Merge Chromium + Blink git repositories
[chromium-blink-merge.git] / courgette / disassembler_win32_x86.cc
blob85d99f485d672ffdd8516988ff2167cec064eff9
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/disassembler_win32_x86.h"
7 #include <algorithm>
8 #include <string>
9 #include <vector>
11 #include "base/basictypes.h"
12 #include "base/logging.h"
14 #include "courgette/assembly_program.h"
15 #include "courgette/courgette.h"
16 #include "courgette/encoded_program.h"
17 #include "courgette/rel32_finder_win32_x86.h"
19 namespace courgette {
21 DisassemblerWin32X86::DisassemblerWin32X86(const void* start, size_t length)
22 : Disassembler(start, length),
23 incomplete_disassembly_(false),
24 is_PE32_plus_(false),
25 optional_header_(NULL),
26 size_of_optional_header_(0),
27 offset_of_data_directories_(0),
28 machine_type_(0),
29 number_of_sections_(0),
30 sections_(NULL),
31 has_text_section_(false),
32 size_of_code_(0),
33 size_of_initialized_data_(0),
34 size_of_uninitialized_data_(0),
35 base_of_code_(0),
36 base_of_data_(0),
37 image_base_(0),
38 size_of_image_(0),
39 number_of_data_directories_(0) {
42 // ParseHeader attempts to match up the buffer with the Windows data
43 // structures that exist within a Windows 'Portable Executable' format file.
44 // Returns 'true' if the buffer matches, and 'false' if the data looks
45 // suspicious. Rather than try to 'map' the buffer to the numerous windows
46 // structures, we extract the information we need into the courgette::PEInfo
47 // structure.
49 bool DisassemblerWin32X86::ParseHeader() {
50 if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
51 return Bad("Too small");
53 // Have 'MZ' magic for a DOS header?
54 if (start()[0] != 'M' || start()[1] != 'Z')
55 return Bad("Not MZ");
57 // offset from DOS header to PE header is stored in DOS header.
58 uint32 offset = ReadU32(start(),
59 kOffsetOfFileAddressOfNewExeHeader);
61 if (offset >= length())
62 return Bad("Bad offset to PE header");
64 const uint8* const pe_header = OffsetToPointer(offset);
65 const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
66 if (pe_header <= start() ||
67 pe_header >= end() - kMinPEHeaderSize)
68 return Bad("Bad offset to PE header");
70 if (offset % 8 != 0)
71 return Bad("Misaligned PE header");
73 // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
74 // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
76 // The first field of the IMAGE_NT_HEADERS is the signature.
77 if (!(pe_header[0] == 'P' &&
78 pe_header[1] == 'E' &&
79 pe_header[2] == 0 &&
80 pe_header[3] == 0))
81 return Bad("no PE signature");
83 // The second field of the IMAGE_NT_HEADERS is the COFF header.
84 // The COFF header is also called an IMAGE_FILE_HEADER
85 // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
86 const uint8* const coff_header = pe_header + 4;
87 machine_type_ = ReadU16(coff_header, 0);
88 number_of_sections_ = ReadU16(coff_header, 2);
89 size_of_optional_header_ = ReadU16(coff_header, 16);
91 // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
92 const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
93 optional_header_ = optional_header;
95 if (optional_header + size_of_optional_header_ >= end())
96 return Bad("optional header past end of file");
98 // Check we can read the magic.
99 if (size_of_optional_header_ < 2)
100 return Bad("optional header no magic");
102 uint16 magic = ReadU16(optional_header, 0);
104 if (magic == kImageNtOptionalHdr32Magic) {
105 is_PE32_plus_ = false;
106 offset_of_data_directories_ =
107 kOffsetOfDataDirectoryFromImageOptionalHeader32;
108 } else if (magic == kImageNtOptionalHdr64Magic) {
109 is_PE32_plus_ = true;
110 offset_of_data_directories_ =
111 kOffsetOfDataDirectoryFromImageOptionalHeader64;
112 } else {
113 return Bad("unrecognized magic");
116 // Check that we can read the rest of the the fixed fields. Data directories
117 // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
118 if (size_of_optional_header_ < offset_of_data_directories_)
119 return Bad("optional header too short");
121 // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
122 // IMAGE_OPTIONAL_HEADER64
123 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
125 // Copy the fields we care about.
