4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains Huffman entropy encoding routines for progressive JPEG.
10 * We do not support output suspension in this module, since the library
11 * currently does not allow multiple-scan files to be written with output
15 #define JPEG_INTERNALS
18 #include "jchuff.h" /* Declarations shared with jchuff.c */
20 #ifdef C_PROGRESSIVE_SUPPORTED
22 /* Expanded entropy encoder object for progressive Huffman encoding. */
25 struct jpeg_entropy_encoder pub
; /* public fields */
27 /* Mode flag: TRUE for optimization, FALSE for actual data output */
28 boolean gather_statistics
;
30 /* Bit-level coding status.
31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
33 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
34 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
35 INT32 put_buffer
; /* current bit-accumulation buffer */
36 int put_bits
; /* # of bits now in it */
37 j_compress_ptr cinfo
; /* link to cinfo (needed for dump_buffer) */
39 /* Coding status for DC components */
40 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
42 /* Coding status for AC components */
43 int ac_tbl_no
; /* the table number of the single component */
44 unsigned int EOBRUN
; /* run length of EOBs */
45 unsigned int BE
; /* # of buffered correction bits before MCU */
46 char * bit_buffer
; /* buffer for correction bits (1 per char) */
47 /* packing correction bits tightly would save some space but cost time... */
49 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
50 int next_restart_num
; /* next restart number to write (0-7) */
52 /* Pointers to derived tables (these workspaces have image lifespan).
53 * Since any one scan codes only DC or only AC, we only need one set
54 * of tables, not one for DC and one for AC.
56 c_derived_tbl
* derived_tbls
[NUM_HUFF_TBLS
];
58 /* Statistics tables for optimization; again, one set is enough */
59 long * count_ptrs
[NUM_HUFF_TBLS
];
60 } phuff_entropy_encoder
;
62 typedef phuff_entropy_encoder
* phuff_entropy_ptr
;
64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
65 * buffer can hold. Larger sizes may slightly improve compression, but
66 * 1000 is already well into the realm of overkill.
67 * The minimum safe size is 64 bits.
70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
73 * We assume that int right shift is unsigned if INT32 right shift is,
74 * which should be safe.
77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
78 #define ISHIFT_TEMPS int ishift_temp;
79 #define IRIGHT_SHIFT(x,shft) \
80 ((ishift_temp = (x)) < 0 ? \
81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
82 (ishift_temp >> (shft)))
85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
88 /* Forward declarations */
89 METHODDEF(boolean
) encode_mcu_DC_first
JPP((j_compress_ptr cinfo
,
90 JBLOCKROW
*MCU_data
));
91 METHODDEF(boolean
) encode_mcu_AC_first
JPP((j_compress_ptr cinfo
,
92 JBLOCKROW
*MCU_data
));
93 METHODDEF(boolean
) encode_mcu_DC_refine
JPP((j_compress_ptr cinfo
,
94 JBLOCKROW
*MCU_data
));
95 METHODDEF(boolean
) encode_mcu_AC_refine
JPP((j_compress_ptr cinfo
,
96 JBLOCKROW
*MCU_data
));
97 METHODDEF(void) finish_pass_phuff
JPP((j_compress_ptr cinfo
));
98 METHODDEF(void) finish_pass_gather_phuff
JPP((j_compress_ptr cinfo
));
102 * Initialize for a Huffman-compressed scan using progressive JPEG.
106 start_pass_phuff (j_compress_ptr cinfo
, boolean gather_statistics
)
108 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
111 jpeg_component_info
* compptr
;
113 entropy
->cinfo
= cinfo
;
114 entropy
->gather_statistics
= gather_statistics
;
116 is_DC_band
= (cinfo
->Ss
== 0);
118 /* We assume jcmaster.c already validated the scan parameters. */
120 /* Select execution routines */
121 if (cinfo
->Ah
== 0) {
123 entropy
->pub
.encode_mcu
= encode_mcu_DC_first
;
125 entropy
->pub
.encode_mcu
= encode_mcu_AC_first
;
128 entropy
->pub
.encode_mcu
= encode_mcu_DC_refine
;
130 entropy
->pub
.encode_mcu
= encode_mcu_AC_refine
;
131 /* AC refinement needs a correction bit buffer */
132 if (entropy
->bit_buffer
== NULL
)
133 entropy
->bit_buffer
= (char *)
134 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
135 MAX_CORR_BITS
* SIZEOF(char));
138 if (gather_statistics
)
139 entropy
->pub
.finish_pass
= finish_pass_gather_phuff
;
141 entropy
->pub
.finish_pass
= finish_pass_phuff
;
143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
144 * for AC coefficients.
