Land Recent QUIC Changes.
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob027392c2cbdbc5017a221603e4bddfc7b2fd626d
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
19 using base::StringPiece;
20 using std::make_pair;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
27 namespace net {
29 namespace {
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33 GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35 GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37 GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39 GG_UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding : 0b 00000000 (0x00)
55 // ResetStream : 0b 00000001 (0x01)
56 // ConnectionClose : 0b 00000010 (0x02)
57 // GoAway : 0b 00000011 (0x03)
58 // WindowUpdate : 0b 00000100 (0x04)
59 // Blocked : 0b 00000101 (0x05)
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream : 0b 1xxxxxxx
64 // Ack : 0b 01xxxxxx
65 // CongestionFeedback : 0b 001xxxxx
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
74 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
76 // Stream frame relative shifts and masks for interpreting the stream flags.
77 // StreamID may be 1, 2, 3, or 4 bytes.
78 const uint8 kQuicStreamIdShift = 2;
79 const uint8 kQuicStreamIDLengthMask = 0x03;
81 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82 const uint8 kQuicStreamOffsetShift = 3;
83 const uint8 kQuicStreamOffsetMask = 0x07;
85 // Data length may be 0 or 2 bytes.
86 const uint8 kQuicStreamDataLengthShift = 1;
87 const uint8 kQuicStreamDataLengthMask = 0x01;
89 // Fin bit may be set or not.
90 const uint8 kQuicStreamFinShift = 1;
91 const uint8 kQuicStreamFinMask = 0x01;
93 // Sequence number size shift used in AckFrames.
94 const uint8 kQuicSequenceNumberLengthShift = 2;
96 // Acks may be truncated.
97 const uint8 kQuicAckTruncatedShift = 1;
98 const uint8 kQuicAckTruncatedMask = 0x01;
100 // Acks may not have any nacks.
101 const uint8 kQuicHasNacksMask = 0x01;
103 // Returns the absolute value of the difference between |a| and |b|.
104 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105 QuicPacketSequenceNumber b) {
106 // Since these are unsigned numbers, we can't just return abs(a - b)
107 if (a < b) {
108 return b - a;
110 return a - b;
113 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114 QuicPacketSequenceNumber a,
115 QuicPacketSequenceNumber b) {
116 return (Delta(target, a) < Delta(target, b)) ? a : b;
119 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121 case PACKET_FLAGS_6BYTE_SEQUENCE:
122 return PACKET_6BYTE_SEQUENCE_NUMBER;
123 case PACKET_FLAGS_4BYTE_SEQUENCE:
124 return PACKET_4BYTE_SEQUENCE_NUMBER;
125 case PACKET_FLAGS_2BYTE_SEQUENCE:
126 return PACKET_2BYTE_SEQUENCE_NUMBER;
127 case PACKET_FLAGS_1BYTE_SEQUENCE:
128 return PACKET_1BYTE_SEQUENCE_NUMBER;
129 default:
130 LOG(DFATAL) << "Unreachable case statement.";
131 return PACKET_6BYTE_SEQUENCE_NUMBER;
135 bool CanTruncate(const QuicFrame& frame, size_t free_bytes) {
136 if ((frame.type == ACK_FRAME || frame.type == CONNECTION_CLOSE_FRAME) &&
137 free_bytes >=
138 QuicFramer::GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
139 PACKET_6BYTE_SEQUENCE_NUMBER)) {
140 return true;
142 return false;
145 } // namespace
147 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
148 const QuicWindowUpdateFrame& frame) {
149 return true;
152 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
153 return true;
156 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
157 QuicTime creation_time,
158 bool is_server)
159 : visitor_(NULL),
160 fec_builder_(NULL),
161 entropy_calculator_(NULL),
162 error_(QUIC_NO_ERROR),
163 last_sequence_number_(0),
164 last_serialized_connection_id_(0),
165 supported_versions_(supported_versions),
166 decrypter_level_(ENCRYPTION_NONE),
167 alternative_decrypter_level_(ENCRYPTION_NONE),
168 alternative_decrypter_latch_(false),
169 is_server_(is_server),
170 validate_flags_(true),
171 creation_time_(creation_time) {
172 DCHECK(!supported_versions.empty());
173 quic_version_ = supported_versions_[0];
174 decrypter_.reset(QuicDecrypter::Create(kNULL));
175 encrypter_[ENCRYPTION_NONE].reset(
176 QuicEncrypter::Create(kNULL));
179 QuicFramer::~QuicFramer() {}
181 // static
182 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
183 QuicStreamOffset offset,
184 bool last_frame_in_packet,
185 InFecGroup is_in_fec_group) {
186 bool no_stream_frame_length = last_frame_in_packet &&
187 is_in_fec_group == NOT_IN_FEC_GROUP;
188 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
189 GetStreamOffsetSize(offset) +
190 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
193 // static
194 size_t QuicFramer::GetMinAckFrameSize(
195 QuicSequenceNumberLength sequence_number_length,
196 QuicSequenceNumberLength largest_observed_length) {
197 return kQuicFrameTypeSize + kQuicEntropyHashSize +
198 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
201 // static
202 size_t QuicFramer::GetStopWaitingFrameSize(
203 QuicSequenceNumberLength sequence_number_length) {
204 return kQuicFrameTypeSize + kQuicEntropyHashSize +
205 sequence_number_length;
208 // static
209 size_t QuicFramer::GetMinRstStreamFrameSize() {
210 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
211 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
212 kQuicErrorDetailsLengthSize;
215 // static
216 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
217 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
220 // static
221 size_t QuicFramer::GetMinGoAwayFrameSize() {
222 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
223 kQuicMaxStreamIdSize;
226 // static
227 size_t QuicFramer::GetWindowUpdateFrameSize() {
228 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
231 // static
232 size_t QuicFramer::GetBlockedFrameSize() {
233 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
236 // static
237 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
238 // Sizes are 1 through 4 bytes.
239 for (int i = 1; i <= 4; ++i) {
240 stream_id >>= 8;
241 if (stream_id == 0) {
242 return i;
245 LOG(DFATAL) << "Failed to determine StreamIDSize.";
246 return 4;
249 // static
250 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
251 // 0 is a special case.
252 if (offset == 0) {
253 return 0;
255 // 2 through 8 are the remaining sizes.
256 offset >>= 8;
257 for (int i = 2; i <= 8; ++i) {
258 offset >>= 8;
259 if (offset == 0) {
260 return i;
263 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
264 return 8;
267 // static
268 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
269 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
270 number_versions * kQuicVersionSize;
273 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
274 for (size_t i = 0; i < supported_versions_.size(); ++i) {
275 if (version == supported_versions_[i]) {
276 return true;
279 return false;
282 size_t QuicFramer::GetSerializedFrameLength(
283 const QuicFrame& frame,
284 size_t free_bytes,
285 bool first_frame,
286 bool last_frame,
287 InFecGroup is_in_fec_group,
288 QuicSequenceNumberLength sequence_number_length) {
289 if (frame.type == PADDING_FRAME) {
290 // PADDING implies end of packet.
291 return free_bytes;
293 size_t frame_len =
294 ComputeFrameLength(frame, last_frame, is_in_fec_group,
295 sequence_number_length);
296 if (frame_len <= free_bytes) {
297 // Frame fits within packet. Note that acks may be truncated.
298 return frame_len;
300 // Only truncate the first frame in a packet, so if subsequent ones go
301 // over, stop including more frames.
302 if (!first_frame) {
303 return 0;
305 if (CanTruncate(frame, free_bytes)) {
306 // Truncate the frame so the packet will not exceed kMaxPacketSize.
307 // Note that we may not use every byte of the writer in this case.
