r1053: Add Russian translation.
[cinelerra_cv.git] / quicktime / ffmpeg / libavcodec / sonic.c
blobd9c05faecd528750663d4b2dafe2634e02082e04
1 /*
2 * Simple free lossless/lossy audio codec
3 * Copyright (c) 2004 Alex Beregszaszi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include "avcodec.h"
20 #include "bitstream.h"
21 #include "golomb.h"
23 /**
24 * @file sonic.c
25 * Simple free lossless/lossy audio codec
26 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
27 * Written and designed by Alex Beregszaszi
29 * TODO:
30 * - CABAC put/get_symbol
31 * - independent quantizer for channels
32 * - >2 channels support
33 * - more decorrelation types
34 * - more tap_quant tests
35 * - selectable intlist writers/readers (bonk-style, golomb, cabac)
38 #define MAX_CHANNELS 2
40 #define MID_SIDE 0
41 #define LEFT_SIDE 1
42 #define RIGHT_SIDE 2
44 typedef struct SonicContext {
45 int lossless, decorrelation;
47 int num_taps, downsampling;
48 double quantization;
50 int channels, samplerate, block_align, frame_size;
52 int *tap_quant;
53 int *int_samples;
54 int *coded_samples[MAX_CHANNELS];
56 // for encoding
57 int *tail;
58 int tail_size;
59 int *window;
60 int window_size;
62 // for decoding
63 int *predictor_k;
64 int *predictor_state[MAX_CHANNELS];
65 } SonicContext;
67 #define LATTICE_SHIFT 10
68 #define SAMPLE_SHIFT 4
69 #define LATTICE_FACTOR (1 << LATTICE_SHIFT)
70 #define SAMPLE_FACTOR (1 << SAMPLE_SHIFT)
72 #define BASE_QUANT 0.6
73 #define RATE_VARIATION 3.0
75 static inline int divide(int a, int b)
77 if (a < 0)
78 return -( (-a + b/2)/b );
79 else
80 return (a + b/2)/b;
83 static inline int shift(int a,int b)
85 return (a+(1<<(b-1))) >> b;
88 static inline int shift_down(int a,int b)
90 return (a>>b)+((a<0)?1:0);
93 #if 1
94 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
96 int i;
98 for (i = 0; i < entries; i++)
99 set_se_golomb(pb, buf[i]);
101 return 1;
104 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
106 int i;
108 for (i = 0; i < entries; i++)
109 buf[i] = get_se_golomb(gb);
111 return 1;
114 #else
116 #define ADAPT_LEVEL 8
118 static int bits_to_store(uint64_t x)
120 int res = 0;
122 while(x)
124 res++;
125 x >>= 1;
127 return res;
130 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
132 int i, bits;
134 if (!max)
135 return;
137 bits = bits_to_store(max);
139 for (i = 0; i < bits-1; i++)
140 put_bits(pb, 1, value & (1 << i));
142 if ( (value | (1 << (bits-1))) <= max)
143 put_bits(pb, 1, value & (1 << (bits-1)));
146 static unsigned int read_uint_max(GetBitContext *gb, int max)
148 int i, bits, value = 0;
150 if (!max)
151 return 0;
153 bits = bits_to_store(max);
155 for (i = 0; i < bits-1; i++)
156 if (get_bits1(gb))
157 value += 1 << i;
159 if ( (value | (1<<(bits-1))) <= max)
160 if (get_bits1(gb))
161 value += 1 << (bits-1);
163 return value;
166 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
168 int i, j, x = 0, low_bits = 0, max = 0;
169 int step = 256, pos = 0, dominant = 0, any = 0;
170 int *copy, *bits;
172 copy = av_mallocz(4* entries);
173 if (!copy)
174 return -1;
176 if (base_2_part)
178 int energy = 0;
180 for (i = 0; i < entries; i++)
181 energy += abs(buf[i]);
183 low_bits = bits_to_store(energy / (entries * 2));
184 if (low_bits > 15)
185 low_bits = 15;
187 put_bits(pb, 4, low_bits);
190 for (i = 0; i < entries; i++)
192 put_bits(pb, low_bits, abs(buf[i]));
193 copy[i] = abs(buf[i]) >> low_bits;
194 if (copy[i] > max)
195 max = abs(copy[i]);
198 bits = av_mallocz(4* entries*max);
199 if (!bits)
201 // av_free(copy);
202 return -1;
205 for (i = 0; i <= max; i++)
207 for (j = 0; j < entries; j++)
208 if (copy[j] >= i)
