Ensure that NPAPI is enabled if any enterprise plugin policies are set.
[chromium-blink-merge.git] / components / storage_monitor / storage_monitor_linux_unittest.cc
blob3e77145f9a5f07198d8ad4666c3c711ba74c5cd5
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // StorageMonitorLinux unit tests.
7 #include "components/storage_monitor/storage_monitor_linux.h"
9 #include <mntent.h>
10 #include <stdio.h>
12 #include <string>
14 #include "base/files/file_util.h"
15 #include "base/files/scoped_temp_dir.h"
16 #include "base/logging.h"
17 #include "base/memory/scoped_ptr.h"
18 #include "base/run_loop.h"
19 #include "base/strings/utf_string_conversions.h"
20 #include "components/storage_monitor/mock_removable_storage_observer.h"
21 #include "components/storage_monitor/removable_device_constants.h"
22 #include "components/storage_monitor/storage_info.h"
23 #include "components/storage_monitor/storage_monitor.h"
24 #include "components/storage_monitor/test_media_transfer_protocol_manager_linux.h"
25 #include "components/storage_monitor/test_storage_monitor.h"
26 #include "content/public/test/test_browser_thread_bundle.h"
27 #include "testing/gtest/include/gtest/gtest.h"
29 namespace storage_monitor {
31 namespace {
33 const char kValidFS[] = "vfat";
34 const char kInvalidFS[] = "invalidfs";
36 const char kInvalidPath[] = "invalid path does not exist";
38 const char kDeviceDCIM1[] = "d1";
39 const char kDeviceDCIM2[] = "d2";
40 const char kDeviceDCIM3[] = "d3";
41 const char kDeviceNoDCIM[] = "d4";
42 const char kDeviceFixed[] = "d5";
44 const char kInvalidDevice[] = "invalid_device";
46 const char kMountPointA[] = "mnt_a";
47 const char kMountPointB[] = "mnt_b";
48 const char kMountPointC[] = "mnt_c";
50 struct TestDeviceData {
51 const char* device_path;
52 const char* unique_id;
53 StorageInfo::Type type;
54 uint64 partition_size_in_bytes;
57 const TestDeviceData kTestDeviceData[] = {
58 { kDeviceDCIM1, "UUID:FFF0-000F",
59 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM, 88788 },
60 { kDeviceDCIM2, "VendorModelSerial:ComName:Model2010:8989",
61 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM,
62 8773 },
63 { kDeviceDCIM3, "VendorModelSerial:::WEM319X792",
64 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM, 22837 },
65 { kDeviceNoDCIM, "UUID:ABCD-1234",
66 StorageInfo::REMOVABLE_MASS_STORAGE_NO_DCIM, 512 },
67 { kDeviceFixed, "UUID:743A-2349",
68 StorageInfo::FIXED_MASS_STORAGE, 17282 },
71 scoped_ptr<StorageInfo> GetDeviceInfo(const base::FilePath& device_path,
72 const base::FilePath& mount_point) {
73 bool device_found = false;
74 size_t i = 0;
75 for (; i < arraysize(kTestDeviceData); i++) {
76 if (device_path.value() == kTestDeviceData[i].device_path) {
77 device_found = true;
78 break;
82 scoped_ptr<StorageInfo> storage_info;
83 if (!device_found) {
84 NOTREACHED();
85 return storage_info.Pass();
88 StorageInfo::Type type = kTestDeviceData[i].type;
89 storage_info.reset(new StorageInfo(
90 StorageInfo::MakeDeviceId(type, kTestDeviceData[i].unique_id),
91 mount_point.value(),
92 base::ASCIIToUTF16("volume label"),
93 base::ASCIIToUTF16("vendor name"),
94 base::ASCIIToUTF16("model name"),
95 kTestDeviceData[i].partition_size_in_bytes));
96 return storage_info.Pass();
99 uint64 GetDevicePartitionSize(const std::string& device) {
