[Android] Out with the Android GR, in with the new unified C++ GR
[chromium-blink-merge.git] / base / strings / safe_sprintf.h
blobc9ee717375386f8fc666fa04403c210eafefb3f2
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_STRINGS_SAFE_SPRINTF_H_
6 #define BASE_STRINGS_SAFE_SPRINTF_H_
8 #include "build/build_config.h"
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdlib.h>
14 #if defined(OS_POSIX)
15 // For ssize_t
16 #include <unistd.h>
17 #endif
19 #include "base/base_export.h"
20 #include "base/basictypes.h"
22 namespace base {
23 namespace strings {
25 #if defined(_MSC_VER)
26 // Define ssize_t inside of our namespace.
27 #if defined(_WIN64)
28 typedef __int64 ssize_t;
29 #else
30 typedef long ssize_t;
31 #endif
32 #endif
34 // SafeSPrintf() is a type-safe and completely self-contained version of
35 // snprintf().
37 // SafeSNPrintf() is an alternative function signature that can be used when
38 // not dealing with fixed-sized buffers. When possible, SafeSPrintf() should
39 // always be used instead of SafeSNPrintf()
41 // These functions allow for formatting complicated messages from contexts that
42 // require strict async-signal-safety. In fact, it is safe to call them from
43 // any low-level execution context, as they are guaranteed to make no library
44 // or system calls. It deliberately never touches "errno", either.
46 // The only exception to this rule is that in debug builds the code calls
47 // RAW_CHECK() to help diagnose problems when the format string does not
48 // match the rest of the arguments. In release builds, no CHECK()s are used,
49 // and SafeSPrintf() instead returns an output string that expands only
50 // those arguments that match their format characters. Mismatched arguments
51 // are ignored.
53 // The code currently only supports a subset of format characters:
54 // %c, %o, %d, %x, %X, %p, and %s.
56 // SafeSPrintf() aims to be as liberal as reasonably possible. Integer-like
57 // values of arbitrary width can be passed to all of the format characters
58 // that expect integers. Thus, it is explicitly legal to pass an "int" to
59 // "%c", and output will automatically look at the LSB only. It is also
60 // explicitly legal to pass either signed or unsigned values, and the format
61 // characters will automatically interpret the arguments accordingly.
63 // It is still not legal to mix-and-match integer-like values with pointer
64 // values. For instance, you cannot pass a pointer to %x, nor can you pass an
65 // integer to %p.
67 // The one exception is "0" zero being accepted by "%p". This works-around
68 // the problem of C++ defining NULL as an integer-like value.
70 // All format characters take an optional width parameter. This must be a
71 // positive integer. For %d, %o, %x, %X and %p, if the width starts with
72 // a leading '0', padding is done with '0' instead of ' ' characters.
74 // There are a few features of snprintf()-style format strings, that
75 // SafeSPrintf() does not support at this time.
77 // If an actual user showed up, there is no particularly strong reason they
78 // couldn't be added. But that assumes that the trade-offs between complexity
79 // and utility are favorable.
81 // For example, adding support for negative padding widths, and for %n are all
82 // likely to be viewed positively. They are all clearly useful, low-risk, easy
83 // to test, don't jeopardize the async-signal-safety of the code, and overall
84 // have little impact on other parts of SafeSPrintf() function.
86 // On the other hands, adding support for alternate forms, positional
87 // arguments, grouping, wide characters, localization or floating point numbers
88 // are all unlikely to ever be added.
90 // SafeSPrintf() and SafeSNPrintf() mimic the behavior of snprintf() and they
91 // return the number of bytes needed to store the untruncated output. This
92 // does *not* include the terminating NUL byte.
94 // They return -1, iff a fatal error happened. This typically can only happen,
95 // if the buffer size is a) negative, or b) zero (i.e. not even the NUL byte
96 // can be written). The return value can never be larger than SSIZE_MAX-1.
97 // This ensures that the caller can always add one to the signed return code
98 // in order to determine the amount of storage that needs to be allocated.
100 // While the code supports type checking and while it is generally very careful
101 // to avoid printing incorrect values, it tends to be conservative in printing
102 // as much as possible, even when given incorrect parameters. Typically, in
103 // case of an error, the format string will not be expanded. (i.e. something
104 // like SafeSPrintf(buf, "%p %d", 1, 2) results in "%p 2"). See above for
105 // the use of RAW_CHECK() in debug builds, though.
