Compute if a layer is clipped outside CalcDrawProps
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob66cd8d89b38b99ef2f9fd4e75e3a22e1f295f67d
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <stdint.h>
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "base/stl_util.h"
12 #include "net/quic/crypto/crypto_framer.h"
13 #include "net/quic/crypto/crypto_handshake_message.h"
14 #include "net/quic/crypto/crypto_protocol.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_data_reader.h"
18 #include "net/quic/quic_data_writer.h"
19 #include "net/quic/quic_flags.h"
20 #include "net/quic/quic_socket_address_coder.h"
21 #include "net/quic/quic_utils.h"
23 using base::StringPiece;
24 using std::map;
25 using std::max;
26 using std::min;
27 using std::numeric_limits;
28 using std::string;
30 namespace net {
32 namespace {
34 // Mask to select the lowest 48 bits of a sequence number.
35 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
36 UINT64_C(0x0000FFFFFFFFFFFF);
37 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
38 UINT64_C(0x00000000FFFFFFFF);
39 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
40 UINT64_C(0x000000000000FFFF);
41 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
42 UINT64_C(0x00000000000000FF);
44 const QuicConnectionId k1ByteConnectionIdMask = UINT64_C(0x00000000000000FF);
45 const QuicConnectionId k4ByteConnectionIdMask = UINT64_C(0x00000000FFFFFFFF);
47 // Number of bits the sequence number length bits are shifted from the right
48 // edge of the public header.
49 const uint8 kPublicHeaderSequenceNumberShift = 4;
51 // New Frame Types, QUIC v. >= 10:
52 // There are two interpretations for the Frame Type byte in the QUIC protocol,
53 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
55 // Regular Frame Types use the Frame Type byte simply. Currently defined
56 // Regular Frame Types are:
57 // Padding : 0b 00000000 (0x00)
58 // ResetStream : 0b 00000001 (0x01)
59 // ConnectionClose : 0b 00000010 (0x02)
60 // GoAway : 0b 00000011 (0x03)
61 // WindowUpdate : 0b 00000100 (0x04)
62 // Blocked : 0b 00000101 (0x05)
64 // Special Frame Types encode both a Frame Type and corresponding flags
65 // all in the Frame Type byte. Currently defined Special Frame Types are:
66 // Stream : 0b 1xxxxxxx
67 // Ack : 0b 01xxxxxx
69 // Semantics of the flag bits above (the x bits) depends on the frame type.
71 // Masks to determine if the frame type is a special use
72 // and for specific special frame types.
73 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
74 const uint8 kQuicFrameTypeStreamMask = 0x80;
75 const uint8 kQuicFrameTypeAckMask = 0x40;
77 // Stream frame relative shifts and masks for interpreting the stream flags.
78 // StreamID may be 1, 2, 3, or 4 bytes.
79 const uint8 kQuicStreamIdShift = 2;
80 const uint8 kQuicStreamIDLengthMask = 0x03;
82 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
83 const uint8 kQuicStreamOffsetShift = 3;
84 const uint8 kQuicStreamOffsetMask = 0x07;
86 // Data length may be 0 or 2 bytes.
87 const uint8 kQuicStreamDataLengthShift = 1;
88 const uint8 kQuicStreamDataLengthMask = 0x01;
90 // Fin bit may be set or not.
91 const uint8 kQuicStreamFinShift = 1;
92 const uint8 kQuicStreamFinMask = 0x01;
94 // Sequence number size shift used in AckFrames.
95 const uint8 kQuicSequenceNumberLengthShift = 2;
97 // Acks may be truncated.
98 const uint8 kQuicAckTruncatedShift = 1;
99 const uint8 kQuicAckTruncatedMask = 0x01;
101 // Acks may not have any nacks.
102 const uint8 kQuicHasNacksMask = 0x01;
104 // Returns the absolute value of the difference between |a| and |b|.
105 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
106 QuicPacketSequenceNumber b) {
107 // Since these are unsigned numbers, we can't just return abs(a - b)
108 if (a < b) {
109 return b - a;
111 return a - b;
114 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
115 QuicPacketSequenceNumber a,
116 QuicPacketSequenceNumber b) {
117 return (Delta(target, a) < Delta(target, b)) ? a : b;
120 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
121 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
122 case PACKET_FLAGS_6BYTE_SEQUENCE:
123 return PACKET_6BYTE_SEQUENCE_NUMBER;
124 case PACKET_FLAGS_4BYTE_SEQUENCE:
125 return PACKET_4BYTE_SEQUENCE_NUMBER;
126 case PACKET_FLAGS_2BYTE_SEQUENCE:
127 return PACKET_2BYTE_SEQUENCE_NUMBER;
128 case PACKET_FLAGS_1BYTE_SEQUENCE:
129 return PACKET_1BYTE_SEQUENCE_NUMBER;
130 default:
131 LOG(DFATAL) << "Unreachable case statement.";
132 return PACKET_6BYTE_SEQUENCE_NUMBER;
136 } // namespace
138 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
139 QuicTime creation_time,
140 Perspective perspective)
141 : visitor_(nullptr),
142 entropy_calculator_(nullptr),
143 error_(QUIC_NO_ERROR),
144 last_sequence_number_(0),
145 last_serialized_connection_id_(0),
146 supported_versions_(supported_versions),
147 decrypter_level_(ENCRYPTION_NONE),
148 alternative_decrypter_level_(ENCRYPTION_NONE),
149 alternative_decrypter_latch_(false),
150 perspective_(perspective),
151 validate_flags_(true),
152 creation_time_(creation_time),
153 last_timestamp_(QuicTime::Delta::Zero()) {
154 DCHECK(!supported_versions.empty());
155 quic_version_ = supported_versions_[0];
156 decrypter_.reset(QuicDecrypter::Create(kNULL));
157 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
160 QuicFramer::~QuicFramer() {}
162 // static
163 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
164 QuicStreamOffset offset,
165 bool last_frame_in_packet,
166 InFecGroup is_in_fec_group) {
167 bool no_stream_frame_length = last_frame_in_packet &&
168 is_in_fec_group == NOT_IN_FEC_GROUP;
169 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
170 GetStreamOffsetSize(offset) +
171 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
174 // static
175 size_t QuicFramer::GetMinAckFrameSize(
176 QuicSequenceNumberLength largest_observed_length) {
177 return kQuicFrameTypeSize + kQuicEntropyHashSize +
178 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
181 // static
182 size_t QuicFramer::GetStopWaitingFrameSize(
183 QuicSequenceNumberLength sequence_number_length) {
184 return kQuicFrameTypeSize + kQuicEntropyHashSize +
185 sequence_number_length;
188 // static
189 size_t QuicFramer::GetMinRstStreamFrameSize() {
190 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
191 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
192 kQuicErrorDetailsLengthSize;
195 // static
196 size_t QuicFramer::GetRstStreamFrameSize() {
197 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
198 kQuicErrorCodeSize;
201 // static
202 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
203 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
206 // static
207 size_t QuicFramer::GetMinGoAwayFrameSize() {
208 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
209 kQuicMaxStreamIdSize;
212 // static
213 size_t QuicFramer::GetWindowUpdateFrameSize() {
214 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
217 // static
218 size_t QuicFramer::GetBlockedFrameSize() {
219 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
222 // static
223 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
224 // Sizes are 1 through 4 bytes.
225 for (int i = 1; i <= 4; ++i) {
226 stream_id >>= 8;
227 if (stream_id == 0) {
228 return i;
231 LOG(DFATAL) << "Failed to determine StreamIDSize.";
232 return 4;
235 // static
236 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
237 // 0 is a special case.
238 if (offset == 0) {
239 return 0;
241 // 2 through 8 are the remaining sizes.
242 offset >>= 8;
243 for (int i = 2; i <= 8; ++i) {
244 offset >>= 8;
245 if (offset == 0) {
246 return i;
249 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
250 return 8;
253 // static
254 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
255 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
256 number_versions * kQuicVersionSize;
259 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
260 for (size_t i = 0; i < supported_versions_.size(); ++i) {
261 if (version == supported_versions_[i]) {
262 return true;
265 return false;
268 size_t QuicFramer::GetSerializedFrameLength(
269 const QuicFrame& frame,
270 size_t free_bytes,
271 bool first_frame,
272 bool last_frame,
273 InFecGroup is_in_fec_group,
274 QuicSequenceNumberLength sequence_number_length) {
275 // Prevent a rare crash reported in b/19458523.