100 for (size_t i = 0; i < arraysize(kTestDeviceData); ++i) {
101 if (device == kTestDeviceData[i].device_path)
102 return kTestDeviceData[i].partition_size_in_bytes;
104 return 0;
107 std::string GetDeviceId(const std::string& device) {
108 for (size_t i = 0; i < arraysize(kTestDeviceData); ++i) {
109 if (device == kTestDeviceData[i].device_path) {
110 return StorageInfo::MakeDeviceId(kTestDeviceData[i].type,
111 kTestDeviceData[i].unique_id);
114 if (device == kInvalidDevice) {
115 return StorageInfo::MakeDeviceId(StorageInfo::FIXED_MASS_STORAGE,
116 kInvalidDevice);
118 return std::string();
121 class TestStorageMonitorLinux : public StorageMonitorLinux {
122 public:
123 explicit TestStorageMonitorLinux(const base::FilePath& path)
124 : StorageMonitorLinux(path) {
125 SetMediaTransferProtocolManagerForTest(
126 new TestMediaTransferProtocolManagerLinux());
127 SetGetDeviceInfoCallbackForTest(base::Bind(&GetDeviceInfo));
129 ~TestStorageMonitorLinux() override {}
131 private:
132 void UpdateMtab(
133 const MtabWatcherLinux::MountPointDeviceMap& new_mtab) override {
134 StorageMonitorLinux::UpdateMtab(new_mtab);
135 base::MessageLoopProxy::current()->PostTask(
136 FROM_HERE, base::MessageLoop::QuitClosure());
139 DISALLOW_COPY_AND_ASSIGN(TestStorageMonitorLinux);
142 class StorageMonitorLinuxTest : public testing::Test {
143 public:
144 struct MtabTestData {
145 MtabTestData(const std::string& mount_device,
146 const std::string& mount_point,
147 const std::string& mount_type)
148 : mount_device(mount_device),
149 mount_point(mount_point),
150 mount_type(mount_type) {
153 const std::string mount_device;
154 const std::string mount_point;
155 const std::string mount_type;
158 StorageMonitorLinuxTest()
159 : thread_bundle_(content::TestBrowserThreadBundle::IO_MAINLOOP) {}
160 ~StorageMonitorLinuxTest() override {}
162 protected:
163 void SetUp() override {
164 // Create and set up a temp dir with files for the test.
165 ASSERT_TRUE(scoped_temp_dir_.CreateUniqueTempDir());
166 base::FilePath test_dir = scoped_temp_dir_.path().AppendASCII("test_etc");
167 ASSERT_TRUE(base::CreateDirectory(test_dir));
168 mtab_file_ = test_dir.AppendASCII("test_mtab");
169 MtabTestData initial_test_data[] = {
170 MtabTestData("dummydevice", "dummydir", kInvalidFS),
172 WriteToMtab(initial_test_data,
173 arraysize(initial_test_data),
174 true /* overwrite */);
176 monitor_.reset(new TestStorageMonitorLinux(mtab_file_));
178 mock_storage_observer_.reset(new MockRemovableStorageObserver);
179 monitor_->AddObserver(mock_storage_observer_.get());
181 monitor_->Init();
182 base::RunLoop().RunUntilIdle();
185 void TearDown() override {
186 base::RunLoop().RunUntilIdle();
187 monitor_->RemoveObserver(mock_storage_observer_.get());
188 base::RunLoop().RunUntilIdle();
190 // Linux storage monitor must be destroyed on the UI thread, so do it here.
191 monitor_.reset();
194 // Append mtab entries from the |data| array of size |data_size| to the mtab
195 // file, and run the message loop.
196 void AppendToMtabAndRunLoop(const MtabTestData* data, size_t data_size) {
197 WriteToMtab(data, data_size, false /* do not overwrite */);
198 base::RunLoop().Run();
201 // Overwrite the mtab file with mtab entries from the |data| array of size
202 // |data_size|, and run the message loop.
