[sql] Import reference version of SQLite 3.7.6.3.
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3070603 / src / select.c
blob3a4a8816847eae89f5de4f3ac9db9975da4503a7
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
22 static void clearSelect(sqlite3 *db, Select *p){
23 sqlite3ExprListDelete(db, p->pEList);
24 sqlite3SrcListDelete(db, p->pSrc);
25 sqlite3ExprDelete(db, p->pWhere);
26 sqlite3ExprListDelete(db, p->pGroupBy);
27 sqlite3ExprDelete(db, p->pHaving);
28 sqlite3ExprListDelete(db, p->pOrderBy);
29 sqlite3SelectDelete(db, p->pPrior);
30 sqlite3ExprDelete(db, p->pLimit);
31 sqlite3ExprDelete(db, p->pOffset);
35 ** Initialize a SelectDest structure.
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38 pDest->eDest = (u8)eDest;
39 pDest->iParm = iParm;
40 pDest->affinity = 0;
41 pDest->iMem = 0;
42 pDest->nMem = 0;
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
50 Select *sqlite3SelectNew(
51 Parse *pParse, /* Parsing context */
52 ExprList *pEList, /* which columns to include in the result */
53 SrcList *pSrc, /* the FROM clause -- which tables to scan */
54 Expr *pWhere, /* the WHERE clause */
55 ExprList *pGroupBy, /* the GROUP BY clause */
56 Expr *pHaving, /* the HAVING clause */
57 ExprList *pOrderBy, /* the ORDER BY clause */
58 int isDistinct, /* true if the DISTINCT keyword is present */
59 Expr *pLimit, /* LIMIT value. NULL means not used */
60 Expr *pOffset /* OFFSET value. NULL means no offset */
62 Select *pNew;
63 Select standin;
64 sqlite3 *db = pParse->db;
65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67 if( pNew==0 ){
68 pNew = &standin;
69 memset(pNew, 0, sizeof(*pNew));
71 if( pEList==0 ){
72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74 pNew->pEList = pEList;
75 pNew->pSrc = pSrc;
76 pNew->pWhere = pWhere;
77 pNew->pGroupBy = pGroupBy;
78 pNew->pHaving = pHaving;
79 pNew->pOrderBy = pOrderBy;
80 pNew->selFlags = isDistinct ? SF_Distinct : 0;
81 pNew->op = TK_SELECT;
82 pNew->pLimit = pLimit;
83 pNew->pOffset = pOffset;
84 assert( pOffset==0 || pLimit!=0 );
85 pNew->addrOpenEphm[0] = -1;
86 pNew->addrOpenEphm[1] = -1;
87 pNew->addrOpenEphm[2] = -1;
88 if( db->mallocFailed ) {
89 clearSelect(db, pNew);
90 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91 pNew = 0;
93 return pNew;
97 ** Delete the given Select structure and all of its substructures.
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100 if( p ){
101 clearSelect(db, p);
102 sqlite3DbFree(db, p);
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
108 ** type of join. Return an integer constant that expresses that type
109 ** in terms of the following bit values:
111 ** JT_INNER
112 ** JT_CROSS
113 ** JT_OUTER
114 ** JT_NATURAL
115 ** JT_LEFT
116 ** JT_RIGHT
118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 ** If an illegal or unsupported join type is seen, then still return
121 ** a join type, but put an error in the pParse structure.
123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
124 int jointype = 0;
125 Token *apAll[3];
126 Token *p;
127 /* 0123456789 123456789 123456789 123 */
128 static const char zKeyText[] = "naturaleftouterightfullinnercross";
129 static const struct {
130 u8 i; /* Beginning of keyword text in zKeyText[] */
131 u8 nChar; /* Length of the keyword in characters */
132 u8 code; /* Join type mask */
133 } aKeyword[] = {
134 /* natural */ { 0, 7, JT_NATURAL },
135 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
136 /* outer */ { 10, 5, JT_OUTER },
137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
139 /* inner */ { 23, 5, JT_INNER },
140 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
142 int i, j;
143 apAll[0] = pA;
144 apAll[1] = pB;
145 apAll[2] = pC;
146 for(i=0; i<3 && apAll[i]; i++){
147 p = apAll[i];
148 for(j=0; j<ArraySize(aKeyword); j++){
149 if( p->n==aKeyword[j].nChar
150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
151 jointype |= aKeyword[j].code;
152 break;
155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
156 if( j>=ArraySize(aKeyword) ){
157 jointype |= JT_ERROR;
158 break;
162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
163 (jointype & JT_ERROR)!=0
165 const char *zSp = " ";
166 assert( pB!=0 );
167 if( pC==0 ){ zSp++; }
168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
169 "%T %T%s%T", pA, pB, zSp, pC);
170 jointype = JT_INNER;
171 }else if( (jointype & JT_OUTER)!=0
172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
173 sqlite3ErrorMsg(pParse,
174 "RIGHT and FULL OUTER JOINs are not currently supported");
175 jointype = JT_INNER;
177 return jointype;
181 ** Return the index of a column in a table. Return -1 if the column
182 ** is not contained in the table.
184 static int columnIndex(Table *pTab, const char *zCol){
185 int i;
186 for(i=0; i<pTab->nCol; i++){
187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
189 return -1;
193 ** Search the first N tables in pSrc, from left to right, looking for a
194 ** table that has a column named zCol.
196 ** When found, set *piTab and *piCol to the table index and column index
197 ** of the matching column and return TRUE.
199 ** If not found, return FALSE.
201 static int tableAndColumnIndex(
202 SrcList *pSrc, /* Array of tables to search */
203 int N, /* Number of tables in pSrc->a[] to search */
204 const char *zCol, /* Name of the column we are looking for */
205 int *piTab, /* Write index of pSrc->a[] here */
206 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
208 int i; /* For looping over tables in pSrc */
209 int iCol; /* Index of column matching zCol */
211 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
212 for(i=0; i<N; i++){
213 iCol = columnIndex(pSrc->a[i].pTab, zCol);
214 if( iCol>=0 ){
215 if( piTab ){
216 *piTab = i;
217 *piCol = iCol;
219 return 1;
222 return 0;
226 ** This function is used to add terms implied by JOIN syntax to the
227 ** WHERE clause expression of a SELECT statement. The new term, which
228 ** is ANDed with the existing WHERE clause, is of the form:
230 ** (tab1.col1 = tab2.col2)
232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
234 ** column iColRight of tab2.
236 static void addWhereTerm(
237 Parse *pParse, /* Parsing context */
238 SrcList *pSrc, /* List of tables in FROM clause */
239 int iLeft, /* Index of first table to join in pSrc */
240 int iColLeft, /* Index of column in first table */
241 int iRight, /* Index of second table in pSrc */
242 int iColRight, /* Index of column in second table */
243 int isOuterJoin, /* True if this is an OUTER join */
244 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
246 sqlite3 *db = pParse->db;
247 Expr *pE1;
248 Expr *pE2;
249 Expr *pEq;
251 assert( iLeft<iRight );
252 assert( pSrc->nSrc>iRight );
253 assert( pSrc->a[iLeft].pTab );
254 assert( pSrc->a[iRight].pTab );
256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
260 if( pEq && isOuterJoin ){
261 ExprSetProperty(pEq, EP_FromJoin);
262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
263 ExprSetIrreducible(pEq);
264 pEq->iRightJoinTable = (i16)pE2->iTable;
266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
270 ** Set the EP_FromJoin property on all terms of the given expression.
271 ** And set the Expr.iRightJoinTable to iTable for every term in the
272 ** expression.