276 if (frame.stream_frame == nullptr) {
277 LOG(DFATAL) << "Cannot compute the length of a null frame. "
278 << "type:" << frame.type << "free_bytes:" << free_bytes
279 << " first_frame:" << first_frame
280 << " last_frame:" << last_frame
281 << " is_in_fec:" << is_in_fec_group
282 << " seq num length:" << sequence_number_length;
283 set_error(QUIC_INTERNAL_ERROR);
284 visitor_->OnError(this);
285 return false;
287 if (frame.type == PADDING_FRAME) {
288 // PADDING implies end of packet.
289 return free_bytes;
291 size_t frame_len =
292 ComputeFrameLength(frame, last_frame, is_in_fec_group,
293 sequence_number_length);
294 if (frame_len <= free_bytes) {
295 // Frame fits within packet. Note that acks may be truncated.
296 return frame_len;
298 // Only truncate the first frame in a packet, so if subsequent ones go
299 // over, stop including more frames.
300 if (!first_frame) {
301 return 0;
303 bool can_truncate =
304 frame.type == ACK_FRAME &&
305 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER);
306 if (can_truncate) {
307 // Truncate the frame so the packet will not exceed kMaxPacketSize.
308 // Note that we may not use every byte of the writer in this case.
309 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
310 return free_bytes;
312 if (!FLAGS_quic_allow_oversized_packets_for_test) {
313 return 0;
315 LOG(DFATAL) << "Packet size too small to fit frame.";
316 return frame_len;
319 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
321 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
323 // static
324 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
325 const QuicPacketHeader& header) {
326 return header.entropy_flag << (header.packet_sequence_number % 8);
329 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
330 const QuicFrames& frames,
331 char* buffer,
332 size_t packet_length) {
333 QuicDataWriter writer(packet_length, buffer);
334 if (!AppendPacketHeader(header, &writer)) {
335 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
336 CHECK(false) << "AppendPacketHeader failed";
337 return nullptr;
340 size_t i = 0;
341 for (const QuicFrame& frame : frames) {
342 // Determine if we should write stream frame length in header.
343 const bool no_stream_frame_length =
344 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
345 (i == frames.size() - 1);
346 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
347 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
348 CHECK(false) << "AppendTypeByte failed";
349 return nullptr;
352 switch (frame.type) {
353 case PADDING_FRAME:
354 writer.WritePadding();
355 break;
356 case STREAM_FRAME:
357 if (!AppendStreamFrame(
358 *frame.stream_frame, no_stream_frame_length, &writer)) {
359 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
360 CHECK(false) << "AppendStreamFrame failed";
361 return nullptr;
363 break;
364 case ACK_FRAME:
365 if (!AppendAckFrameAndTypeByte(
366 header, *frame.ack_frame, &writer)) {
367 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
368 CHECK(false) << "AppendAckFrameAndTypeByte failed";
369 return nullptr;
371 break;
372 case STOP_WAITING_FRAME:
373 if (!AppendStopWaitingFrame(
374 header, *frame.stop_waiting_frame, &writer)) {
375 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
376 CHECK(false) << "AppendStopWaitingFrame failed";
377 return nullptr;
379 break;
380 case MTU_DISCOVERY_FRAME:
381 // MTU discovery frames are serialized as ping frames.
382 case PING_FRAME:
383 // Ping has no payload.
384 break;
385 case RST_STREAM_FRAME:
386 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
387 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
388 CHECK(false) << "AppendRstStreamFrame failed";
389 return nullptr;
391 break;
392 case CONNECTION_CLOSE_FRAME:
393 if (!AppendConnectionCloseFrame(
394 *frame.connection_close_frame, &writer)) {
395 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
396 CHECK(false) << "AppendConnectionCloseFrame failed";
397 return nullptr;
399 break;
400 case GOAWAY_FRAME:
401 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
402 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
403 CHECK(false) << "AppendGoAwayFrame failed";
404 return nullptr;
406 break;
407 case WINDOW_UPDATE_FRAME:
408 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
409 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
410 CHECK(false) << "AppendWindowUpdateFrame failed";
411 return nullptr;
413 break;
414 case BLOCKED_FRAME:
415 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
416 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
417 CHECK(false) << "AppendBlockedFrame failed";
418 return nullptr;
420 break;
421 default:
422 RaiseError(QUIC_INVALID_FRAME_DATA);
423 // TODO(rtenneti): Revert the CHECKs to LOG(DFATAL).
424 CHECK(false) << "QUIC_INVALID_FRAME_DATA";
425 return nullptr;
427 ++i;
430 QuicPacket* packet =
431 new QuicPacket(writer.data(), writer.length(), false,
432 header.public_header.connection_id_length,
433 header.public_header.version_flag,
434 header.public_header.sequence_number_length);
436 return packet;
439 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
440 const QuicFecData& fec) {
441 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
442 DCHECK_NE(0u, header.fec_group);
443 size_t len = GetPacketHeaderSize(header);
444 len += fec.redundancy.length();
446 scoped_ptr<char[]> buffer(new char[len]);
447 QuicDataWriter writer(len, buffer.get());
448 if (!AppendPacketHeader(header, &writer)) {
449 LOG(DFATAL) << "AppendPacketHeader failed";
450 return nullptr;
453 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
454 LOG(DFATAL) << "Failed to add FEC";
455 return nullptr;
458 return new QuicPacket(buffer.release(), len, true,
459 header.public_header.connection_id_length,
460 header.public_header.version_flag,
461 header.public_header.sequence_number_length);
464 // static
465 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
466 const QuicPublicResetPacket& packet) {
467 DCHECK(packet.public_header.reset_flag);
469 CryptoHandshakeMessage reset;
470 reset.set_tag(kPRST);
471 reset.SetValue(kRNON, packet.nonce_proof);
472 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
473 if (!packet.client_address.address().empty()) {
474 // packet.client_address is non-empty.
475 QuicSocketAddressCoder address_coder(packet.client_address);
476 string serialized_address = address_coder.Encode();
477 if (serialized_address.empty()) {
478 return nullptr;
480 reset.SetStringPiece(kCADR, serialized_address);
482 const QuicData& reset_serialized = reset.GetSerialized();
484 size_t len =
485 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
486 scoped_ptr<char[]> buffer(new char[len]);
487 QuicDataWriter writer(len, buffer.get());
489 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
490 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
491 if (!writer.WriteUInt8(flags)) {
492 return nullptr;
495 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
496 return nullptr;
499 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
500 return nullptr;
503 return new QuicEncryptedPacket(buffer.release(), len, true);
506 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
507 const QuicPacketPublicHeader& header,
508 const QuicVersionVector& supported_versions) {
509 DCHECK(header.version_flag);
510 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
511 scoped_ptr<char[]> buffer(new char[len]);
512 QuicDataWriter writer(len, buffer.get());
514 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
515 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
516 if (!writer.WriteUInt8(flags)) {
517 return nullptr;
520 if (!writer.WriteUInt64(header.connection_id)) {
521 return nullptr;
524 for (size_t i = 0; i < supported_versions.size(); ++i) {
525 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
526 return nullptr;
530 return new QuicEncryptedPacket(buffer.release(), len, true);
533 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
534 DCHECK(!reader_.get());
535 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
537 visitor_->OnPacket();
539 // First parse the public header.
540 QuicPacketPublicHeader public_header;
541 if (!ProcessPublicHeader(&public_header)) {
542 DLOG(WARNING) << "Unable to process public header.";
543 DCHECK_NE("", detailed_error_);
544 return RaiseError(QUIC_INVALID_PACKET_HEADER);
547 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
548 // The visitor suppresses further processing of the packet.
