Make sure CXXABI is destroyed.
[clang.git] / docs / LanguageExtensions.html
blob838b65f27b81da517358e1f1460a47b1ffdb84a8
1 <html>
2 <head>
3 <title>Clang Language Extensions</title>
4 <link type="text/css" rel="stylesheet" href="../menu.css" />
5 <link type="text/css" rel="stylesheet" href="../content.css" />
6 <style type="text/css">
7 td {
8 vertical-align: top;
10 </style>
11 </head>
12 <body>
14 <!--#include virtual="../menu.html.incl"-->
16 <div id="content">
18 <h1>Clang Language Extensions</h1>
20 <ul>
21 <li><a href="#intro">Introduction</a></li>
22 <li><a href="#feature_check">Feature Checking Macros</a></li>
23 <li><a href="#has_include">Include File Checking Macros</a></li>
24 <li><a href="#builtinmacros">Builtin Macros</a></li>
25 <li><a href="#vectors">Vectors and Extended Vectors</a></li>
26 <li><a href="#checking_language_features">Checks for Standard Language Features</a></li>
27 <ul>
28 <li><a href="#cxx_exceptions">C++ exceptions</a></li>
29 <li><a href="#cxx_rtti">C++ RTTI</a></li>
30 </ul>
31 <li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li>
32 <ul>
33 <li><a href="#cxx_attributes">C++0x attributes</a></li>
34 <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li>
35 <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li>
36 <li><a href="#cxx_concepts">C++ TR concepts</a></li>
37 <li><a href="#cxx_lambdas">C++0x lambdas</a></li>
38 <li><a href="#cxx_nullptr">C++0x nullptr</a></li>
39 <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li>
40 <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li>
41 <li><a href="#cxx_auto_type">C++0x type inference</a></li>
42 <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li>
43 </ul>
44 <li><a href="#blocks">Blocks</a></li>
45 <li><a href="#overloading-in-c">Function Overloading in C</a></li>
46 <li><a href="#builtins">Builtin Functions</a>
47 <ul>
48 <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
49 <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
50 </ul>
51 </li>
52 <li><a href="#targetspecific">Target-Specific Extensions</a>
53 <ul>
54 <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
55 </ul>
56 </li>
57 <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a>
58 <ul>
59 <li><a href="#analyzerattributes">Analyzer Attributes</a></li>
60 </ul>
61 </li>
62 </ul>
64 <!-- ======================================================================= -->
65 <h2 id="intro">Introduction</h2>
66 <!-- ======================================================================= -->
68 <p>This document describes the language extensions provided by Clang. In
69 addition to the language extensions listed here, Clang aims to support a broad
70 range of GCC extensions. Please see the <a
71 href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
72 more information on these extensions.</p>
74 <!-- ======================================================================= -->
75 <h2 id="feature_check">Feature Checking Macros</h2>
76 <!-- ======================================================================= -->
78 <p>Language extensions can be very useful, but only if you know you can depend
79 on them. In order to allow fine-grain features checks, we support two builtin
80 function-like macros. This allows you to directly test for a feature in your
81 code without having to resort to something like autoconf or fragile "compiler
82 version checks".</p>
84 <!-- ======================================================================= -->
85 <h3 id="__has_builtin">__has_builtin</h3>
86 <!-- ======================================================================= -->
88 <p>This function-like macro takes a single identifier argument that is the name
89 of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
90 not. It can be used like this:</p>
92 <blockquote>
93 <pre>
94 #ifndef __has_builtin // Optional of course.
95 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
96 #endif
98 ...
99 #if __has_builtin(__builtin_trap)
100 __builtin_trap();
101 #else
102 abort();
103 #endif
105 </pre>
106 </blockquote>
109 <!-- ======================================================================= -->
110 <h3 id="__has_feature">__has_feature</h3>
111 <!-- ======================================================================= -->
113 <p>This function-like macro takes a single identifier argument that is the name
114 of a feature. It evaluates to 1 if the feature is supported or 0 if not. It
115 can be used like this:</p>
117 <blockquote>
118 <pre>
119 #ifndef __has_feature // Optional of course.