107 // Basic example:
108 // char buf[20];
109 // base::strings::SafeSPrintf(buf, "The answer: %2d", 42);
111 // Example with dynamically sized buffer (async-signal-safe). This code won't
112 // work on Visual studio, as it requires dynamically allocating arrays on the
113 // stack. Consider picking a smaller value for |kMaxSize| if stack size is
114 // limited and known. On the other hand, if the parameters to SafeSNPrintf()
115 // are trusted and not controllable by the user, you can consider eliminating
116 // the check for |kMaxSize| altogether. The current value of SSIZE_MAX is
117 // essentially a no-op that just illustrates how to implement an upper bound:
118 // const size_t kInitialSize = 128;
119 // const size_t kMaxSize = std::numeric_limits<ssize_t>::max();
120 // size_t size = kInitialSize;
121 // for (;;) {
122 // char buf[size];
123 // size = SafeSNPrintf(buf, size, "Error message \"%s\"\n", err) + 1;
124 // if (sizeof(buf) < kMaxSize && size > kMaxSize) {
125 // size = kMaxSize;
126 // continue;
127 // } else if (size > sizeof(buf))
128 // continue;
129 // write(2, buf, size-1);
130 // break;
131 // }
133 namespace internal {
134 // Helpers that use C++ overloading, templates, and specializations to deduce
135 // and record type information from function arguments. This allows us to
136 // later write a type-safe version of snprintf().
138 struct Arg {
139 enum Type { INT, UINT, STRING, POINTER };
141 // Any integer-like value.
142 Arg(signed char c) : i(c), width(sizeof(char)), type(INT) { }
143 Arg(unsigned char c) : i(c), width(sizeof(char)), type(UINT) { }
144 Arg(signed short j) : i(j), width(sizeof(short)), type(INT) { }
145 Arg(unsigned short j) : i(j), width(sizeof(short)), type(UINT) { }
146 Arg(signed int j) : i(j), width(sizeof(int)), type(INT) { }
147 Arg(unsigned int j) : i(j), width(sizeof(int)), type(UINT) { }
148 Arg(signed long j) : i(j), width(sizeof(long)), type(INT) { }
149 Arg(unsigned long j) : i(j), width(sizeof(long)), type(UINT) { }
150 Arg(signed long long j) : i(j), width(sizeof(long long)), type(INT) { }
151 Arg(unsigned long long j) : i(j), width(sizeof(long long)), type(UINT) { }
153 // A C-style text string.
154 Arg(const char* s) : str(s), type(STRING) { }
155 Arg(char* s) : str(s), type(STRING) { }
157 // Any pointer value that can be cast to a "void*".
158 template<class T> Arg(T* p) : ptr((void*)p), type(POINTER) { }
160 union {
161 // An integer-like value.
162 struct {
163 int64_t i;
164 unsigned char width;
167 // A C-style text string.
168 const char* str;
170 // A pointer to an arbitrary object.
171 const void* ptr;
173 const enum Type type;
176 // This is the internal function that performs the actual formatting of
177 // an snprintf()-style format string.
178 BASE_EXPORT ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt,
179 const Arg* args, size_t max_args);
181 #if !defined(NDEBUG)
182 // In debug builds, allow unit tests to artificially lower the kSSizeMax
183 // constant that is used as a hard upper-bound for all buffers. In normal
184 // use, this constant should always be std::numeric_limits<ssize_t>::max().
185 BASE_EXPORT void SetSafeSPrintfSSizeMaxForTest(size_t max);
186 BASE_EXPORT size_t GetSafeSPrintfSSizeMaxForTest();
187 #endif
189 } // namespace internal
191 // TODO(markus): C++11 has a much more concise and readable solution for
192 // expressing what we are doing here.
194 template<class T0, class T1, class T2, class T3, class T4,
195 class T5, class T6, class T7, class T8, class T9>
196 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
197 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
198 T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9) {
199 // Use Arg() object to record type information and then copy arguments to an
200 // array to make it easier to iterate over them.
201 const internal::Arg arg_array[] = {
202 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
204 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
207 template<size_t N,
208 class T0, class T1, class T2, class T3, class T4,
209 class T5, class T6, class T7, class T8, class T9>
210 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
211 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
212 T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9) {
213 // Use Arg() object to record type information and then copy arguments to an
214 // array to make it easier to iterate over them.
215 const internal::Arg arg_array[] = {
216 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
218 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
221 template<class T0, class T1, class T2, class T3, class T4,
222 class T5, class T6, class T7, class T8>
223 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
224 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
225 T5 arg5, T6 arg6, T7 arg7, T8 arg8) {
226 // Use Arg() object to record type information and then copy arguments to an
227 // array to make it easier to iterate over them.
228 const internal::Arg arg_array[] = {
229 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8
231 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
234 template<size_t N,
235 class T0, class T1, class T2, class T3, class T4, class T5,
236 class T6, class T7, class T8>
237 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
238 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
239 T5 arg5, T6 arg6, T7 arg7, T8 arg8) {
240 // Use Arg() object to record type information and then copy arguments to an
241 // array to make it easier to iterate over them.
242 const internal::Arg arg_array[] = {
243 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8
245 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
248 template<class T0, class T1, class T2, class T3, class T4, class T5,
249 class T6, class T7>
250 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
251 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
252 T5 arg5, T6 arg6, T7 arg7) {
253 // Use Arg() object to record type information and then copy arguments to an
254 // array to make it easier to iterate over them.
255 const internal::Arg arg_array[] = {
256 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
258 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
261 template<size_t N,
262 class T0, class T1, class T2, class T3, class T4, class T5,
263 class T6, class T7>
264 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
265 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
266 T5 arg5, T6 arg6, T7 arg7) {
267 // Use Arg() object to record type information and then copy arguments to an
268 // array to make it easier to iterate over them.