209 bits[x++] = copy[j] > i;
212 // store bitstream
213 while (pos < x)
215 int steplet = step >> 8;
217 if (pos + steplet > x)
218 steplet = x - pos;
220 for (i = 0; i < steplet; i++)
221 if (bits[i+pos] != dominant)
222 any = 1;
224 put_bits(pb, 1, any);
226 if (!any)
228 pos += steplet;
229 step += step / ADAPT_LEVEL;
231 else
233 int interloper = 0;
235 while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
236 interloper++;
238 // note change
239 write_uint_max(pb, interloper, (step >> 8) - 1);
241 pos += interloper + 1;
242 step -= step / ADAPT_LEVEL;
245 if (step < 256)
247 step = 65536 / step;
248 dominant = !dominant;
252 // store signs
253 for (i = 0; i < entries; i++)
254 if (buf[i])
255 put_bits(pb, 1, buf[i] < 0);
257 // av_free(bits);
258 // av_free(copy);
260 return 0;
263 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
265 int i, low_bits = 0, x = 0;
266 int n_zeros = 0, step = 256, dominant = 0;
267 int pos = 0, level = 0;
268 int *bits = av_mallocz(4* entries);
270 if (!bits)
271 return -1;
273 if (base_2_part)
275 low_bits = get_bits(gb, 4);
277 if (low_bits)
278 for (i = 0; i < entries; i++)
279 buf[i] = get_bits(gb, low_bits);
282 // av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
284 while (n_zeros < entries)
286 int steplet = step >> 8;
288 if (!get_bits1(gb))
290 for (i = 0; i < steplet; i++)
291 bits[x++] = dominant;
293 if (!dominant)
294 n_zeros += steplet;
296 step += step / ADAPT_LEVEL;
298 else
300 int actual_run = read_uint_max(gb, steplet-1);
302 // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
304 for (i = 0; i < actual_run; i++)
305 bits[x++] = dominant;
307 bits[x++] = !dominant;
309 if (!dominant)
310 n_zeros += actual_run;
311 else
312 n_zeros++;
314 step -= step / ADAPT_LEVEL;
317 if (step < 256)
319 step = 65536 / step;
320 dominant = !dominant;
324 // reconstruct unsigned values
325 n_zeros = 0;
326 for (i = 0; n_zeros < entries; i++)
328 while(1)
330 if (pos >= entries)
332 pos = 0;
333 level += 1 << low_bits;
336 if (buf[pos] >= level)
337 break;
339 pos++;
342 if (bits[i])
343 buf[pos] += 1 << low_bits;
344 else
345 n_zeros++;
347 pos++;
349 // av_free(bits);
351 // read signs
352 for (i = 0; i < entries; i++)
353 if (buf[i] && get_bits1(gb))
354 buf[i] = -buf[i];
356 // av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
358 return 0;
360 #endif
362 static void predictor_init_state(int *k, int *state, int order)
364 int i;
366 for (i = order-2; i >= 0; i--)
368 int j, p, x = state[i];
370 for (j = 0, p = i+1; p < order; j++,p++)
372 int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT);
373 state[p] += shift_down(k[j]*x, LATTICE_SHIFT);
374 x = tmp;
379 static int predictor_calc_error(int *k, int *state, int order, int error)
381 int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);
383 #if 1
384 int *k_ptr = &(k[order-2]),
385 *state_ptr = &(state[order-2]);
386 for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
388 int k_value = *k_ptr, state_value = *state_ptr;
389 x -= shift_down(k_value * state_value, LATTICE_SHIFT);
390 state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT);
392 #else
393 for (i = order-2; i >= 0; i--)
395 x -= shift_down(k[i] * state[i], LATTICE_SHIFT);
396 state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
398 #endif
400 // don't drift too far, to avoid overflows
401 if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16);
402 if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
404 state[0] = x;
406 return x;
409 // Heavily modified Levinson-Durbin algorithm which
410 // copes better with quantization, and calculates the
411 // actual whitened result as it goes.