203 void OverwriteMtabAndRunLoop(const MtabTestData* data, size_t data_size) {
204 WriteToMtab(data, data_size, true /* overwrite */);
205 base::RunLoop().Run();
208 // Simplied version of OverwriteMtabAndRunLoop() that just deletes all the
209 // entries in the mtab file.
210 void WriteEmptyMtabAndRunLoop() {
211 OverwriteMtabAndRunLoop(NULL, // No data.
212 0); // No data length.
215 // Create a directory named |dir| relative to the test directory.
216 // It has a DCIM directory, so StorageMonitorLinux recognizes it as a media
217 // directory.
218 base::FilePath CreateMountPointWithDCIMDir(const std::string& dir) {
219 return CreateMountPoint(dir, true /* create DCIM dir */);
222 // Create a directory named |dir| relative to the test directory.
223 // It does not have a DCIM directory, so StorageMonitorLinux does not
224 // recognize it as a media directory.
225 base::FilePath CreateMountPointWithoutDCIMDir(const std::string& dir) {
226 return CreateMountPoint(dir, false /* do not create DCIM dir */);
229 void RemoveDCIMDirFromMountPoint(const std::string& dir) {
230 base::FilePath dcim =
231 scoped_temp_dir_.path().AppendASCII(dir).Append(kDCIMDirectoryName);
232 base::DeleteFile(dcim, false);
235 MockRemovableStorageObserver& observer() {
236 return *mock_storage_observer_;
239 StorageMonitor* notifier() {
240 return monitor_.get();
243 uint64 GetStorageSize(const base::FilePath& path) {
244 StorageInfo info;
245 if (!notifier()->GetStorageInfoForPath(path, &info))
246 return 0;
248 return info.total_size_in_bytes();
251 private:
252 // Create a directory named |dir| relative to the test directory.
253 // Set |with_dcim_dir| to true if the created directory will have a "DCIM"
254 // subdirectory.
255 // Returns the full path to the created directory on success, or an empty
256 // path on failure.
257 base::FilePath CreateMountPoint(const std::string& dir, bool with_dcim_dir) {
258 base::FilePath return_path(scoped_temp_dir_.path());
259 return_path = return_path.AppendASCII(dir);
260 base::FilePath path(return_path);
261 if (with_dcim_dir)
262 path = path.Append(kDCIMDirectoryName);
263 if (!base::CreateDirectory(path))
264 return base::FilePath();
265 return return_path;
268 // Write the test mtab data to |mtab_file_|.
269 // |data| is an array of mtab entries.
270 // |data_size| is the array size of |data|.
271 // |overwrite| specifies whether to overwrite |mtab_file_|.
272 void WriteToMtab(const MtabTestData* data,
273 size_t data_size,
274 bool overwrite) {
275 FILE* file = setmntent(mtab_file_.value().c_str(), overwrite ? "w" : "a");
276 ASSERT_TRUE(file);
278 // Due to the glibc *mntent() interface design, which is out of our
279 // control, the mtnent struct has several char* fields, even though
280 // addmntent() does not write to them in the calls below. To make the
281 // compiler happy while avoiding making additional copies of strings,
282 // we just const_cast() the strings' c_str()s.
283 // Assuming addmntent() does not write to the char* fields, this is safe.
284 // It is unlikely the platforms this test suite runs on will have an
285 // addmntent() implementation that does change the char* fields. If that
286 // was ever the case, the test suite will start crashing or failing.
287 mntent entry;
288 static const char kMountOpts[] = "rw";
289 entry.mnt_opts = const_cast<char*>(kMountOpts);
290 entry.mnt_freq = 0;
291 entry.mnt_passno = 0;
292 for (size_t i = 0; i < data_size; ++i) {
293 entry.mnt_fsname = const_cast<char*>(data[i].mount_device.c_str());
294 entry.mnt_dir = const_cast<char*>(data[i].mount_point.c_str());
295 entry.mnt_type = const_cast<char*>(data[i].mount_type.c_str());
296 ASSERT_EQ(0, addmntent(file, &entry));
298 ASSERT_EQ(1, endmntent(file));
301 content::TestBrowserThreadBundle thread_bundle_;
303 scoped_ptr<MockRemovableStorageObserver> mock_storage_observer_;
305 // Temporary directory for created test data.