274 ** The EP_FromJoin property is used on terms of an expression to tell
275 ** the LEFT OUTER JOIN processing logic that this term is part of the
276 ** join restriction specified in the ON or USING clause and not a part
277 ** of the more general WHERE clause. These terms are moved over to the
278 ** WHERE clause during join processing but we need to remember that they
279 ** originated in the ON or USING clause.
281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
282 ** expression depends on table iRightJoinTable even if that table is not
283 ** explicitly mentioned in the expression. That information is needed
284 ** for cases like this:
286 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
288 ** The where clause needs to defer the handling of the t1.x=5
289 ** term until after the t2 loop of the join. In that way, a
290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
291 ** defer the handling of t1.x=5, it will be processed immediately
292 ** after the t1 loop and rows with t1.x!=5 will never appear in
293 ** the output, which is incorrect.
295 static void setJoinExpr(Expr *p, int iTable){
296 while( p ){
297 ExprSetProperty(p, EP_FromJoin);
298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
299 ExprSetIrreducible(p);
300 p->iRightJoinTable = (i16)iTable;
301 setJoinExpr(p->pLeft, iTable);
302 p = p->pRight;
307 ** This routine processes the join information for a SELECT statement.
308 ** ON and USING clauses are converted into extra terms of the WHERE clause.
309 ** NATURAL joins also create extra WHERE clause terms.
311 ** The terms of a FROM clause are contained in the Select.pSrc structure.
312 ** The left most table is the first entry in Select.pSrc. The right-most
313 ** table is the last entry. The join operator is held in the entry to
314 ** the left. Thus entry 0 contains the join operator for the join between
315 ** entries 0 and 1. Any ON or USING clauses associated with the join are
316 ** also attached to the left entry.
318 ** This routine returns the number of errors encountered.
320 static int sqliteProcessJoin(Parse *pParse, Select *p){
321 SrcList *pSrc; /* All tables in the FROM clause */
322 int i, j; /* Loop counters */
323 struct SrcList_item *pLeft; /* Left table being joined */
324 struct SrcList_item *pRight; /* Right table being joined */
326 pSrc = p->pSrc;
327 pLeft = &pSrc->a[0];
328 pRight = &pLeft[1];
329 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
330 Table *pLeftTab = pLeft->pTab;
331 Table *pRightTab = pRight->pTab;
332 int isOuter;
334 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
335 isOuter = (pRight->jointype & JT_OUTER)!=0;
337 /* When the NATURAL keyword is present, add WHERE clause terms for
338 ** every column that the two tables have in common.
340 if( pRight->jointype & JT_NATURAL ){
341 if( pRight->pOn || pRight->pUsing ){
342 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
343 "an ON or USING clause", 0);
344 return 1;
346 for(j=0; j<pRightTab->nCol; j++){
347 char *zName; /* Name of column in the right table */
348 int iLeft; /* Matching left table */
349 int iLeftCol; /* Matching column in the left table */
351 zName = pRightTab->aCol[j].zName;
352 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
353 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
354 isOuter, &p->pWhere);
359 /* Disallow both ON and USING clauses in the same join
361 if( pRight->pOn && pRight->pUsing ){
362 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
363 "clauses in the same join");
364 return 1;
367 /* Add the ON clause to the end of the WHERE clause, connected by
368 ** an AND operator.
370 if( pRight->pOn ){
371 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
372 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
373 pRight->pOn = 0;
376 /* Create extra terms on the WHERE clause for each column named
377 ** in the USING clause. Example: If the two tables to be joined are
378 ** A and B and the USING clause names X, Y, and Z, then add this
379 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
380 ** Report an error if any column mentioned in the USING clause is
381 ** not contained in both tables to be joined.
383 if( pRight->pUsing ){
384 IdList *pList = pRight->pUsing;
385 for(j=0; j<pList->nId; j++){
386 char *zName; /* Name of the term in the USING clause */
387 int iLeft; /* Table on the left with matching column name */
388 int iLeftCol; /* Column number of matching column on the left */
389 int iRightCol; /* Column number of matching column on the right */
391 zName = pList->a[j].zName;
392 iRightCol = columnIndex(pRightTab, zName);
393 if( iRightCol<0
394 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
397 "not present in both tables", zName);
398 return 1;
400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
401 isOuter, &p->pWhere);
405 return 0;
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
412 static void pushOntoSorter(
413 Parse *pParse, /* Parser context */
414 ExprList *pOrderBy, /* The ORDER BY clause */
415 Select *pSelect, /* The whole SELECT statement */
416 int regData /* Register holding data to be sorted */
418 Vdbe *v = pParse->pVdbe;
419 int nExpr = pOrderBy->nExpr;
420 int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421 int regRecord = sqlite3GetTempReg(pParse);
422 sqlite3ExprCacheClear(pParse);
423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
428 sqlite3ReleaseTempReg(pParse, regRecord);
429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
430 if( pSelect->iLimit ){
431 int addr1, addr2;
432 int iLimit;
433 if( pSelect->iOffset ){
434 iLimit = pSelect->iOffset+1;
435 }else{
436 iLimit = pSelect->iLimit;
438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
441 sqlite3VdbeJumpHere(v, addr1);
442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
444 sqlite3VdbeJumpHere(v, addr2);
449 ** Add code to implement the OFFSET
451 static void codeOffset(
452 Vdbe *v, /* Generate code into this VM */
453 Select *p, /* The SELECT statement being coded */
454 int iContinue /* Jump here to skip the current record */
456 if( p->iOffset && iContinue!=0 ){
457 int addr;
458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
461 VdbeComment((v, "skip OFFSET records"));
462 sqlite3VdbeJumpHere(v, addr);
467 ** Add code that will check to make sure the N registers starting at iMem
468 ** form a distinct entry. iTab is a sorting index that holds previously
469 ** seen combinations of the N values. A new entry is made in iTab
470 ** if the current N values are new.
472 ** A jump to addrRepeat is made and the N+1 values are popped from the
473 ** stack if the top N elements are not distinct.
475 static void codeDistinct(
476 Parse *pParse, /* Parsing and code generating context */
477 int iTab, /* A sorting index used to test for distinctness */
478 int addrRepeat, /* Jump to here if not distinct */
479 int N, /* Number of elements */
480 int iMem /* First element */
482 Vdbe *v;
483 int r1;
485 v = pParse->pVdbe;
486 r1 = sqlite3GetTempReg(pParse);
487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
490 sqlite3ReleaseTempReg(pParse, r1);
493 #ifndef SQLITE_OMIT_SUBQUERY
495 ** Generate an error message when a SELECT is used within a subexpression
496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
497 ** column. We do this in a subroutine because the error used to occur
498 ** in multiple places. (The error only occurs in one place now, but we
499 ** retain the subroutine to minimize code disruption.)
501 static int checkForMultiColumnSelectError(
502 Parse *pParse, /* Parse context. */
503 SelectDest *pDest, /* Destination of SELECT results */
504 int nExpr /* Number of result columns returned by SELECT */
506 int eDest = pDest->eDest;
507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
508 sqlite3ErrorMsg(pParse, "only a single result allowed for "
509 "a SELECT that is part of an expression");
510 return 1;
511 }else{
512 return 0;
515 #endif
518 ** This routine generates the code for the inside of the inner loop
519 ** of a SELECT.
521 ** If srcTab and nColumn are both zero, then the pEList expressions
522 ** are evaluated in order to get the data for this row. If nColumn>0
523 ** then data is pulled from srcTab and pEList is used only to get the
524 ** datatypes for each column.