413 static void modified_levinson_durbin(int *window, int window_entries,
414 int *out, int out_entries, int channels, int *tap_quant)
416 int i;
417 int *state = av_mallocz(4* window_entries);
419 memcpy(state, window, 4* window_entries);
421 for (i = 0; i < out_entries; i++)
423 int step = (i+1)*channels, k, j;
424 double xx = 0.0, xy = 0.0;
425 #if 1
426 int *x_ptr = &(window[step]), *state_ptr = &(state[0]);
427 j = window_entries - step;
428 for (;j>=0;j--,x_ptr++,state_ptr++)
430 double x_value = *x_ptr, state_value = *state_ptr;
431 xx += state_value*state_value;
432 xy += x_value*state_value;
434 #else
435 for (j = 0; j <= (window_entries - step); j++);
437 double stepval = window[step+j], stateval = window[j];
438 // xx += (double)window[j]*(double)window[j];
439 // xy += (double)window[step+j]*(double)window[j];
440 xx += stateval*stateval;
441 xy += stepval*stateval;
443 #endif
444 if (xx == 0.0)
445 k = 0;
446 else
447 k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
449 if (k > (LATTICE_FACTOR/tap_quant[i]))
450 k = LATTICE_FACTOR/tap_quant[i];
451 if (-k > (LATTICE_FACTOR/tap_quant[i]))
452 k = -(LATTICE_FACTOR/tap_quant[i]);
454 out[i] = k;
455 k *= tap_quant[i];
457 #if 1
458 x_ptr = &(window[step]);
459 state_ptr = &(state[0]);
460 j = window_entries - step;
461 for (;j>=0;j--,x_ptr++,state_ptr++)
463 int x_value = *x_ptr, state_value = *state_ptr;
464 *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
465 *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
467 #else
468 for (j=0; j <= (window_entries - step); j++)
470 int stepval = window[step+j], stateval=state[j];
471 window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
472 state[j] += shift_down(k * stepval, LATTICE_SHIFT);
474 #endif
477 av_free(state);
480 static int samplerate_table[] =
481 { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
483 #ifdef CONFIG_ENCODERS
485 static inline int code_samplerate(int samplerate)
487 switch (samplerate)
489 case 44100: return 0;
490 case 22050: return 1;
491 case 11025: return 2;
492 case 96000: return 3;
493 case 48000: return 4;
494 case 32000: return 5;
495 case 24000: return 6;
496 case 16000: return 7;
497 case 8000: return 8;
499 return -1;
502 static int sonic_encode_init(AVCodecContext *avctx)
504 SonicContext *s = avctx->priv_data;
505 PutBitContext pb;
506 int i, version = 0;
508 if (avctx->channels > MAX_CHANNELS)
510 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
511 return -1; /* only stereo or mono for now */
514 if (avctx->channels == 2)
515 s->decorrelation = MID_SIDE;
517 if (avctx->codec->id == CODEC_ID_SONIC_LS)
519 s->lossless = 1;
520 s->num_taps = 32;
521 s->downsampling = 1;
522 s->quantization = 0.0;
524 else
526 s->num_taps = 128;
527 s->downsampling = 2;
528 s->quantization = 1.0;
531 // max tap 2048
532 if ((s->num_taps < 32) || (s->num_taps > 1024) ||
533 ((s->num_taps>>5)<<5 != s->num_taps))
535 av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
536 return -1;
539 // generate taps
540 s->tap_quant = av_mallocz(4* s->num_taps);
541 for (i = 0; i < s->num_taps; i++)
542 s->tap_quant[i] = (int)(sqrt(i+1));
544 s->channels = avctx->channels;
545 s->samplerate = avctx->sample_rate;
547 s->block_align = (int)(2048.0*s->samplerate/44100)/s->downsampling;
548 s->frame_size = s->channels*s->block_align*s->downsampling;