308 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
309 return free_bytes;
311 if (!FLAGS_quic_allow_oversized_packets_for_test) {
312 return 0;
314 LOG(DFATAL) << "Packet size too small to fit frame.";
315 return frame_len;
318 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
320 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
322 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
323 const QuicPacketHeader& header) const {
324 return header.entropy_flag << (header.packet_sequence_number % 8);
327 SerializedPacket QuicFramer::BuildDataPacket(
328 const QuicPacketHeader& header,
329 const QuicFrames& frames,
330 size_t packet_size) {
331 QuicDataWriter writer(packet_size);
332 const SerializedPacket kNoPacket(
333 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
334 if (!AppendPacketHeader(header, &writer)) {
335 LOG(DFATAL) << "AppendPacketHeader failed";
336 return kNoPacket;
339 for (size_t i = 0; i < frames.size(); ++i) {
340 const QuicFrame& frame = frames[i];
342 // Determine if we should write stream frame length in header.
343 const bool no_stream_frame_length =
344 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
345 (i == frames.size() - 1);
346 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
347 LOG(DFATAL) << "AppendTypeByte failed";
348 return kNoPacket;
351 switch (frame.type) {
352 case PADDING_FRAME:
353 writer.WritePadding();
354 break;
355 case STREAM_FRAME:
356 if (!AppendStreamFrame(
357 *frame.stream_frame, no_stream_frame_length, &writer)) {
358 LOG(DFATAL) << "AppendStreamFrame failed";
359 return kNoPacket;
361 break;
362 case ACK_FRAME:
363 if (!AppendAckFrameAndTypeByte(
364 header, *frame.ack_frame, &writer)) {
365 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
366 return kNoPacket;
368 break;
369 case CONGESTION_FEEDBACK_FRAME:
370 if (!AppendCongestionFeedbackFrame(
371 *frame.congestion_feedback_frame, &writer)) {
372 LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
373 return kNoPacket;
375 break;
376 case STOP_WAITING_FRAME:
377 if (!AppendStopWaitingFrame(
378 header, *frame.stop_waiting_frame, &writer)) {
379 LOG(DFATAL) << "AppendStopWaitingFrame failed";
380 return kNoPacket;
382 break;
383 case PING_FRAME:
384 if (quic_version_ == QUIC_VERSION_16) {
385 LOG(DFATAL) << "Attempt to add a PingFrame in "
386 << QuicVersionToString(quic_version_);
387 return kNoPacket;
389 // Ping has no payload.
390 break;
391 case RST_STREAM_FRAME:
392 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
393 LOG(DFATAL) << "AppendRstStreamFrame failed";
394 return kNoPacket;
396 break;
397 case CONNECTION_CLOSE_FRAME:
398 if (!AppendConnectionCloseFrame(
399 *frame.connection_close_frame, &writer)) {
400 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
401 return kNoPacket;
403 break;
404 case GOAWAY_FRAME:
405 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
406 LOG(DFATAL) << "AppendGoAwayFrame failed";
407 return kNoPacket;
409 break;
410 case WINDOW_UPDATE_FRAME:
411 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
412 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
413 return kNoPacket;
415 break;
416 case BLOCKED_FRAME:
417 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
418 LOG(DFATAL) << "AppendBlockedFrame failed";
419 return kNoPacket;
421 break;
422 default:
423 RaiseError(QUIC_INVALID_FRAME_DATA);
424 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
425 return kNoPacket;
429 // Save the length before writing, because take clears it.
430 const size_t len = writer.length();
431 // Less than or equal because truncated acks end up with max_plaintex_size
432 // length, even though they're typically slightly shorter.
433 DCHECK_LE(len, packet_size);
434 QuicPacket* packet = QuicPacket::NewDataPacket(
435 writer.take(), len, true, header.public_header.connection_id_length,
436 header.public_header.version_flag,
437 header.public_header.sequence_number_length);
439 if (fec_builder_) {
440 fec_builder_->OnBuiltFecProtectedPayload(header,
441 packet->FecProtectedData());
444 return SerializedPacket(header.packet_sequence_number,
445 header.public_header.sequence_number_length, packet,
446 GetPacketEntropyHash(header), NULL);
449 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
450 const QuicFecData& fec) {
451 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
452 DCHECK_NE(0u, header.fec_group);
453 size_t len = GetPacketHeaderSize(header);
454 len += fec.redundancy.length();
456 QuicDataWriter writer(len);
457 const SerializedPacket kNoPacket(
458 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
459 if (!AppendPacketHeader(header, &writer)) {
460 LOG(DFATAL) << "AppendPacketHeader failed";
461 return kNoPacket;
464 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
465 LOG(DFATAL) << "Failed to add FEC";
466 return kNoPacket;
469 return SerializedPacket(
470 header.packet_sequence_number,
471 header.public_header.sequence_number_length,
472 QuicPacket::NewFecPacket(writer.take(), len, true,
473 header.public_header.connection_id_length,
474 header.public_header.version_flag,
475 header.public_header.sequence_number_length),
476 GetPacketEntropyHash(header), NULL);
479 // static
480 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
481 const QuicPublicResetPacket& packet) {
482 DCHECK(packet.public_header.reset_flag);
484 CryptoHandshakeMessage reset;
485 reset.set_tag(kPRST);
486 reset.SetValue(kRNON, packet.nonce_proof);
487 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
488 if (!packet.client_address.address().empty()) {
489 // packet.client_address is non-empty.
490 QuicSocketAddressCoder address_coder(packet.client_address);
491 string serialized_address = address_coder.Encode();
492 if (serialized_address.empty()) {
493 return NULL;
495 reset.SetStringPiece(kCADR, serialized_address);
497 const QuicData& reset_serialized = reset.GetSerialized();
499 size_t len =
500 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
501 QuicDataWriter writer(len);
503 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
504 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
505 if (!writer.WriteUInt8(flags)) {
506 return NULL;
509 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
510 return NULL;
513 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
514 return NULL;
517 return new QuicEncryptedPacket(writer.take(), len, true);
520 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
521 const QuicPacketPublicHeader& header,
522 const QuicVersionVector& supported_versions) {
523 DCHECK(header.version_flag);
524 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
525 QuicDataWriter writer(len);
527 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
528 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
529 if (!writer.WriteUInt8(flags)) {
530 return NULL;
533 if (!writer.WriteUInt64(header.connection_id)) {
534 return NULL;
537 for (size_t i = 0; i < supported_versions.size(); ++i) {
538 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
539 return NULL;
543 return new QuicEncryptedPacket(writer.take(), len, true);
546 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
547 DCHECK(!reader_.get());
548 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
550 visitor_->OnPacket();
552 // First parse the public header.
553 QuicPacketPublicHeader public_header;
554 if (!ProcessPublicHeader(&public_header)) {
555 DLOG(WARNING) << "Unable to process public header.";
556 DCHECK_NE("", detailed_error_);
557 return RaiseError(QUIC_INVALID_PACKET_HEADER);
560 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
561 // The visitor suppresses further processing of the packet.
562 reader_.reset(NULL);
563 return true;
566 if (is_server_ && public_header.version_flag &&
567 public_header.versions[0] != quic_version_) {
568 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
569 reader_.reset(NULL);
570 return true;
574 bool rv;
575 if (!is_server_ && public_header.version_flag) {
576 rv = ProcessVersionNegotiationPacket(&public_header);
577 } else if (public_header.reset_flag) {
578 rv = ProcessPublicResetPacket(public_header);
579 } else {
580 rv = ProcessDataPacket(public_header, packet);
583 reader_.reset(NULL);
584 return rv;
587 bool QuicFramer::ProcessVersionNegotiationPacket(
588 QuicPacketPublicHeader* public_header) {
589 DCHECK(!is_server_);
590 // Try reading at least once to raise error if the packet is invalid.
591 do {
592 QuicTag version;
593 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
594 set_detailed_error("Unable to read supported version in negotiation.");
595 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
597 public_header->versions.push_back(QuicTagToQuicVersion(version));
598 } while (!reader_->IsDoneReading());
600 visitor_->OnVersionNegotiationPacket(*public_header);
601 return true;
604 bool QuicFramer::ProcessDataPacket(
605 const QuicPacketPublicHeader& public_header,
606 const QuicEncryptedPacket& packet) {
607 QuicPacketHeader header(public_header);
608 if (!ProcessPacketHeader(&header, packet)) {
609 DLOG(WARNING) << "Unable to process data packet header.";
610 return false;
613 if (!visitor_->OnPacketHeader(header)) {
614 // The visitor suppresses further processing of the packet.