526 static void selectInnerLoop(
527 Parse *pParse, /* The parser context */
528 Select *p, /* The complete select statement being coded */
529 ExprList *pEList, /* List of values being extracted */
530 int srcTab, /* Pull data from this table */
531 int nColumn, /* Number of columns in the source table */
532 ExprList *pOrderBy, /* If not NULL, sort results using this key */
533 int distinct, /* If >=0, make sure results are distinct */
534 SelectDest *pDest, /* How to dispose of the results */
535 int iContinue, /* Jump here to continue with next row */
536 int iBreak /* Jump here to break out of the inner loop */
538 Vdbe *v = pParse->pVdbe;
539 int i;
540 int hasDistinct; /* True if the DISTINCT keyword is present */
541 int regResult; /* Start of memory holding result set */
542 int eDest = pDest->eDest; /* How to dispose of results */
543 int iParm = pDest->iParm; /* First argument to disposal method */
544 int nResultCol; /* Number of result columns */
546 assert( v );
547 if( NEVER(v==0) ) return;
548 assert( pEList!=0 );
549 hasDistinct = distinct>=0;
550 if( pOrderBy==0 && !hasDistinct ){
551 codeOffset(v, p, iContinue);
554 /* Pull the requested columns.
556 if( nColumn>0 ){
557 nResultCol = nColumn;
558 }else{
559 nResultCol = pEList->nExpr;
561 if( pDest->iMem==0 ){
562 pDest->iMem = pParse->nMem+1;
563 pDest->nMem = nResultCol;
564 pParse->nMem += nResultCol;
565 }else{
566 assert( pDest->nMem==nResultCol );
568 regResult = pDest->iMem;
569 if( nColumn>0 ){
570 for(i=0; i<nColumn; i++){
571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
573 }else if( eDest!=SRT_Exists ){
574 /* If the destination is an EXISTS(...) expression, the actual
575 ** values returned by the SELECT are not required.
577 sqlite3ExprCacheClear(pParse);
578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
580 nColumn = nResultCol;
582 /* If the DISTINCT keyword was present on the SELECT statement
583 ** and this row has been seen before, then do not make this row
584 ** part of the result.
586 if( hasDistinct ){
587 assert( pEList!=0 );
588 assert( pEList->nExpr==nColumn );
589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
590 if( pOrderBy==0 ){
591 codeOffset(v, p, iContinue);
595 switch( eDest ){
596 /* In this mode, write each query result to the key of the temporary
597 ** table iParm.
599 #ifndef SQLITE_OMIT_COMPOUND_SELECT
600 case SRT_Union: {
601 int r1;
602 r1 = sqlite3GetTempReg(pParse);
603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
605 sqlite3ReleaseTempReg(pParse, r1);
606 break;
609 /* Construct a record from the query result, but instead of
610 ** saving that record, use it as a key to delete elements from
611 ** the temporary table iParm.
613 case SRT_Except: {
614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
615 break;
617 #endif
619 /* Store the result as data using a unique key.
621 case SRT_Table:
622 case SRT_EphemTab: {
623 int r1 = sqlite3GetTempReg(pParse);
624 testcase( eDest==SRT_Table );
625 testcase( eDest==SRT_EphemTab );
626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
627 if( pOrderBy ){
628 pushOntoSorter(pParse, pOrderBy, p, r1);
629 }else{
630 int r2 = sqlite3GetTempReg(pParse);
631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634 sqlite3ReleaseTempReg(pParse, r2);
636 sqlite3ReleaseTempReg(pParse, r1);
637 break;
640 #ifndef SQLITE_OMIT_SUBQUERY
641 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642 ** then there should be a single item on the stack. Write this
643 ** item into the set table with bogus data.
645 case SRT_Set: {
646 assert( nColumn==1 );
647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
648 if( pOrderBy ){
649 /* At first glance you would think we could optimize out the
650 ** ORDER BY in this case since the order of entries in the set
651 ** does not matter. But there might be a LIMIT clause, in which
652 ** case the order does matter */
653 pushOntoSorter(pParse, pOrderBy, p, regResult);
654 }else{
655 int r1 = sqlite3GetTempReg(pParse);
656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659 sqlite3ReleaseTempReg(pParse, r1);
661 break;
664 /* If any row exist in the result set, record that fact and abort.
666 case SRT_Exists: {
667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668 /* The LIMIT clause will terminate the loop for us */
669 break;
672 /* If this is a scalar select that is part of an expression, then
673 ** store the results in the appropriate memory cell and break out
674 ** of the scan loop.
676 case SRT_Mem: {
677 assert( nColumn==1 );
678 if( pOrderBy ){
679 pushOntoSorter(pParse, pOrderBy, p, regResult);
680 }else{
681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
682 /* The LIMIT clause will jump out of the loop for us */
684 break;
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
688 /* Send the data to the callback function or to a subroutine. In the
689 ** case of a subroutine, the subroutine itself is responsible for
690 ** popping the data from the stack.
692 case SRT_Coroutine:
693 case SRT_Output: {
694 testcase( eDest==SRT_Coroutine );
695 testcase( eDest==SRT_Output );
696 if( pOrderBy ){
697 int r1 = sqlite3GetTempReg(pParse);
698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699 pushOntoSorter(pParse, pOrderBy, p, r1);
700 sqlite3ReleaseTempReg(pParse, r1);
701 }else if( eDest==SRT_Coroutine ){
702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
703 }else{
704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
707 break;
710 #if !defined(SQLITE_OMIT_TRIGGER)
711 /* Discard the results. This is used for SELECT statements inside
712 ** the body of a TRIGGER. The purpose of such selects is to call
713 ** user-defined functions that have side effects. We do not care
714 ** about the actual results of the select.
716 default: {
717 assert( eDest==SRT_Discard );
718 break;
720 #endif
723 /* Jump to the end of the loop if the LIMIT is reached. Except, if
724 ** there is a sorter, in which case the sorter has already limited
725 ** the output for us.
727 if( pOrderBy==0 && p->iLimit ){
728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
733 ** Given an expression list, generate a KeyInfo structure that records
734 ** the collating sequence for each expression in that expression list.
736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
737 ** KeyInfo structure is appropriate for initializing a virtual index to
738 ** implement that clause. If the ExprList is the result set of a SELECT
739 ** then the KeyInfo structure is appropriate for initializing a virtual
740 ** index to implement a DISTINCT test.
742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling
743 ** function is responsible for seeing that this structure is eventually
744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using
745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
748 sqlite3 *db = pParse->db;
749 int nExpr;
750 KeyInfo *pInfo;
751 struct ExprList_item *pItem;
752 int i;
754 nExpr = pList->nExpr;
755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
756 if( pInfo ){
757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
758 pInfo->nField = (u16)nExpr;
759 pInfo->enc = ENC(db);
760 pInfo->db = db;
761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
762 CollSeq *pColl;
763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
764 if( !pColl ){
765 pColl = db->pDfltColl;
767 pInfo->aColl[i] = pColl;
768 pInfo->aSortOrder[i] = pItem->sortOrder;
771 return pInfo;
774 #ifndef SQLITE_OMIT_COMPOUND_SELECT
776 ** Name of the connection operator, used for error messages.
778 static const char *selectOpName(int id){
779 char *z;
780 switch( id ){
781 case TK_ALL: z = "UNION ALL"; break;
782 case TK_INTERSECT: z = "INTERSECT"; break;
783 case TK_EXCEPT: z = "EXCEPT"; break;
784 default: z = "UNION"; break;
786 return z;
788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
790 #ifndef SQLITE_OMIT_EXPLAIN
792 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
793 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
794 ** where the caption is of the form:
796 ** "USE TEMP B-TREE FOR xxx"
798 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
799 ** is determined by the zUsage argument.