126 size_of_code_ = ReadU32(optional_header, 4);
127 size_of_initialized_data_ = ReadU32(optional_header, 8);
128 size_of_uninitialized_data_ = ReadU32(optional_header, 12);
129 base_of_code_ = ReadU32(optional_header, 20);
130 if (is_PE32_plus_) {
131 base_of_data_ = 0;
132 image_base_ = ReadU64(optional_header, 24);
133 } else {
134 base_of_data_ = ReadU32(optional_header, 24);
135 image_base_ = ReadU32(optional_header, 28);
137 size_of_image_ = ReadU32(optional_header, 56);
138 number_of_data_directories_ =
139 ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
141 if (size_of_code_ >= length() ||
142 size_of_initialized_data_ >= length() ||
143 size_of_code_ + size_of_initialized_data_ >= length()) {
144 // This validation fires on some perfectly fine executables.
145 // return Bad("code or initialized data too big");
148 // TODO(sra): we can probably get rid of most of the data directories.
149 bool b = true;
150 // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
151 // for correctness and it compiles smaller this way.
152 b &= ReadDataDirectory(0, &export_table_);
153 b &= ReadDataDirectory(1, &import_table_);
154 b &= ReadDataDirectory(2, &resource_table_);
155 b &= ReadDataDirectory(3, &exception_table_);
156 b &= ReadDataDirectory(5, &base_relocation_table_);
157 b &= ReadDataDirectory(11, &bound_import_table_);
158 b &= ReadDataDirectory(12, &import_address_table_);
159 b &= ReadDataDirectory(13, &delay_import_descriptor_);
160 b &= ReadDataDirectory(14, &clr_runtime_header_);
161 if (!b) {
162 return Bad("malformed data directory");
165 // Sections follow the optional header.
166 sections_ =
167 reinterpret_cast<const Section*>(optional_header +
168 size_of_optional_header_);
169 size_t detected_length = 0;
171 for (int i = 0; i < number_of_sections_; ++i) {
172 const Section* section = &sections_[i];
174 // TODO(sra): consider using the 'characteristics' field of the section
175 // header to see if the section contains instructions.
176 if (memcmp(section->name, ".text", 6) == 0)
177 has_text_section_ = true;
179 uint32 section_end =
180 section->file_offset_of_raw_data + section->size_of_raw_data;
181 if (section_end > detected_length)
182 detected_length = section_end;
185 // Pretend our in-memory copy is only as long as our detected length.
186 ReduceLength(detected_length);
188 if (!is_32bit()) {
189 return Bad("64 bit executables are not supported by this disassembler");
192 if (!has_text_section()) {
193 return Bad("Resource-only executables are not yet supported");
196 return Good();
199 bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
200 if (!ok())
201 return false;
203 target->set_image_base(image_base());
205 if (!ParseAbs32Relocs())
206 return false;
208 ParseRel32RelocsFromSections();
210 if (!ParseFile(target))
211 return false;
213 target->DefaultAssignIndexes();
215 return true;
218 ////////////////////////////////////////////////////////////////////////////////
220 bool DisassemblerWin32X86::ParseRelocs(std::vector<RVA> *relocs) {
221 relocs->clear();
223 size_t relocs_size = base_relocation_table_.size_;
224 if (relocs_size == 0)
225 return true;
227 // The format of the base relocation table is a sequence of variable sized
228 // IMAGE_BASE_RELOCATION blocks. Search for
229 // "The format of the base relocation data is somewhat quirky"
230 // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
232 const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
233 const uint8* relocs_end = relocs_start + relocs_size;
235 // Make sure entire base relocation table is within the buffer.
236 if (relocs_start < start() ||
237 relocs_start >= end() ||
238 relocs_end <= start() ||
239 relocs_end > end()) {
240 return Bad(".relocs outside image");
243 const uint8* block = relocs_start;
245 // Walk the variable sized blocks.
246 while (block + 8 < relocs_end) {
247 RVA page_rva = ReadU32(block, 0);
248 uint32 size = ReadU32(block, 4);
249 if (size < 8 || // Size includes header ...
250 size % 4 != 0) // ... and is word aligned.
