1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_pump_win.h"
9 #include "base/message_loop.h"
10 #include "base/metrics/histogram.h"
11 #include "base/win/wrapped_window_proc.h"
15 static const wchar_t kWndClass
[] = L
"Chrome_MessagePumpWindow";
17 // Message sent to get an additional time slice for pumping (processing) another
18 // task (a series of such messages creates a continuous task pump).
19 static const int kMsgHaveWork
= WM_USER
+ 1;
21 //-----------------------------------------------------------------------------
22 // MessagePumpWin public:
24 void MessagePumpWin::AddObserver(MessagePumpObserver
* observer
) {
25 observers_
.AddObserver(observer
);
28 void MessagePumpWin::RemoveObserver(MessagePumpObserver
* observer
) {
29 observers_
.RemoveObserver(observer
);
32 void MessagePumpWin::WillProcessMessage(const MSG
& msg
) {
33 FOR_EACH_OBSERVER(MessagePumpObserver
, observers_
, WillProcessEvent(msg
));
36 void MessagePumpWin::DidProcessMessage(const MSG
& msg
) {
37 FOR_EACH_OBSERVER(MessagePumpObserver
, observers_
, DidProcessEvent(msg
));
40 void MessagePumpWin::RunWithDispatcher(
41 Delegate
* delegate
, Dispatcher
* dispatcher
) {
43 s
.delegate
= delegate
;
44 s
.dispatcher
= dispatcher
;
45 s
.should_quit
= false;
46 s
.run_depth
= state_
? state_
->run_depth
+ 1 : 1;
48 RunState
* previous_state
= state_
;
53 state_
= previous_state
;
56 void MessagePumpWin::Quit() {
58 state_
->should_quit
= true;
61 //-----------------------------------------------------------------------------
62 // MessagePumpWin protected:
64 int MessagePumpWin::GetCurrentDelay() const {
65 if (delayed_work_time_
.is_null())
68 // Be careful here. TimeDelta has a precision of microseconds, but we want a
69 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
70 // 6? It should be 6 to avoid executing delayed work too early.
72 ceil((delayed_work_time_
- TimeTicks::Now()).InMillisecondsF());
74 // If this value is negative, then we need to run delayed work soon.
75 int delay
= static_cast<int>(timeout
);
82 //-----------------------------------------------------------------------------
83 // MessagePumpForUI public:
85 MessagePumpForUI::MessagePumpForUI() {
89 MessagePumpForUI::~MessagePumpForUI() {
90 DestroyWindow(message_hwnd_
);
91 UnregisterClass(kWndClass
, GetModuleHandle(NULL
));
94 void MessagePumpForUI::ScheduleWork() {
95 if (InterlockedExchange(&have_work_
, 1))
96 return; // Someone else continued the pumping.
98 // Make sure the MessagePump does some work for us.
99 PostMessage(message_hwnd_
, kMsgHaveWork
, reinterpret_cast<WPARAM
>(this), 0);
102 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks
& delayed_work_time
) {
104 // We would *like* to provide high resolution timers. Windows timers using
105 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
106 // mechanism because the application can enter modal windows loops where it
107 // is not running our MessageLoop; the only way to have our timers fire in
108 // these cases is to post messages there.
110 // To provide sub-10ms timers, we process timers directly from our run loop.
111 // For the common case, timers will be processed there as the run loop does
112 // its normal work. However, we *also* set the system timer so that WM_TIMER
113 // events fire. This mops up the case of timers not being able to work in
114 // modal message loops. It is possible for the SetTimer to pop and have no
115 // pending timers, because they could have already been processed by the
118 // We use a single SetTimer corresponding to the timer that will expire
119 // soonest. As new timers are created and destroyed, we update SetTimer.
120 // Getting a spurrious SetTimer event firing is benign, as we'll just be
121 // processing an empty timer queue.