120 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
121 #endif
124 #if __has_feature(attribute_overloadable) || \
125 __has_feature(blocks)
127 #endif
129 </pre>
130 </blockquote>
132 <p>The feature tag is described along with the language feature below.</p>
134 <!-- ======================================================================= -->
135 <h2 id="has_include">Include File Checking Macros</h2>
136 <!-- ======================================================================= -->
138 <p>Not all developments systems have the same include files.
139 The <a href="#__has_include">__has_include</a> and
140 <a href="#__has_include_next">__has_include_next</a> macros allow you to
141 check for the existence of an include file before doing
142 a possibly failing #include directive.</p>
144 <!-- ======================================================================= -->
145 <h3 id="__has_include">__has_include</h3>
146 <!-- ======================================================================= -->
148 <p>This function-like macro takes a single file name string argument that
149 is the name of an include file. It evaluates to 1 if the file can
150 be found using the include paths, or 0 otherwise:</p>
152 <blockquote>
153 <pre>
154 // Note the two possible file name string formats.
155 #if __has_include("myinclude.h") && __has_include(&lt;stdint.h&gt;)
156 # include "myinclude.h"
157 #endif
159 // To avoid problem with non-clang compilers not having this macro.
160 #if defined(__has_include) && __has_include("myinclude.h")
161 # include "myinclude.h"
162 #endif
163 </pre>
164 </blockquote>
166 <p>To test for this feature, use #if defined(__has_include).</p>
168 <!-- ======================================================================= -->
169 <h3 id="__has_include_next">__has_include_next</h3>
170 <!-- ======================================================================= -->
172 <p>This function-like macro takes a single file name string argument that
173 is the name of an include file. It is like __has_include except that it
174 looks for the second instance of the given file found in the include
175 paths. It evaluates to 1 if the second instance of the file can
176 be found using the include paths, or 0 otherwise:</p>
178 <blockquote>
179 <pre>
180 // Note the two possible file name string formats.
181 #if __has_include_next("myinclude.h") && __has_include_next(&lt;stdint.h&gt;)
182 # include_next "myinclude.h"
183 #endif
185 // To avoid problem with non-clang compilers not having this macro.
186 #if defined(__has_include_next) && __has_include_next("myinclude.h")
187 # include_next "myinclude.h"
188 #endif
189 </pre>
190 </blockquote>
192 <p>Note that __has_include_next, like the GNU extension
193 #include_next directive, is intended for use in headers only,
194 and will issue a warning if used in the top-level compilation
195 file. A warning will also be issued if an absolute path
196 is used in the file argument.</p>
198 <!-- ======================================================================= -->
199 <h2 id="builtinmacros">Builtin Macros</h2>
200 <!-- ======================================================================= -->
202 <dl>
203 <dt><code>__BASE_FILE__</code></dt>
204 <dd>Defined to a string that contains the name of the main input
205 file passed to Clang.</dd>
207 <dt><code>__COUNTER__</code></dt>
208 <dd>Defined to an integer value that starts at zero and is
209 incremented each time the <code>__COUNTER__</code> macro is
210 expanded.</dd>
212 <dt><code>__INCLUDE_LEVEL__</code></dt>
213 <dd>Defined to an integral value that is the include depth of the
214 file currently being translated. For the main file, this value is
215 zero.</dd>
217 <dt><code>__TIMESTAMP__</code></dt>
218 <dd>Defined to the date and time of the last modification of the
219 current source file.</dd>
221 <dt><code>__clang__</code></dt>
222 <dd>Defined when compiling with Clang</dd>
224 <dt><code>__clang_major__</code></dt>
225 <dd>Defined to the major version number of Clang (e.g., the 2 in
226 2.0.1).</dd>
228 <dt><code>__clang_minor__</code></dt>
229 <dd>Defined to the minor version number of Clang (e.g., the 0 in
230 2.0.1).</dd>
232 <dt><code>__clang_patchlevel__</code></dt>
233 <dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd>
235 <dt><code>__clang_version__</code></dt>
236 <dd>Defined to a string that captures the Clang version, including
237 the Subversion tag or revision number, e.g., "1.5 (trunk
238 102332)".</dd>
239 </dl>
241 <!-- ======================================================================= -->
242 <h2 id="vectors">Vectors and Extended Vectors</h2>
243 <!-- ======================================================================= -->
245 <p>Supports the GCC vector extensions, plus some stuff like V[1].</p>
247 <p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw
248 syntax and other tidbits as seen in OpenCL. An example is:</p>
250 <blockquote>
251 <pre>
252 typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
253 typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
255 float4 foo(float2 a, float2 b) {
256 float4 c;
257 c.xz = a;
258 c.yw = b;
259 return c;
261 </blockquote>
263 <p>Query for this feature with __has_feature(attribute_ext_vector_type).</p>
265 <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
267 <!-- ======================================================================= -->
268 <h2 id="checking_language_features">Checks for Standard Language Features</h2>