549 reader_.reset(nullptr);
550 return true;
553 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
554 public_header.versions[0] != quic_version_) {
555 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
556 reader_.reset(nullptr);
557 return true;
561 bool rv;
562 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
563 rv = ProcessVersionNegotiationPacket(&public_header);
564 } else if (public_header.reset_flag) {
565 rv = ProcessPublicResetPacket(public_header);
566 } else if (packet.length() <= kMaxPacketSize) {
567 char buffer[kMaxPacketSize];
568 rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
569 } else {
570 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
571 rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
572 packet.length());
573 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
574 << "larger than kMaxPacketSize. packet size:"
575 << packet.length();
578 reader_.reset(nullptr);
579 return rv;
582 bool QuicFramer::ProcessVersionNegotiationPacket(
583 QuicPacketPublicHeader* public_header) {
584 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
585 // Try reading at least once to raise error if the packet is invalid.
586 do {
587 QuicTag version;
588 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
589 set_detailed_error("Unable to read supported version in negotiation.");
590 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
592 public_header->versions.push_back(QuicTagToQuicVersion(version));
593 } while (!reader_->IsDoneReading());
595 visitor_->OnVersionNegotiationPacket(*public_header);
596 return true;
599 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
600 const QuicEncryptedPacket& packet,
601 char* decrypted_buffer,
602 size_t buffer_length) {
603 QuicPacketHeader header(public_header);
604 if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
605 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
606 return false;
609 if (!visitor_->OnPacketHeader(header)) {
610 // The visitor suppresses further processing of the packet.
611 return true;
614 if (packet.length() > kMaxPacketSize) {
615 DLOG(WARNING) << "Packet too large: " << packet.length();
616 return RaiseError(QUIC_PACKET_TOO_LARGE);
619 // Handle the payload.
620 if (!header.fec_flag) {
621 if (header.is_in_fec_group == IN_FEC_GROUP) {
622 StringPiece payload = reader_->PeekRemainingPayload();
623 visitor_->OnFecProtectedPayload(payload);
625 if (!ProcessFrameData(header)) {
626 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
627 DLOG(WARNING) << "Unable to process frame data.";
628 return false;
630 } else {
631 QuicFecData fec_data;
632 fec_data.fec_group = header.fec_group;
633 fec_data.redundancy = reader_->ReadRemainingPayload();
634 visitor_->OnFecData(fec_data);
637 visitor_->OnPacketComplete();
638 return true;
641 bool QuicFramer::ProcessPublicResetPacket(
642 const QuicPacketPublicHeader& public_header) {
643 QuicPublicResetPacket packet(public_header);
645 scoped_ptr<CryptoHandshakeMessage> reset(
646 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
647 if (!reset.get()) {
648 set_detailed_error("Unable to read reset message.");
649 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
651 if (reset->tag() != kPRST) {
652 set_detailed_error("Incorrect message tag.");
653 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
656 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
657 set_detailed_error("Unable to read nonce proof.");
658 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
660 // TODO(satyamshekhar): validate nonce to protect against DoS.
662 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
663 QUIC_NO_ERROR) {
664 set_detailed_error("Unable to read rejected sequence number.");
665 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
668 StringPiece address;
669 if (reset->GetStringPiece(kCADR, &address)) {
670 QuicSocketAddressCoder address_coder;
671 if (address_coder.Decode(address.data(), address.length())) {
672 packet.client_address = IPEndPoint(address_coder.ip(),
673 address_coder.port());
677 visitor_->OnPublicResetPacket(packet);
678 return true;
681 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
682 StringPiece payload) {
683 DCHECK(!reader_.get());
685 visitor_->OnRevivedPacket();
687 header->entropy_hash = GetPacketEntropyHash(*header);
689 if (!visitor_->OnPacketHeader(*header)) {
690 return true;
693 if (payload.length() > kMaxPacketSize) {
694 set_detailed_error("Revived packet too large.");
695 return RaiseError(QUIC_PACKET_TOO_LARGE);
698 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
699 if (!ProcessFrameData(*header)) {
700 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
701 DLOG(WARNING) << "Unable to process frame data.";
702 return false;
705 visitor_->OnPacketComplete();
706 reader_.reset(nullptr);
707 return true;
710 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
711 QuicDataWriter* writer) {
712 DVLOG(1) << "Appending header: " << header;
713 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
714 uint8 public_flags = 0;
715 if (header.public_header.reset_flag) {
716 public_flags |= PACKET_PUBLIC_FLAGS_RST;
718 if (header.public_header.version_flag) {
719 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
722 public_flags |=
723 GetSequenceNumberFlags(header.public_header.sequence_number_length)
724 << kPublicHeaderSequenceNumberShift;
726 switch (header.public_header.connection_id_length) {
727 case PACKET_0BYTE_CONNECTION_ID:
728 if (!writer->WriteUInt8(
729 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
730 return false;
732 break;
733 case PACKET_1BYTE_CONNECTION_ID:
734 if (!writer->WriteUInt8(
735 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
736 return false;
738 if (!writer->WriteUInt8(
739 header.public_header.connection_id & k1ByteConnectionIdMask)) {
740 return false;
742 break;
743 case PACKET_4BYTE_CONNECTION_ID:
744 if (!writer->WriteUInt8(
745 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
746 return false;
748 if (!writer->WriteUInt32(
749 header.public_header.connection_id & k4ByteConnectionIdMask)) {
750 return false;
752 break;
753 case PACKET_8BYTE_CONNECTION_ID:
754 if (!writer->WriteUInt8(
755 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
756 return false;
758 if (!writer->WriteUInt64(header.public_header.connection_id)) {
759 return false;
761 break;
763 last_serialized_connection_id_ = header.public_header.connection_id;
765 if (header.public_header.version_flag) {
766 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
767 QuicTag tag = QuicVersionToQuicTag(quic_version_);
768 writer->WriteUInt32(tag);
769 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
770 << QuicUtils::TagToString(tag) << "'";
773 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
774 header.packet_sequence_number, writer)) {
775 return false;
778 uint8 private_flags = 0;
779 if (header.entropy_flag) {
780 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
782 if (header.is_in_fec_group == IN_FEC_GROUP) {
783 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
785 if (header.fec_flag) {
786 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
788 if (!writer->WriteUInt8(private_flags)) {
789 return false;
792 // The FEC group number is the sequence number of the first fec
793 // protected packet, or 0 if this packet is not protected.
794 if (header.is_in_fec_group == IN_FEC_GROUP) {
795 DCHECK_LE(header.fec_group, header.packet_sequence_number);
796 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
797 // Offset from the current packet sequence number to the first fec
798 // protected packet.
799 uint8 first_fec_protected_packet_offset =
800 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
801 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
802 return false;
806 return true;
809 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
810 uint32 time_delta_us) {
811 // The new time_delta might have wrapped to the next epoch, or it
812 // might have reverse wrapped to the previous epoch, or it might
813 // remain in the same epoch. Select the time closest to the previous
814 // time.
816 // epoch_delta is the delta between epochs. A delta is 4 bytes of
817 // microseconds.
818 const uint64 epoch_delta = UINT64_C(1) << 32;
819 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
820 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
821 uint64 prev_epoch = epoch - epoch_delta;
822 uint64 next_epoch = epoch + epoch_delta;
824 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
825 epoch + time_delta_us,
826 ClosestTo(last_timestamp_.ToMicroseconds(),
827 prev_epoch + time_delta_us,
828 next_epoch + time_delta_us));
830 return QuicTime::Delta::FromMicroseconds(time);
833 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
834 QuicSequenceNumberLength sequence_number_length,
835 QuicPacketSequenceNumber packet_sequence_number) const {
836 // The new sequence number might have wrapped to the next epoch, or
837 // it might have reverse wrapped to the previous epoch, or it might
838 // remain in the same epoch. Select the sequence number closest to the
839 // next expected sequence number, the previous sequence number plus 1.
841 // epoch_delta is the delta between epochs the sequence number was serialized
842 // with, so the correct value is likely the same epoch as the last sequence
843 // number or an adjacent epoch.