123 delayed_work_time_
= delayed_work_time
;
125 int delay_msec
= GetCurrentDelay();
126 DCHECK_GE(delay_msec
, 0);
127 if (delay_msec
< USER_TIMER_MINIMUM
)
128 delay_msec
= USER_TIMER_MINIMUM
;
130 // Create a WM_TIMER event that will wake us up to check for any pending
131 // timers (in case we are running within a nested, external sub-pump).
132 SetTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this), delay_msec
, NULL
);
135 void MessagePumpForUI::PumpOutPendingPaintMessages() {
136 // If we are being called outside of the context of Run, then don't try to do
141 // Create a mini-message-pump to force immediate processing of only Windows
142 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
143 // to get the job done. Actual common max is 4 peeks, but we'll be a little
145 const int kMaxPeekCount
= 20;
147 for (peek_count
= 0; peek_count
< kMaxPeekCount
; ++peek_count
) {
149 if (!PeekMessage(&msg
, NULL
, 0, 0, PM_REMOVE
| PM_QS_PAINT
))
151 ProcessMessageHelper(msg
);
152 if (state_
->should_quit
) // Handle WM_QUIT.
155 // Histogram what was really being used, to help to adjust kMaxPeekCount.
156 DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count
);
159 //-----------------------------------------------------------------------------
160 // MessagePumpForUI private:
163 LRESULT CALLBACK
MessagePumpForUI::WndProcThunk(
164 HWND hwnd
, UINT message
, WPARAM wparam
, LPARAM lparam
) {
167 reinterpret_cast<MessagePumpForUI
*>(wparam
)->HandleWorkMessage();
170 reinterpret_cast<MessagePumpForUI
*>(wparam
)->HandleTimerMessage();
173 return DefWindowProc(hwnd
, message
, wparam
, lparam
);
176 void MessagePumpForUI::DoRunLoop() {
177 // IF this was just a simple PeekMessage() loop (servicing all possible work
178 // queues), then Windows would try to achieve the following order according
179 // to MSDN documentation about PeekMessage with no filter):
182 // * Sent messages (again)
183 // * WM_PAINT messages
184 // * WM_TIMER messages
186 // Summary: none of the above classes is starved, and sent messages has twice
187 // the chance of being processed (i.e., reduced service time).
190 // If we do any work, we may create more messages etc., and more work may
191 // possibly be waiting in another task group. When we (for example)
192 // ProcessNextWindowsMessage(), there is a good chance there are still more
193 // messages waiting. On the other hand, when any of these methods return
194 // having done no work, then it is pretty unlikely that calling them again
195 // quickly will find any work to do. Finally, if they all say they had no
196 // work, then it is a good time to consider sleeping (waiting) for more
199 bool more_work_is_plausible
= ProcessNextWindowsMessage();
200 if (state_
->should_quit
)
203 more_work_is_plausible
|= state_
->delegate
->DoWork();
204 if (state_
->should_quit
)
207 more_work_is_plausible
|=
208 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
209 // If we did not process any delayed work, then we can assume that our
210 // existing WM_TIMER if any will fire when delayed work should run. We
211 // don't want to disturb that timer if it is already in flight. However,
212 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
213 if (more_work_is_plausible
&& delayed_work_time_
.is_null())
214 KillTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this));
215 if (state_
->should_quit
)
218 if (more_work_is_plausible
)
221 more_work_is_plausible
= state_
->delegate
->DoIdleWork();
222 if (state_
->should_quit
)
225 if (more_work_is_plausible
)
228 WaitForWork(); // Wait (sleep) until we have work to do again.
232 void MessagePumpForUI::InitMessageWnd() {
233 HINSTANCE hinst
= GetModuleHandle(NULL
);
236 wc
.cbSize
= sizeof(wc
);
237 wc
.lpfnWndProc
= base::win::WrappedWindowProc
<WndProcThunk
>;
238 wc
.hInstance
= hinst
;
239 wc
.lpszClassName
= kWndClass
;
240 RegisterClassEx(&wc
);
243 CreateWindow(kWndClass
, 0, 0, 0, 0, 0, 0, HWND_MESSAGE
, 0, hinst
, 0);
244 DCHECK(message_hwnd_
);
247 void MessagePumpForUI::WaitForWork() {
248 // Wait until a message is available, up to the time needed by the timer
249 // manager to fire the next set of timers.
