Cleanup: Only build extensions renderer code when extensions are enabled.
[chromium-blink-merge.git] / cc / quads / draw_polygon.cc
blobbfc2b49296d0e09891a3df43e13531449b92ea75
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/quads/draw_polygon.h"
7 #include <vector>
9 #include "cc/output/bsp_compare_result.h"
10 #include "cc/quads/draw_quad.h"
12 namespace {
13 // This allows for some imperfection in the normal comparison when checking if
14 // two pieces of geometry are coplanar.
15 static const float coplanar_dot_epsilon = 0.01f;
16 // This threshold controls how "thick" a plane is. If a point's distance is
17 // <= |compare_threshold|, then it is considered on the plane. Only when this
18 // boundary is crossed do we consider doing splitting.
19 static const float compare_threshold = 1.0f;
20 // |split_threshold| is lower in this case because we want the points created
21 // during splitting to be well within the range of |compare_threshold| for
22 // comparison purposes. The splitting operation will produce intersection points
23 // that fit within a tighter distance to the splitting plane as a result of this
24 // value. By using a value >= |compare_threshold| we run the risk of creating
25 // points that SHOULD be intersecting the "thick plane", but actually fail to
26 // test positively for it because |split_threshold| allowed them to be outside
27 // this range.
28 static const float split_threshold = 0.5f;
29 } // namespace
31 namespace cc {
33 gfx::Vector3dF DrawPolygon::default_normal = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
35 DrawPolygon::DrawPolygon() {
38 DrawPolygon::DrawPolygon(DrawQuad* original,
39 const std::vector<gfx::Point3F>& in_points,
40 const gfx::Vector3dF& normal,
41 int draw_order_index)
42 : order_index_(draw_order_index), original_ref_(original) {
43 for (size_t i = 0; i < in_points.size(); i++) {
44 points_.push_back(in_points[i]);
46 normal_ = normal;
49 // This takes the original DrawQuad that this polygon should be based on,
50 // a visible content rect to make the 4 corner points from, and a transformation
51 // to move it and its normal into screen space.
52 DrawPolygon::DrawPolygon(DrawQuad* original_ref,
53 const gfx::RectF& visible_content_rect,
54 const gfx::Transform& transform,
55 int draw_order_index)
56 : order_index_(draw_order_index), original_ref_(original_ref) {
57 normal_ = default_normal;
58 gfx::Point3F points[8];
59 int num_vertices_in_clipped_quad;
60 gfx::QuadF send_quad(visible_content_rect);
62 // Doing this mapping here is very important, since we can't just transform
63 // the points without clipping and not run into strange geometry issues when
64 // crossing w = 0. At this point, in the constructor, we know that we're
65 // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d
66 // function instead of writing a generic polygon version of it.
67 MathUtil::MapClippedQuad3d(
68 transform, send_quad, points, &num_vertices_in_clipped_quad);
69 for (int i = 0; i < num_vertices_in_clipped_quad; i++) {
70 points_.push_back(points[i]);
72 ApplyTransformToNormal(transform);
75 DrawPolygon::~DrawPolygon() {
78 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
79 DrawPolygon* new_polygon = new DrawPolygon();
80 new_polygon->order_index_ = order_index_;
81 new_polygon->original_ref_ = original_ref_;
82 new_polygon->points_.reserve(points_.size());
83 new_polygon->points_ = points_;
84 new_polygon->normal_.set_x(normal_.x());
85 new_polygon->normal_.set_y(normal_.y());
86 new_polygon->normal_.set_z(normal_.z());
87 return scoped_ptr<DrawPolygon>(new_polygon);
90 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
91 return gfx::DotProduct(point - points_[0], normal_);
94 // Checks whether or not shape a lies on the front or back side of b, or
95 // whether they should be considered coplanar. If on the back side, we
96 // say ABeforeB because it should be drawn in that order.
97 // Assumes that layers are split and there are no intersecting planes.
98 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
99 const DrawPolygon& b) {
100 // Right away let's check if they're coplanar
101 double dot = gfx::DotProduct(a.normal_, b.normal_);
102 float sign = 0.0f;
103 bool normal_match = false;
104 // This check assumes that the normals are normalized.