615 return true;
618 if (packet.length() > kMaxPacketSize) {
619 DLOG(WARNING) << "Packet too large: " << packet.length();
620 return RaiseError(QUIC_PACKET_TOO_LARGE);
623 // Handle the payload.
624 if (!header.fec_flag) {
625 if (header.is_in_fec_group == IN_FEC_GROUP) {
626 StringPiece payload = reader_->PeekRemainingPayload();
627 visitor_->OnFecProtectedPayload(payload);
629 if (!ProcessFrameData(header)) {
630 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
631 DLOG(WARNING) << "Unable to process frame data.";
632 return false;
634 } else {
635 QuicFecData fec_data;
636 fec_data.fec_group = header.fec_group;
637 fec_data.redundancy = reader_->ReadRemainingPayload();
638 visitor_->OnFecData(fec_data);
641 visitor_->OnPacketComplete();
642 return true;
645 bool QuicFramer::ProcessPublicResetPacket(
646 const QuicPacketPublicHeader& public_header) {
647 QuicPublicResetPacket packet(public_header);
649 scoped_ptr<CryptoHandshakeMessage> reset(
650 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
651 if (!reset.get()) {
652 set_detailed_error("Unable to read reset message.");
653 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
655 if (reset->tag() != kPRST) {
656 set_detailed_error("Incorrect message tag.");
657 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
660 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
661 set_detailed_error("Unable to read nonce proof.");
662 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
664 // TODO(satyamshekhar): validate nonce to protect against DoS.
666 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
667 QUIC_NO_ERROR) {
668 set_detailed_error("Unable to read rejected sequence number.");
669 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
672 StringPiece address;
673 if (reset->GetStringPiece(kCADR, &address)) {
674 QuicSocketAddressCoder address_coder;
675 if (address_coder.Decode(address.data(), address.length())) {
676 packet.client_address = IPEndPoint(address_coder.ip(),
677 address_coder.port());
681 visitor_->OnPublicResetPacket(packet);
682 return true;
685 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
686 StringPiece payload) {
687 DCHECK(!reader_.get());
689 visitor_->OnRevivedPacket();
691 header->entropy_hash = GetPacketEntropyHash(*header);
693 if (!visitor_->OnPacketHeader(*header)) {
694 return true;
697 if (payload.length() > kMaxPacketSize) {
698 set_detailed_error("Revived packet too large.");
699 return RaiseError(QUIC_PACKET_TOO_LARGE);
702 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
703 if (!ProcessFrameData(*header)) {
704 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
705 DLOG(WARNING) << "Unable to process frame data.";
706 return false;
709 visitor_->OnPacketComplete();
710 reader_.reset(NULL);
711 return true;
714 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
715 QuicDataWriter* writer) {
716 DVLOG(1) << "Appending header: " << header;
717 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
718 uint8 public_flags = 0;
719 if (header.public_header.reset_flag) {
720 public_flags |= PACKET_PUBLIC_FLAGS_RST;
722 if (header.public_header.version_flag) {
723 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
726 public_flags |=
727 GetSequenceNumberFlags(header.public_header.sequence_number_length)
728 << kPublicHeaderSequenceNumberShift;
730 switch (header.public_header.connection_id_length) {
731 case PACKET_0BYTE_CONNECTION_ID:
732 if (!writer->WriteUInt8(
733 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
734 return false;
736 break;
737 case PACKET_1BYTE_CONNECTION_ID:
738 if (!writer->WriteUInt8(
739 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
740 return false;
742 if (!writer->WriteUInt8(
743 header.public_header.connection_id & k1ByteConnectionIdMask)) {
744 return false;
746 break;
747 case PACKET_4BYTE_CONNECTION_ID:
748 if (!writer->WriteUInt8(
749 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
750 return false;
752 if (!writer->WriteUInt32(
753 header.public_header.connection_id & k4ByteConnectionIdMask)) {
754 return false;
756 break;
757 case PACKET_8BYTE_CONNECTION_ID:
758 if (!writer->WriteUInt8(
759 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
760 return false;
762 if (!writer->WriteUInt64(header.public_header.connection_id)) {
763 return false;
765 break;
767 last_serialized_connection_id_ = header.public_header.connection_id;
769 if (header.public_header.version_flag) {
770 DCHECK(!is_server_);
771 writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
774 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
775 header.packet_sequence_number, writer)) {
776 return false;
779 uint8 private_flags = 0;
780 if (header.entropy_flag) {
781 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
783 if (header.is_in_fec_group == IN_FEC_GROUP) {
784 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
786 if (header.fec_flag) {
787 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
789 if (!writer->WriteUInt8(private_flags)) {
790 return false;
793 // The FEC group number is the sequence number of the first fec
794 // protected packet, or 0 if this packet is not protected.
795 if (header.is_in_fec_group == IN_FEC_GROUP) {
796 DCHECK_GE(header.packet_sequence_number, header.fec_group);
797 DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
798 // Offset from the current packet sequence number to the first fec
799 // protected packet.
800 uint8 first_fec_protected_packet_offset =
801 header.packet_sequence_number - header.fec_group;
802 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
803 return false;
807 return true;
810 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
811 QuicSequenceNumberLength sequence_number_length,
812 QuicPacketSequenceNumber packet_sequence_number) const {
813 // The new sequence number might have wrapped to the next epoch, or
814 // it might have reverse wrapped to the previous epoch, or it might
815 // remain in the same epoch. Select the sequence number closest to the
816 // next expected sequence number, the previous sequence number plus 1.
818 // epoch_delta is the delta between epochs the sequence number was serialized
819 // with, so the correct value is likely the same epoch as the last sequence
820 // number or an adjacent epoch.
821 const QuicPacketSequenceNumber epoch_delta =
822 GG_UINT64_C(1) << (8 * sequence_number_length);
823 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
824 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
825 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
826 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
828 return ClosestTo(next_sequence_number,
829 epoch + packet_sequence_number,
830 ClosestTo(next_sequence_number,
831 prev_epoch + packet_sequence_number,
832 next_epoch + packet_sequence_number));
835 bool QuicFramer::ProcessPublicHeader(
836 QuicPacketPublicHeader* public_header) {
837 uint8 public_flags;
838 if (!reader_->ReadBytes(&public_flags, 1)) {
839 set_detailed_error("Unable to read public flags.");
840 return false;
843 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
844 public_header->version_flag =
845 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
847 if (validate_flags_ &&
848 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
849 set_detailed_error("Illegal public flags value.");
850 return false;
853 if (public_header->reset_flag && public_header->version_flag) {
854 set_detailed_error("Got version flag in reset packet");
855 return false;
858 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
859 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
860 if (!reader_->ReadUInt64(&public_header->connection_id)) {
861 set_detailed_error("Unable to read ConnectionId.");
862 return false;
864 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
865 break;
866 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
867 // If the connection_id is truncated, expect to read the last serialized
868 // connection_id.
869 if (!reader_->ReadBytes(&public_header->connection_id,
870 PACKET_4BYTE_CONNECTION_ID)) {
871 set_detailed_error("Unable to read ConnectionId.");
872 return false;
874 if ((public_header->connection_id & k4ByteConnectionIdMask) !=
875 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
876 set_detailed_error("Truncated 4 byte ConnectionId does not match "
877 "previous connection_id.");
878 return false;
880 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
881 public_header->connection_id = last_serialized_connection_id_;
882 break;
883 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
884 if (!reader_->ReadBytes(&public_header->connection_id,
885 PACKET_1BYTE_CONNECTION_ID)) {
886 set_detailed_error("Unable to read ConnectionId.");
887 return false;
889 if ((public_header->connection_id & k1ByteConnectionIdMask) !=
890 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
891 set_detailed_error("Truncated 1 byte ConnectionId does not match "
892 "previous connection_id.");
893 return false;
895 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
896 public_header->connection_id = last_serialized_connection_id_;
897 break;
898 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
899 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
900 public_header->connection_id = last_serialized_connection_id_;
901 break;
904 public_header->sequence_number_length =
905 ReadSequenceNumberLength(
906 public_flags >> kPublicHeaderSequenceNumberShift);
908 // Read the version only if the packet is from the client.