146 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
147 compptr
= cinfo
->cur_comp_info
[ci
];
148 /* Initialize DC predictions to 0 */
149 entropy
->last_dc_val
[ci
] = 0;
150 /* Get table index */
152 if (cinfo
->Ah
!= 0) /* DC refinement needs no table */
154 tbl
= compptr
->dc_tbl_no
;
156 entropy
->ac_tbl_no
= tbl
= compptr
->ac_tbl_no
;
158 if (gather_statistics
) {
159 /* Check for invalid table index */
160 /* (make_c_derived_tbl does this in the other path) */
161 if (tbl
< 0 || tbl
>= NUM_HUFF_TBLS
)
162 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tbl
);
163 /* Allocate and zero the statistics tables */
164 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
165 if (entropy
->count_ptrs
[tbl
] == NULL
)
166 entropy
->count_ptrs
[tbl
] = (long *)
167 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
169 MEMZERO(entropy
->count_ptrs
[tbl
], 257 * SIZEOF(long));
171 /* Compute derived values for Huffman table */
172 /* We may do this more than once for a table, but it's not expensive */
173 jpeg_make_c_derived_tbl(cinfo
, is_DC_band
, tbl
,
174 & entropy
->derived_tbls
[tbl
]);
178 /* Initialize AC stuff */
182 /* Initialize bit buffer to empty */
183 entropy
->put_buffer
= 0;
184 entropy
->put_bits
= 0;
186 /* Initialize restart stuff */
187 entropy
->restarts_to_go
= cinfo
->restart_interval
;
188 entropy
->next_restart_num
= 0;
192 /* Outputting bytes to the file.
193 * NB: these must be called only when actually outputting,
194 * that is, entropy->gather_statistics == FALSE.
198 #define emit_byte(entropy,val) \
199 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
200 if (--(entropy)->free_in_buffer == 0) \
201 dump_buffer(entropy); }
205 dump_buffer (phuff_entropy_ptr entropy
)
206 /* Empty the output buffer; we do not support suspension in this module. */
208 struct jpeg_destination_mgr
* dest
= entropy
->cinfo
->dest
;
210 if (! (*dest
->empty_output_buffer
) (entropy
->cinfo
))
211 ERREXIT(entropy
->cinfo
, JERR_CANT_SUSPEND
);
212 /* After a successful buffer dump, must reset buffer pointers */
213 entropy
->next_output_byte
= dest
->next_output_byte
;
214 entropy
->free_in_buffer
= dest
->free_in_buffer
;
218 /* Outputting bits to the file */
220 /* Only the right 24 bits of put_buffer are used; the valid bits are
221 * left-justified in this part. At most 16 bits can be passed to emit_bits
222 * in one call, and we never retain more than 7 bits in put_buffer
223 * between calls, so 24 bits are sufficient.
228 emit_bits (phuff_entropy_ptr entropy
, unsigned int code
, int size
)
229 /* Emit some bits, unless we are in gather mode */
231 /* This routine is heavily used, so it's worth coding tightly. */
232 register INT32 put_buffer
= (INT32
) code
;
233 register int put_bits
= entropy
->put_bits
;
235 /* if size is 0, caller used an invalid Huffman table entry */
237 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
239 if (entropy
->gather_statistics
)
240 return; /* do nothing if we're only getting stats */
242 put_buffer
&= (((INT32
) 1)<<size
) - 1; /* mask off any extra bits in code */
244 put_bits
+= size
; /* new number of bits in buffer */
246 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
248 put_buffer
|= entropy
->put_buffer
; /* and merge with old buffer contents */
250 while (put_bits
>= 8) {
251 int c
= (int) ((put_buffer
>> 16) & 0xFF);
253 emit_byte(entropy
, c
);
254 if (c
== 0xFF) { /* need to stuff a zero byte? */
255 emit_byte(entropy
, 0);
261 entropy
->put_buffer
= put_buffer
; /* update variables */
262 entropy
->put_bits
= put_bits
;
267 flush_bits (phuff_entropy_ptr entropy
)
269 emit_bits(entropy
, 0x7F, 7); /* fill any partial byte with ones */
270 entropy
->put_buffer
= 0; /* and reset bit-buffer to empty */
271 entropy
->put_bits
= 0;
276 * Emit (or just count) a Huffman symbol.
281 emit_symbol (phuff_entropy_ptr entropy
, int tbl_no
, int symbol
)
283 if (entropy
->gather_statistics
)
284 entropy
->count_ptrs
[tbl_no
][symbol
]++;
286 c_derived_tbl
* tbl
= entropy
->derived_tbls
[tbl_no
];
287 emit_bits(entropy
, tbl
->ehufco
[symbol
], tbl
->ehufsi
[symbol
]);
293 * Emit bits from a correction bit buffer.