105 if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) {
106 normal_match = true;
107 // The normals are matching enough that we only have to test one point.
108 sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_);
109 // Is it on either side of the splitter?
110 if (sign < -compare_threshold) {
111 return BSP_BACK;
114 if (sign > compare_threshold) {
115 return BSP_FRONT;
118 // No it wasn't, so the sign of the dot product of the normals
119 // along with document order determines which side it goes on.
120 if (dot >= 0.0f) {
121 if (a.order_index_ < b.order_index_) {
122 return BSP_COPLANAR_FRONT;
124 return BSP_COPLANAR_BACK;
127 if (a.order_index_ < b.order_index_) {
128 return BSP_COPLANAR_BACK;
130 return BSP_COPLANAR_FRONT;
133 int pos_count = 0;
134 int neg_count = 0;
135 for (size_t i = 0; i < a.points_.size(); i++) {
136 if (!normal_match || (normal_match && i > 0)) {
137 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
140 if (sign < -compare_threshold) {
141 ++neg_count;
142 } else if (sign > compare_threshold) {
143 ++pos_count;
146 if (pos_count && neg_count) {
147 return BSP_SPLIT;
151 if (pos_count) {
152 return BSP_FRONT;
154 return BSP_BACK;
157 static bool LineIntersectPlane(const gfx::Point3F& line_start,
158 const gfx::Point3F& line_end,
159 const gfx::Point3F& plane_origin,
160 const gfx::Vector3dF& plane_normal,
161 gfx::Point3F* intersection,
162 float distance_threshold) {
163 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
164 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
166 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
167 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
169 // The case where one vertex lies on the thick-plane and the other
170 // is outside of it.
171 if (std::abs(start_distance) < distance_threshold &&
172 std::abs(end_distance) > distance_threshold) {
173 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
174 return true;
177 // This is the case where we clearly cross the thick-plane.
178 if ((start_distance > distance_threshold &&
179 end_distance < -distance_threshold) ||
180 (start_distance < -distance_threshold &&
181 end_distance > distance_threshold)) {
182 gfx::Vector3dF v = line_end - line_start;
183 float total_distance = std::abs(start_distance) + std::abs(end_distance);
184 float lerp_factor = std::abs(start_distance) / total_distance;
186 intersection->SetPoint(line_start.x() + (v.x() * lerp_factor),
187 line_start.y() + (v.y() * lerp_factor),
188 line_start.z() + (v.z() * lerp_factor));
190 return true;
192 return false;
195 // This function is separate from ApplyTransform because it is often unnecessary
196 // to transform the normal with the rest of the polygon.
197 // When drawing these polygons, it is necessary to move them back into layer
198 // space before sending them to OpenGL, which requires using ApplyTransform,
199 // but normal information is no longer needed after sorting.
200 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) {
201 // Now we use the inverse transpose of |transform| to transform the normal.
202 gfx::Transform inverse_transform;
203 bool inverted = transform.GetInverse(&inverse_transform);
204 DCHECK(inverted);
205 if (!inverted)
206 return;
207 inverse_transform.Transpose();
209 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z());
210 inverse_transform.TransformPoint(&new_normal);
211 // Make sure our normal is still normalized.
212 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z());
213 float normal_magnitude = normal_.Length();
214 if (normal_magnitude != 0 && normal_magnitude != 1) {
215 normal_.Scale(1.0f / normal_magnitude);
219 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) {
220 for (size_t i = 0; i < points_.size(); i++) {
221 transform.TransformPoint(&points_[i]);
225 // TransformToScreenSpace assumes we're moving a layer from its layer space
226 // into 3D screen space, which for sorting purposes requires the normal to
227 // be transformed along with the vertices.
228 void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) {
229 ApplyTransform(transform);
230 ApplyTransformToNormal(transform);
233 // In the case of TransformToLayerSpace, we assume that we are giving the
234 // inverse transformation back to the polygon to move it back into layer space
235 // but we can ignore the costly process of applying the inverse to the normal
236 // since we know the normal will just reset to its original state.
