Updating trunk VERSION from 833.0 to 834.0
[chromium-blink-merge.git] / base / md5.cc
blob2211a285e5badf8ef181c3910b10c73e347be4ce
1 // The original file was copied from sqlite, and was in the public domain.
2 // Modifications Copyright 2006 Google Inc. All Rights Reserved
4 /*
5 * This code implements the MD5 message-digest algorithm.
6 * The algorithm is due to Ron Rivest. This code was
7 * written by Colin Plumb in 1993, no copyright is claimed.
8 * This code is in the public domain; do with it what you wish.
10 * Equivalent code is available from RSA Data Security, Inc.
11 * This code has been tested against that, and is equivalent,
12 * except that you don't need to include two pages of legalese
13 * with every copy.
15 * To compute the message digest of a chunk of bytes, declare an
16 * MD5Context structure, pass it to MD5Init, call MD5Update as
17 * needed on buffers full of bytes, and then call MD5Final, which
18 * will fill a supplied 16-byte array with the digest.
21 #include "base/md5.h"
23 #include "base/basictypes.h"
25 namespace {
27 struct Context {
28 uint32 buf[4];
29 uint32 bits[2];
30 unsigned char in[64];
34 * Note: this code is harmless on little-endian machines.
36 void byteReverse(unsigned char *buf, unsigned longs) {
37 uint32 t;
38 do {
39 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
40 ((unsigned)buf[1]<<8 | buf[0]);
41 *(uint32 *)buf = t;
42 buf += 4;
43 } while (--longs);
46 /* The four core functions - F1 is optimized somewhat */
48 /* #define F1(x, y, z) (x & y | ~x & z) */
49 #define F1(x, y, z) (z ^ (x & (y ^ z)))
50 #define F2(x, y, z) F1(z, x, y)
51 #define F3(x, y, z) (x ^ y ^ z)
52 #define F4(x, y, z) (y ^ (x | ~z))
54 /* This is the central step in the MD5 algorithm. */
55 #define MD5STEP(f, w, x, y, z, data, s) \
56 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
59 * The core of the MD5 algorithm, this alters an existing MD5 hash to
60 * reflect the addition of 16 longwords of new data. MD5Update blocks
61 * the data and converts bytes into longwords for this routine.
63 void MD5Transform(uint32 buf[4], const uint32 in[16]) {
64 register uint32 a, b, c, d;
66 a = buf[0];
67 b = buf[1];
68 c = buf[2];
69 d = buf[3];
71 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
72 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
73 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
74 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
75 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
76 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
77 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
78 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
79 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
80 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
81 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
82 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
83 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
84 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
85 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
86 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
88 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
89 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
90 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
91 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
92 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
93 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
94 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
95 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
96 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
97 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
98 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
99 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
100 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
101 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
102 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
103 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
105 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
106 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
107 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
108 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
109 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
110 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
111 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
112 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
113 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
114 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
115 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
116 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
117 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
118 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
119 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
120 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
122 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
123 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
124 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
125 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
126 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
127 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
128 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
129 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
130 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
131 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
132 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
133 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
134 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
135 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
136 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
137 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
139 buf[0] += a;
140 buf[1] += b;
141 buf[2] += c;
142 buf[3] += d;
145 } // namespace
147 namespace base {
150 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
151 * initialization constants.
153 void MD5Init(MD5Context* context) {
154 struct Context *ctx = (struct Context *)context;
155 ctx->buf[0] = 0x67452301;
156 ctx->buf[1] = 0xefcdab89;
157 ctx->buf[2] = 0x98badcfe;
158 ctx->buf[3] = 0x10325476;
159 ctx->bits[0] = 0;
160 ctx->bits[1] = 0;
164 * Update context to reflect the concatenation of another buffer full
165 * of bytes.
167 void MD5Update(MD5Context* context, const void* inbuf, size_t len) {
168 struct Context *ctx = (struct Context *)context;
169 const unsigned char* buf = (const unsigned char*)inbuf;
170 uint32 t;
172 /* Update bitcount */
174 t = ctx->bits[0];
175 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
176 ctx->bits[1]++; /* Carry from low to high */
177 ctx->bits[1] += static_cast<uint32>(len >> 29);
179 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
181 /* Handle any leading odd-sized chunks */
183 if (t) {
184 unsigned char *p = (unsigned char *)ctx->in + t;
186 t = 64-t;
187 if (len < t) {
188 memcpy(p, buf, len);
189 return;
191 memcpy(p, buf, t);
192 byteReverse(ctx->in, 16);
193 MD5Transform(ctx->buf, (uint32 *)ctx->in);
194 buf += t;
195 len -= t;
198 /* Process data in 64-byte chunks */
200 while (len >= 64) {
201 memcpy(ctx->in, buf, 64);
202 byteReverse(ctx->in, 16);
203 MD5Transform(ctx->buf, (uint32 *)ctx->in);
204 buf += 64;
205 len -= 64;
208 /* Handle any remaining bytes of data. */
210 memcpy(ctx->in, buf, len);
214 * Final wrapup - pad to 64-byte boundary with the bit pattern
215 * 1 0* (64-bit count of bits processed, MSB-first)
217 void MD5Final(MD5Digest* digest, MD5Context* context) {
218 struct Context *ctx = (struct Context *)context;
219 unsigned count;
220 unsigned char *p;
222 /* Compute number of bytes mod 64 */
223 count = (ctx->bits[0] >> 3) & 0x3F;
225 /* Set the first char of padding to 0x80. This is safe since there is
226 always at least one byte free */
227 p = ctx->in + count;
228 *p++ = 0x80;
230 /* Bytes of padding needed to make 64 bytes */
231 count = 64 - 1 - count;
233 /* Pad out to 56 mod 64 */
234 if (count < 8) {
235 /* Two lots of padding: Pad the first block to 64 bytes */
236 memset(p, 0, count);
237 byteReverse(ctx->in, 16);
238 MD5Transform(ctx->buf, (uint32 *)ctx->in);
240 /* Now fill the next block with 56 bytes */
241 memset(ctx->in, 0, 56);
242 } else {
243 /* Pad block to 56 bytes */
244 memset(p, 0, count-8);
246 byteReverse(ctx->in, 14);
248 /* Append length in bits and transform */
249 ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
250 ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
252 MD5Transform(ctx->buf, (uint32 *)ctx->in);
253 byteReverse((unsigned char *)ctx->buf, 4);
254 memcpy(digest->a, ctx->buf, 16);
255 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
258 std::string MD5DigestToBase16(const MD5Digest& digest) {
259 static char const zEncode[] = "0123456789abcdef";
261 std::string ret;
262 ret.resize(32);
264 int j = 0;
265 for (int i = 0; i < 16; i ++) {
266 int a = digest.a[i];
267 ret[j++] = zEncode[(a>>4)&0xf];
268 ret[j++] = zEncode[a & 0xf];
270 return ret;
273 void MD5Sum(const void* data, size_t length, MD5Digest* digest) {
274 MD5Context ctx;
275 MD5Init(&ctx);
276 MD5Update(&ctx, static_cast<const unsigned char*>(data), length);
277 MD5Final(digest, &ctx);
280 std::string MD5String(const std::string& str) {
281 MD5Digest digest;
282 MD5Sum(str.data(), str.length(), &digest);
283 return MD5DigestToBase16(digest);
286 } // namespace base