251 return Bad("unreasonable relocs block");
253 const uint8* end_entries = block + size;
255 if (end_entries <= block ||
256 end_entries <= start() ||
257 end_entries > end())
258 return Bad(".relocs block outside image");
260 // Walk through the two-byte entries.
261 for (const uint8* p = block + 8; p < end_entries; p += 2) {
262 uint16 entry = ReadU16(p, 0);
263 int type = entry >> 12;
264 int offset = entry & 0xFFF;
266 RVA rva = page_rva + offset;
267 // Skip the relocs that live outside of the image. It might be the case
268 // if a reloc is relative to a register, e.g.:
269 // mov ecx,dword ptr [eax+044D5888h]
270 uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
271 if (target_address < image_base_ ||
272 target_address > (image_base_ + size_of_image_)) {
273 continue;
275 if (type == 3) { // IMAGE_REL_BASED_HIGHLOW
276 relocs->push_back(rva);
277 } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
278 // Ignore, used as padding.
279 } else {
280 // Does not occur in Windows x86 executables.
281 return Bad("unknown type of reloc");
285 block += size;
288 std::sort(relocs->begin(), relocs->end());
290 return true;
293 const Section* DisassemblerWin32X86::RVAToSection(RVA rva) const {
294 for (int i = 0; i < number_of_sections_; i++) {
295 const Section* section = &sections_[i];
296 uint32 offset = rva - section->virtual_address;
297 if (offset < section->virtual_size) {
298 return section;
301 return NULL;
304 int DisassemblerWin32X86::RVAToFileOffset(RVA rva) const {
305 const Section* section = RVAToSection(rva);
306 if (section) {
307 uint32 offset = rva - section->virtual_address;
308 if (offset < section->size_of_raw_data) {
309 return section->file_offset_of_raw_data + offset;
310 } else {
311 return kNoOffset; // In section but not in file (e.g. uninit data).
315 // Small RVA values point into the file header in the loaded image.
316 // RVA 0 is the module load address which Windows uses as the module handle.
317 // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
318 // DOS header.
319 if (rva == 0 || rva == 2)
320 return rva;
322 NOTREACHED();
323 return kNoOffset;
326 const uint8* DisassemblerWin32X86::RVAToPointer(RVA rva) const {
327 int file_offset = RVAToFileOffset(rva);
328 if (file_offset == kNoOffset)
329 return NULL;
330 else
331 return OffsetToPointer(file_offset);
334 std::string DisassemblerWin32X86::SectionName(const Section* section) {
335 if (section == NULL)
336 return "<none>";
337 char name[9];
338 memcpy(name, section->name, 8);
339 name[8] = '\0'; // Ensure termination.
340 return name;
343 CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
344 // Walk all the bytes in the file, whether or not in a section.
345 uint32 file_offset = 0;
346 while (file_offset < length()) {
347 const Section* section = FindNextSection(file_offset);
348 if (section == NULL) {
349 // No more sections. There should not be extra stuff following last
350 // section.
351 // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
352 break;
354 if (file_offset < section->file_offset_of_raw_data) {
355 uint32 section_start_offset = section->file_offset_of_raw_data;
356 if(!ParseNonSectionFileRegion(file_offset, section_start_offset,
357 program))
358 return false;
360 file_offset = section_start_offset;
362 uint32 end = file_offset + section->size_of_raw_data;
363 if (!ParseFileRegion(section, file_offset, end, program))
364 return false;
365 file_offset = end;
368 #if COURGETTE_HISTOGRAM_TARGETS
369 HistogramTargets("abs32 relocs", abs32_target_rvas_);
370 HistogramTargets("rel32 relocs", rel32_target_rvas_);
371 #endif
373 return true;
376 bool DisassemblerWin32X86::ParseAbs32Relocs() {
377 abs32_locations_.clear();
378 if (!ParseRelocs(&abs32_locations_))
379 return false;
381 #if COURGETTE_HISTOGRAM_TARGETS
382 for (size_t i = 0; i < abs32_locations_.size(); ++i) {
383 RVA rva = abs32_locations_[i];
384 // The 4 bytes at the relocation are a reference to some address.