801 static void explainTempTable(Parse *pParse, const char *zUsage){
802 if( pParse->explain==2 ){
803 Vdbe *v = pParse->pVdbe;
804 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
805 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
810 ** Assign expression b to lvalue a. A second, no-op, version of this macro
811 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
812 ** in sqlite3Select() to assign values to structure member variables that
813 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
814 ** code with #ifndef directives.
816 # define explainSetInteger(a, b) a = b
818 #else
819 /* No-op versions of the explainXXX() functions and macros. */
820 # define explainTempTable(y,z)
821 # define explainSetInteger(y,z)
822 #endif
824 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
826 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
827 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
828 ** where the caption is of one of the two forms:
830 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
831 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
833 ** where iSub1 and iSub2 are the integers passed as the corresponding
834 ** function parameters, and op is the text representation of the parameter
835 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
836 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
837 ** false, or the second form if it is true.
839 static void explainComposite(
840 Parse *pParse, /* Parse context */
841 int op, /* One of TK_UNION, TK_EXCEPT etc. */
842 int iSub1, /* Subquery id 1 */
843 int iSub2, /* Subquery id 2 */
844 int bUseTmp /* True if a temp table was used */
846 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
847 if( pParse->explain==2 ){
848 Vdbe *v = pParse->pVdbe;
849 char *zMsg = sqlite3MPrintf(
850 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
851 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
853 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
856 #else
857 /* No-op versions of the explainXXX() functions and macros. */
858 # define explainComposite(v,w,x,y,z)
859 #endif
862 ** If the inner loop was generated using a non-null pOrderBy argument,
863 ** then the results were placed in a sorter. After the loop is terminated
864 ** we need to run the sorter and output the results. The following
865 ** routine generates the code needed to do that.
867 static void generateSortTail(
868 Parse *pParse, /* Parsing context */
869 Select *p, /* The SELECT statement */
870 Vdbe *v, /* Generate code into this VDBE */
871 int nColumn, /* Number of columns of data */
872 SelectDest *pDest /* Write the sorted results here */
874 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
875 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
876 int addr;
877 int iTab;
878 int pseudoTab = 0;
879 ExprList *pOrderBy = p->pOrderBy;
881 int eDest = pDest->eDest;
882 int iParm = pDest->iParm;
884 int regRow;
885 int regRowid;
887 iTab = pOrderBy->iECursor;
888 regRow = sqlite3GetTempReg(pParse);
889 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
890 pseudoTab = pParse->nTab++;
891 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
892 regRowid = 0;
893 }else{
894 regRowid = sqlite3GetTempReg(pParse);
896 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
897 codeOffset(v, p, addrContinue);
898 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
899 switch( eDest ){
900 case SRT_Table:
901 case SRT_EphemTab: {
902 testcase( eDest==SRT_Table );
903 testcase( eDest==SRT_EphemTab );
904 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
905 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
906 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
907 break;
909 #ifndef SQLITE_OMIT_SUBQUERY
910 case SRT_Set: {
911 assert( nColumn==1 );
912 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
913 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
914 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
915 break;
917 case SRT_Mem: {
918 assert( nColumn==1 );
919 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
920 /* The LIMIT clause will terminate the loop for us */
921 break;
923 #endif
924 default: {
925 int i;
926 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
927 testcase( eDest==SRT_Output );
928 testcase( eDest==SRT_Coroutine );
929 for(i=0; i<nColumn; i++){
930 assert( regRow!=pDest->iMem+i );
931 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
932 if( i==0 ){
933 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
936 if( eDest==SRT_Output ){
937 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
938 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
939 }else{
940 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
942 break;
945 sqlite3ReleaseTempReg(pParse, regRow);
946 sqlite3ReleaseTempReg(pParse, regRowid);
948 /* The bottom of the loop
950 sqlite3VdbeResolveLabel(v, addrContinue);
951 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
952 sqlite3VdbeResolveLabel(v, addrBreak);
953 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
954 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
959 ** Return a pointer to a string containing the 'declaration type' of the
960 ** expression pExpr. The string may be treated as static by the caller.
962 ** The declaration type is the exact datatype definition extracted from the
963 ** original CREATE TABLE statement if the expression is a column. The
964 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
965 ** is considered a column can be complex in the presence of subqueries. The
966 ** result-set expression in all of the following SELECT statements is
967 ** considered a column by this function.
969 ** SELECT col FROM tbl;
970 ** SELECT (SELECT col FROM tbl;
971 ** SELECT (SELECT col FROM tbl);
972 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
974 ** The declaration type for any expression other than a column is NULL.
976 static const char *columnType(
977 NameContext *pNC,
978 Expr *pExpr,
979 const char **pzOriginDb,
980 const char **pzOriginTab,
981 const char **pzOriginCol
983 char const *zType = 0;
984 char const *zOriginDb = 0;
985 char const *zOriginTab = 0;
986 char const *zOriginCol = 0;
987 int j;
988 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
990 switch( pExpr->op ){
991 case TK_AGG_COLUMN:
992 case TK_COLUMN: {
993 /* The expression is a column. Locate the table the column is being
994 ** extracted from in NameContext.pSrcList. This table may be real
995 ** database table or a subquery.
997 Table *pTab = 0; /* Table structure column is extracted from */
998 Select *pS = 0; /* Select the column is extracted from */
999 int iCol = pExpr->iColumn; /* Index of column in pTab */
1000 testcase( pExpr->op==TK_AGG_COLUMN );
1001 testcase( pExpr->op==TK_COLUMN );
1002 while( pNC && !pTab ){
1003 SrcList *pTabList = pNC->pSrcList;
1004 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1005 if( j<pTabList->nSrc ){
1006 pTab = pTabList->a[j].pTab;
1007 pS = pTabList->a[j].pSelect;
1008 }else{
1009 pNC = pNC->pNext;
1013 if( pTab==0 ){
1014 /* At one time, code such as "SELECT new.x" within a trigger would
1015 ** cause this condition to run. Since then, we have restructured how
1016 ** trigger code is generated and so this condition is no longer
1017 ** possible. However, it can still be true for statements like
1018 ** the following:
1020 ** CREATE TABLE t1(col INTEGER);
1021 ** SELECT (SELECT t1.col) FROM FROM t1;
1023 ** when columnType() is called on the expression "t1.col" in the
1024 ** sub-select. In this case, set the column type to NULL, even
1025 ** though it should really be "INTEGER".
1027 ** This is not a problem, as the column type of "t1.col" is never
1028 ** used. When columnType() is called on the expression
1029 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1030 ** branch below. */
1031 break;
1034 assert( pTab && pExpr->pTab==pTab );
1035 if( pS ){
1036 /* The "table" is actually a sub-select or a view in the FROM clause
1037 ** of the SELECT statement. Return the declaration type and origin
1038 ** data for the result-set column of the sub-select.
1040 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1041 /* If iCol is less than zero, then the expression requests the
1042 ** rowid of the sub-select or view. This expression is legal (see
1043 ** test case misc2.2.2) - it always evaluates to NULL.
1045 NameContext sNC;
1046 Expr *p = pS->pEList->a[iCol].pExpr;
1047 sNC.pSrcList = pS->pSrc;
1048 sNC.pNext = pNC;
1049 sNC.pParse = pNC->pParse;
1050 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1052 }else if( ALWAYS(pTab->pSchema) ){
1053 /* A real table */
1054 assert( !pS );
1055 if( iCol<0 ) iCol = pTab->iPKey;
1056 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1057 if( iCol<0 ){
1058 zType = "INTEGER";
1059 zOriginCol = "rowid";
1060 }else{
1061 zType = pTab->aCol[iCol].zType;
1062 zOriginCol = pTab->aCol[iCol].zName;
1064 zOriginTab = pTab->zName;
1065 if( pNC->pParse ){
1066 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1067 zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1070 break;
1072 #ifndef SQLITE_OMIT_SUBQUERY
1073 case TK_SELECT: {
1074 /* The expression is a sub-select. Return the declaration type and
1075 ** origin info for the single column in the result set of the SELECT
1076 ** statement.
