1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
13 // ARGUMENT BINDING WRAPPERS
15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function. Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
31 // ConstRef() allows binding a constant reference to an argument rather
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
39 // EXAMPLE OF Unretained():
43 // void func() { cout << "Foo:f" << endl; }
46 // // In some function somewhere.
48 // Closure foo_callback =
49 // Bind(&Foo::func, Unretained(&foo));
50 // foo_callback.Run(); // Prints "Foo:f".
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
56 // EXAMPLE OF Owned():
58 // void foo(int* arg) { cout << *arg << endl }
60 // int* pn = new int(1);
61 // Closure foo_callback = Bind(&foo, Owned(pn));
63 // foo_callback.Run(); // Prints "1"
64 // foo_callback.Run(); // Prints "1"
66 // foo_callback.Run(); // Prints "2"
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when
69 // // |foo_callback| goes out of scope.
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
75 // EXAMPLE OF ConstRef():
77 // void foo(int arg) { cout << arg << endl }
80 // Closure no_ref = Bind(&foo, n);
81 // Closure has_ref = Bind(&foo, ConstRef(n));
83 // no_ref.Run(); // Prints "1"
84 // has_ref.Run(); // Prints "1"
87 // no_ref.Run(); // Prints "1"
88 // has_ref.Run(); // Prints "2"
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
94 // EXAMPLE OF IgnoreResult():
96 // int DoSomething(int arg) { cout << arg << endl; }
98 // // Assign to a Callback with a void return type.
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 // cb->Run(1); // Prints "1".
102 // // Prints "1" on |ml|.
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
106 // EXAMPLE OF Passed():
108 // void TakesOwnership(scoped_ptr<Foo> arg) { }
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
111 // scoped_ptr<Foo> f(new Foo());
113 // // |cb| is given ownership of Foo(). |f| is now NULL.
114 // // You can use f.Pass() in place of &f, but it's more verbose.
115 // Closure cb = Bind(&TakesOwnership, Passed(&f));
117 // // Run was never called so |cb| still owns Foo() and deletes
121 // // |cb| is given a new Foo created by CreateFoo().
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo()));
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 // // no longer owns Foo() and, if reset, would not delete Foo().
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted.
127 // cb.Run(); // This CHECK()s since Foo() already been used once.
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a MessageLoopProxy.
135 // SIMPLE FUNCTIONS AND UTILITIES.
137 // DoNothing() - Useful for creating a Closure that does nothing when called.
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a
139 // pointer when invoked. Only use this when necessary.
140 // In most cases MessageLoop::DeleteSoon() is a better
143 #ifndef BASE_BIND_HELPERS_H_
144 #define BASE_BIND_HELPERS_H_
146 #include "base/basictypes.h"
147 #include "base/callback.h"
148 #include "base/memory/weak_ptr.h"
149 #include "base/template_util.h"
154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
155 // for the existence of AddRef() and Release() functions of the correct
158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
163 // The last link in particular show the method used below.
165 // For SFINAE to work with inherited methods, we need to pull some extra tricks
166 // with multiple inheritance. In the more standard formulation, the overloads
167 // of Check would be:
169 // template <typename C>
170 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
172 // template <typename C>
173 // No NotTheCheckWeWant(...);
175 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
177 // The problem here is that template resolution will not match
178 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if
179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
180 // |value| will be false. This formulation only checks for whether or
181 // not TargetFunc exist directly in the class being introspected.
183 // To get around this, we play a dirty trick with multiple inheritance.
184 // First, We create a class BaseMixin that declares each function that we
185 // want to probe for. Then we create a class Base that inherits from both T
186 // (the class we wish to probe) and BaseMixin. Note that the function
187 // signature in BaseMixin does not need to match the signature of the function
188 // we are probing for; thus it's easiest to just use void(void).
190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
191 // ambiguous resolution between BaseMixin and T. This lets us write the
194 // template <typename C>
195 // No GoodCheck(Helper<&C::TargetFunc>*);
197 // template <typename C>
198 // Yes GoodCheck(...);
200 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
202 // Notice here that the variadic version of GoodCheck() returns Yes here
203 // instead of No like the previous one. Also notice that we calculate |value|
204 // by specializing GoodCheck() on Base instead of T.
206 // We've reversed the roles of the variadic, and Helper overloads.