269 <!-- ======================================================================= -->
271 <p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are
272 enabled. Those features are listed here.</p>
274 <h3 id="cxx_exceptions">C++ exceptions</h3>
276 <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
277 example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p>
279 <h3 id="cxx_rtti">C++ RTTI</h3>
281 <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
282 compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
284 <!-- ======================================================================= -->
285 <h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2>
286 <!-- ======================================================================= -->
288 <p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming
289 standard language features are enabled. Those features are listed here.</p>
291 <p>Currently, all features listed here are slated for inclusion in the upcoming
292 C++0x standard. As a result, all the features that clang supports are enabled
293 with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are
294 not yet implemented will be noted.</p>
296 <h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3>
298 <p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the
299 <tt>decltype()</tt> specifier is enabled.</p>
301 <h3 id="cxx_attributes">C++0x attributes</h3>
303 <p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for
304 attribute parsing with C++0x's square bracket notation is enabled.
306 <h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3>
308 <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for
309 deleted function definitions (with <tt>= delete</tt>) is enabled.
311 <h3 id="cxx_concepts">C++ TR concepts</h3>
313 <p>Use <tt>__has_feature(cxx_concepts)</tt> to determine if support for
314 concepts is enabled. clang does not currently implement this feature.
316 <h3 id="cxx_lambdas">C++0x lambdas</h3>
318 <p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for
319 lambdas is enabled. clang does not currently implement this feature.
321 <h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3>
323 <p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for
324 <tt>nullptr</tt> is enabled. clang does not yet fully implement this feature.
326 <h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3>
328 <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for
329 rvalue references is enabled. clang does not yet fully implement this feature.
331 <h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3>
333 <p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for
334 compile-time assertions using <tt>static_assert</tt> is enabled.</p>
336 <h3 id="cxx_auto_type">C++0x type inference</h3>
338 <p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference
339 is supported using the <tt>auto</tt> specifier. If this is disabled,
340 <tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p>
342 <h3 id="cxx_variadic_templates">C++0x variadic templates</tt></h3>
344 <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support
345 for templates taking any number of arguments with the ellipsis notation is
346 enabled. clang does not yet fully implement this feature.</p>
348 <!-- ======================================================================= -->
349 <h2 id="blocks">Blocks</h2>
350 <!-- ======================================================================= -->
352 <p>The syntax and high level language feature description is in <a
353 href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
354 details for the clang implementation are in <a
355 href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
358 <p>Query for this feature with __has_feature(blocks).</p>
360 <!-- ======================================================================= -->
361 <h2 id="overloading-in-c">Function Overloading in C</h2>
362 <!-- ======================================================================= -->
364 <p>Clang provides support for C++ function overloading in C. Function
365 overloading in C is introduced using the <tt>overloadable</tt> attribute. For
366 example, one might provide several overloaded versions of a <tt>tgsin</tt>
367 function that invokes the appropriate standard function computing the sine of a
368 value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
369 precision:</p>
371 <blockquote>
372 <pre>
373 #include &lt;math.h&gt;
374 float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
375 double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
376 long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
377 </pre>
378 </blockquote>
380 <p>Given these declarations, one can call <tt>tgsin</tt> with a
381 <tt>float</tt> value to receive a <tt>float</tt> result, with a
382 <tt>double</tt> to receive a <tt>double</tt> result, etc. Function
383 overloading in C follows the rules of C++ function overloading to pick
384 the best overload given the call arguments, with a few C-specific
385 semantics:</p>
386 <ul>
387 <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
388 double</tt> is ranked as a floating-point promotion (per C99) rather
389 than as a floating-point conversion (as in C++).</li>
391 <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
392 <tt>U*</tt> is considered a pointer conversion (with conversion
393 rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
395 <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
