 // give the correct answer.
700 if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
701 LeftER->getElementType() == RightER->getElementType()) {
702 // Get the left index and cast it to the correct type.
703 // If the index is unknown or undefined, bail out here.
704 SVal LeftIndexVal = LeftER->getIndex();
705 NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
706 if (!LeftIndex)
707 return UnknownVal();
708 LeftIndexVal = EvalCastNL(*LeftIndex, resultTy);
709 LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
710 if (!LeftIndex)
711 return UnknownVal();
713 // Do the same for the right index.
714 SVal RightIndexVal = RightER->getIndex();
715 NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
716 if (!RightIndex)
717 return UnknownVal();
718 RightIndexVal = EvalCastNL(*RightIndex, resultTy);
719 RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
720 if (!RightIndex)
721 return UnknownVal();
723 // Actually perform the operation.
724 // EvalBinOpNN expects the two indexes to already be the right type.
725 return EvalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
728 // If the element indexes aren't comparable, see if the raw offsets are.
729 RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
730 RegionRawOffset RightOffset = RightER->getAsArrayOffset();
732 if (LeftOffset.getRegion() != NULL &&
733 LeftOffset.getRegion() == RightOffset.getRegion()) {
734 int64_t left = LeftOffset.getByteOffset();
735 int64_t right = RightOffset.getByteOffset();
737 switch (op) {
738 default:
739 return UnknownVal();
740 case BO_LT:
741 return ValMgr.makeTruthVal(left < right, resultTy);
742 case BO_GT:
743 return ValMgr.makeTruthVal(left > right, resultTy);
744 case BO_LE:
745 return ValMgr.makeTruthVal(left <= right, resultTy);
746 case BO_GE:
747 return ValMgr.makeTruthVal(left >= right, resultTy);
748 case BO_EQ:
749 return ValMgr.makeTruthVal(left == right, resultTy);
750 case BO_NE:
751 return ValMgr.makeTruthVal(left != right, resultTy);
755 // If we get here, we have no way of comparing the ElementRegions.
756 return UnknownVal();
759 // See if both regions are fields of the same structure.
760 // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
761 if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
762 // Only comparisons are meaningful here!
763 if (!BinaryOperator::isComparisonOp(op))
764 return UnknownVal();
766 // First see if the right region is also a FieldRegion.
767 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
768 if (!RightFR)
769 return UnknownVal();
771 // Next, see if the two FRs have the same super-region.
772 // FIXME: This doesn't handle casts yet, and simply stripping the casts
773 // doesn't help.
774 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
775 return UnknownVal();
777 const FieldDecl *LeftFD = LeftFR->getDecl();
778 const FieldDecl *RightFD = RightFR->getDecl();
779 const RecordDecl *RD = LeftFD->getParent();
781 // Make sure the two FRs are from the same kind of record. Just in case!
782 // FIXME: This is probably where inheritance would be a problem.
783 if (RD != RightFD->getParent())
784 return UnknownVal();
786 // We know for sure that the two fields are not the same, since that
787 // would have given us the same SVal.
788 if (op == BO_EQ)
789 return ValMgr.makeTruthVal(false, resultTy);
790 if (op == BO_NE)
791 return ValMgr.makeTruthVal(true, resultTy);
793 // Iterate through the fields and see which one comes first.
794 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
795 // members and the units in which bit-fields reside have addresses that
796 // increase in the order in which they are declared."
797 bool leftFirst = (op == BO_LT || op == BO_LE);
798 for (RecordDecl::field_iterator I = RD->field_begin(),
799 E = RD->field_end(); I!=E; ++I) {
800 if (*I == LeftFD)
801 return ValMgr.makeTruthVal(leftFirst, resultTy);
802 if (*I == RightFD)
803 return ValMgr.makeTruthVal(!leftFirst, resultTy);
806 assert(false && "Fields not found in parent record's definition");
809 // If we get here, we have no way of comparing the regions.
810 return UnknownVal();
815 SVal SimpleSValuator::EvalBinOpLN(const GRState *state,
816 BinaryOperator::Opcode op,
817 Loc lhs, NonLoc rhs, QualType resultTy) {
818 // Special case: 'rhs' is an integer that has the same width as a pointer and
819 // we are using the integer location in a comparison. Normally this cannot be
820 // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
821 // can generate comparisons that trigger this code.
822 // FIXME: Are all locations guaranteed to have pointer width?
823 if (BinaryOperator::isComparisonOp(op)) {
824 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
825 const llvm::APSInt *x = &rhsInt->getValue();
826 ASTContext &ctx = ValMgr.getContext();
827 if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
828 // Convert the signedness of the integer (if necessary).
829 if (x->isSigned())
830 x = &ValMgr.getBasicValueFactory().getValue(*x, true);
832 return EvalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
837 // We are dealing with pointer arithmetic.
839 // Handle pointer arithmetic on constant values.
840 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
841 if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
842 const llvm::APSInt &leftI = lhsInt->getValue();
843 assert(leftI.isUnsigned());
844 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
846 // Convert the bitwidth of rightI. This should deal with overflow
847 // since we are dealing with concrete values.
848 rightI.extOrTrunc(leftI.getBitWidth());
850 // Offset the increment by the pointer size.
851 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
852 rightI *= Multiplicand;
854 // Compute the adjusted pointer.
855 switch (op) {
856 case BO_Add:
857 rightI = leftI + rightI;
858 break;
859 case BO_Sub:
860 rightI = leftI - rightI;
861 break;
862 default:
863 llvm_unreachable("Invalid pointer arithmetic operation");
865 return loc::ConcreteInt(ValMgr.getBasicValueFactory().getValue(rightI));
870 // Delegate remaining pointer arithmetic to the StoreManager.
871 return state->getStateManager().getStoreManager().EvalBinOp(op, lhs,
872 rhs, resultTy);
875 const llvm::APSInt *SimpleSValuator::getKnownValue(const GRState *state,
876 SVal V) {
877 if (V.isUnknownOrUndef())
878 return NULL;
880 if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
881 return &X->getValue();
883 if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
884 return &X->getValue();
886 if (SymbolRef Sym = V.getAsSymbol())
887 return state->getSymVal(Sym);
889 // FIXME: Add support for SymExprs.
890 return NULL;