306 base::ScopedTempDir scoped_temp_dir_;
307 // Path to the test mtab file.
308 base::FilePath mtab_file_;
310 scoped_ptr<TestStorageMonitorLinux> monitor_;
312 DISALLOW_COPY_AND_ASSIGN(StorageMonitorLinuxTest);
315 // Simple test case where we attach and detach a media device.
316 TEST_F(StorageMonitorLinuxTest, BasicAttachDetach) {
317 base::FilePath test_path = CreateMountPointWithDCIMDir(kMountPointA);
318 ASSERT_FALSE(test_path.empty());
319 MtabTestData test_data[] = {
320 MtabTestData(kDeviceDCIM2, test_path.value(), kValidFS),
321 MtabTestData(kDeviceFixed, kInvalidPath, kValidFS),
323 // Only |kDeviceDCIM2| should be attached, since |kDeviceFixed| has a bad
324 // path.
325 AppendToMtabAndRunLoop(test_data, arraysize(test_data));
327 EXPECT_EQ(1, observer().attach_calls());
328 EXPECT_EQ(0, observer().detach_calls());
329 EXPECT_EQ(GetDeviceId(kDeviceDCIM2), observer().last_attached().device_id());
330 EXPECT_EQ(test_path.value(), observer().last_attached().location());
332 // |kDeviceDCIM2| should be detached here.
333 WriteEmptyMtabAndRunLoop();
334 EXPECT_EQ(1, observer().attach_calls());
335 EXPECT_EQ(1, observer().detach_calls());
336 EXPECT_EQ(GetDeviceId(kDeviceDCIM2), observer().last_detached().device_id());
339 // Only removable devices are recognized.
340 TEST_F(StorageMonitorLinuxTest, Removable) {
341 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
342 ASSERT_FALSE(test_path_a.empty());
343 MtabTestData test_data1[] = {
344 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
346 // |kDeviceDCIM1| should be attached as expected.
347 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
349 EXPECT_EQ(1, observer().attach_calls());
350 EXPECT_EQ(0, observer().detach_calls());
351 EXPECT_EQ(GetDeviceId(kDeviceDCIM1), observer().last_attached().device_id());
352 EXPECT_EQ(test_path_a.value(), observer().last_attached().location());
354 // This should do nothing, since |kDeviceFixed| is not removable.
355 base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
356 ASSERT_FALSE(test_path_b.empty());
357 MtabTestData test_data2[] = {
358 MtabTestData(kDeviceFixed, test_path_b.value(), kValidFS),
360 AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
361 EXPECT_EQ(1, observer().attach_calls());
362 EXPECT_EQ(0, observer().detach_calls());
364 // |kDeviceDCIM1| should be detached as expected.
365 WriteEmptyMtabAndRunLoop();
366 EXPECT_EQ(1, observer().attach_calls());
367 EXPECT_EQ(1, observer().detach_calls());
368 EXPECT_EQ(GetDeviceId(kDeviceDCIM1), observer().last_detached().device_id());
370 // |kDeviceNoDCIM| should be attached as expected.
371 MtabTestData test_data3[] = {
372 MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
374 AppendToMtabAndRunLoop(test_data3, arraysize(test_data3));
375 EXPECT_EQ(2, observer().attach_calls());
376 EXPECT_EQ(1, observer().detach_calls());
377 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), observer().last_attached().device_id());
378 EXPECT_EQ(test_path_b.value(), observer().last_attached().location());
380 // |kDeviceNoDCIM| should be detached as expected.
381 WriteEmptyMtabAndRunLoop();
382 EXPECT_EQ(2, observer().attach_calls());
383 EXPECT_EQ(2, observer().detach_calls());
384 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), observer().last_detached().device_id());
387 // More complicated test case with multiple devices on multiple mount points.
