1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
13 // ARGUMENT BINDING WRAPPERS
15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function. Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
31 // ConstRef() allows binding a constant reference to an argument rather
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
39 // EXAMPLE OF Unretained():
43 // void func() { cout << "Foo:f" << endl; }
46 // // In some function somewhere.
48 // Closure foo_callback =
49 // Bind(&Foo::func, Unretained(&foo));
50 // foo_callback.Run(); // Prints "Foo:f".
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
56 // EXAMPLE OF Owned():
58 // void foo(int* arg) { cout << *arg << endl }
60 // int* pn = new int(1);
61 // Closure foo_callback = Bind(&foo, Owned(pn));
63 // foo_callback.Run(); // Prints "1"
64 // foo_callback.Run(); // Prints "1"
66 // foo_callback.Run(); // Prints "2"
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when
69 // // |foo_callback| goes out of scope.
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
75 // EXAMPLE OF ConstRef():
77 // void foo(int arg) { cout << arg << endl }
80 // Closure no_ref = Bind(&foo, n);
81 // Closure has_ref = Bind(&foo, ConstRef(n));
83 // no_ref.Run(); // Prints "1"
84 // has_ref.Run(); // Prints "1"
87 // no_ref.Run(); // Prints "1"
88 // has_ref.Run(); // Prints "2"
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
94 // EXAMPLE OF IgnoreResult():
96 // int DoSomething(int arg) { cout << arg << endl; }
98 // // Assign to a Callback with a void return type.
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 // cb->Run(1); // Prints "1".
102 // // Prints "1" on |ml|.
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
106 // EXAMPLE OF Passed():
108 // void TakesOwnership(scoped_ptr<Foo> arg) { }
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
111 // scoped_ptr<Foo> f(new Foo());
113 // // |cb| is given ownership of Foo(). |f| is now NULL.
114 // // You can use f.Pass() in place of &f, but it's more verbose.
115 // Closure cb = Bind(&TakesOwnership, Passed(&f));
117 // // Run was never called so |cb| still owns Foo() and deletes
121 // // |cb| is given a new Foo created by CreateFoo().
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo()));
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 // // no longer owns Foo() and, if reset, would not delete Foo().
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted.
127 // cb.Run(); // This CHECK()s since Foo() already been used once.
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a MessageLoopProxy.
135 // SIMPLE FUNCTIONS AND UTILITIES.
137 // DoNothing() - Useful for creating a Closure that does nothing when called.
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a
139 // pointer when invoked. Only use this when necessary.
140 // In most cases MessageLoop::DeleteSoon() is a better
142 // ScopedClosureRunner - Scoper object that runs the wrapped closure when it
143 // goes out of scope. It's conceptually similar to
144 // scoped_ptr<> but calls Run() instead of deleting
147 #ifndef BASE_BIND_HELPERS_H_
148 #define BASE_BIND_HELPERS_H_
150 #include "base/basictypes.h"
151 #include "base/callback.h"
152 #include "base/memory/weak_ptr.h"
153 #include "base/template_util.h"
158 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
159 // for the existence of AddRef() and Release() functions of the correct
162 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
163 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
164 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
165 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
167 // The last link in particular show the method used below.
169 // For SFINAE to work with inherited methods, we need to pull some extra tricks
170 // with multiple inheritance. In the more standard formulation, the overloads
171 // of Check would be:
173 // template <typename C>
174 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
176 // template <typename C>
177 // No NotTheCheckWeWant(...);
179 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
181 // The problem here is that template resolution will not match
182 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if
183 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
184 // |value| will be false. This formulation only checks for whether or
185 // not TargetFunc exist directly in the class being introspected.
187 // To get around this, we play a dirty trick with multiple inheritance.
188 // First, We create a class BaseMixin that declares each function that we
189 // want to probe for. Then we create a class Base that inherits from both T
190 // (the class we wish to probe) and BaseMixin. Note that the function
191 // signature in BaseMixin does not need to match the signature of the function
192 // we are probing for; thus it's easiest to just use void(void).
194 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
195 // ambiguous resolution between BaseMixin and T. This lets us write the
198 // template <typename C>
199 // No GoodCheck(Helper<&C::TargetFunc>*);
201 // template <typename C>
202 // Yes GoodCheck(...);
204 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
206 // Notice here that the variadic version of GoodCheck() returns Yes here
207 // instead of No like the previous one. Also notice that we calculate |value|
208 // by specializing GoodCheck() on Base instead of T.
210 // We've reversed the roles of the variadic, and Helper overloads.
211 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
212 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
213 // to the variadic version if T has TargetFunc. If T::TargetFunc does not
214 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
215 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
217 // This method of SFINAE will correctly probe for inherited names, but it cannot
218 // typecheck those names. It's still a good enough sanity check though.
220 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
222 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
225 // TODO(ajwong): Make this check for Release() as well.
226 // See http://crbug.com/82038.