909 // version flag from the server means version negotiation packet.
910 if (public_header->version_flag && is_server_) {
911 QuicTag version_tag;
912 if (!reader_->ReadUInt32(&version_tag)) {
913 set_detailed_error("Unable to read protocol version.");
914 return false;
917 // If the version from the new packet is the same as the version of this
918 // framer, then the public flags should be set to something we understand.
919 // If not, this raises an error.
920 QuicVersion version = QuicTagToQuicVersion(version_tag);
921 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
922 set_detailed_error("Illegal public flags value.");
923 return false;
925 public_header->versions.push_back(version);
927 return true;
930 // static
931 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
932 QuicPacketSequenceNumber sequence_number) {
933 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
934 return PACKET_1BYTE_SEQUENCE_NUMBER;
935 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
936 return PACKET_2BYTE_SEQUENCE_NUMBER;
937 } else if (sequence_number <
938 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
939 return PACKET_4BYTE_SEQUENCE_NUMBER;
940 } else {
941 return PACKET_6BYTE_SEQUENCE_NUMBER;
945 // static
946 uint8 QuicFramer::GetSequenceNumberFlags(
947 QuicSequenceNumberLength sequence_number_length) {
948 switch (sequence_number_length) {
949 case PACKET_1BYTE_SEQUENCE_NUMBER:
950 return PACKET_FLAGS_1BYTE_SEQUENCE;
951 case PACKET_2BYTE_SEQUENCE_NUMBER:
952 return PACKET_FLAGS_2BYTE_SEQUENCE;
953 case PACKET_4BYTE_SEQUENCE_NUMBER:
954 return PACKET_FLAGS_4BYTE_SEQUENCE;
955 case PACKET_6BYTE_SEQUENCE_NUMBER:
956 return PACKET_FLAGS_6BYTE_SEQUENCE;
957 default:
958 LOG(DFATAL) << "Unreachable case statement.";
959 return PACKET_FLAGS_6BYTE_SEQUENCE;
963 // static
964 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
965 const QuicAckFrame& frame) {
966 AckFrameInfo ack_info;
967 if (!frame.missing_packets.empty()) {
968 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
969 size_t cur_range_length = 0;
970 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
971 QuicPacketSequenceNumber last_missing = *iter;
972 ++iter;
973 for (; iter != frame.missing_packets.end(); ++iter) {
974 if (cur_range_length != numeric_limits<uint8>::max() &&
975 *iter == (last_missing + 1)) {
976 ++cur_range_length;
977 } else {
978 ack_info.nack_ranges[last_missing - cur_range_length]
979 = cur_range_length;
980 cur_range_length = 0;
982 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
983 last_missing = *iter;
985 // Include the last nack range.
986 ack_info.nack_ranges[last_missing - cur_range_length] =
987 cur_range_length;
988 // Include the range to the largest observed.
989 ack_info.max_delta = max(ack_info.max_delta,
990 frame.largest_observed - last_missing);
992 return ack_info;
995 bool QuicFramer::ProcessPacketHeader(
996 QuicPacketHeader* header,
997 const QuicEncryptedPacket& packet) {
998 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
999 &header->packet_sequence_number)) {
1000 set_detailed_error("Unable to read sequence number.");
1001 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1004 if (header->packet_sequence_number == 0u) {
1005 set_detailed_error("Packet sequence numbers cannot be 0.");
1006 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1009 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1010 return false;
1013 if (!DecryptPayload(*header, packet)) {
1014 set_detailed_error("Unable to decrypt payload.");
1015 return RaiseError(QUIC_DECRYPTION_FAILURE);
1018 uint8 private_flags;
1019 if (!reader_->ReadBytes(&private_flags, 1)) {
1020 set_detailed_error("Unable to read private flags.");
1021 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1024 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1025 set_detailed_error("Illegal private flags value.");
1026 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1029 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1030 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1032 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1033 header->is_in_fec_group = IN_FEC_GROUP;
1034 uint8 first_fec_protected_packet_offset;
1035 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1036 set_detailed_error("Unable to read first fec protected packet offset.");
1037 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1039 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1040 set_detailed_error("First fec protected packet offset must be less "
1041 "than the sequence number.");
1042 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1044 header->fec_group =
1045 header->packet_sequence_number - first_fec_protected_packet_offset;
1048 header->entropy_hash = GetPacketEntropyHash(*header);
1049 // Set the last sequence number after we have decrypted the packet
1050 // so we are confident is not attacker controlled.
1051 last_sequence_number_ = header->packet_sequence_number;
1052 return true;
1055 bool QuicFramer::ProcessPacketSequenceNumber(
1056 QuicSequenceNumberLength sequence_number_length,
1057 QuicPacketSequenceNumber* sequence_number) {
1058 QuicPacketSequenceNumber wire_sequence_number = 0u;
1059 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1060 return false;
1063 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1064 // in case the first guess is incorrect.
1065 *sequence_number =
1066 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1067 wire_sequence_number);
1068 return true;
1071 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1072 if (reader_->IsDoneReading()) {
1073 set_detailed_error("Packet has no frames.");
1074 return RaiseError(QUIC_MISSING_PAYLOAD);
1076 while (!reader_->IsDoneReading()) {
1077 uint8 frame_type;
1078 if (!reader_->ReadBytes(&frame_type, 1)) {
1079 set_detailed_error("Unable to read frame type.");
1080 return RaiseError(QUIC_INVALID_FRAME_DATA);
1083 if (frame_type & kQuicFrameTypeSpecialMask) {
1084 // Stream Frame
1085 if (frame_type & kQuicFrameTypeStreamMask) {
1086 QuicStreamFrame frame;
1087 if (!ProcessStreamFrame(frame_type, &frame)) {
1088 return RaiseError(QUIC_INVALID_STREAM_DATA);
1090 if (!visitor_->OnStreamFrame(frame)) {
1091 DVLOG(1) << "Visitor asked to stop further processing.";
1092 // Returning true since there was no parsing error.
1093 return true;
1095 continue;
1098 // Ack Frame
1099 if (frame_type & kQuicFrameTypeAckMask) {
1100 QuicAckFrame frame;
1101 if (!ProcessAckFrame(frame_type, &frame)) {
1102 return RaiseError(QUIC_INVALID_ACK_DATA);
1104 if (!visitor_->OnAckFrame(frame)) {
1105 DVLOG(1) << "Visitor asked to stop further processing.";
1106 // Returning true since there was no parsing error.
1107 return true;
1109 continue;
1112 // Congestion Feedback Frame
1113 if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1114 QuicCongestionFeedbackFrame frame;
1115 if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
1116 return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1118 if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1119 DVLOG(1) << "Visitor asked to stop further processing.";
1120 // Returning true since there was no parsing error.
1121 return true;
1123 continue;
1126 // This was a special frame type that did not match any
1127 // of the known ones. Error.
1128 set_detailed_error("Illegal frame type.");
1129 DLOG(WARNING) << "Illegal frame type: "
1130 << static_cast<int>(frame_type);
1131 return RaiseError(QUIC_INVALID_FRAME_DATA);
1134 switch (frame_type) {
1135 case PADDING_FRAME:
1136 // We're done with the packet.
1137 return true;
1139 case RST_STREAM_FRAME: {
1140 QuicRstStreamFrame frame;
1141 if (!ProcessRstStreamFrame(&frame)) {
1142 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1144 if (!visitor_->OnRstStreamFrame(frame)) {
1145 DVLOG(1) << "Visitor asked to stop further processing.";
1146 // Returning true since there was no parsing error.
1147 return true;
1149 continue;
1152 case CONNECTION_CLOSE_FRAME: {
1153 QuicConnectionCloseFrame frame;
1154 if (!ProcessConnectionCloseFrame(&frame)) {
1155 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1158 if (!visitor_->OnConnectionCloseFrame(frame)) {
1159 DVLOG(1) << "Visitor asked to stop further processing.";
1160 // Returning true since there was no parsing error.