844 const QuicPacketSequenceNumber epoch_delta =
845 UINT64_C(1) << (8 * sequence_number_length);
846 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
847 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
848 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
849 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
851 return ClosestTo(next_sequence_number,
852 epoch + packet_sequence_number,
853 ClosestTo(next_sequence_number,
854 prev_epoch + packet_sequence_number,
855 next_epoch + packet_sequence_number));
858 bool QuicFramer::ProcessPublicHeader(
859 QuicPacketPublicHeader* public_header) {
860 uint8 public_flags;
861 if (!reader_->ReadBytes(&public_flags, 1)) {
862 set_detailed_error("Unable to read public flags.");
863 return false;
866 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
867 public_header->version_flag =
868 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
870 if (validate_flags_ &&
871 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
872 set_detailed_error("Illegal public flags value.");
873 return false;
876 if (public_header->reset_flag && public_header->version_flag) {
877 set_detailed_error("Got version flag in reset packet");
878 return false;
881 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
882 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
883 if (!reader_->ReadUInt64(&public_header->connection_id)) {
884 set_detailed_error("Unable to read ConnectionId.");
885 return false;
887 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
888 break;
889 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
890 // If the connection_id is truncated, expect to read the last serialized
891 // connection_id.
892 if (!reader_->ReadBytes(&public_header->connection_id,
893 PACKET_4BYTE_CONNECTION_ID)) {
894 set_detailed_error("Unable to read ConnectionId.");
895 return false;
897 if (last_serialized_connection_id_ &&
898 (public_header->connection_id & k4ByteConnectionIdMask) !=
899 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
900 set_detailed_error("Truncated 4 byte ConnectionId does not match "
901 "previous connection_id.");
902 return false;
904 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
905 public_header->connection_id = last_serialized_connection_id_;
906 break;
907 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
908 if (!reader_->ReadBytes(&public_header->connection_id,
909 PACKET_1BYTE_CONNECTION_ID)) {
910 set_detailed_error("Unable to read ConnectionId.");
911 return false;
913 if (last_serialized_connection_id_ &&
914 (public_header->connection_id & k1ByteConnectionIdMask) !=
915 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
916 set_detailed_error("Truncated 1 byte ConnectionId does not match "
917 "previous connection_id.");
918 return false;
920 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
921 public_header->connection_id = last_serialized_connection_id_;
922 break;
923 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
924 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
925 public_header->connection_id = last_serialized_connection_id_;
926 break;
929 public_header->sequence_number_length =
930 ReadSequenceNumberLength(
931 public_flags >> kPublicHeaderSequenceNumberShift);
933 // Read the version only if the packet is from the client.
934 // version flag from the server means version negotiation packet.
935 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
936 QuicTag version_tag;
937 if (!reader_->ReadUInt32(&version_tag)) {
938 set_detailed_error("Unable to read protocol version.");
939 return false;
942 // If the version from the new packet is the same as the version of this
943 // framer, then the public flags should be set to something we understand.
944 // If not, this raises an error.
945 QuicVersion version = QuicTagToQuicVersion(version_tag);
946 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
947 set_detailed_error("Illegal public flags value.");
948 return false;
950 public_header->versions.push_back(version);
952 return true;
955 // static
956 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
957 QuicPacketSequenceNumber sequence_number) {
958 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
959 return PACKET_1BYTE_SEQUENCE_NUMBER;
960 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
961 return PACKET_2BYTE_SEQUENCE_NUMBER;
962 } else if (sequence_number <
963 UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
964 return PACKET_4BYTE_SEQUENCE_NUMBER;
965 } else {
966 return PACKET_6BYTE_SEQUENCE_NUMBER;
970 // static
971 uint8 QuicFramer::GetSequenceNumberFlags(
972 QuicSequenceNumberLength sequence_number_length) {
973 switch (sequence_number_length) {
974 case PACKET_1BYTE_SEQUENCE_NUMBER:
975 return PACKET_FLAGS_1BYTE_SEQUENCE;
976 case PACKET_2BYTE_SEQUENCE_NUMBER:
977 return PACKET_FLAGS_2BYTE_SEQUENCE;
978 case PACKET_4BYTE_SEQUENCE_NUMBER:
979 return PACKET_FLAGS_4BYTE_SEQUENCE;
980 case PACKET_6BYTE_SEQUENCE_NUMBER:
981 return PACKET_FLAGS_6BYTE_SEQUENCE;
982 default:
983 LOG(DFATAL) << "Unreachable case statement.";
984 return PACKET_FLAGS_6BYTE_SEQUENCE;
988 // static
989 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
990 const QuicAckFrame& frame) {
991 AckFrameInfo ack_info;
992 if (frame.missing_packets.empty()) {
993 return ack_info;
995 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
996 size_t cur_range_length = 0;
997 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
998 QuicPacketSequenceNumber last_missing = *iter;
999 ++iter;
1000 for (; iter != frame.missing_packets.end(); ++iter) {
1001 if (cur_range_length < numeric_limits<uint8>::max() &&
1002 *iter == (last_missing + 1)) {
1003 ++cur_range_length;
1004 } else {
1005 ack_info.nack_ranges[last_missing - cur_range_length] =
1006 static_cast<uint8>(cur_range_length);
1007 cur_range_length = 0;
1009 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1010 last_missing = *iter;
1012 // Include the last nack range.
1013 ack_info.nack_ranges[last_missing - cur_range_length] =
1014 static_cast<uint8>(cur_range_length);
1015 // Include the range to the largest observed.
1016 ack_info.max_delta =
1017 max(ack_info.max_delta, frame.largest_observed - last_missing);
1018 return ack_info;
1021 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
1022 const QuicEncryptedPacket& packet,
1023 char* decrypted_buffer,
1024 size_t buffer_length) {
1025 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1026 &header->packet_sequence_number)) {
1027 set_detailed_error("Unable to read sequence number.");
1028 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1031 if (header->packet_sequence_number == 0u) {
1032 set_detailed_error("Packet sequence numbers cannot be 0.");
1033 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1036 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1037 return false;
1040 if (!DecryptPayload(*header, packet, decrypted_buffer, buffer_length)) {
1041 set_detailed_error("Unable to decrypt payload.");
1042 return RaiseError(QUIC_DECRYPTION_FAILURE);
1045 uint8 private_flags;
1046 if (!reader_->ReadBytes(&private_flags, 1)) {
1047 set_detailed_error("Unable to read private flags.");
1048 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1051 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1052 set_detailed_error("Illegal private flags value.");
1053 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1056 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1057 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1059 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1060 header->is_in_fec_group = IN_FEC_GROUP;
1061 uint8 first_fec_protected_packet_offset;
1062 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1063 set_detailed_error("Unable to read first fec protected packet offset.");
1064 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1066 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1067 set_detailed_error("First fec protected packet offset must be less "
1068 "than the sequence number.");
1069 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1071 header->fec_group =
1072 header->packet_sequence_number - first_fec_protected_packet_offset;
1075 header->entropy_hash = GetPacketEntropyHash(*header);
1076 // Set the last sequence number after we have decrypted the packet
1077 // so we are confident is not attacker controlled.
1078 last_sequence_number_ = header->packet_sequence_number;
1079 return true;
1082 bool QuicFramer::ProcessPacketSequenceNumber(
1083 QuicSequenceNumberLength sequence_number_length,
1084 QuicPacketSequenceNumber* sequence_number) {
1085 QuicPacketSequenceNumber wire_sequence_number = 0u;
1086 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1087 return false;
1090 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1091 // in case the first guess is incorrect.
1092 *sequence_number =
1093 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1094 wire_sequence_number);
1095 return true;
1098 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1099 if (reader_->IsDoneReading()) {
1100 set_detailed_error("Packet has no frames.");
1101 return RaiseError(QUIC_MISSING_PAYLOAD);
1103 while (!reader_->IsDoneReading()) {
1104 uint8 frame_type;
1105 if (!reader_->ReadBytes(&frame_type, 1)) {
1106 set_detailed_error("Unable to read frame type.");
1107 return RaiseError(QUIC_INVALID_FRAME_DATA);
1110 if (frame_type & kQuicFrameTypeSpecialMask) {
1111 // Stream Frame
1112 if (frame_type & kQuicFrameTypeStreamMask) {
1113 QuicStreamFrame frame;
1114 if (!ProcessStreamFrame(frame_type, &frame)) {
1115 return RaiseError(QUIC_INVALID_STREAM_DATA);
1117 if (!visitor_->OnStreamFrame(frame)) {
1118 DVLOG(1) << "Visitor asked to stop further processing.";
1119 // Returning true since there was no parsing error.