388 TEST_F(StorageMonitorLinuxTest, SwapMountPoints) {
389 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
390 base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
391 ASSERT_FALSE(test_path_a.empty());
392 ASSERT_FALSE(test_path_b.empty());
394 // Attach two devices.
395 // (*'d mounts are those StorageMonitor knows about.)
396 // kDeviceDCIM1 -> kMountPointA *
397 // kDeviceDCIM2 -> kMountPointB *
398 MtabTestData test_data1[] = {
399 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
400 MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
402 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
403 EXPECT_EQ(2, observer().attach_calls());
404 EXPECT_EQ(0, observer().detach_calls());
406 // Detach two devices from old mount points and attach the devices at new
407 // mount points.
408 // kDeviceDCIM1 -> kMountPointB *
409 // kDeviceDCIM2 -> kMountPointA *
410 MtabTestData test_data2[] = {
411 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
412 MtabTestData(kDeviceDCIM2, test_path_a.value(), kValidFS),
414 OverwriteMtabAndRunLoop(test_data2, arraysize(test_data2));
415 EXPECT_EQ(4, observer().attach_calls());
416 EXPECT_EQ(2, observer().detach_calls());
418 // Detach all devices.
419 WriteEmptyMtabAndRunLoop();
420 EXPECT_EQ(4, observer().attach_calls());
421 EXPECT_EQ(4, observer().detach_calls());
424 // More complicated test case with multiple devices on multiple mount points.
425 TEST_F(StorageMonitorLinuxTest, MultiDevicesMultiMountPoints) {
426 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
427 base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
428 ASSERT_FALSE(test_path_a.empty());
429 ASSERT_FALSE(test_path_b.empty());
431 // Attach two devices.
432 // (*'d mounts are those StorageMonitor knows about.)
433 // kDeviceDCIM1 -> kMountPointA *
434 // kDeviceDCIM2 -> kMountPointB *
435 MtabTestData test_data1[] = {
436 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
437 MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
439 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
440 EXPECT_EQ(2, observer().attach_calls());
441 EXPECT_EQ(0, observer().detach_calls());
443 // Attach |kDeviceDCIM1| to |kMountPointB|.
444 // |kDeviceDCIM2| is inaccessible, so it is detached. |kDeviceDCIM1| has been
445 // attached at |kMountPointB|, but is still accessible from |kMountPointA|.
446 // kDeviceDCIM1 -> kMountPointA *
447 // kDeviceDCIM2 -> kMountPointB
448 // kDeviceDCIM1 -> kMountPointB
449 MtabTestData test_data2[] = {
450 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
452 AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
453 EXPECT_EQ(2, observer().attach_calls());
454 EXPECT_EQ(1, observer().detach_calls());
456 // Detach |kDeviceDCIM1| from |kMountPointA|, causing a detach and attach
457 // event.
458 // kDeviceDCIM2 -> kMountPointB
459 // kDeviceDCIM1 -> kMountPointB *
460 MtabTestData test_data3[] = {
461 MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
462 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
464 OverwriteMtabAndRunLoop(test_data3, arraysize(test_data3));
465 EXPECT_EQ(3, observer().attach_calls());
466 EXPECT_EQ(2, observer().detach_calls());
468 // Attach |kDeviceDCIM1| to |kMountPointA|.
469 // kDeviceDCIM2 -> kMountPointB
470 // kDeviceDCIM1 -> kMountPointB *
471 // kDeviceDCIM1 -> kMountPointA
472 MtabTestData test_data4[] = {
473 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
475 AppendToMtabAndRunLoop(test_data4, arraysize(test_data4));
476 EXPECT_EQ(3, observer().attach_calls());
477 EXPECT_EQ(2, observer().detach_calls());
479 // Detach |kDeviceDCIM1| from |kMountPointB|.
480 // kDeviceDCIM1 -> kMountPointA *
481 // kDeviceDCIM2 -> kMountPointB *
482 OverwriteMtabAndRunLoop(test_data1, arraysize(test_data1));
483 EXPECT_EQ(5, observer().attach_calls());
484 EXPECT_EQ(3, observer().detach_calls());
486 // Detach all devices.