1161 return true;
1163 continue;
1166 case GOAWAY_FRAME: {
1167 QuicGoAwayFrame goaway_frame;
1168 if (!ProcessGoAwayFrame(&goaway_frame)) {
1169 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1171 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1172 DVLOG(1) << "Visitor asked to stop further processing.";
1173 // Returning true since there was no parsing error.
1174 return true;
1176 continue;
1179 case WINDOW_UPDATE_FRAME: {
1180 QuicWindowUpdateFrame window_update_frame;
1181 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1182 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1184 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1185 DVLOG(1) << "Visitor asked to stop further processing.";
1186 // Returning true since there was no parsing error.
1187 return true;
1189 continue;
1192 case BLOCKED_FRAME: {
1193 QuicBlockedFrame blocked_frame;
1194 if (!ProcessBlockedFrame(&blocked_frame)) {
1195 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1197 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1198 DVLOG(1) << "Visitor asked to stop further processing.";
1199 // Returning true since there was no parsing error.
1200 return true;
1202 continue;
1205 case STOP_WAITING_FRAME: {
1206 QuicStopWaitingFrame stop_waiting_frame;
1207 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1208 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1210 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1211 DVLOG(1) << "Visitor asked to stop further processing.";
1212 // Returning true since there was no parsing error.
1213 return true;
1215 continue;
1217 case PING_FRAME: {
1218 if (quic_version_ == QUIC_VERSION_16) {
1219 LOG(DFATAL) << "Trying to read a Ping in "
1220 << QuicVersionToString(quic_version_);
1221 return RaiseError(QUIC_INTERNAL_ERROR);
1223 // Ping has no payload.
1224 QuicPingFrame ping_frame;
1225 if (!visitor_->OnPingFrame(ping_frame)) {
1226 DVLOG(1) << "Visitor asked to stop further processing.";
1227 // Returning true since there was no parsing error.
1228 return true;
1230 continue;
1233 default:
1234 set_detailed_error("Illegal frame type.");
1235 DLOG(WARNING) << "Illegal frame type: "
1236 << static_cast<int>(frame_type);
1237 return RaiseError(QUIC_INVALID_FRAME_DATA);
1241 return true;
1244 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1245 QuicStreamFrame* frame) {
1246 uint8 stream_flags = frame_type;
1248 stream_flags &= ~kQuicFrameTypeStreamMask;
1250 // Read from right to left: StreamID, Offset, Data Length, Fin.
1251 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1252 stream_flags >>= kQuicStreamIdShift;
1254 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1255 // There is no encoding for 1 byte, only 0 and 2 through 8.
1256 if (offset_length > 0) {
1257 offset_length += 1;
1259 stream_flags >>= kQuicStreamOffsetShift;
1261 bool has_data_length =
1262 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1263 stream_flags >>= kQuicStreamDataLengthShift;
1265 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1267 frame->stream_id = 0;
1268 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1269 set_detailed_error("Unable to read stream_id.");
1270 return false;
1273 frame->offset = 0;
1274 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1275 set_detailed_error("Unable to read offset.");
1276 return false;
1279 StringPiece frame_data;
1280 if (has_data_length) {
1281 if (!reader_->ReadStringPiece16(&frame_data)) {
1282 set_detailed_error("Unable to read frame data.");
1283 return false;
1285 } else {
1286 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1287 set_detailed_error("Unable to read frame data.");
1288 return false;
1291 // Point frame to the right data.
1292 frame->data.Clear();
1293 if (!frame_data.empty()) {
1294 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1297 return true;
1300 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1301 // Determine the three lengths from the frame type: largest observed length,
1302 // missing sequence number length, and missing range length.
1303 const QuicSequenceNumberLength missing_sequence_number_length =
1304 ReadSequenceNumberLength(frame_type);
1305 frame_type >>= kQuicSequenceNumberLengthShift;
1306 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1307 ReadSequenceNumberLength(frame_type);
1308 frame_type >>= kQuicSequenceNumberLengthShift;
1309 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1310 frame_type >>= kQuicAckTruncatedShift;
1311 bool has_nacks = frame_type & kQuicHasNacksMask;
1313 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1314 set_detailed_error("Unable to read entropy hash for received packets.");
1315 return false;
1318 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1319 largest_observed_sequence_number_length)) {
1320 set_detailed_error("Unable to read largest observed.");
1321 return false;
1324 uint64 delta_time_largest_observed_us;
1325 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1326 set_detailed_error("Unable to read delta time largest observed.");
1327 return false;
1330 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1331 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1332 } else {
1333 ack_frame->delta_time_largest_observed =
1334 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1337 if (!has_nacks) {
1338 return true;
1341 uint8 num_missing_ranges;
1342 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1343 set_detailed_error("Unable to read num missing packet ranges.");
1344 return false;
1347 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1348 for (size_t i = 0; i < num_missing_ranges; ++i) {
1349 QuicPacketSequenceNumber missing_delta = 0;
1350 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1351 set_detailed_error("Unable to read missing sequence number delta.");
1352 return false;
1354 last_sequence_number -= missing_delta;
1355 QuicPacketSequenceNumber range_length = 0;
1356 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1357 set_detailed_error("Unable to read missing sequence number range.");
1358 return false;
1360 for (size_t i = 0; i <= range_length; ++i) {
1361 ack_frame->missing_packets.insert(last_sequence_number - i);
1363 // Subtract an extra 1 to ensure ranges are represented efficiently and
1364 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1365 // to represent an adjacent nack range.
1366 last_sequence_number -= (range_length + 1);
1369 // Parse the revived packets list.
1370 uint8 num_revived_packets;
1371 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1372 set_detailed_error("Unable to read num revived packets.");
1373 return false;
1376 for (size_t i = 0; i < num_revived_packets; ++i) {
1377 QuicPacketSequenceNumber revived_packet = 0;
1378 if (!reader_->ReadBytes(&revived_packet,
1379 largest_observed_sequence_number_length)) {
1380 set_detailed_error("Unable to read revived packet.");
1381 return false;
1384 ack_frame->revived_packets.insert(revived_packet);
1387 return true;
1390 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1391 QuicStopWaitingFrame* stop_waiting) {
1392 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1393 set_detailed_error("Unable to read entropy hash for sent packets.");
1394 return false;
1397 QuicPacketSequenceNumber least_unacked_delta = 0;
1398 if (!reader_->ReadBytes(&least_unacked_delta,
1399 header.public_header.sequence_number_length)) {
1400 set_detailed_error("Unable to read least unacked delta.");
1401 return false;
1403 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1404 stop_waiting->least_unacked =
1405 header.packet_sequence_number - least_unacked_delta;
1407 return true;
1410 bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
1411 QuicCongestionFeedbackFrame* frame) {
1412 uint8 feedback_type;
1413 if (!reader_->ReadBytes(&feedback_type, 1)) {
1414 set_detailed_error("Unable to read congestion feedback type.");
1415 return false;
1417 frame->type =
1418 static_cast<CongestionFeedbackType>(feedback_type);
1420 switch (frame->type) {
1421 case kTimestamp: {
1422 CongestionFeedbackMessageTimestamp* timestamp = &frame->timestamp;
1423 uint8 num_received_packets;
1424 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1425 set_detailed_error("Unable to read num received packets.");
1426 return false;
1429 if (num_received_packets > 0u) {
1430 uint64 smallest_received;
1431 if (!ProcessPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
1432 &smallest_received)) {
1433 set_detailed_error("Unable to read smallest received.");
1434 return false;
1437 uint64 time_received_us;
1438 if (!reader_->ReadUInt64(&time_received_us)) {
1439 set_detailed_error("Unable to read time received.");
1440 return false;
1442 QuicTime time_received = creation_time_.Add(
1443 QuicTime::Delta::FromMicroseconds(time_received_us));
1445 timestamp->received_packet_times.insert(
1446 make_pair(smallest_received, time_received));
1448 for (uint8 i = 0; i < num_received_packets - 1; ++i) {
1449 uint16 sequence_delta;
1450 if (!reader_->ReadUInt16(&sequence_delta)) {
1451 set_detailed_error(
1452 "Unable to read sequence delta in received packets.");
1453 return false;
1456 int32 time_delta_us;
1457 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1458 set_detailed_error(
1459 "Unable to read time delta in received packets.");
1460 return false;
1462 QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
1463 timestamp->received_packet_times.insert(
1464 make_pair(packet, time_received.Add(
1465 QuicTime::Delta::FromMicroseconds(time_delta_us))));
1468 break;
1470 case kTCP: {
1471 CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1472 uint16 receive_window = 0;
1473 if (!reader_->ReadUInt16(&receive_window)) {
1474 set_detailed_error("Unable to read receive window.");
1475 return false;
1477 // Simple bit packing, don't send the 4 least significant bits.