297 emit_buffered_bits (phuff_entropy_ptr entropy
, char * bufstart
,
300 if (entropy
->gather_statistics
)
301 return; /* no real work */
304 emit_bits(entropy
, (unsigned int) (*bufstart
), 1);
312 * Emit any pending EOBRUN symbol.
316 emit_eobrun (phuff_entropy_ptr entropy
)
318 register int temp
, nbits
;
320 if (entropy
->EOBRUN
> 0) { /* if there is any pending EOBRUN */
321 temp
= entropy
->EOBRUN
;
325 /* safety check: shouldn't happen given limited correction-bit buffer */
327 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
329 emit_symbol(entropy
, entropy
->ac_tbl_no
, nbits
<< 4);
331 emit_bits(entropy
, entropy
->EOBRUN
, nbits
);
335 /* Emit any buffered correction bits */
336 emit_buffered_bits(entropy
, entropy
->bit_buffer
, entropy
->BE
);
343 * Emit a restart marker & resynchronize predictions.
347 emit_restart (phuff_entropy_ptr entropy
, int restart_num
)
351 emit_eobrun(entropy
);
353 if (! entropy
->gather_statistics
) {
355 emit_byte(entropy
, 0xFF);
356 emit_byte(entropy
, JPEG_RST0
+ restart_num
);
359 if (entropy
->cinfo
->Ss
== 0) {
360 /* Re-initialize DC predictions to 0 */
361 for (ci
= 0; ci
< entropy
->cinfo
->comps_in_scan
; ci
++)
362 entropy
->last_dc_val
[ci
] = 0;
364 /* Re-initialize all AC-related fields to 0 */
372 * MCU encoding for DC initial scan (either spectral selection,
373 * or first pass of successive approximation).
377 encode_mcu_DC_first (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
379 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
380 register int temp
, temp2
;
385 jpeg_component_info
* compptr
;
388 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
389 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
391 /* Emit restart marker if needed */
392 if (cinfo
->restart_interval
)
393 if (entropy
->restarts_to_go
== 0)
394 emit_restart(entropy
, entropy
->next_restart_num
);
396 /* Encode the MCU data blocks */
397 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
398 block
= MCU_data
[blkn
];
399 ci
= cinfo
->MCU_membership
[blkn
];
400 compptr
= cinfo
->cur_comp_info
[ci
];
402 /* Compute the DC value after the required point transform by Al.
403 * This is simply an arithmetic right shift.
405 temp2
= IRIGHT_SHIFT((int) ((*block
)[0]), Al
);
407 /* DC differences are figured on the point-transformed values. */
408 temp
= temp2
- entropy
->last_dc_val
[ci
];
409 entropy
->last_dc_val
[ci
] = temp2
;
411 /* Encode the DC coefficient difference per section G.1.2.1 */
414 temp
= -temp
; /* temp is abs value of input */
415 /* For a negative input, want temp2 = bitwise complement of abs(input) */
416 /* This code assumes we are on a two's complement machine */
420 /* Find the number of bits needed for the magnitude of the coefficient */
426 /* Check for out-of-range coefficient values.
427 * Since we're encoding a difference, the range limit is twice as much.
429 if (nbits
> MAX_COEF_BITS
+1)
430 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
432 /* Count/emit the Huffman-coded symbol for the number of bits */
433 emit_symbol(entropy
, compptr
->dc_tbl_no
, nbits
);
435 /* Emit that number of bits of the value, if positive, */
436 /* or the complement of its magnitude, if negative. */
437 if (nbits
) /* emit_bits rejects calls with size 0 */
438 emit_bits(entropy
, (unsigned int) temp2
, nbits
);
441 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
442 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
444 /* Update restart-interval state too */
445 if (cinfo
->restart_interval
) {
446 if (entropy
->restarts_to_go
== 0) {
447 entropy
->restarts_to_go
= cinfo
->restart_interval
;
448 entropy
->next_restart_num
++;
449 entropy
->next_restart_num
&= 7;
451 entropy
->restarts_to_go
--;
459 * MCU encoding for AC initial scan (either spectral selection,
460 * or first pass of successive approximation).