550 s->tail = av_mallocz(4* s->num_taps*s->channels);
551 if (!s->tail)
552 return -1;
553 s->tail_size = s->num_taps*s->channels;
555 s->predictor_k = av_mallocz(4 * s->num_taps);
556 if (!s->predictor_k)
557 return -1;
559 for (i = 0; i < s->channels; i++)
561 s->coded_samples[i] = av_mallocz(4* s->block_align);
562 if (!s->coded_samples[i])
563 return -1;
566 s->int_samples = av_mallocz(4* s->frame_size);
568 s->window_size = ((2*s->tail_size)+s->frame_size);
569 s->window = av_mallocz(4* s->window_size);
570 if (!s->window)
571 return -1;
573 avctx->extradata = av_mallocz(16);
574 if (!avctx->extradata)
575 return -1;
576 init_put_bits(&pb, avctx->extradata, 16*8);
578 put_bits(&pb, 2, version); // version
579 if (version == 1)
581 put_bits(&pb, 2, s->channels);
582 put_bits(&pb, 4, code_samplerate(s->samplerate));
584 put_bits(&pb, 1, s->lossless);
585 if (!s->lossless)
586 put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
587 put_bits(&pb, 2, s->decorrelation);
588 put_bits(&pb, 2, s->downsampling);
589 put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
590 put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
592 flush_put_bits(&pb);
593 avctx->extradata_size = put_bits_count(&pb)/8;
595 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
596 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
598 avctx->coded_frame = avcodec_alloc_frame();
599 if (!avctx->coded_frame)
600 return -ENOMEM;
601 avctx->coded_frame->key_frame = 1;
602 avctx->frame_size = s->block_align*s->downsampling;
604 return 0;
607 static int sonic_encode_close(AVCodecContext *avctx)
609 SonicContext *s = avctx->priv_data;
610 int i;
612 av_freep(&avctx->coded_frame);
614 for (i = 0; i < s->channels; i++)
615 av_free(s->coded_samples[i]);
617 av_free(s->predictor_k);
618 av_free(s->tail);
619 av_free(s->tap_quant);
620 av_free(s->window);
621 av_free(s->int_samples);
623 return 0;
626 static int sonic_encode_frame(AVCodecContext *avctx,
627 uint8_t *buf, int buf_size, void *data)
629 SonicContext *s = avctx->priv_data;
630 PutBitContext pb;
631 int i, j, ch, quant = 0, x = 0;
632 short *samples = data;
634 init_put_bits(&pb, buf, buf_size*8);
636 // short -> internal
637 for (i = 0; i < s->frame_size; i++)
638 s->int_samples[i] = samples[i];
640 if (!s->lossless)
641 for (i = 0; i < s->frame_size; i++)
642 s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
644 switch(s->decorrelation)
646 case MID_SIDE:
647 for (i = 0; i < s->frame_size; i += s->channels)
649 s->int_samples[i] += s->int_samples[i+1];
650 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
652 break;
653 case LEFT_SIDE:
654 for (i = 0; i < s->frame_size; i += s->channels)
655 s->int_samples[i+1] -= s->int_samples[i];
656 break;
657 case RIGHT_SIDE:
658 for (i = 0; i < s->frame_size; i += s->channels)
659 s->int_samples[i] -= s->int_samples[i+1];
660 break;
663 memset(s->window, 0, 4* s->window_size);
665 for (i = 0; i < s->tail_size; i++)
666 s->window[x++] = s->tail[i];
668 for (i = 0; i < s->frame_size; i++)
669 s->window[x++] = s->int_samples[i];
671 for (i = 0; i < s->tail_size; i++)
672 s->window[x++] = 0;
674 for (i = 0; i < s->tail_size; i++)
675 s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
677 // generate taps
678 modified_levinson_durbin(s->window, s->window_size,
679 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