1478 tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1479 break;
1481 default:
1482 set_detailed_error("Illegal congestion feedback type.");
1483 DLOG(WARNING) << "Illegal congestion feedback type: "
1484 << frame->type;
1485 return RaiseError(QUIC_INVALID_FRAME_DATA);
1488 return true;
1491 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1492 if (!reader_->ReadUInt32(&frame->stream_id)) {
1493 set_detailed_error("Unable to read stream_id.");
1494 return false;
1497 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1498 set_detailed_error("Unable to read rst stream sent byte offset.");
1499 return false;
1502 uint32 error_code;
1503 if (!reader_->ReadUInt32(&error_code)) {
1504 set_detailed_error("Unable to read rst stream error code.");
1505 return false;
1508 if (error_code >= QUIC_STREAM_LAST_ERROR ||
1509 error_code < QUIC_STREAM_NO_ERROR) {
1510 set_detailed_error("Invalid rst stream error code.");
1511 return false;
1514 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1516 StringPiece error_details;
1517 if (!reader_->ReadStringPiece16(&error_details)) {
1518 set_detailed_error("Unable to read rst stream error details.");
1519 return false;
1521 frame->error_details = error_details.as_string();
1523 return true;
1526 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1527 uint32 error_code;
1528 if (!reader_->ReadUInt32(&error_code)) {
1529 set_detailed_error("Unable to read connection close error code.");
1530 return false;
1533 if (error_code >= QUIC_LAST_ERROR ||
1534 error_code < QUIC_NO_ERROR) {
1535 set_detailed_error("Invalid error code.");
1536 return false;
1539 frame->error_code = static_cast<QuicErrorCode>(error_code);
1541 StringPiece error_details;
1542 if (!reader_->ReadStringPiece16(&error_details)) {
1543 set_detailed_error("Unable to read connection close error details.");
1544 return false;
1546 frame->error_details = error_details.as_string();
1548 return true;
1551 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1552 uint32 error_code;
1553 if (!reader_->ReadUInt32(&error_code)) {
1554 set_detailed_error("Unable to read go away error code.");
1555 return false;
1557 frame->error_code = static_cast<QuicErrorCode>(error_code);
1559 if (error_code >= QUIC_LAST_ERROR ||
1560 error_code < QUIC_NO_ERROR) {
1561 set_detailed_error("Invalid error code.");
1562 return false;
1565 uint32 stream_id;
1566 if (!reader_->ReadUInt32(&stream_id)) {
1567 set_detailed_error("Unable to read last good stream id.");
1568 return false;
1570 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1572 StringPiece reason_phrase;
1573 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1574 set_detailed_error("Unable to read goaway reason.");
1575 return false;
1577 frame->reason_phrase = reason_phrase.as_string();
1579 return true;
1582 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1583 if (!reader_->ReadUInt32(&frame->stream_id)) {
1584 set_detailed_error("Unable to read stream_id.");
1585 return false;
1588 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1589 set_detailed_error("Unable to read window byte_offset.");
1590 return false;
1593 return true;
1596 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1597 if (!reader_->ReadUInt32(&frame->stream_id)) {
1598 set_detailed_error("Unable to read stream_id.");
1599 return false;
1602 return true;
1605 // static
1606 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1607 const QuicEncryptedPacket& encrypted,
1608 QuicConnectionIdLength connection_id_length,
1609 bool includes_version,
1610 QuicSequenceNumberLength sequence_number_length) {
1611 return StringPiece(
1612 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1613 connection_id_length, includes_version, sequence_number_length)
1614 - kStartOfHashData);
1617 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1618 EncryptionLevel level) {
1619 DCHECK(alternative_decrypter_.get() == NULL);
1620 DCHECK_GE(level, decrypter_level_);
1621 decrypter_.reset(decrypter);
1622 decrypter_level_ = level;
1625 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1626 EncryptionLevel level,
1627 bool latch_once_used) {
1628 alternative_decrypter_.reset(decrypter);
1629 alternative_decrypter_level_ = level;
1630 alternative_decrypter_latch_ = latch_once_used;
1633 const QuicDecrypter* QuicFramer::decrypter() const {
1634 return decrypter_.get();
1637 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1638 return alternative_decrypter_.get();
1641 void QuicFramer::SetEncrypter(EncryptionLevel level,
1642 QuicEncrypter* encrypter) {
1643 DCHECK_GE(level, 0);
1644 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1645 encrypter_[level].reset(encrypter);
1648 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1649 DCHECK_GE(level, 0);
1650 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1651 DCHECK(encrypter_[level].get() != NULL);
1652 return encrypter_[level].get();
1655 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1656 EncryptionLevel level,
1657 QuicPacketSequenceNumber packet_sequence_number,
1658 const QuicPacket& packet) {
1659 DCHECK(encrypter_[level].get() != NULL);
1661 scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1662 packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1663 if (out.get() == NULL) {
1664 RaiseError(QUIC_ENCRYPTION_FAILURE);
1665 return NULL;
1667 StringPiece header_data = packet.BeforePlaintext();
1668 size_t len = header_data.length() + out->length();
1669 char* buffer = new char[len];
1670 // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1671 memcpy(buffer, header_data.data(), header_data.length());
1672 memcpy(buffer + header_data.length(), out->data(), out->length());
1673 return new QuicEncryptedPacket(buffer, len, true);
1676 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1677 // In order to keep the code simple, we don't have the current encryption
1678 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1679 size_t min_plaintext_size = ciphertext_size;
1681 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1682 if (encrypter_[i].get() != NULL) {
1683 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1684 if (size < min_plaintext_size) {
1685 min_plaintext_size = size;
1690 return min_plaintext_size;
1693 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1694 const QuicEncryptedPacket& packet) {
1695 StringPiece encrypted;
1696 if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1697 return false;
1699 DCHECK(decrypter_.get() != NULL);
1700 decrypted_.reset(decrypter_->DecryptPacket(
1701 header.packet_sequence_number,
1702 GetAssociatedDataFromEncryptedPacket(
1703 packet,
1704 header.public_header.connection_id_length,
1705 header.public_header.version_flag,
1706 header.public_header.sequence_number_length),
1707 encrypted));
1708 if (decrypted_.get() != NULL) {
1709 visitor_->OnDecryptedPacket(decrypter_level_);
1710 } else if (alternative_decrypter_.get() != NULL) {
1711 decrypted_.reset(alternative_decrypter_->DecryptPacket(
1712 header.packet_sequence_number,
1713 GetAssociatedDataFromEncryptedPacket(
1714 packet,
1715 header.public_header.connection_id_length,
1716 header.public_header.version_flag,
1717 header.public_header.sequence_number_length),
1718 encrypted));
1719 if (decrypted_.get() != NULL) {
1720 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1721 if (alternative_decrypter_latch_) {
1722 // Switch to the alternative decrypter and latch so that we cannot
1723 // switch back.
1724 decrypter_.reset(alternative_decrypter_.release());
1725 decrypter_level_ = alternative_decrypter_level_;
1726 alternative_decrypter_level_ = ENCRYPTION_NONE;
1727 } else {
1728 // Switch the alternative decrypter so that we use it first next time.