250 int delay
= GetCurrentDelay();
251 if (delay
< 0) // Negative value means no timers waiting.
255 result
= MsgWaitForMultipleObjectsEx(0, NULL
, delay
, QS_ALLINPUT
,
256 MWMO_INPUTAVAILABLE
);
258 if (WAIT_OBJECT_0
== result
) {
259 // A WM_* message is available.
260 // If a parent child relationship exists between windows across threads
261 // then their thread inputs are implicitly attached.
262 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
263 // that messages are ready for processing (specifically mouse messages
264 // intended for the child window. Occurs if the child window has capture)
265 // The subsequent PeekMessages call fails to return any messages thus
266 // causing us to enter a tight loop at times.
267 // The WaitMessage call below is a workaround to give the child window
268 // sometime to process its input messages.
270 DWORD queue_status
= GetQueueStatus(QS_MOUSE
);
271 if (HIWORD(queue_status
) & QS_MOUSE
&&
272 !PeekMessage(&msg
, NULL
, WM_MOUSEFIRST
, WM_MOUSELAST
, PM_NOREMOVE
)) {
278 DCHECK_NE(WAIT_FAILED
, result
) << GetLastError();
281 void MessagePumpForUI::HandleWorkMessage() {
282 // If we are being called outside of the context of Run, then don't try to do
283 // any work. This could correspond to a MessageBox call or something of that
286 // Since we handled a kMsgHaveWork message, we must still update this flag.
287 InterlockedExchange(&have_work_
, 0);
291 // Let whatever would have run had we not been putting messages in the queue
292 // run now. This is an attempt to make our dummy message not starve other
293 // messages that may be in the Windows message queue.
294 ProcessPumpReplacementMessage();
296 // Now give the delegate a chance to do some work. He'll let us know if he
297 // needs to do more work.
298 if (state_
->delegate
->DoWork())
302 void MessagePumpForUI::HandleTimerMessage() {
303 KillTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this));
305 // If we are being called outside of the context of Run, then don't do
306 // anything. This could correspond to a MessageBox call or something of
311 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
312 if (!delayed_work_time_
.is_null()) {
313 // A bit gratuitous to set delayed_work_time_ again, but oh well.
314 ScheduleDelayedWork(delayed_work_time_
);
318 bool MessagePumpForUI::ProcessNextWindowsMessage() {
319 // If there are sent messages in the queue then PeekMessage internally
320 // dispatches the message and returns false. We return true in this
321 // case to ensure that the message loop peeks again instead of calling
322 // MsgWaitForMultipleObjectsEx again.
323 bool sent_messages_in_queue
= false;
324 DWORD queue_status
= GetQueueStatus(QS_SENDMESSAGE
);
325 if (HIWORD(queue_status
) & QS_SENDMESSAGE
)
326 sent_messages_in_queue
= true;
329 if (PeekMessage(&msg
, NULL
, 0, 0, PM_REMOVE
))
330 return ProcessMessageHelper(msg
);
332 return sent_messages_in_queue
;
335 bool MessagePumpForUI::ProcessMessageHelper(const MSG
& msg
) {
336 if (WM_QUIT
== msg
.message
) {
337 // Repost the QUIT message so that it will be retrieved by the primary
338 // GetMessage() loop.
339 state_
->should_quit
= true;
340 PostQuitMessage(static_cast<int>(msg
.wParam
));
344 // While running our main message pump, we discard kMsgHaveWork messages.