1078 NameContext sNC;
1079 Select *pS = pExpr->x.pSelect;
1080 Expr *p = pS->pEList->a[0].pExpr;
1081 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1082 sNC.pSrcList = pS->pSrc;
1083 sNC.pNext = pNC;
1084 sNC.pParse = pNC->pParse;
1085 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1086 break;
1088 #endif
1091 if( pzOriginDb ){
1092 assert( pzOriginTab && pzOriginCol );
1093 *pzOriginDb = zOriginDb;
1094 *pzOriginTab = zOriginTab;
1095 *pzOriginCol = zOriginCol;
1097 return zType;
1101 ** Generate code that will tell the VDBE the declaration types of columns
1102 ** in the result set.
1104 static void generateColumnTypes(
1105 Parse *pParse, /* Parser context */
1106 SrcList *pTabList, /* List of tables */
1107 ExprList *pEList /* Expressions defining the result set */
1109 #ifndef SQLITE_OMIT_DECLTYPE
1110 Vdbe *v = pParse->pVdbe;
1111 int i;
1112 NameContext sNC;
1113 sNC.pSrcList = pTabList;
1114 sNC.pParse = pParse;
1115 for(i=0; i<pEList->nExpr; i++){
1116 Expr *p = pEList->a[i].pExpr;
1117 const char *zType;
1118 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1119 const char *zOrigDb = 0;
1120 const char *zOrigTab = 0;
1121 const char *zOrigCol = 0;
1122 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1124 /* The vdbe must make its own copy of the column-type and other
1125 ** column specific strings, in case the schema is reset before this
1126 ** virtual machine is deleted.
1128 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1129 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1130 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1131 #else
1132 zType = columnType(&sNC, p, 0, 0, 0);
1133 #endif
1134 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1136 #endif /* SQLITE_OMIT_DECLTYPE */
1140 ** Generate code that will tell the VDBE the names of columns
1141 ** in the result set. This information is used to provide the
1142 ** azCol[] values in the callback.
1144 static void generateColumnNames(
1145 Parse *pParse, /* Parser context */
1146 SrcList *pTabList, /* List of tables */
1147 ExprList *pEList /* Expressions defining the result set */
1149 Vdbe *v = pParse->pVdbe;
1150 int i, j;
1151 sqlite3 *db = pParse->db;
1152 int fullNames, shortNames;
1154 #ifndef SQLITE_OMIT_EXPLAIN
1155 /* If this is an EXPLAIN, skip this step */
1156 if( pParse->explain ){
1157 return;
1159 #endif
1161 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1162 pParse->colNamesSet = 1;
1163 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1164 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1165 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1166 for(i=0; i<pEList->nExpr; i++){
1167 Expr *p;
1168 p = pEList->a[i].pExpr;
1169 if( NEVER(p==0) ) continue;
1170 if( pEList->a[i].zName ){
1171 char *zName = pEList->a[i].zName;
1172 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1173 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1174 Table *pTab;
1175 char *zCol;
1176 int iCol = p->iColumn;
1177 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1178 if( pTabList->a[j].iCursor==p->iTable ) break;
1180 assert( j<pTabList->nSrc );
1181 pTab = pTabList->a[j].pTab;
1182 if( iCol<0 ) iCol = pTab->iPKey;
1183 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1184 if( iCol<0 ){
1185 zCol = "rowid";
1186 }else{
1187 zCol = pTab->aCol[iCol].zName;
1189 if( !shortNames && !fullNames ){
1190 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1191 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1192 }else if( fullNames ){
1193 char *zName = 0;
1194 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1195 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1196 }else{
1197 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1199 }else{
1200 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1201 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1204 generateColumnTypes(pParse, pTabList, pEList);
1208 ** Given a an expression list (which is really the list of expressions
1209 ** that form the result set of a SELECT statement) compute appropriate
1210 ** column names for a table that would hold the expression list.
1212 ** All column names will be unique.
1214 ** Only the column names are computed. Column.zType, Column.zColl,
1215 ** and other fields of Column are zeroed.
1217 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1218 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1220 static int selectColumnsFromExprList(
1221 Parse *pParse, /* Parsing context */
1222 ExprList *pEList, /* Expr list from which to derive column names */
1223 int *pnCol, /* Write the number of columns here */
1224 Column **paCol /* Write the new column list here */
1226 sqlite3 *db = pParse->db; /* Database connection */
1227 int i, j; /* Loop counters */
1228 int cnt; /* Index added to make the name unique */
1229 Column *aCol, *pCol; /* For looping over result columns */
1230 int nCol; /* Number of columns in the result set */
1231 Expr *p; /* Expression for a single result column */
1232 char *zName; /* Column name */
1233 int nName; /* Size of name in zName[] */
1235 *pnCol = nCol = pEList->nExpr;
1236 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1237 if( aCol==0 ) return SQLITE_NOMEM;
1238 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1239 /* Get an appropriate name for the column
1241 p = pEList->a[i].pExpr;
1242 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1243 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1244 if( (zName = pEList->a[i].zName)!=0 ){
1245 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1246 zName = sqlite3DbStrDup(db, zName);
1247 }else{
1248 Expr *pColExpr = p; /* The expression that is the result column name */
1249 Table *pTab; /* Table associated with this expression */
1250 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1251 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1252 /* For columns use the column name name */
1253 int iCol = pColExpr->iColumn;
1254 pTab = pColExpr->pTab;
1255 if( iCol<0 ) iCol = pTab->iPKey;
1256 zName = sqlite3MPrintf(db, "%s",
1257 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1258 }else if( pColExpr->op==TK_ID ){
1259 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1260 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1261 }else{
1262 /* Use the original text of the column expression as its name */
1263 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1266 if( db->mallocFailed ){
1267 sqlite3DbFree(db, zName);
1268 break;
1271 /* Make sure the column name is unique. If the name is not unique,
1272 ** append a integer to the name so that it becomes unique.
1274 nName = sqlite3Strlen30(zName);
1275 for(j=cnt=0; j<i; j++){
1276 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1277 char *zNewName;
1278 zName[nName] = 0;
1279 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1280 sqlite3DbFree(db, zName);
1281 zName = zNewName;
1282 j = -1;
1283 if( zName==0 ) break;
1286 pCol->zName = zName;
1288 if( db->mallocFailed ){
1289 for(j=0; j<i; j++){
1290 sqlite3DbFree(db, aCol[j].zName);
1292 sqlite3DbFree(db, aCol);
1293 *paCol = 0;
1294 *pnCol = 0;
1295 return SQLITE_NOMEM;
1297 return SQLITE_OK;
1301 ** Add type and collation information to a column list based on
1302 ** a SELECT statement.
1304 ** The column list presumably came from selectColumnNamesFromExprList().
1305 ** The column list has only names, not types or collations. This
1306 ** routine goes through and adds the types and collations.
1308 ** This routine requires that all identifiers in the SELECT
1309 ** statement be resolved.