385 uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
386 ++abs32_target_rvas_[target_address - image_base()];
388 #endif
389 return true;
392 void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
393 uint32 file_offset = 0;
394 while (file_offset < length()) {
395 const Section* section = FindNextSection(file_offset);
396 if (section == NULL)
397 break;
398 if (file_offset < section->file_offset_of_raw_data)
399 file_offset = section->file_offset_of_raw_data;
400 ParseRel32RelocsFromSection(section);
401 file_offset += section->size_of_raw_data;
403 std::sort(rel32_locations_.begin(), rel32_locations_.end());
405 #if COURGETTE_HISTOGRAM_TARGETS
406 VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
407 << "\nrel32_locations_ " << rel32_locations_.size()
408 << "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
409 << "\nrel32_target_rvas_ " << rel32_target_rvas_.size();
411 int common = 0;
412 std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
413 std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
414 while (abs32_iter != abs32_target_rvas_.end() &&
415 rel32_iter != rel32_target_rvas_.end()) {
416 if (abs32_iter->first < rel32_iter->first)
417 ++abs32_iter;
418 else if (rel32_iter->first < abs32_iter->first)
419 ++rel32_iter;
420 else {
421 ++common;
422 ++abs32_iter;
423 ++rel32_iter;
426 VLOG(1) << "common " << common;
427 #endif
430 void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
431 // TODO(sra): use characteristic.
432 bool isCode = strcmp(section->name, ".text") == 0;
433 if (!isCode)
434 return;
436 uint32 start_file_offset = section->file_offset_of_raw_data;
437 uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
439 const uint8* start_pointer = OffsetToPointer(start_file_offset);
440 const uint8* end_pointer = OffsetToPointer(end_file_offset);
442 RVA start_rva = FileOffsetToRVA(start_file_offset);
443 RVA end_rva = start_rva + section->virtual_size;
445 Rel32FinderWin32X86_Basic finder(
446 base_relocation_table().address_,
447 base_relocation_table().address_ + base_relocation_table().size_,
448 size_of_image_);
449 finder.Find(start_pointer, end_pointer, start_rva, end_rva, abs32_locations_);
450 finder.SwapRel32Locations(&rel32_locations_);
452 #if COURGETTE_HISTOGRAM_TARGETS
453 DCHECK(rel32_target_rvas_.empty());
454 finder.SwapRel32TargetRVAs(&rel32_target_rvas_);
455 #endif
458 CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
459 uint32 start_file_offset,
460 uint32 end_file_offset,
461 AssemblyProgram* program) {
462 if (incomplete_disassembly_)
463 return true;
465 if (end_file_offset > start_file_offset) {
466 if (!program->EmitBytesInstruction(OffsetToPointer(start_file_offset),
467 end_file_offset - start_file_offset)) {
468 return false;
472 return true;
475 CheckBool DisassemblerWin32X86::ParseFileRegion(
476 const Section* section,
477 uint32 start_file_offset, uint32 end_file_offset,
478 AssemblyProgram* program) {
479 RVA relocs_start_rva = base_relocation_table().address_;
481 const uint8* start_pointer = OffsetToPointer(start_file_offset);
482 const uint8* end_pointer = OffsetToPointer(end_file_offset);
484 RVA start_rva = FileOffsetToRVA(start_file_offset);
485 RVA end_rva = start_rva + section->virtual_size;
487 // Quick way to convert from Pointer to RVA within a single Section is to
488 // subtract 'pointer_to_rva'.
489 const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
491 std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
492 std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
494 if (!program->EmitOriginInstruction(start_rva))
495 return false;
497 const uint8* p = start_pointer;
499 while (p < end_pointer) {
500 RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
502 // The base relocation table is usually in the .relocs section, but it could
503 // actually be anywhere. Make sure we skip it because we will regenerate it
504 // during assembly.
505 if (current_rva == relocs_start_rva) {
506 if (!program->EmitPeRelocsInstruction())
507 return false;
508 uint32 relocs_size = base_relocation_table().size_;
509 if (relocs_size) {
510 p += relocs_size;
511 continue;
515 while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
516 ++abs32_pos;
518 if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
519 uint32 target_address = Read32LittleEndian(p);
520 RVA target_rva = target_address - image_base();
521 // TODO(sra): target could be Label+offset. It is not clear how to guess
522 // which it might be. We assume offset==0.