345 if (msg
.message
== kMsgHaveWork
&& msg
.hwnd
== message_hwnd_
)
346 return ProcessPumpReplacementMessage();
348 if (CallMsgFilter(const_cast<MSG
*>(&msg
), kMessageFilterCode
))
351 WillProcessMessage(msg
);
353 if (state_
->dispatcher
) {
354 if (!state_
->dispatcher
->Dispatch(msg
))
355 state_
->should_quit
= true;
357 TranslateMessage(&msg
);
358 DispatchMessage(&msg
);
361 DidProcessMessage(msg
);
365 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
366 // When we encounter a kMsgHaveWork message, this method is called to peek
367 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
368 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
369 // a continuous stream of such messages are posted. This method carefully
370 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
371 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
372 // possibly be posted), and finally dispatches that peeked replacement. Note
373 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
375 bool have_message
= false;
377 // We should not process all window messages if we are in the context of an
378 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
379 // This is to ensure that these messages are peeked out by the OS modal loop.
380 if (MessageLoop::current()->os_modal_loop()) {
381 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
382 have_message
= PeekMessage(&msg
, NULL
, WM_PAINT
, WM_PAINT
, PM_REMOVE
) ||
383 PeekMessage(&msg
, NULL
, WM_TIMER
, WM_TIMER
, PM_REMOVE
);
385 have_message
= (0 != PeekMessage(&msg
, NULL
, 0, 0, PM_REMOVE
));
388 DCHECK(!have_message
|| kMsgHaveWork
!= msg
.message
||
389 msg
.hwnd
!= message_hwnd_
);
391 // Since we discarded a kMsgHaveWork message, we must update the flag.
392 int old_have_work
= InterlockedExchange(&have_work_
, 0);
393 DCHECK(old_have_work
);
395 // We don't need a special time slice if we didn't have_message to process.
399 // Guarantee we'll get another time slice in the case where we go into native
400 // windows code. This ScheduleWork() may hurt performance a tiny bit when
401 // tasks appear very infrequently, but when the event queue is busy, the
402 // kMsgHaveWork events get (percentage wise) rarer and rarer.
404 return ProcessMessageHelper(msg
);
407 //-----------------------------------------------------------------------------
408 // MessagePumpForIO public:
410 MessagePumpForIO::MessagePumpForIO() {
411 port_
.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE
, NULL
, NULL
, 1));
412 DCHECK(port_
.IsValid());
415 void MessagePumpForIO::ScheduleWork() {
416 if (InterlockedExchange(&have_work_
, 1))
417 return; // Someone else continued the pumping.
419 // Make sure the MessagePump does some work for us.
420 BOOL ret
= PostQueuedCompletionStatus(port_
, 0,
421 reinterpret_cast<ULONG_PTR
>(this),
422 reinterpret_cast<OVERLAPPED
*>(this));
426 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks
& delayed_work_time
) {
427 // We know that we can't be blocked right now since this method can only be
428 // called on the same thread as Run, so we only need to update our record of
429 // how long to sleep when we do sleep.
430 delayed_work_time_
= delayed_work_time
;
433 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle
,
434 IOHandler
* handler
) {
435 ULONG_PTR key
= reinterpret_cast<ULONG_PTR
>(handler
);
436 HANDLE port
= CreateIoCompletionPort(file_handle
, port_
, key
, 1);
440 //-----------------------------------------------------------------------------
441 // MessagePumpForIO private:
443 void MessagePumpForIO::DoRunLoop() {
445 // If we do any work, we may create more messages etc., and more work may
446 // possibly be waiting in another task group. When we (for example)
447 // WaitForIOCompletion(), there is a good chance there are still more
448 // messages waiting. On the other hand, when any of these methods return
449 // having done no work, then it is pretty unlikely that calling them
450 // again quickly will find any work to do. Finally, if they all say they
451 // had no work, then it is a good time to consider sleeping (waiting) for
454 bool more_work_is_plausible
= state_
->delegate
->DoWork();
455 if (state_
->should_quit
)
458 more_work_is_plausible
|= WaitForIOCompletion(0, NULL
);
459 if (state_
->should_quit
)
462 more_work_is_plausible
|=
463 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
464 if (state_
->should_quit
)
467 if (more_work_is_plausible
)
470 more_work_is_plausible
= state_
->delegate
->DoIdleWork();
471 if (state_
->should_quit
)
474 if (more_work_is_plausible
)