1311 static void selectAddColumnTypeAndCollation(
1312 Parse *pParse, /* Parsing contexts */
1313 int nCol, /* Number of columns */
1314 Column *aCol, /* List of columns */
1315 Select *pSelect /* SELECT used to determine types and collations */
1317 sqlite3 *db = pParse->db;
1318 NameContext sNC;
1319 Column *pCol;
1320 CollSeq *pColl;
1321 int i;
1322 Expr *p;
1323 struct ExprList_item *a;
1325 assert( pSelect!=0 );
1326 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1327 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1328 if( db->mallocFailed ) return;
1329 memset(&sNC, 0, sizeof(sNC));
1330 sNC.pSrcList = pSelect->pSrc;
1331 a = pSelect->pEList->a;
1332 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1333 p = a[i].pExpr;
1334 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1335 pCol->affinity = sqlite3ExprAffinity(p);
1336 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1337 pColl = sqlite3ExprCollSeq(pParse, p);
1338 if( pColl ){
1339 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1345 ** Given a SELECT statement, generate a Table structure that describes
1346 ** the result set of that SELECT.
1348 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1349 Table *pTab;
1350 sqlite3 *db = pParse->db;
1351 int savedFlags;
1353 savedFlags = db->flags;
1354 db->flags &= ~SQLITE_FullColNames;
1355 db->flags |= SQLITE_ShortColNames;
1356 sqlite3SelectPrep(pParse, pSelect, 0);
1357 if( pParse->nErr ) return 0;
1358 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1359 db->flags = savedFlags;
1360 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1361 if( pTab==0 ){
1362 return 0;
1364 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1365 ** is disabled */
1366 assert( db->lookaside.bEnabled==0 );
1367 pTab->nRef = 1;
1368 pTab->zName = 0;
1369 pTab->nRowEst = 1000000;
1370 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1371 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1372 pTab->iPKey = -1;
1373 if( db->mallocFailed ){
1374 sqlite3DeleteTable(db, pTab);
1375 return 0;
1377 return pTab;
1381 ** Get a VDBE for the given parser context. Create a new one if necessary.
1382 ** If an error occurs, return NULL and leave a message in pParse.
1384 Vdbe *sqlite3GetVdbe(Parse *pParse){
1385 Vdbe *v = pParse->pVdbe;
1386 if( v==0 ){
1387 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1388 #ifndef SQLITE_OMIT_TRACE
1389 if( v ){
1390 sqlite3VdbeAddOp0(v, OP_Trace);
1392 #endif
1394 return v;
1399 ** Compute the iLimit and iOffset fields of the SELECT based on the
1400 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1401 ** that appear in the original SQL statement after the LIMIT and OFFSET
1402 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1403 ** are the integer memory register numbers for counters used to compute
1404 ** the limit and offset. If there is no limit and/or offset, then
1405 ** iLimit and iOffset are negative.
1407 ** This routine changes the values of iLimit and iOffset only if
1408 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1409 ** iOffset should have been preset to appropriate default values
1410 ** (usually but not always -1) prior to calling this routine.
1411 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1412 ** redefined. The UNION ALL operator uses this property to force
1413 ** the reuse of the same limit and offset registers across multiple
1414 ** SELECT statements.
1416 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1417 Vdbe *v = 0;
1418 int iLimit = 0;
1419 int iOffset;
1420 int addr1, n;
1421 if( p->iLimit ) return;
1424 ** "LIMIT -1" always shows all rows. There is some
1425 ** contraversy about what the correct behavior should be.
1426 ** The current implementation interprets "LIMIT 0" to mean
1427 ** no rows.
1429 sqlite3ExprCacheClear(pParse);
1430 assert( p->pOffset==0 || p->pLimit!=0 );
1431 if( p->pLimit ){
1432 p->iLimit = iLimit = ++pParse->nMem;
1433 v = sqlite3GetVdbe(pParse);
1434 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */
1435 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1436 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1437 VdbeComment((v, "LIMIT counter"));
1438 if( n==0 ){
1439 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1440 }else{
1441 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1443 }else{
1444 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1445 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1446 VdbeComment((v, "LIMIT counter"));
1447 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1449 if( p->pOffset ){
1450 p->iOffset = iOffset = ++pParse->nMem;
1451 pParse->nMem++; /* Allocate an extra register for limit+offset */
1452 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1453 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1454 VdbeComment((v, "OFFSET counter"));
1455 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1457 sqlite3VdbeJumpHere(v, addr1);
1458 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1459 VdbeComment((v, "LIMIT+OFFSET"));
1460 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1461 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1462 sqlite3VdbeJumpHere(v, addr1);
1467 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1469 ** Return the appropriate collating sequence for the iCol-th column of
1470 ** the result set for the compound-select statement "p". Return NULL if
1471 ** the column has no default collating sequence.
1473 ** The collating sequence for the compound select is taken from the
1474 ** left-most term of the select that has a collating sequence.
1476 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1477 CollSeq *pRet;
1478 if( p->pPrior ){
1479 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1480 }else{
1481 pRet = 0;
1483 assert( iCol>=0 );
1484 if( pRet==0 && iCol<p->pEList->nExpr ){
1485 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1487 return pRet;
1489 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1491 /* Forward reference */
1492 static int multiSelectOrderBy(
1493 Parse *pParse, /* Parsing context */
1494 Select *p, /* The right-most of SELECTs to be coded */
1495 SelectDest *pDest /* What to do with query results */
1499 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1501 ** This routine is called to process a compound query form from
1502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1503 ** INTERSECT
1505 ** "p" points to the right-most of the two queries. the query on the
1506 ** left is p->pPrior. The left query could also be a compound query
1507 ** in which case this routine will be called recursively.
1509 ** The results of the total query are to be written into a destination
1510 ** of type eDest with parameter iParm.
1512 ** Example 1: Consider a three-way compound SQL statement.
1514 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1516 ** This statement is parsed up as follows:
1518 ** SELECT c FROM t3
1519 ** |
1520 ** `-----> SELECT b FROM t2
1521 ** |
1522 ** `------> SELECT a FROM t1
1524 ** The arrows in the diagram above represent the Select.pPrior pointer.
1525 ** So if this routine is called with p equal to the t3 query, then
1526 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
1528 ** Notice that because of the way SQLite parses compound SELECTs, the
1529 ** individual selects always group from left to right.
1531 static int multiSelect(
1532 Parse *pParse, /* Parsing context */
1533 Select *p, /* The right-most of SELECTs to be coded */
1534 SelectDest *pDest /* What to do with query results */
1536 int rc = SQLITE_OK; /* Success code from a subroutine */
1537 Select *pPrior; /* Another SELECT immediately to our left */
1538 Vdbe *v; /* Generate code to this VDBE */
1539 SelectDest dest; /* Alternative data destination */
1540 Select *pDelete = 0; /* Chain of simple selects to delete */
1541 sqlite3 *db; /* Database connection */
1542 #ifndef SQLITE_OMIT_EXPLAIN
1543 int iSub1; /* EQP id of left-hand query */
1544 int iSub2; /* EQP id of right-hand query */
1545 #endif
1547 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
1548 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1550 assert( p && p->pPrior ); /* Calling function guarantees this much */
1551 db = pParse->db;
1552 pPrior = p->pPrior;
1553 assert( pPrior->pRightmost!=pPrior );
1554 assert( pPrior->pRightmost==p->pRightmost );
1555 dest = *pDest;
1556 if( pPrior->pOrderBy ){
1557 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1558 selectOpName(p->op));
1559 rc = 1;
1560 goto multi_select_end;
1562 if( pPrior->pLimit ){
1563 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1564 selectOpName(p->op));
1565 rc = 1;
1566 goto multi_select_end;
1569 v = sqlite3GetVdbe(pParse);
1570 assert( v!=0 ); /* The VDBE already created by calling function */
1572 /* Create the destination temporary table if necessary
1574 if( dest.eDest==SRT_EphemTab ){
1575 assert( p->pEList );
1576 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1577 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1578 dest.eDest = SRT_Table;
1581 /* Make sure all SELECTs in the statement have the same number of elements
1582 ** in their result sets.