396 is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
397 conversion is given "conversion" rank.</li>
398 </ul>
400 <p>The declaration of <tt>overloadable</tt> functions is restricted to
401 function declarations and definitions. Most importantly, if any
402 function with a given name is given the <tt>overloadable</tt>
403 attribute, then all function declarations and definitions with that
404 name (and in that scope) must have the <tt>overloadable</tt>
405 attribute. This rule even applies to redeclarations of functions whose original
406 declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
408 <blockquote>
409 <pre>
410 int f(int) __attribute__((overloadable));
411 float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
413 int g(int) __attribute__((overloadable));
414 int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
415 </pre>
416 </blockquote>
418 <p>Functions marked <tt>overloadable</tt> must have
419 prototypes. Therefore, the following code is ill-formed:</p>
421 <blockquote>
422 <pre>
423 int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
424 </pre>
425 </blockquote>
427 <p>However, <tt>overloadable</tt> functions are allowed to use a
428 ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
430 <blockquote>
431 <pre>
432 void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
433 </pre>
434 </blockquote>
436 <p>Functions declared with the <tt>overloadable</tt> attribute have
437 their names mangled according to the same rules as C++ function
438 names. For example, the three <tt>tgsin</tt> functions in our
439 motivating example get the mangled names <tt>_Z5tgsinf</tt>,
440 <tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two
441 caveats to this use of name mangling:</p>
443 <ul>
445 <li>Future versions of Clang may change the name mangling of
446 functions overloaded in C, so you should not depend on an specific
447 mangling. To be completely safe, we strongly urge the use of
448 <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
450 <li>The <tt>overloadable</tt> attribute has almost no meaning when
451 used in C++, because names will already be mangled and functions are
452 already overloadable. However, when an <tt>overloadable</tt>
453 function occurs within an <tt>extern "C"</tt> linkage specification,
454 it's name <i>will</i> be mangled in the same way as it would in
455 C.</li>
456 </ul>
458 <p>Query for this feature with __has_feature(attribute_overloadable).</p>
461 <!-- ======================================================================= -->
462 <h2 id="builtins">Builtin Functions</h2>
463 <!-- ======================================================================= -->
465 <p>Clang supports a number of builtin library functions with the same syntax as
466 GCC, including things like <tt>__builtin_nan</tt>,
467 <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
468 <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
469 addition to the GCC builtins, Clang supports a number of builtins that GCC does
470 not, which are listed here.</p>
472 <p>Please note that Clang does not and will not support all of the GCC builtins
473 for vector operations. Instead of using builtins, you should use the functions
474 defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
475 define portable wrappers for these. Many of the Clang versions of these
476 functions are implemented directly in terms of <a href="#vectors">extended
477 vector support</a> instead of builtins, in order to reduce the number of
478 builtins that we need to implement.</p>
480 <!-- ======================================================================= -->
481 <h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
482 <!-- ======================================================================= -->
484 <p><tt>__builtin_shufflevector</tt> is used to express generic vector
485 permutation/shuffle/swizzle operations. This builtin is also very important for
486 the implementation of various target-specific header files like
487 <tt>&lt;xmmintrin.h&gt;</tt>.
488 </p>
490 <p><b>Syntax:</b></p>
492 <pre>
493 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
494 </pre>
496 <p><b>Examples:</b></p>
498 <pre>
499 // Identity operation - return 4-element vector V1.
500 __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
502 // "Splat" element 0 of V1 into a 4-element result.
503 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
505 // Reverse 4-element vector V1.
506 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
508 // Concatenate every other element of 4-element vectors V1 and V2.
509 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
511 // Concatenate every other element of 8-element vectors V1 and V2.
512 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
513 </pre>
515 <p><b>Description:</b></p>
517 <p>The first two arguments to __builtin_shufflevector are vectors that have the
518 same element type. The remaining arguments are a list of integers that specify
519 the elements indices of the first two vectors that should be extracted and
520 returned in a new vector. These element indices are numbered sequentially
521 starting with the first vector, continuing into the second vector. Thus, if
522 vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
523 </p>
525 <p>The result of __builtin_shufflevector is a vector
526 with the same element type as vec1/vec2 but that has an element count equal to
527 the number of indices specified.