1120 return true;
1122 continue;
1125 // Ack Frame
1126 if (frame_type & kQuicFrameTypeAckMask) {
1127 QuicAckFrame frame;
1128 if (!ProcessAckFrame(frame_type, &frame)) {
1129 return RaiseError(QUIC_INVALID_ACK_DATA);
1131 if (!visitor_->OnAckFrame(frame)) {
1132 DVLOG(1) << "Visitor asked to stop further processing.";
1133 // Returning true since there was no parsing error.
1134 return true;
1136 continue;
1139 // This was a special frame type that did not match any
1140 // of the known ones. Error.
1141 set_detailed_error("Illegal frame type.");
1142 DLOG(WARNING) << "Illegal frame type: "
1143 << static_cast<int>(frame_type);
1144 return RaiseError(QUIC_INVALID_FRAME_DATA);
1147 switch (frame_type) {
1148 case PADDING_FRAME:
1149 // We're done with the packet.
1150 return true;
1152 case RST_STREAM_FRAME: {
1153 QuicRstStreamFrame frame;
1154 if (!ProcessRstStreamFrame(&frame)) {
1155 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1157 if (!visitor_->OnRstStreamFrame(frame)) {
1158 DVLOG(1) << "Visitor asked to stop further processing.";
1159 // Returning true since there was no parsing error.
1160 return true;
1162 continue;
1165 case CONNECTION_CLOSE_FRAME: {
1166 QuicConnectionCloseFrame frame;
1167 if (!ProcessConnectionCloseFrame(&frame)) {
1168 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1171 if (!visitor_->OnConnectionCloseFrame(frame)) {
1172 DVLOG(1) << "Visitor asked to stop further processing.";
1173 // Returning true since there was no parsing error.
1174 return true;
1176 continue;
1179 case GOAWAY_FRAME: {
1180 QuicGoAwayFrame goaway_frame;
1181 if (!ProcessGoAwayFrame(&goaway_frame)) {
1182 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1184 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1185 DVLOG(1) << "Visitor asked to stop further processing.";
1186 // Returning true since there was no parsing error.
1187 return true;
1189 continue;
1192 case WINDOW_UPDATE_FRAME: {
1193 QuicWindowUpdateFrame window_update_frame;
1194 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1195 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1197 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1198 DVLOG(1) << "Visitor asked to stop further processing.";
1199 // Returning true since there was no parsing error.
1200 return true;
1202 continue;
1205 case BLOCKED_FRAME: {
1206 QuicBlockedFrame blocked_frame;
1207 if (!ProcessBlockedFrame(&blocked_frame)) {
1208 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1210 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1211 DVLOG(1) << "Visitor asked to stop further processing.";
1212 // Returning true since there was no parsing error.
1213 return true;
1215 continue;
1218 case STOP_WAITING_FRAME: {
1219 QuicStopWaitingFrame stop_waiting_frame;
1220 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1221 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1223 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1224 DVLOG(1) << "Visitor asked to stop further processing.";
1225 // Returning true since there was no parsing error.
1226 return true;
1228 continue;
1230 case PING_FRAME: {
1231 // Ping has no payload.
1232 QuicPingFrame ping_frame;
1233 if (!visitor_->OnPingFrame(ping_frame)) {
1234 DVLOG(1) << "Visitor asked to stop further processing.";
1235 // Returning true since there was no parsing error.
1236 return true;
1238 continue;
1241 default:
1242 set_detailed_error("Illegal frame type.");
1243 DLOG(WARNING) << "Illegal frame type: "
1244 << static_cast<int>(frame_type);
1245 return RaiseError(QUIC_INVALID_FRAME_DATA);
1249 return true;
1252 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1253 QuicStreamFrame* frame) {
1254 uint8 stream_flags = frame_type;
1256 stream_flags &= ~kQuicFrameTypeStreamMask;
1258 // Read from right to left: StreamID, Offset, Data Length, Fin.
1259 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1260 stream_flags >>= kQuicStreamIdShift;
1262 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1263 // There is no encoding for 1 byte, only 0 and 2 through 8.
1264 if (offset_length > 0) {
1265 offset_length += 1;
1267 stream_flags >>= kQuicStreamOffsetShift;
1269 bool has_data_length =
1270 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1271 stream_flags >>= kQuicStreamDataLengthShift;
1273 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1275 frame->stream_id = 0;
1276 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1277 set_detailed_error("Unable to read stream_id.");
1278 return false;
1281 frame->offset = 0;
1282 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1283 set_detailed_error("Unable to read offset.");
1284 return false;
1287 if (has_data_length) {
1288 if (!reader_->ReadStringPiece16(&frame->data)) {
1289 set_detailed_error("Unable to read frame data.");
1290 return false;
1292 } else {
1293 if (!reader_->ReadStringPiece(&frame->data, reader_->BytesRemaining())) {
1294 set_detailed_error("Unable to read frame data.");
1295 return false;
1299 return true;
1302 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1303 // Determine the three lengths from the frame type: largest observed length,
1304 // missing sequence number length, and missing range length.
1305 const QuicSequenceNumberLength missing_sequence_number_length =
1306 ReadSequenceNumberLength(frame_type);
1307 frame_type >>= kQuicSequenceNumberLengthShift;
1308 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1309 ReadSequenceNumberLength(frame_type);
1310 frame_type >>= kQuicSequenceNumberLengthShift;
1311 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1312 frame_type >>= kQuicAckTruncatedShift;
1313 bool has_nacks = frame_type & kQuicHasNacksMask;
1315 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1316 set_detailed_error("Unable to read entropy hash for received packets.");
1317 return false;
1320 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1321 largest_observed_sequence_number_length)) {
1322 set_detailed_error("Unable to read largest observed.");
1323 return false;
1326 uint64 delta_time_largest_observed_us;
1327 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1328 set_detailed_error("Unable to read delta time largest observed.");
1329 return false;
1332 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1333 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1334 } else {
1335 ack_frame->delta_time_largest_observed =
1336 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1339 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1340 return false;
1343 if (!has_nacks) {
1344 return true;
1347 uint8 num_missing_ranges;
1348 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1349 set_detailed_error("Unable to read num missing packet ranges.");
1350 return false;
1353 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1354 for (size_t i = 0; i < num_missing_ranges; ++i) {
1355 QuicPacketSequenceNumber missing_delta = 0;
1356 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1357 set_detailed_error("Unable to read missing sequence number delta.");
1358 return false;
1360 last_sequence_number -= missing_delta;
1361 QuicPacketSequenceNumber range_length = 0;
1362 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1363 set_detailed_error("Unable to read missing sequence number range.");
1364 return false;
1366 for (size_t j = 0; j <= range_length; ++j) {
1367 ack_frame->missing_packets.insert(last_sequence_number - j);
1369 // Subtract an extra 1 to ensure ranges are represented efficiently and
1370 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1371 // to represent an adjacent nack range.
1372 last_sequence_number -= (range_length + 1);
1375 // Parse the revived packets list.
1376 uint8 num_revived_packets;
1377 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1378 set_detailed_error("Unable to read num revived packets.");
1379 return false;
1382 for (size_t i = 0; i < num_revived_packets; ++i) {
1383 QuicPacketSequenceNumber revived_packet = 0;
1384 if (!reader_->ReadBytes(&revived_packet,
1385 largest_observed_sequence_number_length)) {
1386 set_detailed_error("Unable to read revived packet.");
1387 return false;
1390 ack_frame->revived_packets.insert(revived_packet);
1393 return true;
1396 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1397 if (ack_frame->is_truncated) {
1398 return true;
1400 uint8 num_received_packets;
1401 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1402 set_detailed_error("Unable to read num received packets.");
1403 return false;
1406 if (num_received_packets > 0) {
1407 uint8 delta_from_largest_observed;
1408 if (!reader_->ReadBytes(&delta_from_largest_observed,
1409 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1410 set_detailed_error("Unable to read sequence delta in received packets.");
1411 return false;
1413 QuicPacketSequenceNumber seq_num =
1414 ack_frame->largest_observed - delta_from_largest_observed;
1416 // Time delta from the framer creation.