464 encode_mcu_AC_first (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
466 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
467 register int temp
, temp2
;
474 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
475 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
477 /* Emit restart marker if needed */
478 if (cinfo
->restart_interval
)
479 if (entropy
->restarts_to_go
== 0)
480 emit_restart(entropy
, entropy
->next_restart_num
);
482 /* Encode the MCU data block */
485 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
487 r
= 0; /* r = run length of zeros */
489 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
490 if ((temp
= (*block
)[jpeg_natural_order
[k
]]) == 0) {
494 /* We must apply the point transform by Al. For AC coefficients this
495 * is an integer division with rounding towards 0. To do this portably
496 * in C, we shift after obtaining the absolute value; so the code is
497 * interwoven with finding the abs value (temp) and output bits (temp2).
500 temp
= -temp
; /* temp is abs value of input */
501 temp
>>= Al
; /* apply the point transform */
502 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
505 temp
>>= Al
; /* apply the point transform */
508 /* Watch out for case that nonzero coef is zero after point transform */
514 /* Emit any pending EOBRUN */
515 if (entropy
->EOBRUN
> 0)
516 emit_eobrun(entropy
);
517 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
519 emit_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
523 /* Find the number of bits needed for the magnitude of the coefficient */
524 nbits
= 1; /* there must be at least one 1 bit */
527 /* Check for out-of-range coefficient values */
528 if (nbits
> MAX_COEF_BITS
)
529 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
531 /* Count/emit Huffman symbol for run length / number of bits */
532 emit_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + nbits
);
534 /* Emit that number of bits of the value, if positive, */
535 /* or the complement of its magnitude, if negative. */
536 emit_bits(entropy
, (unsigned int) temp2
, nbits
);
538 r
= 0; /* reset zero run length */
541 if (r
> 0) { /* If there are trailing zeroes, */
542 entropy
->EOBRUN
++; /* count an EOB */
543 if (entropy
->EOBRUN
== 0x7FFF)
544 emit_eobrun(entropy
); /* force it out to avoid overflow */
547 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
548 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
550 /* Update restart-interval state too */
551 if (cinfo
->restart_interval
) {
552 if (entropy
->restarts_to_go
== 0) {
553 entropy
->restarts_to_go
= cinfo
->restart_interval
;
554 entropy
->next_restart_num
++;
555 entropy
->next_restart_num
&= 7;
557 entropy
->restarts_to_go
--;
565 * MCU encoding for DC successive approximation refinement scan.
566 * Note: we assume such scans can be multi-component, although the spec
567 * is not very clear on the point.
571 encode_mcu_DC_refine (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
573 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
579 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
580 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
582 /* Emit restart marker if needed */
583 if (cinfo
->restart_interval
)
584 if (entropy
->restarts_to_go
== 0)
585 emit_restart(entropy
, entropy
->next_restart_num
);
587 /* Encode the MCU data blocks */
588 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
589 block
= MCU_data
[blkn
];
591 /* We simply emit the Al'th bit of the DC coefficient value. */
593 emit_bits(entropy
, (unsigned int) (temp
>> Al
), 1);
596 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
597 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
599 /* Update restart-interval state too */
600 if (cinfo
->restart_interval
) {
601 if (entropy
->restarts_to_go
== 0) {
602 entropy
->restarts_to_go
= cinfo
->restart_interval
;
603 entropy
->next_restart_num
++;
604 entropy
->next_restart_num
&= 7;
606 entropy
->restarts_to_go
--;
614 * MCU encoding for AC successive approximation refinement scan.
618 encode_mcu_AC_refine (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
620 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
629 int absvalues
[DCTSIZE2
];
631 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
632 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
634 /* Emit restart marker if needed */
635 if (cinfo
->restart_interval
)
636 if (entropy
->restarts_to_go
== 0)
637 emit_restart(entropy
, entropy
->next_restart_num
);
639 /* Encode the MCU data block */
642 /* It is convenient to make a pre-pass to determine the transformed
643 * coefficients' absolute values and the EOB position.
646 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
647 temp
= (*block
)[jpeg_natural_order
[k
]];
648 /* We must apply the point transform by Al. For AC coefficients this
649 * is an integer division with rounding towards 0. To do this portably
650 * in C, we shift after obtaining the absolute value.
653 temp
= -temp
; /* temp is abs value of input */
654 temp
>>= Al
; /* apply the point transform */
655 absvalues
[k
] = temp
; /* save abs value for main pass */
657 EOB
= k
; /* EOB = index of last newly-nonzero coef */
660 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
662 r
= 0; /* r = run length of zeros */
663 BR
= 0; /* BR = count of buffered bits added now */
664 BR_buffer
= entropy
->bit_buffer
+ entropy
->BE
; /* Append bits to buffer */
666 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
667 if ((temp
= absvalues
[k
]) == 0) {
672 /* Emit any required ZRLs, but not if they can be folded into EOB */
673 while (r
> 15 && k
<= EOB
) {
674 /* emit any pending EOBRUN and the BE correction bits */
675 emit_eobrun(entropy
);
677 emit_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
679 /* Emit buffered correction bits that must be associated with ZRL */
680 emit_buffered_bits(entropy
, BR_buffer
, BR
);
681 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
685 /* If the coef was previously nonzero, it only needs a correction bit.