487 WriteEmptyMtabAndRunLoop();
488 EXPECT_EQ(5, observer().attach_calls());
489 EXPECT_EQ(5, observer().detach_calls());
492 TEST_F(StorageMonitorLinuxTest, MultipleMountPointsWithNonDCIMDevices) {
493 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
494 base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
495 ASSERT_FALSE(test_path_a.empty());
496 ASSERT_FALSE(test_path_b.empty());
498 // Attach to one first.
499 // (*'d mounts are those StorageMonitor knows about.)
500 // kDeviceDCIM1 -> kMountPointA *
501 MtabTestData test_data1[] = {
502 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
504 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
505 EXPECT_EQ(1, observer().attach_calls());
506 EXPECT_EQ(0, observer().detach_calls());
508 // Attach |kDeviceDCIM1| to |kMountPointB|.
509 // kDeviceDCIM1 -> kMountPointA *
510 // kDeviceDCIM1 -> kMountPointB
511 MtabTestData test_data2[] = {
512 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
514 AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
515 EXPECT_EQ(1, observer().attach_calls());
516 EXPECT_EQ(0, observer().detach_calls());
518 // Attach |kDeviceFixed| (a non-removable device) to |kMountPointA|.
519 // kDeviceDCIM1 -> kMountPointA
520 // kDeviceDCIM1 -> kMountPointB *
521 // kDeviceFixed -> kMountPointA
522 MtabTestData test_data3[] = {
523 MtabTestData(kDeviceFixed, test_path_a.value(), kValidFS),
525 RemoveDCIMDirFromMountPoint(kMountPointA);
526 AppendToMtabAndRunLoop(test_data3, arraysize(test_data3));
527 EXPECT_EQ(2, observer().attach_calls());
528 EXPECT_EQ(1, observer().detach_calls());
530 // Detach |kDeviceFixed|.
531 // kDeviceDCIM1 -> kMountPointA
532 // kDeviceDCIM1 -> kMountPointB *
533 MtabTestData test_data4[] = {
534 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
535 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
537 CreateMountPointWithDCIMDir(kMountPointA);
538 OverwriteMtabAndRunLoop(test_data4, arraysize(test_data4));
539 EXPECT_EQ(2, observer().attach_calls());
540 EXPECT_EQ(1, observer().detach_calls());
542 // Attach |kDeviceNoDCIM| (a non-DCIM device) to |kMountPointB|.
543 // kDeviceDCIM1 -> kMountPointA *
544 // kDeviceDCIM1 -> kMountPointB
545 // kDeviceNoDCIM -> kMountPointB *
546 MtabTestData test_data5[] = {
547 MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
549 base::DeleteFile(test_path_b.Append(kDCIMDirectoryName), false);
550 AppendToMtabAndRunLoop(test_data5, arraysize(test_data5));
551 EXPECT_EQ(4, observer().attach_calls());
552 EXPECT_EQ(2, observer().detach_calls());
554 // Detach |kDeviceNoDCIM|.
555 // kDeviceDCIM1 -> kMountPointA *
556 // kDeviceDCIM1 -> kMountPointB
557 MtabTestData test_data6[] = {
558 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
559 MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
561 CreateMountPointWithDCIMDir(kMountPointB);
562 OverwriteMtabAndRunLoop(test_data6, arraysize(test_data6));
563 EXPECT_EQ(4, observer().attach_calls());
564 EXPECT_EQ(3, observer().detach_calls());
566 // Detach |kDeviceDCIM1| from |kMountPointB|.
567 // kDeviceDCIM1 -> kMountPointA *
568 OverwriteMtabAndRunLoop(test_data1, arraysize(test_data1));
569 EXPECT_EQ(4, observer().attach_calls());
570 EXPECT_EQ(3, observer().detach_calls());
572 // Detach all devices.