1417 uint32 time_delta_us;
1418 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1419 set_detailed_error("Unable to read time delta in received packets.");
1420 return false;
1423 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1425 ack_frame->received_packet_times.push_back(
1426 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1428 for (uint8 i = 1; i < num_received_packets; ++i) {
1429 if (!reader_->ReadBytes(&delta_from_largest_observed,
1430 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1431 set_detailed_error(
1432 "Unable to read sequence delta in received packets.");
1433 return false;
1435 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1437 // Time delta from the previous timestamp.
1438 uint64 incremental_time_delta_us;
1439 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1440 set_detailed_error(
1441 "Unable to read incremental time delta in received packets.");
1442 return false;
1445 last_timestamp_ = last_timestamp_.Add(
1446 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1447 ack_frame->received_packet_times.push_back(
1448 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1451 return true;
1454 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1455 QuicStopWaitingFrame* stop_waiting) {
1456 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1457 set_detailed_error("Unable to read entropy hash for sent packets.");
1458 return false;
1461 QuicPacketSequenceNumber least_unacked_delta = 0;
1462 if (!reader_->ReadBytes(&least_unacked_delta,
1463 header.public_header.sequence_number_length)) {
1464 set_detailed_error("Unable to read least unacked delta.");
1465 return false;
1467 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1468 stop_waiting->least_unacked =
1469 header.packet_sequence_number - least_unacked_delta;
1471 return true;
1474 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1475 if (!reader_->ReadUInt32(&frame->stream_id)) {
1476 set_detailed_error("Unable to read stream_id.");
1477 return false;
1480 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1481 set_detailed_error("Unable to read rst stream sent byte offset.");
1482 return false;
1485 uint32 error_code;
1486 if (!reader_->ReadUInt32(&error_code)) {
1487 set_detailed_error("Unable to read rst stream error code.");
1488 return false;
1491 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1492 set_detailed_error("Invalid rst stream error code.");
1493 return false;
1496 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1497 if (quic_version_ <= QUIC_VERSION_24) {
1498 StringPiece error_details;
1499 if (!reader_->ReadStringPiece16(&error_details)) {
1500 set_detailed_error("Unable to read rst stream error details.");
1501 return false;
1503 frame->error_details = error_details.as_string();
1506 return true;
1509 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1510 uint32 error_code;
1511 if (!reader_->ReadUInt32(&error_code)) {
1512 set_detailed_error("Unable to read connection close error code.");
1513 return false;
1516 if (error_code >= QUIC_LAST_ERROR) {
1517 set_detailed_error("Invalid error code.");
1518 return false;
1521 frame->error_code = static_cast<QuicErrorCode>(error_code);
1523 StringPiece error_details;
1524 if (!reader_->ReadStringPiece16(&error_details)) {
1525 set_detailed_error("Unable to read connection close error details.");
1526 return false;
1528 frame->error_details = error_details.as_string();
1530 return true;
1533 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1534 uint32 error_code;
1535 if (!reader_->ReadUInt32(&error_code)) {
1536 set_detailed_error("Unable to read go away error code.");
1537 return false;
1539 frame->error_code = static_cast<QuicErrorCode>(error_code);
1541 if (error_code >= QUIC_LAST_ERROR) {
1542 set_detailed_error("Invalid error code.");
1543 return false;
1546 uint32 stream_id;
1547 if (!reader_->ReadUInt32(&stream_id)) {
1548 set_detailed_error("Unable to read last good stream id.");
1549 return false;
1551 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1553 StringPiece reason_phrase;
1554 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1555 set_detailed_error("Unable to read goaway reason.");
1556 return false;
1558 frame->reason_phrase = reason_phrase.as_string();
1560 return true;
1563 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1564 if (!reader_->ReadUInt32(&frame->stream_id)) {
1565 set_detailed_error("Unable to read stream_id.");
1566 return false;
1569 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1570 set_detailed_error("Unable to read window byte_offset.");
1571 return false;
1574 return true;
1577 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1578 if (!reader_->ReadUInt32(&frame->stream_id)) {
1579 set_detailed_error("Unable to read stream_id.");
1580 return false;
1583 return true;
1586 // static
1587 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1588 const QuicEncryptedPacket& encrypted,
1589 QuicConnectionIdLength connection_id_length,
1590 bool includes_version,
1591 QuicSequenceNumberLength sequence_number_length) {
1592 return StringPiece(
1593 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1594 connection_id_length, includes_version, sequence_number_length)
1595 - kStartOfHashData);
1598 void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) {
1599 DCHECK(alternative_decrypter_.get() == nullptr);
1600 DCHECK_GE(level, decrypter_level_);
1601 decrypter_.reset(decrypter);
1602 decrypter_level_ = level;
1605 void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level,
1606 QuicDecrypter* decrypter,
1607 bool latch_once_used) {
1608 alternative_decrypter_.reset(decrypter);
1609 alternative_decrypter_level_ = level;
1610 alternative_decrypter_latch_ = latch_once_used;
1613 const QuicDecrypter* QuicFramer::decrypter() const {
1614 return decrypter_.get();
1617 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1618 return alternative_decrypter_.get();
1621 void QuicFramer::SetEncrypter(EncryptionLevel level,
1622 QuicEncrypter* encrypter) {
1623 DCHECK_GE(level, 0);
1624 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1625 encrypter_[level].reset(encrypter);
1628 QuicEncryptedPacket* QuicFramer::EncryptPayload(
1629 EncryptionLevel level,
1630 QuicPacketSequenceNumber packet_sequence_number,
1631 const QuicPacket& packet,
1632 char* buffer,
1633 size_t buffer_len) {
1634 DCHECK(encrypter_[level].get() != nullptr);
1636 const size_t encrypted_len =
1637 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1638 StringPiece header_data = packet.BeforePlaintext();
1639 const size_t total_len = header_data.length() + encrypted_len;
1641 char* encryption_buffer = buffer;
1642 // Allocate a large enough buffer for the header and the encrypted data.
1643 const bool is_new_buffer = total_len > buffer_len;
1644 if (is_new_buffer) {
1645 if (!FLAGS_quic_allow_oversized_packets_for_test) {
1646 LOG(DFATAL) << "Buffer of length:" << buffer_len
1647 << " is not large enough to encrypt length " << total_len;
1648 return nullptr;
1650 encryption_buffer = new char[total_len];
1652 // Copy in the header, because the encrypter only populates the encrypted
1653 // plaintext content.
1654 memcpy(encryption_buffer, header_data.data(), header_data.length());
1655 // Encrypt the plaintext into the buffer.
1656 size_t output_length = 0;
1657 if (!encrypter_[level]->EncryptPacket(
1658 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1659 encryption_buffer + header_data.length(), &output_length,
1660 encrypted_len)) {
1661 RaiseError(QUIC_ENCRYPTION_FAILURE);
1662 return nullptr;
1665 return new QuicEncryptedPacket(
1666 encryption_buffer, header_data.length() + output_length, is_new_buffer);
1669 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1670 // In order to keep the code simple, we don't have the current encryption
1671 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1672 size_t min_plaintext_size = ciphertext_size;
1674 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1675 if (encrypter_[i].get() != nullptr) {
1676 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1677 if (size < min_plaintext_size) {
1678 min_plaintext_size = size;
1683 return min_plaintext_size;
1686 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1687 const QuicEncryptedPacket& packet,
1688 char* decrypted_buffer,
1689 size_t buffer_length) {
1690 StringPiece encrypted = reader_->ReadRemainingPayload();
1691 DCHECK(decrypter_.get() != nullptr);
1692 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1693 packet, header.public_header.connection_id_length,
1694 header.public_header.version_flag,
1695 header.public_header.sequence_number_length);
1696 size_t decrypted_length = 0;
1697 bool success = decrypter_->DecryptPacket(
1698 header.packet_sequence_number, associated_data, encrypted,
1699 decrypted_buffer, &decrypted_length, buffer_length);
1700 if (success) {
1701 visitor_->OnDecryptedPacket(decrypter_level_);
1702 } else if (alternative_decrypter_.get() != nullptr) {
1703 success = alternative_decrypter_->DecryptPacket(
1704 header.packet_sequence_number, associated_data, encrypted,
1705 decrypted_buffer, &decrypted_length, buffer_length);
1706 if (success) {
1707 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1708 if (alternative_decrypter_latch_) {
1709 // Switch to the alternative decrypter and latch so that we cannot
1710 // switch back.