227 template <typename T
>
228 class SupportsAddRefAndRelease
{
236 // MSVC warns when you try to use Base if T has a private destructor, the
237 // common pattern for refcounted types. It does this even though no attempt to
238 // instantiate Base is made. We disable the warning for this definition.
240 #pragma warning(disable:4624)
242 struct Base
: public T
, public BaseMixin
{
245 #pragma warning(default:4624)
248 template <void(BaseMixin::*)(void)> struct Helper
{};
250 template <typename C
>
251 static No
& Check(Helper
<&C::AddRef
>*);
254 static Yes
& Check(...);
257 static const bool value
= sizeof(Check
<Base
>(0)) == sizeof(Yes
);
260 // Helpers to assert that arguments of a recounted type are bound with a
262 template <bool IsClasstype
, typename T
>
263 struct UnsafeBindtoRefCountedArgHelper
: false_type
{
266 template <typename T
>
267 struct UnsafeBindtoRefCountedArgHelper
<true, T
>
268 : integral_constant
<bool, SupportsAddRefAndRelease
<T
>::value
> {
271 template <typename T
>
272 struct UnsafeBindtoRefCountedArg
: false_type
{
275 template <typename T
>
276 struct UnsafeBindtoRefCountedArg
<T
*>
277 : UnsafeBindtoRefCountedArgHelper
<is_class
<T
>::value
, T
> {
280 template <typename T
>
281 class HasIsMethodTag
{
285 template <typename U
>
286 static Yes
& Check(typename
U::IsMethod
*);
288 template <typename U
>
289 static No
& Check(...);
292 static const bool value
= sizeof(Check
<T
>(0)) == sizeof(Yes
);
295 template <typename T
>
296 class UnretainedWrapper
{
298 explicit UnretainedWrapper(T
* o
) : ptr_(o
) {}
299 T
* get() const { return ptr_
; }
304 template <typename T
>
305 class ConstRefWrapper
{
307 explicit ConstRefWrapper(const T
& o
) : ptr_(&o
) {}
308 const T
& get() const { return *ptr_
; }
313 template <typename T
>
314 struct IgnoreResultHelper
{
315 explicit IgnoreResultHelper(T functor
) : functor_(functor
) {}
320 template <typename T
>
321 struct IgnoreResultHelper
<Callback
<T
> > {
322 explicit IgnoreResultHelper(const Callback
<T
>& functor
) : functor_(functor
) {}
324 const Callback
<T
>& functor_
;
327 // An alternate implementation is to avoid the destructive copy, and instead
328 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
329 // a class that is essentially a scoped_ptr<>.
331 // The current implementation has the benefit though of leaving ParamTraits<>
332 // fully in callback_internal.h as well as avoiding type conversions during
334 template <typename T
>
337 explicit OwnedWrapper(T
* o
) : ptr_(o
) {}
338 ~OwnedWrapper() { delete ptr_
; }
339 T
* get() const { return ptr_
; }
340 OwnedWrapper(const OwnedWrapper
& other
) {
349 // PassedWrapper is a copyable adapter for a scoper that ignores const.
351 // It is needed to get around the fact that Bind() takes a const reference to
352 // all its arguments. Because Bind() takes a const reference to avoid
353 // unnecessary copies, it is incompatible with movable-but-not-copyable
354 // types; doing a destructive "move" of the type into Bind() would violate
355 // the const correctness.
357 // This conundrum cannot be solved without either C++11 rvalue references or
358 // a O(2^n) blowup of Bind() templates to handle each combination of regular
359 // types and movable-but-not-copyable types. Thus we introduce a wrapper type
360 // that is copyable to transmit the correct type information down into
361 // BindState<>. Ignoring const in this type makes sense because it is only
362 // created when we are explicitly trying to do a destructive move.
365 // 1) PassedWrapper supports any type that has a "Pass()" function.
366 // This is intentional. The whitelisting of which specific types we
367 // support is maintained by CallbackParamTraits<>.
368 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
369 // scoper to a Callback and allow the Callback to execute once.
370 template <typename T
>
371 class PassedWrapper
{
373 explicit PassedWrapper(T scoper
) : is_valid_(true), scoper_(scoper
.Pass()) {}
374 PassedWrapper(const PassedWrapper
& other
)
375 : is_valid_(other
.is_valid_
), scoper_(other
.scoper_
.Pass()) {
380 return scoper_
.Pass();
384 mutable bool is_valid_
;
388 // Unwrap the stored parameters for the wrappers above.