237 void DrawPolygon::TransformToLayerSpace(
238 const gfx::Transform& inverse_transform) {
239 ApplyTransform(inverse_transform);
240 normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
243 bool DrawPolygon::Split(const DrawPolygon& splitter,
244 scoped_ptr<DrawPolygon>* front,
245 scoped_ptr<DrawPolygon>* back) {
246 gfx::Point3F intersections[2];
247 std::vector<gfx::Point3F> out_points[2];
248 // vertex_before stores the index of the vertex before its matching
249 // intersection.
250 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
251 // which resulted in the line/plane intersection giving us intersections[0].
252 size_t vertex_before[2];
253 size_t points_size = points_.size();
254 size_t current_intersection = 0;
256 size_t current_vertex = 0;
257 // We will only have two intersection points because we assume all polygons
258 // are convex.
259 while (current_intersection < 2) {
260 if (LineIntersectPlane(points_[(current_vertex % points_size)],
261 points_[(current_vertex + 1) % points_size],
262 splitter.points_[0],
263 splitter.normal_,
264 &intersections[current_intersection],
265 split_threshold)) {
266 vertex_before[current_intersection] = current_vertex % points_size;
267 current_intersection++;
268 // We found both intersection points so we're done already.
269 if (current_intersection == 2) {
270 break;
273 if (current_vertex++ > points_size) {
274 break;
277 DCHECK_EQ(current_intersection, static_cast<size_t>(2));
279 // Since we found both the intersection points, we can begin building the
280 // vertex set for both our new polygons.
281 size_t start1 = (vertex_before[0] + 1) % points_size;
282 size_t start2 = (vertex_before[1] + 1) % points_size;
283 size_t points_remaining = points_size;
285 // First polygon.
286 out_points[0].push_back(intersections[0]);
287 for (size_t i = start1; i <= vertex_before[1]; i++) {
288 out_points[0].push_back(points_[i]);
289 --points_remaining;
291 out_points[0].push_back(intersections[1]);
293 // Second polygon.
294 out_points[1].push_back(intersections[1]);
295 size_t index = start2;
296 for (size_t i = 0; i < points_remaining; i++) {
297 out_points[1].push_back(points_[index % points_size]);
298 ++index;
300 out_points[1].push_back(intersections[0]);
302 // Give both polygons the original splitting polygon's ID, so that they'll
303 // still be sorted properly in co-planar instances.
304 scoped_ptr<DrawPolygon> poly1(
305 new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
306 scoped_ptr<DrawPolygon> poly2(
307 new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
309 if (SideCompare(*poly1, splitter) == BSP_FRONT) {
310 *front = poly1.Pass();
311 *back = poly2.Pass();
312 } else {
313 *front = poly2.Pass();
314 *back = poly1.Pass();
316 return true;
319 // This algorithm takes the first vertex in the polygon and uses that as a
320 // pivot point to fan out and create quads from the rest of the vertices.
321 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate
322 // offset+1 and offset+2 respectively.
323 // After the first quad is created, the first vertex in the next quad is the
324 // same as all the rest, the pivot point. The second vertex in the next quad is
325 // the old |op2|, the last vertex added to the previous quad. This continues
326 // until all points are exhausted.
327 // The special case here is where there are only 3 points remaining, in which
328 // case we use the same values for vertex 3 and 4 to make a degenerate quad
329 // that represents a triangle.
330 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
331 if (points_.size() <= 2)
332 return;
334 gfx::PointF first(points_[0].x(), points_[0].y());
335 size_t offset = 1;
336 while (offset < points_.size() - 1) {
337 size_t op1 = offset + 1;
338 size_t op2 = offset + 2;
339 if (op2 >= points_.size()) {
340 // It's going to be a degenerate triangle.
341 op2 = op1;
343 quads->push_back(
344 gfx::QuadF(first,
345 gfx::PointF(points_[offset].x(), points_[offset].y()),
346 gfx::PointF(points_[op1].x(), points_[op1].y()),
347 gfx::PointF(points_[op2].x(), points_[op2].y())));
348 offset = op2;
352 } // namespace cc