207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
209 // to the variadic version if T has TargetFunc. If T::TargetFunc does not
210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
211 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
213 // This method of SFINAE will correctly probe for inherited names, but it cannot
214 // typecheck those names. It's still a good enough sanity check though.
216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
221 // TODO(ajwong): Make this check for Release() as well.
222 // See http://crbug.com/82038.
223 template <typename T
>
224 class SupportsAddRefAndRelease
{
232 // MSVC warns when you try to use Base if T has a private destructor, the
233 // common pattern for refcounted types. It does this even though no attempt to
234 // instantiate Base is made. We disable the warning for this definition.
236 #pragma warning(push)
237 #pragma warning(disable:4624)
239 struct Base
: public T
, public BaseMixin
{
245 template <void(BaseMixin::*)(void)> struct Helper
{};
247 template <typename C
>
248 static No
& Check(Helper
<&C::AddRef
>*);
251 static Yes
& Check(...);
254 enum { value
= sizeof(Check
<Base
>(0)) == sizeof(Yes
) };
257 // Helpers to assert that arguments of a recounted type are bound with a
259 template <bool IsClasstype
, typename T
>
260 struct UnsafeBindtoRefCountedArgHelper
: false_type
{
263 template <typename T
>
264 struct UnsafeBindtoRefCountedArgHelper
<true, T
>
265 : integral_constant
<bool, SupportsAddRefAndRelease
<T
>::value
> {
268 template <typename T
>
269 struct UnsafeBindtoRefCountedArg
: false_type
{
272 template <typename T
>
273 struct UnsafeBindtoRefCountedArg
<T
*>
274 : UnsafeBindtoRefCountedArgHelper
<is_class
<T
>::value
, T
> {
277 template <typename T
>
278 class HasIsMethodTag
{
282 template <typename U
>
283 static Yes
& Check(typename
U::IsMethod
*);
285 template <typename U
>
286 static No
& Check(...);
289 enum { value
= sizeof(Check
<T
>(0)) == sizeof(Yes
) };
292 template <typename T
>
293 class UnretainedWrapper
{
295 explicit UnretainedWrapper(T
* o
) : ptr_(o
) {}
296 T
* get() const { return ptr_
; }
301 template <typename T
>
302 class ConstRefWrapper
{
304 explicit ConstRefWrapper(const T
& o
) : ptr_(&o
) {}
305 const T
& get() const { return *ptr_
; }
310 template <typename T
>
311 struct IgnoreResultHelper
{
312 explicit IgnoreResultHelper(T functor
) : functor_(functor
) {}
317 template <typename T
>
318 struct IgnoreResultHelper
<Callback
<T
> > {
319 explicit IgnoreResultHelper(const Callback
<T
>& functor
) : functor_(functor
) {}
321 const Callback
<T
>& functor_
;
324 // An alternate implementation is to avoid the destructive copy, and instead
325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
326 // a class that is essentially a scoped_ptr<>.
328 // The current implementation has the benefit though of leaving ParamTraits<>
329 // fully in callback_internal.h as well as avoiding type conversions during
331 template <typename T
>
334 explicit OwnedWrapper(T
* o
) : ptr_(o
) {}
335 ~OwnedWrapper() { delete ptr_
; }
336 T
* get() const { return ptr_
; }
337 OwnedWrapper(const OwnedWrapper
& other
) {
346 // PassedWrapper is a copyable adapter for a scoper that ignores const.
348 // It is needed to get around the fact that Bind() takes a const reference to
349 // all its arguments. Because Bind() takes a const reference to avoid
350 // unnecessary copies, it is incompatible with movable-but-not-copyable
351 // types; doing a destructive "move" of the type into Bind() would violate
352 // the const correctness.
354 // This conundrum cannot be solved without either C++11 rvalue references or
355 // a O(2^n) blowup of Bind() templates to handle each combination of regular
356 // types and movable-but-not-copyable types. Thus we introduce a wrapper type
357 // that is copyable to transmit the correct type information down into
358 // BindState<>. Ignoring const in this type makes sense because it is only
359 // created when we are explicitly trying to do a destructive move.
362 // 1) PassedWrapper supports any type that has a "Pass()" function.
363 // This is intentional. The whitelisting of which specific types we
364 // support is maintained by CallbackParamTraits<>.