1584 assert( p->pEList && pPrior->pEList );
1585 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1586 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1587 " do not have the same number of result columns", selectOpName(p->op));
1588 rc = 1;
1589 goto multi_select_end;
1592 /* Compound SELECTs that have an ORDER BY clause are handled separately.
1594 if( p->pOrderBy ){
1595 return multiSelectOrderBy(pParse, p, pDest);
1598 /* Generate code for the left and right SELECT statements.
1600 switch( p->op ){
1601 case TK_ALL: {
1602 int addr = 0;
1603 int nLimit;
1604 assert( !pPrior->pLimit );
1605 pPrior->pLimit = p->pLimit;
1606 pPrior->pOffset = p->pOffset;
1607 explainSetInteger(iSub1, pParse->iNextSelectId);
1608 rc = sqlite3Select(pParse, pPrior, &dest);
1609 p->pLimit = 0;
1610 p->pOffset = 0;
1611 if( rc ){
1612 goto multi_select_end;
1614 p->pPrior = 0;
1615 p->iLimit = pPrior->iLimit;
1616 p->iOffset = pPrior->iOffset;
1617 if( p->iLimit ){
1618 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1619 VdbeComment((v, "Jump ahead if LIMIT reached"));
1621 explainSetInteger(iSub2, pParse->iNextSelectId);
1622 rc = sqlite3Select(pParse, p, &dest);
1623 testcase( rc!=SQLITE_OK );
1624 pDelete = p->pPrior;
1625 p->pPrior = pPrior;
1626 p->nSelectRow += pPrior->nSelectRow;
1627 if( pPrior->pLimit
1628 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1629 && p->nSelectRow > (double)nLimit
1631 p->nSelectRow = (double)nLimit;
1633 if( addr ){
1634 sqlite3VdbeJumpHere(v, addr);
1636 break;
1638 case TK_EXCEPT:
1639 case TK_UNION: {
1640 int unionTab; /* Cursor number of the temporary table holding result */
1641 u8 op = 0; /* One of the SRT_ operations to apply to self */
1642 int priorOp; /* The SRT_ operation to apply to prior selects */
1643 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1644 int addr;
1645 SelectDest uniondest;
1647 testcase( p->op==TK_EXCEPT );
1648 testcase( p->op==TK_UNION );
1649 priorOp = SRT_Union;
1650 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1651 /* We can reuse a temporary table generated by a SELECT to our
1652 ** right.
1654 assert( p->pRightmost!=p ); /* Can only happen for leftward elements
1655 ** of a 3-way or more compound */
1656 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
1657 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
1658 unionTab = dest.iParm;
1659 }else{
1660 /* We will need to create our own temporary table to hold the
1661 ** intermediate results.
1663 unionTab = pParse->nTab++;
1664 assert( p->pOrderBy==0 );
1665 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1666 assert( p->addrOpenEphm[0] == -1 );
1667 p->addrOpenEphm[0] = addr;
1668 p->pRightmost->selFlags |= SF_UsesEphemeral;
1669 assert( p->pEList );
1672 /* Code the SELECT statements to our left
1674 assert( !pPrior->pOrderBy );
1675 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1676 explainSetInteger(iSub1, pParse->iNextSelectId);
1677 rc = sqlite3Select(pParse, pPrior, &uniondest);
1678 if( rc ){
1679 goto multi_select_end;
1682 /* Code the current SELECT statement
1684 if( p->op==TK_EXCEPT ){
1685 op = SRT_Except;
1686 }else{
1687 assert( p->op==TK_UNION );
1688 op = SRT_Union;
1690 p->pPrior = 0;
1691 pLimit = p->pLimit;
1692 p->pLimit = 0;
1693 pOffset = p->pOffset;
1694 p->pOffset = 0;
1695 uniondest.eDest = op;
1696 explainSetInteger(iSub2, pParse->iNextSelectId);
1697 rc = sqlite3Select(pParse, p, &uniondest);
1698 testcase( rc!=SQLITE_OK );
1699 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1700 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1701 sqlite3ExprListDelete(db, p->pOrderBy);
1702 pDelete = p->pPrior;
1703 p->pPrior = pPrior;
1704 p->pOrderBy = 0;
1705 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1706 sqlite3ExprDelete(db, p->pLimit);
1707 p->pLimit = pLimit;
1708 p->pOffset = pOffset;
1709 p->iLimit = 0;
1710 p->iOffset = 0;
1712 /* Convert the data in the temporary table into whatever form
1713 ** it is that we currently need.
1715 assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1716 if( dest.eDest!=priorOp ){
1717 int iCont, iBreak, iStart;
1718 assert( p->pEList );
1719 if( dest.eDest==SRT_Output ){
1720 Select *pFirst = p;
1721 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1722 generateColumnNames(pParse, 0, pFirst->pEList);
1724 iBreak = sqlite3VdbeMakeLabel(v);
1725 iCont = sqlite3VdbeMakeLabel(v);
1726 computeLimitRegisters(pParse, p, iBreak);
1727 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1728 iStart = sqlite3VdbeCurrentAddr(v);
1729 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1730 0, -1, &dest, iCont, iBreak);
1731 sqlite3VdbeResolveLabel(v, iCont);
1732 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1733 sqlite3VdbeResolveLabel(v, iBreak);
1734 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1736 break;
1738 default: assert( p->op==TK_INTERSECT ); {
1739 int tab1, tab2;
1740 int iCont, iBreak, iStart;
1741 Expr *pLimit, *pOffset;
1742 int addr;
1743 SelectDest intersectdest;
1744 int r1;
1746 /* INTERSECT is different from the others since it requires
1747 ** two temporary tables. Hence it has its own case. Begin
1748 ** by allocating the tables we will need.
1750 tab1 = pParse->nTab++;
1751 tab2 = pParse->nTab++;
1752 assert( p->pOrderBy==0 );
1754 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1755 assert( p->addrOpenEphm[0] == -1 );
1756 p->addrOpenEphm[0] = addr;
1757 p->pRightmost->selFlags |= SF_UsesEphemeral;
1758 assert( p->pEList );
1760 /* Code the SELECTs to our left into temporary table "tab1".
1762 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1763 explainSetInteger(iSub1, pParse->iNextSelectId);
1764 rc = sqlite3Select(pParse, pPrior, &intersectdest);
1765 if( rc ){
1766 goto multi_select_end;
1769 /* Code the current SELECT into temporary table "tab2"
1771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1772 assert( p->addrOpenEphm[1] == -1 );
1773 p->addrOpenEphm[1] = addr;
1774 p->pPrior = 0;
1775 pLimit = p->pLimit;
1776 p->pLimit = 0;
1777 pOffset = p->pOffset;
1778 p->pOffset = 0;
1779 intersectdest.iParm = tab2;
1780 explainSetInteger(iSub2, pParse->iNextSelectId);
1781 rc = sqlite3Select(pParse, p, &intersectdest);
1782 testcase( rc!=SQLITE_OK );
1783 pDelete = p->pPrior;
1784 p->pPrior = pPrior;
1785 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1786 sqlite3ExprDelete(db, p->pLimit);
1787 p->pLimit = pLimit;
1788 p->pOffset = pOffset;
1790 /* Generate code to take the intersection of the two temporary
1791 ** tables.