686 * NOTE: a straight translation of the spec's figure G.7 would suggest
687 * that we also need to test r > 15. But if r > 15, we can only get here
688 * if k > EOB, which implies that this coefficient is not 1.
691 /* The correction bit is the next bit of the absolute value. */
692 BR_buffer
[BR
++] = (char) (temp
& 1);
696 /* Emit any pending EOBRUN and the BE correction bits */
697 emit_eobrun(entropy
);
699 /* Count/emit Huffman symbol for run length / number of bits */
700 emit_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + 1);
702 /* Emit output bit for newly-nonzero coef */
703 temp
= ((*block
)[jpeg_natural_order
[k
]] < 0) ? 0 : 1;
704 emit_bits(entropy
, (unsigned int) temp
, 1);
706 /* Emit buffered correction bits that must be associated with this code */
707 emit_buffered_bits(entropy
, BR_buffer
, BR
);
708 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
710 r
= 0; /* reset zero run length */
713 if (r
> 0 || BR
> 0) { /* If there are trailing zeroes, */
714 entropy
->EOBRUN
++; /* count an EOB */
715 entropy
->BE
+= BR
; /* concat my correction bits to older ones */
716 /* We force out the EOB if we risk either:
717 * 1. overflow of the EOB counter;
718 * 2. overflow of the correction bit buffer during the next MCU.
720 if (entropy
->EOBRUN
== 0x7FFF || entropy
->BE
> (MAX_CORR_BITS
-DCTSIZE2
+1))
721 emit_eobrun(entropy
);
724 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
725 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
727 /* Update restart-interval state too */
728 if (cinfo
->restart_interval
) {
729 if (entropy
->restarts_to_go
== 0) {
730 entropy
->restarts_to_go
= cinfo
->restart_interval
;
731 entropy
->next_restart_num
++;
732 entropy
->next_restart_num
&= 7;
734 entropy
->restarts_to_go
--;
742 * Finish up at the end of a Huffman-compressed progressive scan.
746 finish_pass_phuff (j_compress_ptr cinfo
)
748 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
750 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
751 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
753 /* Flush out any buffered data */
754 emit_eobrun(entropy
);
757 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
758 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
763 * Finish up a statistics-gathering pass and create the new Huffman tables.
767 finish_pass_gather_phuff (j_compress_ptr cinfo
)
769 phuff_entropy_ptr entropy
= (phuff_entropy_ptr
) cinfo
->entropy
;
772 jpeg_component_info
* compptr
;
774 boolean did
[NUM_HUFF_TBLS
];
776 /* Flush out buffered data (all we care about is counting the EOB symbol) */
777 emit_eobrun(entropy
);
779 is_DC_band
= (cinfo
->Ss
== 0);
781 /* It's important not to apply jpeg_gen_optimal_table more than once
782 * per table, because it clobbers the input frequency counts!
784 MEMZERO(did
, SIZEOF(did
));
786 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
787 compptr
= cinfo
->cur_comp_info
[ci
];
789 if (cinfo
->Ah
!= 0) /* DC refinement needs no table */
791 tbl
= compptr
->dc_tbl_no
;
793 tbl
= compptr
->ac_tbl_no
;
797 htblptr
= & cinfo
->dc_huff_tbl_ptrs
[tbl
];
799 htblptr
= & cinfo
->ac_huff_tbl_ptrs
[tbl
];
800 if (*htblptr
== NULL
)
801 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
802 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->count_ptrs
[tbl
]);
810 * Module initialization routine for progressive Huffman entropy encoding.
814 jinit_phuff_encoder (j_compress_ptr cinfo
)
816 phuff_entropy_ptr entropy
;
819 entropy
= (phuff_entropy_ptr
)
820 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
821 SIZEOF(phuff_entropy_encoder
));
822 cinfo
->entropy
= (struct jpeg_entropy_encoder
*) entropy
;
823 entropy
->pub
.start_pass
= start_pass_phuff
;
825 /* Mark tables unallocated */
826 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
827 entropy
->derived_tbls
[i
] = NULL
;
828 entropy
->count_ptrs
[i
] = NULL
;
830 entropy
->bit_buffer
= NULL
; /* needed only in AC refinement scan */
833 #endif /* C_PROGRESSIVE_SUPPORTED */