365 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
366 // scoper to a Callback and allow the Callback to execute once.
367 template <typename T
>
368 class PassedWrapper
{
370 explicit PassedWrapper(T scoper
) : is_valid_(true), scoper_(scoper
.Pass()) {}
371 PassedWrapper(const PassedWrapper
& other
)
372 : is_valid_(other
.is_valid_
), scoper_(other
.scoper_
.Pass()) {
377 return scoper_
.Pass();
381 mutable bool is_valid_
;
385 // Unwrap the stored parameters for the wrappers above.
386 template <typename T
>
387 struct UnwrapTraits
{
388 typedef const T
& ForwardType
;
389 static ForwardType
Unwrap(const T
& o
) { return o
; }
392 template <typename T
>
393 struct UnwrapTraits
<UnretainedWrapper
<T
> > {
394 typedef T
* ForwardType
;
395 static ForwardType
Unwrap(UnretainedWrapper
<T
> unretained
) {
396 return unretained
.get();
400 template <typename T
>
401 struct UnwrapTraits
<ConstRefWrapper
<T
> > {
402 typedef const T
& ForwardType
;
403 static ForwardType
Unwrap(ConstRefWrapper
<T
> const_ref
) {
404 return const_ref
.get();
408 template <typename T
>
409 struct UnwrapTraits
<scoped_refptr
<T
> > {
410 typedef T
* ForwardType
;
411 static ForwardType
Unwrap(const scoped_refptr
<T
>& o
) { return o
.get(); }
414 template <typename T
>
415 struct UnwrapTraits
<WeakPtr
<T
> > {
416 typedef const WeakPtr
<T
>& ForwardType
;
417 static ForwardType
Unwrap(const WeakPtr
<T
>& o
) { return o
; }
420 template <typename T
>
421 struct UnwrapTraits
<OwnedWrapper
<T
> > {
422 typedef T
* ForwardType
;
423 static ForwardType
Unwrap(const OwnedWrapper
<T
>& o
) {
428 template <typename T
>
429 struct UnwrapTraits
<PassedWrapper
<T
> > {
430 typedef T ForwardType
;
431 static T
Unwrap(PassedWrapper
<T
>& o
) {
436 // Utility for handling different refcounting semantics in the Bind()
438 template <bool is_method
, typename
... T
>
439 struct MaybeScopedRefPtr
;
441 template <bool is_method
>
442 struct MaybeScopedRefPtr
<is_method
> {
443 MaybeScopedRefPtr() {}
446 template <typename T
, typename
... Rest
>
447 struct MaybeScopedRefPtr
<false, T
, Rest
...> {
448 MaybeScopedRefPtr(const T
&, const Rest
&...) {}
451 template <typename T
, size_t n
, typename
... Rest
>
452 struct MaybeScopedRefPtr
<false, T
[n
], Rest
...> {
453 MaybeScopedRefPtr(const T
*, const Rest
&...) {}
456 template <typename T
, typename
... Rest
>
457 struct MaybeScopedRefPtr
<true, T
, Rest
...> {
458 MaybeScopedRefPtr(const T
& o
, const Rest
&...) {}
461 template <typename T
, typename
... Rest
>
462 struct MaybeScopedRefPtr
<true, T
*, Rest
...> {
463 MaybeScopedRefPtr(T
* o
, const Rest
&...) : ref_(o
) {}
464 scoped_refptr
<T
> ref_
;
467 // No need to additionally AddRef() and Release() since we are storing a
468 // scoped_refptr<> inside the storage object already.
469 template <typename T
, typename
... Rest
>
470 struct MaybeScopedRefPtr
<true, scoped_refptr
<T
>, Rest
...> {
471 MaybeScopedRefPtr(const scoped_refptr
<T
>&, const Rest
&...) {}
474 template <typename T
, typename
... Rest
>
475 struct MaybeScopedRefPtr
<true, const T
*, Rest
...> {
476 MaybeScopedRefPtr(const T
* o
, const Rest
&...) : ref_(o
) {}
477 scoped_refptr
<const T
> ref_
;
480 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
481 // method. It is used internally by Bind() to select the correct
482 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
483 // the target object is invalidated.