680 if (intlist_write(&pb, s->predictor_k, s->num_taps, 0) < 0)
681 return -1;
683 for (ch = 0; ch < s->channels; ch++)
685 x = s->tail_size+ch;
686 for (i = 0; i < s->block_align; i++)
688 int sum = 0;
689 for (j = 0; j < s->downsampling; j++, x += s->channels)
690 sum += s->window[x];
691 s->coded_samples[ch][i] = sum;
695 // simple rate control code
696 if (!s->lossless)
698 double energy1 = 0.0, energy2 = 0.0;
699 for (ch = 0; ch < s->channels; ch++)
701 for (i = 0; i < s->block_align; i++)
703 double sample = s->coded_samples[ch][i];
704 energy2 += sample*sample;
705 energy1 += fabs(sample);
709 energy2 = sqrt(energy2/(s->channels*s->block_align));
710 energy1 = sqrt(2.0)*energy1/(s->channels*s->block_align);
712 // increase bitrate when samples are like a gaussian distribution
713 // reduce bitrate when samples are like a two-tailed exponential distribution
715 if (energy2 > energy1)
716 energy2 += (energy2-energy1)*RATE_VARIATION;
718 quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
719 // av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
721 if (quant < 1)
722 quant = 1;
723 if (quant > 65535)
724 quant = 65535;
726 set_ue_golomb(&pb, quant);
728 quant *= SAMPLE_FACTOR;
731 // write out coded samples
732 for (ch = 0; ch < s->channels; ch++)
734 if (!s->lossless)
735 for (i = 0; i < s->block_align; i++)
736 s->coded_samples[ch][i] = divide(s->coded_samples[ch][i], quant);
738 if (intlist_write(&pb, s->coded_samples[ch], s->block_align, 1) < 0)
739 return -1;
742 // av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);
744 flush_put_bits(&pb);
745 return (put_bits_count(&pb)+7)/8;
747 #endif //CONFIG_ENCODERS
749 static int sonic_decode_init(AVCodecContext *avctx)
751 SonicContext *s = avctx->priv_data;
752 GetBitContext gb;
753 int i, version;
755 s->channels = avctx->channels;
756 s->samplerate = avctx->sample_rate;
758 if (!avctx->extradata)
760 av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
761 return -1;
764 init_get_bits(&gb, avctx->extradata, avctx->extradata_size);
766 version = get_bits(&gb, 2);
767 if (version > 1)
769 av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
770 return -1;
773 if (version == 1)
775 s->channels = get_bits(&gb, 2);
776 s->samplerate = samplerate_table[get_bits(&gb, 4)];
777 av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
778 s->channels, s->samplerate);
781 if (s->channels > MAX_CHANNELS)
783 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
784 return -1;
787 s->lossless = get_bits1(&gb);
788 if (!s->lossless)
789 skip_bits(&gb, 3); // XXX FIXME
790 s->decorrelation = get_bits(&gb, 2);
792 s->downsampling = get_bits(&gb, 2);
793 s->num_taps = (get_bits(&gb, 5)+1)<<5;
794 if (get_bits1(&gb)) // XXX FIXME
795 av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
797 s->block_align = (int)(2048.0*(s->samplerate/44100))/s->downsampling;
798 s->frame_size = s->channels*s->block_align*s->downsampling;
799 // avctx->frame_size = s->block_align;
801 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
802 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
804 // generate taps
805 s->tap_quant = av_mallocz(4* s->num_taps);
806 for (i = 0; i < s->num_taps; i++)
807 s->tap_quant[i] = (int)(sqrt(i+1));
809 s->predictor_k = av_mallocz(4* s->num_taps);
811 for (i = 0; i < s->channels; i++)
813 s->predictor_state[i] = av_mallocz(4* s->num_taps);