1711 decrypter_.reset(alternative_decrypter_.release());
1712 decrypter_level_ = alternative_decrypter_level_;
1713 alternative_decrypter_level_ = ENCRYPTION_NONE;
1714 } else {
1715 // Switch the alternative decrypter so that we use it first next time.
1716 decrypter_.swap(alternative_decrypter_);
1717 EncryptionLevel level = alternative_decrypter_level_;
1718 alternative_decrypter_level_ = decrypter_level_;
1719 decrypter_level_ = level;
1724 if (!success) {
1725 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1726 << header.packet_sequence_number;
1727 return false;
1730 reader_.reset(new QuicDataReader(decrypted_buffer, decrypted_length));
1731 return true;
1734 size_t QuicFramer::GetAckFrameSize(
1735 const QuicAckFrame& ack,
1736 QuicSequenceNumberLength sequence_number_length) {
1737 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1738 QuicSequenceNumberLength largest_observed_length =
1739 GetMinSequenceNumberLength(ack.largest_observed);
1740 QuicSequenceNumberLength missing_sequence_number_length =
1741 GetMinSequenceNumberLength(ack_info.max_delta);
1743 size_t ack_size = GetMinAckFrameSize(largest_observed_length);
1744 if (!ack_info.nack_ranges.empty()) {
1745 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1746 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1747 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1748 ack_size += min(ack.revived_packets.size(),
1749 kMaxRevivedPackets) * largest_observed_length;
1752 // In version 23, if the ack will be truncated due to too many nack ranges,
1753 // then do not include the number of timestamps (1 byte).
1754 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1755 // 1 byte for the number of timestamps.
1756 ack_size += 1;
1757 if (ack.received_packet_times.size() > 0) {
1758 // 1 byte for sequence number, 4 bytes for timestamp for the first
1759 // packet.
1760 ack_size += 5;
1762 // 1 byte for sequence number, 2 bytes for timestamp for the other
1763 // packets.
1764 ack_size += 3 * (ack.received_packet_times.size() - 1);
1768 return ack_size;
1771 size_t QuicFramer::ComputeFrameLength(
1772 const QuicFrame& frame,
1773 bool last_frame_in_packet,
1774 InFecGroup is_in_fec_group,
1775 QuicSequenceNumberLength sequence_number_length) {
1776 switch (frame.type) {
1777 case STREAM_FRAME:
1778 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1779 frame.stream_frame->offset,
1780 last_frame_in_packet, is_in_fec_group) +
1781 frame.stream_frame->data.length();
1782 case ACK_FRAME: {
1783 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1785 case STOP_WAITING_FRAME:
1786 return GetStopWaitingFrameSize(sequence_number_length);
1787 case MTU_DISCOVERY_FRAME:
1788 // MTU discovery frames are serialized as ping frames.
1789 case PING_FRAME:
1790 // Ping has no payload.
1791 return kQuicFrameTypeSize;
1792 case RST_STREAM_FRAME:
1793 if (quic_version_ <= QUIC_VERSION_24) {
1794 return GetMinRstStreamFrameSize() +
1795 frame.rst_stream_frame->error_details.size();
1797 return GetRstStreamFrameSize();
1798 case CONNECTION_CLOSE_FRAME:
1799 return GetMinConnectionCloseFrameSize() +
1800 frame.connection_close_frame->error_details.size();
1801 case GOAWAY_FRAME:
1802 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1803 case WINDOW_UPDATE_FRAME:
1804 return GetWindowUpdateFrameSize();
1805 case BLOCKED_FRAME:
1806 return GetBlockedFrameSize();
1807 case PADDING_FRAME:
1808 DCHECK(false);
1809 return 0;
1810 case NUM_FRAME_TYPES:
1811 DCHECK(false);
1812 return 0;
1815 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1816 DCHECK(false);
1817 return 0;
1820 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1821 bool no_stream_frame_length,
1822 QuicDataWriter* writer) {
1823 uint8 type_byte = 0;
1824 switch (frame.type) {
1825 case STREAM_FRAME: {
1826 if (frame.stream_frame == nullptr) {
1827 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1829 // Fin bit.
1830 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1832 // Data Length bit.
1833 type_byte <<= kQuicStreamDataLengthShift;
1834 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1836 // Offset 3 bits.
1837 type_byte <<= kQuicStreamOffsetShift;
1838 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1839 if (offset_len > 0) {
1840 type_byte |= offset_len - 1;
1843 // stream id 2 bits.
1844 type_byte <<= kQuicStreamIdShift;
1845 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1846 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1847 break;
1849 case ACK_FRAME:
1850 return true;
1851 case MTU_DISCOVERY_FRAME:
1852 type_byte = static_cast<uint8>(PING_FRAME);
1853 break;
1854 default:
1855 type_byte = static_cast<uint8>(frame.type);
1856 break;
1859 return writer->WriteUInt8(type_byte);
1862 // static
1863 bool QuicFramer::AppendPacketSequenceNumber(
1864 QuicSequenceNumberLength sequence_number_length,
1865 QuicPacketSequenceNumber packet_sequence_number,
1866 QuicDataWriter* writer) {
1867 // Ensure the entire sequence number can be written.
1868 if (writer->capacity() - writer->length() <
1869 static_cast<size_t>(sequence_number_length)) {
1870 return false;
1872 switch (sequence_number_length) {
1873 case PACKET_1BYTE_SEQUENCE_NUMBER:
1874 return writer->WriteUInt8(
1875 packet_sequence_number & k1ByteSequenceNumberMask);
1876 break;
1877 case PACKET_2BYTE_SEQUENCE_NUMBER:
1878 return writer->WriteUInt16(
1879 packet_sequence_number & k2ByteSequenceNumberMask);
1880 break;
1881 case PACKET_4BYTE_SEQUENCE_NUMBER:
1882 return writer->WriteUInt32(
1883 packet_sequence_number & k4ByteSequenceNumberMask);
1884 break;
1885 case PACKET_6BYTE_SEQUENCE_NUMBER:
1886 return writer->WriteUInt48(
1887 packet_sequence_number & k6ByteSequenceNumberMask);
1888 break;
1889 default:
1890 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1891 return false;
1895 bool QuicFramer::AppendStreamFrame(
1896 const QuicStreamFrame& frame,
1897 bool no_stream_frame_length,
1898 QuicDataWriter* writer) {
1899 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1900 LOG(DFATAL) << "Writing stream id size failed.";
1901 return false;
1903 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1904 LOG(DFATAL) << "Writing offset size failed.";
1905 return false;
1907 if (!no_stream_frame_length) {
1908 if ((frame.data.size() > numeric_limits<uint16>::max()) ||
1909 !writer->WriteUInt16(static_cast<uint16>(frame.data.size()))) {
1910 LOG(DFATAL) << "Writing stream frame length failed";
1911 return false;
1915 if (!writer->WriteBytes(frame.data.data(), frame.data.size())) {
1916 LOG(DFATAL) << "Writing frame data failed.";
1917 return false;
1919 return true;
1922 void QuicFramer::set_version(const QuicVersion version) {
1923 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1924 quic_version_ = version;
1927 bool QuicFramer::AppendAckFrameAndTypeByte(
1928 const QuicPacketHeader& header,
1929 const QuicAckFrame& frame,
1930 QuicDataWriter* writer) {
1931 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1932 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1933 QuicSequenceNumberLength largest_observed_length =
1934 GetMinSequenceNumberLength(ack_largest_observed);
1935 QuicSequenceNumberLength missing_sequence_number_length =
1936 GetMinSequenceNumberLength(ack_info.max_delta);
1937 // Determine whether we need to truncate ranges.