523 if (!program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva)))
524 return false;
525 p += 4;
526 continue;
529 while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
530 ++rel32_pos;
532 if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
533 RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
534 if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva)))
535 return false;
536 p += 4;
537 continue;
540 if (incomplete_disassembly_) {
541 if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
542 (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
543 (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
544 // No more relocs in this section, don't bother encoding bytes.
545 break;
549 if (!program->EmitByteInstruction(*p))
550 return false;
551 p += 1;
554 return true;
557 #if COURGETTE_HISTOGRAM_TARGETS
558 // Histogram is printed to std::cout. It is purely for debugging the algorithm
559 // and is only enabled manually in 'exploration' builds. I don't want to add
560 // command-line configuration for this feature because this code has to be
561 // small, which means compiled-out.
562 void DisassemblerWin32X86::HistogramTargets(const char* kind,
563 const std::map<RVA, int>& map) {
564 int total = 0;
565 std::map<int, std::vector<RVA> > h;
566 for (std::map<RVA, int>::const_iterator p = map.begin();
567 p != map.end();
568 ++p) {
569 h[p->second].push_back(p->first);
570 total += p->second;
573 std::cout << total << " " << kind << " to "
574 << map.size() << " unique targets" << std::endl;
576 std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
577 const int kFirstN = 15;
578 bool someSkipped = false;
579 int index = 0;
580 for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
581 p != h.rend();
582 ++p) {
583 ++index;
584 if (index <= kFirstN || p->first <= 3) {
585 if (someSkipped) {
586 std::cout << "..." << std::endl;
588 size_t count = p->second.size();
589 std::cout << std::dec << p->first << ": " << count;
590 if (count <= 2) {
591 for (size_t i = 0; i < count; ++i)
592 std::cout << " " << DescribeRVA(p->second[i]);
594 std::cout << std::endl;
595 someSkipped = false;
596 } else {
597 someSkipped = true;
601 #endif // COURGETTE_HISTOGRAM_TARGETS
604 // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
605 // that during development I'm finding I need to call it when compiled in
606 // Release mode. Hence:
607 // TODO(sra): make this compile only for debug mode.
608 std::string DisassemblerWin32X86::DescribeRVA(RVA rva) const {
609 const Section* section = RVAToSection(rva);
610 std::ostringstream s;
611 s << std::hex << rva;
612 if (section) {
613 s << " (";
614 s << SectionName(section) << "+"
615 << std::hex << (rva - section->virtual_address)
616 << ")";
618 return s.str();
621 const Section* DisassemblerWin32X86::FindNextSection(uint32 fileOffset) const {
622 const Section* best = 0;
623 for (int i = 0; i < number_of_sections_; i++) {
624 const Section* section = &sections_[i];
625 if (section->size_of_raw_data > 0) { // i.e. has data in file.
626 if (fileOffset <= section->file_offset_of_raw_data) {
627 if (best == 0 ||
628 section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
629 best = section;
634 return best;
637 RVA DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset) const {
638 for (int i = 0; i < number_of_sections_; i++) {
639 const Section* section = &sections_[i];
640 uint32 offset = file_offset - section->file_offset_of_raw_data;
641 if (offset < section->size_of_raw_data) {
642 return section->virtual_address + offset;
645 return 0;
648 bool DisassemblerWin32X86::ReadDataDirectory(
649 int index,
650 ImageDataDirectory* directory) {
652 if (index < number_of_data_directories_) {
653 size_t offset = index * 8 + offset_of_data_directories_;
654 if (offset >= size_of_optional_header_)
655 return Bad("number of data directories inconsistent");
656 const uint8* data_directory = optional_header_ + offset;
657 if (data_directory < start() ||
658 data_directory + 8 >= end())
659 return Bad("data directory outside image");
660 RVA rva = ReadU32(data_directory, 0);
661 size_t size = ReadU32(data_directory, 4);
662 if (size > size_of_image_)
663 return Bad("data directory size too big");
665 // TODO(sra): validate RVA.
666 directory->address_ = rva;
667 directory->size_ = static_cast<uint32>(size);
668 return true;
669 } else {
670 directory->address_ = 0;
671 directory->size_ = 0;
672 return true;
676 } // namespace courgette