814 if (!s->predictor_state[i])
815 return -1;
818 for (i = 0; i < s->channels; i++)
820 s->coded_samples[i] = av_mallocz(4* s->block_align);
821 if (!s->coded_samples[i])
822 return -1;
824 s->int_samples = av_mallocz(4* s->frame_size);
826 return 0;
829 static int sonic_decode_close(AVCodecContext *avctx)
831 SonicContext *s = avctx->priv_data;
832 int i;
834 av_free(s->int_samples);
835 av_free(s->tap_quant);
836 av_free(s->predictor_k);
838 for (i = 0; i < s->channels; i++)
840 av_free(s->predictor_state[i]);
841 av_free(s->coded_samples[i]);
844 return 0;
847 static int sonic_decode_frame(AVCodecContext *avctx,
848 void *data, int *data_size,
849 uint8_t *buf, int buf_size)
851 SonicContext *s = avctx->priv_data;
852 GetBitContext gb;
853 int i, quant, ch, j;
854 short *samples = data;
856 if (buf_size == 0) return 0;
858 // av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
860 init_get_bits(&gb, buf, buf_size*8);
862 intlist_read(&gb, s->predictor_k, s->num_taps, 0);
864 // dequantize
865 for (i = 0; i < s->num_taps; i++)
866 s->predictor_k[i] *= s->tap_quant[i];
868 if (s->lossless)
869 quant = 1;
870 else
871 quant = get_ue_golomb(&gb) * SAMPLE_FACTOR;
873 // av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
875 for (ch = 0; ch < s->channels; ch++)
877 int x = ch;
879 predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
881 intlist_read(&gb, s->coded_samples[ch], s->block_align, 1);
883 for (i = 0; i < s->block_align; i++)
885 for (j = 0; j < s->downsampling - 1; j++)
887 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
888 x += s->channels;
891 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant);
892 x += s->channels;
895 for (i = 0; i < s->num_taps; i++)
896 s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
899 switch(s->decorrelation)
901 case MID_SIDE:
902 for (i = 0; i < s->frame_size; i += s->channels)
904 s->int_samples[i+1] += shift(s->int_samples[i], 1);
905 s->int_samples[i] -= s->int_samples[i+1];
907 break;
908 case LEFT_SIDE:
909 for (i = 0; i < s->frame_size; i += s->channels)
910 s->int_samples[i+1] += s->int_samples[i];
911 break;
912 case RIGHT_SIDE:
913 for (i = 0; i < s->frame_size; i += s->channels)
914 s->int_samples[i] += s->int_samples[i+1];
915 break;
918 if (!s->lossless)
919 for (i = 0; i < s->frame_size; i++)
920 s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
922 // internal -> short
923 for (i = 0; i < s->frame_size; i++)
925 if (s->int_samples[i] > 32767)
926 samples[i] = 32767;
927 else if (s->int_samples[i] < -32768)
928 samples[i] = -32768;
929 else
930 samples[i] = s->int_samples[i];
933 align_get_bits(&gb);
935 *data_size = s->frame_size * 2;
937 return (get_bits_count(&gb)+7)/8;
940 #ifdef CONFIG_ENCODERS
941 AVCodec sonic_encoder = {
942 "sonic",
943 CODEC_TYPE_AUDIO,
944 CODEC_ID_SONIC,
945 sizeof(SonicContext),
946 sonic_encode_init,
947 sonic_encode_frame,
948 sonic_encode_close,
949 NULL,
952 AVCodec sonic_ls_encoder = {
953 "sonicls",
954 CODEC_TYPE_AUDIO,
955 CODEC_ID_SONIC_LS,
956 sizeof(SonicContext),
957 sonic_encode_init,
958 sonic_encode_frame,
959 sonic_encode_close,
960 NULL,
962 #endif
964 #ifdef CONFIG_DECODERS
965 AVCodec sonic_decoder = {
966 "sonic",
967 CODEC_TYPE_AUDIO,
968 CODEC_ID_SONIC,
969 sizeof(SonicContext),
970 sonic_decode_init,
971 NULL,
972 sonic_decode_close,
973 sonic_decode_frame,
975 #endif