477 WaitForWork(); // Wait (sleep) until we have work to do again.
481 // Wait until IO completes, up to the time needed by the timer manager to fire
482 // the next set of timers.
483 void MessagePumpForIO::WaitForWork() {
484 // We do not support nested IO message loops. This is to avoid messy
485 // recursion problems.
486 DCHECK_EQ(1, state_
->run_depth
) << "Cannot nest an IO message loop!";
488 int timeout
= GetCurrentDelay();
489 if (timeout
< 0) // Negative value means no timers waiting.
492 WaitForIOCompletion(timeout
, NULL
);
495 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
) {
497 if (completed_io_
.empty() || !MatchCompletedIOItem(filter
, &item
)) {
498 // We have to ask the system for another IO completion.
499 if (!GetIOItem(timeout
, &item
))
502 if (ProcessInternalIOItem(item
))
506 if (item
.context
->handler
) {
507 if (filter
&& item
.handler
!= filter
) {
508 // Save this item for later
509 completed_io_
.push_back(item
);
511 DCHECK_EQ(item
.context
->handler
, item
.handler
);
512 WillProcessIOEvent();
513 item
.handler
->OnIOCompleted(item
.context
, item
.bytes_transfered
,
518 // The handler must be gone by now, just cleanup the mess.
524 // Asks the OS for another IO completion result.
525 bool MessagePumpForIO::GetIOItem(DWORD timeout
, IOItem
* item
) {
526 memset(item
, 0, sizeof(*item
));
527 ULONG_PTR key
= NULL
;
528 OVERLAPPED
* overlapped
= NULL
;
529 if (!GetQueuedCompletionStatus(port_
.Get(), &item
->bytes_transfered
, &key
,
530 &overlapped
, timeout
)) {
532 return false; // Nothing in the queue.
533 item
->error
= GetLastError();
534 item
->bytes_transfered
= 0;
537 item
->handler
= reinterpret_cast<IOHandler
*>(key
);
538 item
->context
= reinterpret_cast<IOContext
*>(overlapped
);
542 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem
& item
) {
543 if (this == reinterpret_cast<MessagePumpForIO
*>(item
.context
) &&
544 this == reinterpret_cast<MessagePumpForIO
*>(item
.handler
)) {
545 // This is our internal completion.
546 DCHECK(!item
.bytes_transfered
);
547 InterlockedExchange(&have_work_
, 0);
553 // Returns a completion item that was previously received.
554 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler
* filter
, IOItem
* item
) {
555 DCHECK(!completed_io_
.empty());
556 for (std::list
<IOItem
>::iterator it
= completed_io_
.begin();
557 it
!= completed_io_
.end(); ++it
) {
558 if (!filter
|| it
->handler
== filter
) {
560 completed_io_
.erase(it
);
567 void MessagePumpForIO::AddIOObserver(IOObserver
*obs
) {
568 io_observers_
.AddObserver(obs
);
571 void MessagePumpForIO::RemoveIOObserver(IOObserver
*obs
) {
572 io_observers_
.RemoveObserver(obs
);
575 void MessagePumpForIO::WillProcessIOEvent() {
576 FOR_EACH_OBSERVER(IOObserver
, io_observers_
, WillProcessIOEvent());
579 void MessagePumpForIO::DidProcessIOEvent() {
580 FOR_EACH_OBSERVER(IOObserver
, io_observers_
, DidProcessIOEvent());