1729 decrypter_.swap(alternative_decrypter_);
1730 EncryptionLevel level = alternative_decrypter_level_;
1731 alternative_decrypter_level_ = decrypter_level_;
1732 decrypter_level_ = level;
1737 if (decrypted_.get() == NULL) {
1738 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1739 << header.packet_sequence_number;
1740 return false;
1743 reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1744 return true;
1747 size_t QuicFramer::GetAckFrameSize(
1748 const QuicAckFrame& ack,
1749 QuicSequenceNumberLength sequence_number_length) {
1750 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1751 QuicSequenceNumberLength largest_observed_length =
1752 GetMinSequenceNumberLength(ack.largest_observed);
1753 QuicSequenceNumberLength missing_sequence_number_length =
1754 GetMinSequenceNumberLength(ack_info.max_delta);
1756 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1757 largest_observed_length);
1758 if (!ack_info.nack_ranges.empty()) {
1759 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1760 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1761 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1762 ack_size += min(ack.revived_packets.size(),
1763 kMaxRevivedPackets) * largest_observed_length;
1765 return ack_size;
1768 size_t QuicFramer::ComputeFrameLength(
1769 const QuicFrame& frame,
1770 bool last_frame_in_packet,
1771 InFecGroup is_in_fec_group,
1772 QuicSequenceNumberLength sequence_number_length) {
1773 switch (frame.type) {
1774 case STREAM_FRAME:
1775 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1776 frame.stream_frame->offset,
1777 last_frame_in_packet,
1778 is_in_fec_group) +
1779 frame.stream_frame->data.TotalBufferSize();
1780 case ACK_FRAME: {
1781 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1783 case CONGESTION_FEEDBACK_FRAME: {
1784 size_t len = kQuicFrameTypeSize;
1785 const QuicCongestionFeedbackFrame& congestion_feedback =
1786 *frame.congestion_feedback_frame;
1787 len += 1; // Congestion feedback type.
1789 switch (congestion_feedback.type) {
1790 case kTimestamp: {
1791 const CongestionFeedbackMessageTimestamp& timestamp =
1792 congestion_feedback.timestamp;
1793 len += 1; // Number received packets.
1794 if (!timestamp.received_packet_times.empty()) {
1795 len += PACKET_6BYTE_SEQUENCE_NUMBER; // Smallest received.
1796 len += 8; // Time.
1797 // 2 bytes per sequence number delta plus 4 bytes per delta time.
1798 len += PACKET_6BYTE_SEQUENCE_NUMBER *
1799 (timestamp.received_packet_times.size() - 1);
1801 break;
1803 case kTCP:
1804 len += 2; // Receive window.
1805 break;
1806 default:
1807 set_detailed_error("Illegal feedback type.");
1808 DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1809 break;
1811 return len;
1813 case STOP_WAITING_FRAME:
1814 return GetStopWaitingFrameSize(sequence_number_length);
1815 case PING_FRAME:
1816 // Ping has no payload.
1817 return kQuicFrameTypeSize;
1818 case RST_STREAM_FRAME:
1819 return GetMinRstStreamFrameSize() +
1820 frame.rst_stream_frame->error_details.size();
1821 case CONNECTION_CLOSE_FRAME:
1822 return GetMinConnectionCloseFrameSize() +
1823 frame.connection_close_frame->error_details.size();
1824 case GOAWAY_FRAME:
1825 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1826 case WINDOW_UPDATE_FRAME:
1827 return GetWindowUpdateFrameSize();
1828 case BLOCKED_FRAME:
1829 return GetBlockedFrameSize();
1830 case PADDING_FRAME:
1831 DCHECK(false);
1832 return 0;
1833 case NUM_FRAME_TYPES:
1834 DCHECK(false);
1835 return 0;
1838 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1839 DCHECK(false);
1840 return 0;
1843 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1844 bool no_stream_frame_length,
1845 QuicDataWriter* writer) {
1846 uint8 type_byte = 0;
1847 switch (frame.type) {
1848 case STREAM_FRAME: {
1849 if (frame.stream_frame == NULL) {
1850 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1852 // Fin bit.
1853 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1855 // Data Length bit.
1856 type_byte <<= kQuicStreamDataLengthShift;
1857 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1859 // Offset 3 bits.
1860 type_byte <<= kQuicStreamOffsetShift;
1861 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1862 if (offset_len > 0) {
1863 type_byte |= offset_len - 1;
1866 // stream id 2 bits.
1867 type_byte <<= kQuicStreamIdShift;
1868 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1869 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1870 break;
1872 case ACK_FRAME:
1873 return true;
1874 case CONGESTION_FEEDBACK_FRAME: {
1875 // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1876 type_byte = kQuicFrameTypeCongestionFeedbackMask;
1877 break;
1879 default:
1880 type_byte = frame.type;
1881 break;
1884 return writer->WriteUInt8(type_byte);
1887 // static
1888 bool QuicFramer::AppendPacketSequenceNumber(
1889 QuicSequenceNumberLength sequence_number_length,
1890 QuicPacketSequenceNumber packet_sequence_number,
1891 QuicDataWriter* writer) {
1892 // Ensure the entire sequence number can be written.
1893 if (writer->capacity() - writer->length() <
1894 static_cast<size_t>(sequence_number_length)) {
1895 return false;
1897 switch (sequence_number_length) {
1898 case PACKET_1BYTE_SEQUENCE_NUMBER:
1899 return writer->WriteUInt8(
1900 packet_sequence_number & k1ByteSequenceNumberMask);
1901 break;
1902 case PACKET_2BYTE_SEQUENCE_NUMBER:
1903 return writer->WriteUInt16(
1904 packet_sequence_number & k2ByteSequenceNumberMask);
1905 break;
1906 case PACKET_4BYTE_SEQUENCE_NUMBER:
1907 return writer->WriteUInt32(
1908 packet_sequence_number & k4ByteSequenceNumberMask);
1909 break;
1910 case PACKET_6BYTE_SEQUENCE_NUMBER:
1911 return writer->WriteUInt48(
1912 packet_sequence_number & k6ByteSequenceNumberMask);
1913 break;
1914 default:
1915 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1916 return false;
1920 bool QuicFramer::AppendStreamFrame(
1921 const QuicStreamFrame& frame,
1922 bool no_stream_frame_length,
1923 QuicDataWriter* writer) {
1924 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1925 LOG(DFATAL) << "Writing stream id size failed.";
1926 return false;
1928 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1929 LOG(DFATAL) << "Writing offset size failed.";
1930 return false;
1932 if (!no_stream_frame_length) {
1933 if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1934 LOG(DFATAL) << "Writing stream frame length failed";
1935 return false;
1939 if (!writer->WriteIOVector(frame.data)) {
1940 LOG(DFATAL) << "Writing frame data failed.";
1941 return false;
1943 return true;
1946 // static
1947 void QuicFramer::set_version(const QuicVersion version) {
1948 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1949 quic_version_ = version;
1952 bool QuicFramer::AppendAckFrameAndTypeByte(
1953 const QuicPacketHeader& header,
1954 const QuicAckFrame& frame,
1955 QuicDataWriter* writer) {
1956 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1957 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1958 QuicSequenceNumberLength largest_observed_length =
1959 GetMinSequenceNumberLength(ack_largest_observed);
1960 QuicSequenceNumberLength missing_sequence_number_length =
1961 GetMinSequenceNumberLength(ack_info.max_delta);
1962 // Determine whether we need to truncate ranges.
1963 size_t available_range_bytes = writer->capacity() - writer->length() -
1964 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
1965 GetMinAckFrameSize(header.public_header.sequence_number_length,
1966 largest_observed_length);
1967 size_t max_num_ranges = available_range_bytes /
1968 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1969 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1970 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1971 DVLOG_IF(1, truncated) << "Truncating ack from "
1972 << ack_info.nack_ranges.size() << " ranges to "
1973 << max_num_ranges;
1974 // Write out the type byte by setting the low order bits and doing shifts
1975 // to make room for the next bit flags to be set.