528 </p>
530 <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
532 <!-- ======================================================================= -->
533 <h3 id="__builtin_unreachable">__builtin_unreachable</h3>
534 <!-- ======================================================================= -->
536 <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
537 the program cannot be reached, even if the compiler might otherwise think it
538 can. This is useful to improve optimization and eliminates certain warnings.
539 For example, without the <tt>__builtin_unreachable</tt> in the example below,
540 the compiler assumes that the inline asm can fall through and prints a "function
541 declared 'noreturn' should not return" warning.
542 </p>
544 <p><b>Syntax:</b></p>
546 <pre>
547 __builtin_unreachable()
548 </pre>
550 <p><b>Example of Use:</b></p>
552 <pre>
553 void myabort(void) __attribute__((noreturn));
554 void myabort(void) {
555 asm("int3");
556 __builtin_unreachable();
558 </pre>
560 <p><b>Description:</b></p>
562 <p>The __builtin_unreachable() builtin has completely undefined behavior. Since
563 it has undefined behavior, it is a statement that it is never reached and the
564 optimizer can take advantage of this to produce better code. This builtin takes
565 no arguments and produces a void result.
566 </p>
568 <p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
571 <!-- ======================================================================= -->
572 <h2 id="targetspecific">Target-Specific Extensions</h2>
573 <!-- ======================================================================= -->
575 <p>Clang supports some language features conditionally on some targets.</p>
577 <!-- ======================================================================= -->
578 <h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
579 <!-- ======================================================================= -->
581 <p>The X86 backend has these language extensions:</p>
583 <!-- ======================================================================= -->
584 <h4 id="x86-gs-segment">Memory references off the GS segment</h4>
585 <!-- ======================================================================= -->
587 <p>Annotating a pointer with address space #256 causes it to be code generated
588 relative to the X86 GS segment register, and address space #257 causes it to be
589 relative to the X86 FS segment. Note that this is a very very low-level
590 feature that should only be used if you know what you're doing (for example in
591 an OS kernel).</p>
593 <p>Here is an example:</p>
595 <pre>
596 #define GS_RELATIVE __attribute__((address_space(256)))
597 int foo(int GS_RELATIVE *P) {
598 return *P;
600 </pre>
602 <p>Which compiles to (on X86-32):</p>
604 <pre>
605 _foo:
606 movl 4(%esp), %eax
607 movl %gs:(%eax), %eax
609 </pre>
611 <!-- ======================================================================= -->
612 <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
613 <!-- ======================================================================= -->
615 <p>Clang supports additional attributes that are useful for documenting program
616 invariants and rules for static analysis tools. The extensions documented here
617 are used by the <a
618 href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
619 engine</a> that is part of Clang's Analysis library.</p>
621 <!-- ======================================================================= -->
622 <h3 id="analyzerattributes">Analyzer Attributes</h3>
623 <!-- ======================================================================= -->
625 <h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4>
627 <p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
628 attribute. This attribute, which is typically affixed to a function prototype,
629 indicates that a call to a given function never returns. Function prototypes for
630 common functions like <tt>exit</tt> are typically annotated with this attribute,
631 as well as a variety of common assertion handlers. Users can educate the static
632 analyzer about their own custom assertion handles (thus cutting down on false
633 positives due to false paths) by marking their own &quot;panic&quot; functions
634 with this attribute.</p>
636 <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
637 there are special functions that for all intents and purposes should be
638 considered panic functions (i.e., they are only called when an internal program
639 error occurs) but may actually return so that the program can fail gracefully.
640 The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
641 as being interpreted as &quot;no return&quot; functions by the analyzer (thus
642 pruning bogus paths) but will not affect compilation (as in the case of
643 <tt>noreturn</tt>).</p>
645 <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
646 same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
647 placed at the end of function prototypes:</p>
649 <pre>
650 void foo() <b>__attribute__((analyzer_noreturn))</b>;
651 </pre>
653 <p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p>
656 </div>
657 </body>
658 </html>