573 WriteEmptyMtabAndRunLoop();
574 EXPECT_EQ(4, observer().attach_calls());
575 EXPECT_EQ(4, observer().detach_calls());
578 TEST_F(StorageMonitorLinuxTest, DeviceLookUp) {
579 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
580 base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
581 base::FilePath test_path_c = CreateMountPointWithoutDCIMDir(kMountPointC);
582 ASSERT_FALSE(test_path_a.empty());
583 ASSERT_FALSE(test_path_b.empty());
584 ASSERT_FALSE(test_path_c.empty());
586 // Attach to one first.
587 // (starred mounts are those StorageMonitor knows about.)
588 // kDeviceDCIM1 -> kMountPointA *
589 // kDeviceNoDCIM -> kMountPointB *
590 // kDeviceFixed -> kMountPointC
591 MtabTestData test_data1[] = {
592 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
593 MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
594 MtabTestData(kDeviceFixed, test_path_c.value(), kValidFS),
596 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
597 EXPECT_EQ(2, observer().attach_calls());
598 EXPECT_EQ(0, observer().detach_calls());
600 StorageInfo device_info;
601 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a, &device_info));
602 EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());
603 EXPECT_EQ(test_path_a.value(), device_info.location());
604 EXPECT_EQ(88788ULL, device_info.total_size_in_bytes());
605 EXPECT_EQ(base::ASCIIToUTF16("volume label"), device_info.storage_label());
606 EXPECT_EQ(base::ASCIIToUTF16("vendor name"), device_info.vendor_name());
607 EXPECT_EQ(base::ASCIIToUTF16("model name"), device_info.model_name());
609 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b, &device_info));
610 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), device_info.device_id());
611 EXPECT_EQ(test_path_b.value(), device_info.location());
613 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c, &device_info));
614 EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());
615 EXPECT_EQ(test_path_c.value(), device_info.location());
617 // An invalid path.
618 EXPECT_FALSE(notifier()->GetStorageInfoForPath(base::FilePath(kInvalidPath),
619 &device_info));
621 // Test filling in of the mount point.
622 EXPECT_TRUE(
623 notifier()->GetStorageInfoForPath(test_path_a.Append("some/other/path"),
624 &device_info));
625 EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());
626 EXPECT_EQ(test_path_a.value(), device_info.location());
628 // One device attached at multiple points.
629 // kDeviceDCIM1 -> kMountPointA *
630 // kDeviceFixed -> kMountPointB
631 // kDeviceFixed -> kMountPointC
632 MtabTestData test_data2[] = {
633 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
634 MtabTestData(kDeviceFixed, test_path_b.value(), kValidFS),
635 MtabTestData(kDeviceFixed, test_path_c.value(), kValidFS),
637 AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
639 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a, &device_info));
640 EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());
642 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b, &device_info));
643 EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());
645 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c, &device_info));
646 EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());
648 EXPECT_EQ(2, observer().attach_calls());
649 EXPECT_EQ(1, observer().detach_calls());
652 TEST_F(StorageMonitorLinuxTest, DevicePartitionSize) {
653 base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
654 base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
655 ASSERT_FALSE(test_path_a.empty());
656 ASSERT_FALSE(test_path_b.empty());
658 MtabTestData test_data1[] = {
659 MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
660 MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
661 MtabTestData(kDeviceFixed, kInvalidPath, kInvalidFS),
663 AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
664 EXPECT_EQ(2, observer().attach_calls());
665 EXPECT_EQ(0, observer().detach_calls());
667 EXPECT_EQ(GetDevicePartitionSize(kDeviceDCIM1),
668 GetStorageSize(test_path_a));
669 EXPECT_EQ(GetDevicePartitionSize(kDeviceNoDCIM),
670 GetStorageSize(test_path_b));
671 EXPECT_EQ(GetDevicePartitionSize(kInvalidPath),
672 GetStorageSize(base::FilePath(kInvalidPath)));
675 } // namespace
677 } // namespace storage_monitor