269 const internal::Arg arg_array[] = {
270 arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
272 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
275 template<class T0, class T1, class T2, class T3, class T4, class T5,
276 class T6>
277 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
278 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4,
279 T5 arg5, T6 arg6) {
280 // Use Arg() object to record type information and then copy arguments to an
281 // array to make it easier to iterate over them.
282 const internal::Arg arg_array[] = {
283 arg0, arg1, arg2, arg3, arg4, arg5, arg6
285 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
288 template<size_t N,
289 class T0, class T1, class T2, class T3, class T4, class T5,
290 class T6>
291 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
292 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5,
293 T6 arg6) {
294 // Use Arg() object to record type information and then copy arguments to an
295 // array to make it easier to iterate over them.
296 const internal::Arg arg_array[] = {
297 arg0, arg1, arg2, arg3, arg4, arg5, arg6
299 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
302 template<class T0, class T1, class T2, class T3, class T4, class T5>
303 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
304 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5) {
305 // Use Arg() object to record type information and then copy arguments to an
306 // array to make it easier to iterate over them.
307 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3, arg4, arg5 };
308 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
311 template<size_t N,
312 class T0, class T1, class T2, class T3, class T4, class T5>
313 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
314 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5) {
315 // Use Arg() object to record type information and then copy arguments to an
316 // array to make it easier to iterate over them.
317 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3, arg4, arg5 };
318 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
321 template<class T0, class T1, class T2, class T3, class T4>
322 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
323 T0 arg0, T1 arg1, T2 arg2, T3 arg3, T4 arg4) {
324 // Use Arg() object to record type information and then copy arguments to an
325 // array to make it easier to iterate over them.
326 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3, arg4 };
327 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
330 template<size_t N, class T0, class T1, class T2, class T3, class T4>
331 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt, T0 arg0, T1 arg1,
332 T2 arg2, T3 arg3, T4 arg4) {
333 // Use Arg() object to record type information and then copy arguments to an
334 // array to make it easier to iterate over them.
335 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3, arg4 };
336 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
339 template<class T0, class T1, class T2, class T3>
340 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
341 T0 arg0, T1 arg1, T2 arg2, T3 arg3) {
342 // Use Arg() object to record type information and then copy arguments to an
343 // array to make it easier to iterate over them.
344 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3 };
345 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
348 template<size_t N, class T0, class T1, class T2, class T3>
349 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt,
350 T0 arg0, T1 arg1, T2 arg2, T3 arg3) {
351 // Use Arg() object to record type information and then copy arguments to an
352 // array to make it easier to iterate over them.
353 const internal::Arg arg_array[] = { arg0, arg1, arg2, arg3 };
354 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
357 template<class T0, class T1, class T2>
358 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt,
359 T0 arg0, T1 arg1, T2 arg2) {
360 // Use Arg() object to record type information and then copy arguments to an
361 // array to make it easier to iterate over them.
362 const internal::Arg arg_array[] = { arg0, arg1, arg2 };
363 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
366 template<size_t N, class T0, class T1, class T2>
367 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt, T0 arg0, T1 arg1,
368 T2 arg2) {
369 // Use Arg() object to record type information and then copy arguments to an
370 // array to make it easier to iterate over them.
371 const internal::Arg arg_array[] = { arg0, arg1, arg2 };
372 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
375 template<class T0, class T1>
376 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, T0 arg0, T1 arg1) {
377 // Use Arg() object to record type information and then copy arguments to an
378 // array to make it easier to iterate over them.
379 const internal::Arg arg_array[] = { arg0, arg1 };
380 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
383 template<size_t N, class T0, class T1>
384 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt, T0 arg0, T1 arg1) {
385 // Use Arg() object to record type information and then copy arguments to an
386 // array to make it easier to iterate over them.
387 const internal::Arg arg_array[] = { arg0, arg1 };
388 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
391 template<class T0>
392 ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, T0 arg0) {
393 // Use Arg() object to record type information and then copy arguments to an
394 // array to make it easier to iterate over them.
395 const internal::Arg arg_array[] = { arg0 };
396 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
399 template<size_t N, class T0>
400 ssize_t SafeSPrintf(char (&buf)[N], const char* fmt, T0 arg0) {
401 // Use Arg() object to record type information and then copy arguments to an
402 // array to make it easier to iterate over them.
403 const internal::Arg arg_array[] = { arg0 };
404 return internal::SafeSNPrintf(buf, N, fmt, arg_array, arraysize(arg_array));
407 // Fast-path when we don't actually need to substitute any arguments.
408 BASE_EXPORT ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt);
409 template<size_t N>
410 inline ssize_t SafeSPrintf(char (&buf)[N], const char* fmt) {
411 return SafeSNPrintf(buf, N, fmt);
414 } // namespace strings
415 } // namespace base
417 #endif // BASE_STRINGS_SAFE_SPRINTF_H_