389 template <typename T
>
390 struct UnwrapTraits
{
391 typedef const T
& ForwardType
;
392 static ForwardType
Unwrap(const T
& o
) { return o
; }
395 template <typename T
>
396 struct UnwrapTraits
<UnretainedWrapper
<T
> > {
397 typedef T
* ForwardType
;
398 static ForwardType
Unwrap(UnretainedWrapper
<T
> unretained
) {
399 return unretained
.get();
403 template <typename T
>
404 struct UnwrapTraits
<ConstRefWrapper
<T
> > {
405 typedef const T
& ForwardType
;
406 static ForwardType
Unwrap(ConstRefWrapper
<T
> const_ref
) {
407 return const_ref
.get();
411 template <typename T
>
412 struct UnwrapTraits
<scoped_refptr
<T
> > {
413 typedef T
* ForwardType
;
414 static ForwardType
Unwrap(const scoped_refptr
<T
>& o
) { return o
.get(); }
417 template <typename T
>
418 struct UnwrapTraits
<WeakPtr
<T
> > {
419 typedef const WeakPtr
<T
>& ForwardType
;
420 static ForwardType
Unwrap(const WeakPtr
<T
>& o
) { return o
; }
423 template <typename T
>
424 struct UnwrapTraits
<OwnedWrapper
<T
> > {
425 typedef T
* ForwardType
;
426 static ForwardType
Unwrap(const OwnedWrapper
<T
>& o
) {
431 template <typename T
>
432 struct UnwrapTraits
<PassedWrapper
<T
> > {
433 typedef T ForwardType
;
434 static T
Unwrap(PassedWrapper
<T
>& o
) {
439 // Utility for handling different refcounting semantics in the Bind()
441 template <bool is_method
, typename T
>
442 struct MaybeRefcount
;
444 template <typename T
>
445 struct MaybeRefcount
<false, T
> {
446 static void AddRef(const T
&) {}
447 static void Release(const T
&) {}
450 template <typename T
, size_t n
>
451 struct MaybeRefcount
<false, T
[n
]> {
452 static void AddRef(const T
*) {}
453 static void Release(const T
*) {}
456 template <typename T
>
457 struct MaybeRefcount
<true, T
> {
458 static void AddRef(const T
&) {}
459 static void Release(const T
&) {}
462 template <typename T
>
463 struct MaybeRefcount
<true, T
*> {
464 static void AddRef(T
* o
) { o
->AddRef(); }
465 static void Release(T
* o
) { o
->Release(); }
468 // No need to additionally AddRef() and Release() since we are storing a
469 // scoped_refptr<> inside the storage object already.
470 template <typename T
>
471 struct MaybeRefcount
<true, scoped_refptr
<T
> > {
472 static void AddRef(const scoped_refptr
<T
>& o
) {}
473 static void Release(const scoped_refptr
<T
>& o
) {}
476 template <typename T
>
477 struct MaybeRefcount
<true, const T
*> {
478 static void AddRef(const T
* o
) { o
->AddRef(); }
479 static void Release(const T
* o
) { o
->Release(); }
482 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
483 // method. It is used internally by Bind() to select the correct
484 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
485 // the target object is invalidated.
487 // P1 should be the type of the object that will be received of the method.
488 template <bool IsMethod
, typename P1
>
489 struct IsWeakMethod
: public false_type
{};
491 template <typename T
>
492 struct IsWeakMethod
<true, WeakPtr
<T
> > : public true_type
{};
494 template <typename T
>
495 struct IsWeakMethod
<true, ConstRefWrapper
<WeakPtr
<T
> > > : public true_type
{};
497 } // namespace internal
499 template <typename T
>
500 static inline internal::UnretainedWrapper
<T
> Unretained(T
* o
) {
501 return internal::UnretainedWrapper
<T
>(o
);
504 template <typename T
>
505 static inline internal::ConstRefWrapper
<T
> ConstRef(const T
& o
) {
506 return internal::ConstRefWrapper
<T
>(o
);
509 template <typename T
>
510 static inline internal::OwnedWrapper
<T
> Owned(T
* o
) {
511 return internal::OwnedWrapper
<T
>(o
);
514 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and
515 // is best suited for use with the return value of a function. The second
516 // takes a pointer to the scoper and is just syntactic sugar to avoid having
517 // to write Passed(scoper.Pass()).
518 template <typename T
>
519 static inline internal::PassedWrapper
<T
> Passed(T scoper
) {
520 return internal::PassedWrapper
<T
>(scoper
.Pass());
522 template <typename T
>
523 static inline internal::PassedWrapper
<T
> Passed(T
* scoper
) {
524 return internal::PassedWrapper
<T
>(scoper
->Pass());
527 template <typename T
>
528 static inline internal::IgnoreResultHelper
<T
> IgnoreResult(T data
) {
529 return internal::IgnoreResultHelper
<T
>(data
);
532 template <typename T
>
533 static inline internal::IgnoreResultHelper
<Callback
<T
> >
534 IgnoreResult(const Callback
<T
>& data
) {
535 return internal::IgnoreResultHelper
<Callback
<T
> >(data
);
538 BASE_EXPORT
void DoNothing();
541 void DeletePointer(T
* obj
) {
545 // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the
546 // Closure is executed and deleted no matter how the current scope exits.
547 class BASE_EXPORT ScopedClosureRunner
{
549 explicit ScopedClosureRunner(const Closure
& closure
);
550 ~ScopedClosureRunner();
557 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner
);
562 #endif // BASE_BIND_HELPERS_H_