485 // The first argument should be the type of the object that will be received by
487 template <bool IsMethod
, typename
... Args
>
488 struct IsWeakMethod
: public false_type
{};
490 template <typename T
, typename
... Args
>
491 struct IsWeakMethod
<true, WeakPtr
<T
>, Args
...> : public true_type
{};
493 template <typename T
, typename
... Args
>
494 struct IsWeakMethod
<true, ConstRefWrapper
<WeakPtr
<T
>>, Args
...>
495 : public true_type
{};
498 // Packs a list of types to hold them in a single type.
499 template <typename
... Types
>
502 // Used for DropTypeListItem implementation.
503 template <size_t n
, typename List
>
504 struct DropTypeListItemImpl
;
506 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
507 template <size_t n
, typename T
, typename
... List
>
508 struct DropTypeListItemImpl
<n
, TypeList
<T
, List
...>>
509 : DropTypeListItemImpl
<n
- 1, TypeList
<List
...>> {};
511 template <typename T
, typename
... List
>
512 struct DropTypeListItemImpl
<0, TypeList
<T
, List
...>> {
513 typedef TypeList
<T
, List
...> Type
;
517 struct DropTypeListItemImpl
<0, TypeList
<>> {
518 typedef TypeList
<> Type
;
521 // A type-level function that drops |n| list item from given TypeList.
522 template <size_t n
, typename List
>
523 using DropTypeListItem
= typename DropTypeListItemImpl
<n
, List
>::Type
;
525 // Used for ConcatTypeLists implementation.
526 template <typename List1
, typename List2
>
527 struct ConcatTypeListsImpl
;
529 template <typename
... Types1
, typename
... Types2
>
530 struct ConcatTypeListsImpl
<TypeList
<Types1
...>, TypeList
<Types2
...>> {
531 typedef TypeList
<Types1
..., Types2
...> Type
;
534 // A type-level function that concats two TypeLists.
535 template <typename List1
, typename List2
>
536 using ConcatTypeLists
= typename ConcatTypeListsImpl
<List1
, List2
>::Type
;
538 // Used for MakeFunctionType implementation.
539 template <typename R
, typename ArgList
>
540 struct MakeFunctionTypeImpl
;
542 template <typename R
, typename
... Args
>
543 struct MakeFunctionTypeImpl
<R
, TypeList
<Args
...>> {
544 typedef R(Type
)(Args
...);
547 // A type-level function that constructs a function type that has |R| as its
548 // return type and has TypeLists items as its arguments.
549 template <typename R
, typename ArgList
>
550 using MakeFunctionType
= typename MakeFunctionTypeImpl
<R
, ArgList
>::Type
;
552 } // namespace internal
554 template <typename T
>
555 static inline internal::UnretainedWrapper
<T
> Unretained(T
* o
) {
556 return internal::UnretainedWrapper
<T
>(o
);
559 template <typename T
>
560 static inline internal::ConstRefWrapper
<T
> ConstRef(const T
& o
) {
561 return internal::ConstRefWrapper
<T
>(o
);
564 template <typename T
>
565 static inline internal::OwnedWrapper
<T
> Owned(T
* o
) {
566 return internal::OwnedWrapper
<T
>(o
);
569 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and
570 // is best suited for use with the return value of a function. The second
571 // takes a pointer to the scoper and is just syntactic sugar to avoid having
572 // to write Passed(scoper.Pass()).
573 template <typename T
>
574 static inline internal::PassedWrapper
<T
> Passed(T scoper
) {
575 return internal::PassedWrapper
<T
>(scoper
.Pass());
577 template <typename T
>
578 static inline internal::PassedWrapper
<T
> Passed(T
* scoper
) {
579 return internal::PassedWrapper
<T
>(scoper
->Pass());
582 template <typename T
>
583 static inline internal::IgnoreResultHelper
<T
> IgnoreResult(T data
) {
584 return internal::IgnoreResultHelper
<T
>(data
);
587 template <typename T
>
588 static inline internal::IgnoreResultHelper
<Callback
<T
> >
589 IgnoreResult(const Callback
<T
>& data
) {
590 return internal::IgnoreResultHelper
<Callback
<T
> >(data
);
593 BASE_EXPORT
void DoNothing();
596 void DeletePointer(T
* obj
) {
602 #endif // BASE_BIND_HELPERS_H_