1976 // Whether there are any nacks.
1977 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1979 // truncating bit.
1980 type_byte <<= kQuicAckTruncatedShift;
1981 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1983 // Largest observed sequence number length.
1984 type_byte <<= kQuicSequenceNumberLengthShift;
1985 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1987 // Missing sequence number length.
1988 type_byte <<= kQuicSequenceNumberLengthShift;
1989 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1991 type_byte |= kQuicFrameTypeAckMask;
1993 if (!writer->WriteUInt8(type_byte)) {
1994 return false;
1997 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1998 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1999 if (truncated) {
2000 // Skip the nack ranges which the truncated ack won't include and set
2001 // a correct largest observed for the truncated ack.
2002 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2003 ++i) {
2004 ++ack_iter;
2006 // If the last range is followed by acks, include them.
2007 // If the last range is followed by another range, specify the end of the
2008 // range as the largest_observed.
2009 ack_largest_observed = ack_iter->first - 1;
2010 // Also update the entropy so it matches the largest observed.
2011 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2012 ++ack_iter;
2015 if (!writer->WriteUInt8(ack_entropy_hash)) {
2016 return false;
2019 if (!AppendPacketSequenceNumber(largest_observed_length,
2020 ack_largest_observed, writer)) {
2021 return false;
2024 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2025 if (!frame.delta_time_largest_observed.IsInfinite()) {
2026 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2027 delta_time_largest_observed_us =
2028 frame.delta_time_largest_observed.ToMicroseconds();
2031 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2032 return false;
2035 if (ack_info.nack_ranges.empty()) {
2036 return true;
2039 const uint8 num_missing_ranges =
2040 min(ack_info.nack_ranges.size(), max_num_ranges);
2041 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2042 return false;
2045 int num_ranges_written = 0;
2046 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2047 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2048 // Calculate the delta to the last number in the range.
2049 QuicPacketSequenceNumber missing_delta =
2050 last_sequence_written - (ack_iter->first + ack_iter->second);
2051 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2052 missing_delta, writer)) {
2053 return false;
2055 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2056 ack_iter->second, writer)) {
2057 return false;
2059 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2060 last_sequence_written = ack_iter->first - 1;
2061 ++num_ranges_written;
2063 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2065 // Append revived packets.
2066 // If not all the revived packets fit, only mention the ones that do.
2067 uint8 num_revived_packets = min(frame.revived_packets.size(),
2068 kMaxRevivedPackets);
2069 num_revived_packets = min(
2070 static_cast<size_t>(num_revived_packets),
2071 (writer->capacity() - writer->length()) / largest_observed_length);
2072 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2073 return false;
2076 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2077 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2078 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2079 if (!AppendPacketSequenceNumber(largest_observed_length,
2080 *iter, writer)) {
2081 return false;
2085 return true;
2088 bool QuicFramer::AppendCongestionFeedbackFrame(
2089 const QuicCongestionFeedbackFrame& frame,
2090 QuicDataWriter* writer) {
2091 if (!writer->WriteBytes(&frame.type, 1)) {
2092 return false;
2095 switch (frame.type) {
2096 case kTimestamp: {
2097 return AppendTimestampFrame(frame, writer);
2099 case kTCP: {
2100 const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2101 DCHECK_LE(tcp.receive_window, 1u << 20);
2102 // Simple bit packing, don't send the 4 least significant bits.
2103 uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2104 if (!writer->WriteUInt16(receive_window)) {
2105 return false;
2107 break;
2109 default:
2110 return false;
2113 return true;
2116 bool QuicFramer::AppendTimestampFrame(
2117 const QuicCongestionFeedbackFrame& frame,
2118 QuicDataWriter* writer) {
2119 const CongestionFeedbackMessageTimestamp& timestamp = frame.timestamp;
2120 DCHECK_GE(numeric_limits<uint8>::max(),
2121 timestamp.received_packet_times.size());
2122 if (timestamp.received_packet_times.size() > numeric_limits<uint8>::max()) {
2123 return false;
2125 uint8 num_received_packets = timestamp.received_packet_times.size();
2126 if (!writer->WriteBytes(&num_received_packets, 1)) {
2127 return false;
2129 if (num_received_packets > 0) {
2130 TimeMap::const_iterator it = timestamp.received_packet_times.begin();
2132 QuicPacketSequenceNumber lowest_sequence = it->first;
2133 if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
2134 lowest_sequence, writer)) {
2135 return false;
2138 QuicTime lowest_time = it->second;
2139 if (!writer->WriteUInt64(
2140 lowest_time.Subtract(creation_time_).ToMicroseconds())) {
2141 return false;
2144 for (++it; it != timestamp.received_packet_times.end(); ++it) {
2145 QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
2146 DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
2147 if (sequence_delta > numeric_limits<uint16>::max()) {
2148 return false;
2150 if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
2151 return false;
2154 int32 time_delta_us = it->second.Subtract(lowest_time).ToMicroseconds();
2155 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2156 return false;
2160 return true;
2163 bool QuicFramer::AppendStopWaitingFrame(
2164 const QuicPacketHeader& header,
2165 const QuicStopWaitingFrame& frame,
2166 QuicDataWriter* writer) {
2167 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2168 const QuicPacketSequenceNumber least_unacked_delta =
2169 header.packet_sequence_number - frame.least_unacked;
2170 const QuicPacketSequenceNumber length_shift =
2171 header.public_header.sequence_number_length * 8;
2172 if (!writer->WriteUInt8(frame.entropy_hash)) {
2173 LOG(DFATAL) << " hash failed";
2174 return false;
2177 if (least_unacked_delta >> length_shift > 0) {
2178 LOG(DFATAL) << "sequence_number_length "
2179 << header.public_header.sequence_number_length
2180 << " is too small for least_unacked_delta: "
2181 << least_unacked_delta;
2182 return false;
2184 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2185 least_unacked_delta, writer)) {
2186 LOG(DFATAL) << " seq failed: "
2187 << header.public_header.sequence_number_length;
2188 return false;
2191 return true;
2194 bool QuicFramer::AppendRstStreamFrame(
2195 const QuicRstStreamFrame& frame,
2196 QuicDataWriter* writer) {
2197 if (!writer->WriteUInt32(frame.stream_id)) {
2198 return false;
2201 if (!writer->WriteUInt64(frame.byte_offset)) {
2202 return false;
2205 uint32 error_code = static_cast<uint32>(frame.error_code);
2206 if (!writer->WriteUInt32(error_code)) {
2207 return false;
2210 if (!writer->WriteStringPiece16(frame.error_details)) {
2211 return false;
2213 return true;
2216 bool QuicFramer::AppendConnectionCloseFrame(
2217 const QuicConnectionCloseFrame& frame,
2218 QuicDataWriter* writer) {
2219 uint32 error_code = static_cast<uint32>(frame.error_code);
2220 if (!writer->WriteUInt32(error_code)) {
2221 return false;
2223 if (!writer->WriteStringPiece16(frame.error_details)) {
2224 return false;
2226 return true;
2229 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2230 QuicDataWriter* writer) {
2231 uint32 error_code = static_cast<uint32>(frame.error_code);
2232 if (!writer->WriteUInt32(error_code)) {
2233 return false;
2235 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2236 if (!writer->WriteUInt32(stream_id)) {
2237 return false;
2239 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2240 return false;
2242 return true;
2245 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2246 QuicDataWriter* writer) {
2247 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2248 if (!writer->WriteUInt32(stream_id)) {
2249 return false;
2251 if (!writer->WriteUInt64(frame.byte_offset)) {
2252 return false;
2254 return true;
2257 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2258 QuicDataWriter* writer) {
2259 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2260 if (!writer->WriteUInt32(stream_id)) {
2261 return false;
2263 return true;
2266 bool QuicFramer::RaiseError(QuicErrorCode error) {
2267 DVLOG(1) << "Error detail: " << detailed_error_;
2268 set_error(error);
2269 visitor_->OnError(this);
2270 reader_.reset(NULL);
2271 return false;
2274 } // namespace net