1938 size_t available_range_bytes =
1939 writer->capacity() - writer->length() - kNumberOfRevivedPacketsSize -
1940 kNumberOfNackRangesSize - GetMinAckFrameSize(largest_observed_length);
1941 size_t max_num_ranges = available_range_bytes /
1942 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1943 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1944 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1945 DVLOG_IF(1, truncated) << "Truncating ack from "
1946 << ack_info.nack_ranges.size() << " ranges to "
1947 << max_num_ranges;
1948 // Write out the type byte by setting the low order bits and doing shifts
1949 // to make room for the next bit flags to be set.
1950 // Whether there are any nacks.
1951 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1953 // truncating bit.
1954 type_byte <<= kQuicAckTruncatedShift;
1955 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1957 // Largest observed sequence number length.
1958 type_byte <<= kQuicSequenceNumberLengthShift;
1959 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1961 // Missing sequence number length.
1962 type_byte <<= kQuicSequenceNumberLengthShift;
1963 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1965 type_byte |= kQuicFrameTypeAckMask;
1967 if (!writer->WriteUInt8(type_byte)) {
1968 return false;
1971 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1972 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1973 if (truncated) {
1974 // Skip the nack ranges which the truncated ack won't include and set
1975 // a correct largest observed for the truncated ack.
1976 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1977 ++i) {
1978 ++ack_iter;
1980 // If the last range is followed by acks, include them.
1981 // If the last range is followed by another range, specify the end of the
1982 // range as the largest_observed.
1983 ack_largest_observed = ack_iter->first - 1;
1984 // Also update the entropy so it matches the largest observed.
1985 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1986 ++ack_iter;
1989 if (!writer->WriteUInt8(ack_entropy_hash)) {
1990 return false;
1993 if (!AppendPacketSequenceNumber(largest_observed_length,
1994 ack_largest_observed, writer)) {
1995 return false;
1998 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
1999 if (!frame.delta_time_largest_observed.IsInfinite()) {
2000 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2001 delta_time_largest_observed_us =
2002 frame.delta_time_largest_observed.ToMicroseconds();
2005 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2006 return false;
2009 // Timestamp goes at the end of the required fields.
2010 if (!truncated) {
2011 if (!AppendTimestampToAckFrame(frame, writer)) {
2012 return false;
2016 if (ack_info.nack_ranges.empty()) {
2017 return true;
2020 const uint8 num_missing_ranges =
2021 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
2022 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2023 return false;
2026 int num_ranges_written = 0;
2027 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2028 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2029 // Calculate the delta to the last number in the range.
2030 QuicPacketSequenceNumber missing_delta =
2031 last_sequence_written - (ack_iter->first + ack_iter->second);
2032 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2033 missing_delta, writer)) {
2034 return false;
2036 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2037 ack_iter->second, writer)) {
2038 return false;
2040 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2041 last_sequence_written = ack_iter->first - 1;
2042 ++num_ranges_written;
2044 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2046 // Append revived packets.
2047 // If not all the revived packets fit, only mention the ones that do.
2048 uint8 num_revived_packets =
2049 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2050 num_revived_packets = static_cast<uint8>(min(
2051 static_cast<size_t>(num_revived_packets),
2052 (writer->capacity() - writer->length()) / largest_observed_length));
2053 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2054 return false;
2057 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2058 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2059 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2060 if (!AppendPacketSequenceNumber(largest_observed_length,
2061 *iter, writer)) {
2062 return false;
2066 return true;
2069 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2070 QuicDataWriter* writer) {
2071 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2072 // num_received_packets is only 1 byte.
2073 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2074 return false;
2077 uint8 num_received_packets = frame.received_packet_times.size();
2079 if (!writer->WriteBytes(&num_received_packets, 1)) {
2080 return false;
2082 if (num_received_packets == 0) {
2083 return true;
2086 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2087 QuicPacketSequenceNumber sequence_number = it->first;
2088 QuicPacketSequenceNumber delta_from_largest_observed =
2089 frame.largest_observed - sequence_number;
2091 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2092 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2093 return false;
2096 if (!writer->WriteUInt8(
2097 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2098 return false;
2101 // Use the lowest 4 bytes of the time delta from the creation_time_.
2102 const uint64 time_epoch_delta_us = UINT64_C(1) << 32;
2103 uint32 time_delta_us =
2104 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2105 & (time_epoch_delta_us - 1));
2106 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2107 return false;
2110 QuicTime prev_time = it->second;
2112 for (++it; it != frame.received_packet_times.end(); ++it) {
2113 sequence_number = it->first;
2114 delta_from_largest_observed = frame.largest_observed - sequence_number;
2116 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2117 return false;
2120 if (!writer->WriteUInt8(
2121 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2122 return false;
2125 uint64 frame_time_delta_us =
2126 it->second.Subtract(prev_time).ToMicroseconds();
2127 prev_time = it->second;
2128 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2129 return false;
2132 return true;
2135 bool QuicFramer::AppendStopWaitingFrame(
2136 const QuicPacketHeader& header,
2137 const QuicStopWaitingFrame& frame,
2138 QuicDataWriter* writer) {
2139 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2140 const QuicPacketSequenceNumber least_unacked_delta =
2141 header.packet_sequence_number - frame.least_unacked;
2142 const QuicPacketSequenceNumber length_shift =
2143 header.public_header.sequence_number_length * 8;
2144 if (!writer->WriteUInt8(frame.entropy_hash)) {
2145 LOG(DFATAL) << " hash failed";
2146 return false;
2149 if (least_unacked_delta >> length_shift > 0) {
2150 LOG(DFATAL) << "sequence_number_length "
2151 << header.public_header.sequence_number_length
2152 << " is too small for least_unacked_delta: "
2153 << least_unacked_delta;
2154 return false;
2156 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2157 least_unacked_delta, writer)) {
2158 LOG(DFATAL) << " seq failed: "
2159 << header.public_header.sequence_number_length;
2160 return false;
2163 return true;
2166 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2167 QuicDataWriter* writer) {
2168 if (!writer->WriteUInt32(frame.stream_id)) {
2169 return false;
2172 if (!writer->WriteUInt64(frame.byte_offset)) {
2173 return false;
2176 uint32 error_code = static_cast<uint32>(frame.error_code);
2177 if (!writer->WriteUInt32(error_code)) {
2178 return false;
2181 if (quic_version_ <= QUIC_VERSION_24) {
2182 if (!writer->WriteStringPiece16(frame.error_details)) {
2183 return false;
2186 return true;
2189 bool QuicFramer::AppendConnectionCloseFrame(
2190 const QuicConnectionCloseFrame& frame,
2191 QuicDataWriter* writer) {
2192 uint32 error_code = static_cast<uint32>(frame.error_code);
2193 if (!writer->WriteUInt32(error_code)) {
2194 return false;
2196 if (!writer->WriteStringPiece16(frame.error_details)) {
2197 return false;
2199 return true;
2202 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2203 QuicDataWriter* writer) {
2204 uint32 error_code = static_cast<uint32>(frame.error_code);
2205 if (!writer->WriteUInt32(error_code)) {
2206 return false;
2208 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2209 if (!writer->WriteUInt32(stream_id)) {
2210 return false;
2212 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2213 return false;
2215 return true;
2218 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2219 QuicDataWriter* writer) {
2220 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2221 if (!writer->WriteUInt32(stream_id)) {
2222 return false;
2224 if (!writer->WriteUInt64(frame.byte_offset)) {
2225 return false;
2227 return true;
2230 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2231 QuicDataWriter* writer) {
2232 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2233 if (!writer->WriteUInt32(stream_id)) {
2234 return false;
2236 return true;
2239 bool QuicFramer::RaiseError(QuicErrorCode error) {
2240 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2241 << " detail: " << detailed_error_;
2242 set_error(error);
2243 visitor_->OnError(this);
2244 reader_.reset(nullptr);
2245 return false;
2248 } // namespace net