1793 assert( p->pEList );
1794 if( dest.eDest==SRT_Output ){
1795 Select *pFirst = p;
1796 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1797 generateColumnNames(pParse, 0, pFirst->pEList);
1799 iBreak = sqlite3VdbeMakeLabel(v);
1800 iCont = sqlite3VdbeMakeLabel(v);
1801 computeLimitRegisters(pParse, p, iBreak);
1802 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1803 r1 = sqlite3GetTempReg(pParse);
1804 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1805 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1806 sqlite3ReleaseTempReg(pParse, r1);
1807 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1808 0, -1, &dest, iCont, iBreak);
1809 sqlite3VdbeResolveLabel(v, iCont);
1810 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1811 sqlite3VdbeResolveLabel(v, iBreak);
1812 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1813 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1814 break;
1818 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1820 /* Compute collating sequences used by
1821 ** temporary tables needed to implement the compound select.
1822 ** Attach the KeyInfo structure to all temporary tables.
1824 ** This section is run by the right-most SELECT statement only.
1825 ** SELECT statements to the left always skip this part. The right-most
1826 ** SELECT might also skip this part if it has no ORDER BY clause and
1827 ** no temp tables are required.
1829 if( p->selFlags & SF_UsesEphemeral ){
1830 int i; /* Loop counter */
1831 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
1832 Select *pLoop; /* For looping through SELECT statements */
1833 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
1834 int nCol; /* Number of columns in result set */
1836 assert( p->pRightmost==p );
1837 nCol = p->pEList->nExpr;
1838 pKeyInfo = sqlite3DbMallocZero(db,
1839 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1840 if( !pKeyInfo ){
1841 rc = SQLITE_NOMEM;
1842 goto multi_select_end;
1845 pKeyInfo->enc = ENC(db);
1846 pKeyInfo->nField = (u16)nCol;
1848 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1849 *apColl = multiSelectCollSeq(pParse, p, i);
1850 if( 0==*apColl ){
1851 *apColl = db->pDfltColl;
1855 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1856 for(i=0; i<2; i++){
1857 int addr = pLoop->addrOpenEphm[i];
1858 if( addr<0 ){
1859 /* If [0] is unused then [1] is also unused. So we can
1860 ** always safely abort as soon as the first unused slot is found */
1861 assert( pLoop->addrOpenEphm[1]<0 );
1862 break;
1864 sqlite3VdbeChangeP2(v, addr, nCol);
1865 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1866 pLoop->addrOpenEphm[i] = -1;
1869 sqlite3DbFree(db, pKeyInfo);
1872 multi_select_end:
1873 pDest->iMem = dest.iMem;
1874 pDest->nMem = dest.nMem;
1875 sqlite3SelectDelete(db, pDelete);
1876 return rc;
1878 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1881 ** Code an output subroutine for a coroutine implementation of a
1882 ** SELECT statment.
1884 ** The data to be output is contained in pIn->iMem. There are
1885 ** pIn->nMem columns to be output. pDest is where the output should
1886 ** be sent.
1888 ** regReturn is the number of the register holding the subroutine
1889 ** return address.
1891 ** If regPrev>0 then it is the first register in a vector that
1892 ** records the previous output. mem[regPrev] is a flag that is false
1893 ** if there has been no previous output. If regPrev>0 then code is
1894 ** generated to suppress duplicates. pKeyInfo is used for comparing
1895 ** keys.
1897 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1898 ** iBreak.
1900 static int generateOutputSubroutine(
1901 Parse *pParse, /* Parsing context */
1902 Select *p, /* The SELECT statement */
1903 SelectDest *pIn, /* Coroutine supplying data */
1904 SelectDest *pDest, /* Where to send the data */
1905 int regReturn, /* The return address register */
1906 int regPrev, /* Previous result register. No uniqueness if 0 */
1907 KeyInfo *pKeyInfo, /* For comparing with previous entry */
1908 int p4type, /* The p4 type for pKeyInfo */
1909 int iBreak /* Jump here if we hit the LIMIT */
1911 Vdbe *v = pParse->pVdbe;
1912 int iContinue;
1913 int addr;
1915 addr = sqlite3VdbeCurrentAddr(v);
1916 iContinue = sqlite3VdbeMakeLabel(v);
1918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1920 if( regPrev ){
1921 int j1, j2;
1922 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1923 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1924 (char*)pKeyInfo, p4type);
1925 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1926 sqlite3VdbeJumpHere(v, j1);
1927 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1930 if( pParse->db->mallocFailed ) return 0;
1932 /* Suppress the the first OFFSET entries if there is an OFFSET clause
1934 codeOffset(v, p, iContinue);
1936 switch( pDest->eDest ){
1937 /* Store the result as data using a unique key.
1939 case SRT_Table:
1940 case SRT_EphemTab: {
1941 int r1 = sqlite3GetTempReg(pParse);
1942 int r2 = sqlite3GetTempReg(pParse);
1943 testcase( pDest->eDest==SRT_Table );
1944 testcase( pDest->eDest==SRT_EphemTab );
1945 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1946 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1947 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1948 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1949 sqlite3ReleaseTempReg(pParse, r2);
1950 sqlite3ReleaseTempReg(pParse, r1);
1951 break;
1954 #ifndef SQLITE_OMIT_SUBQUERY
1955 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1956 ** then there should be a single item on the stack. Write this
1957 ** item into the set table with bogus data.
1959 case SRT_Set: {
1960 int r1;
1961 assert( pIn->nMem==1 );
1962 p->affinity =
1963 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1964 r1 = sqlite3GetTempReg(pParse);
1965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1966 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1967 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1968 sqlite3ReleaseTempReg(pParse, r1);
1969 break;
1972 #if 0 /* Never occurs on an ORDER BY query */
1973 /* If any row exist in the result set, record that fact and abort.
1975 case SRT_Exists: {
1976 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1977 /* The LIMIT clause will terminate the loop for us */
1978 break;
1980 #endif
1982 /* If this is a scalar select that is part of an expression, then
1983 ** store the results in the appropriate memory cell and break out
1984 ** of the scan loop.
1986 case SRT_Mem: {
1987 assert( pIn->nMem==1 );
1988 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1989 /* The LIMIT clause will jump out of the loop for us */
1990 break;
1992 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1994 /* The results are stored in a sequence of registers
1995 ** starting at pDest->iMem. Then the co-routine yields.
1997 case SRT_Coroutine: {
1998 if( pDest->iMem==0 ){
1999 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2000 pDest->nMem = pIn->nMem;
2002 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2003 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2004 break;
2007 /* If none of the above, then the result destination must be
2008 ** SRT_Output. This routine is never called with any other
2009 ** destination other than the ones handled above or SRT_Output.
2011 ** For SRT_Output, results are stored in a sequence of registers.
2012 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2013 ** return the next row of result.
2015 default: {
2016 assert( pDest->eDest==SRT_Output );
2017 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2018 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2019 break;
2023 /* Jump to the end of the loop if the LIMIT is reached.
2025 if( p->iLimit ){
2026 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2029 /* Generate the subroutine return
2031 sqlite3VdbeResolveLabel(v, iContinue);
2032 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2034 return addr;
2038 ** Alternative compound select code generator for cases when there
2039 ** is an ORDER BY clause.
2041 ** We assume a query of the following form:
2043 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2045 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2046 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2047 ** co-routines. Then run the co-routines in parallel and merge the results
2048 ** into the output. In addition to the two coroutines (called selectA and
2049 ** selectB) there are 7 subroutines:
2051 ** outA: Move the output of the selectA coroutine into the output
2052 ** of the compound query.
2054 ** outB: Move the output of the selectB coroutine into the output
2055 ** of the compound query. (Only generated for UNION and
2056 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2057 ** appears only in B.)
2059 ** AltB: Called when there is data from both coroutines and A<B.
2061 ** AeqB: Called when there is data from both coroutines and A==B.
2063 ** AgtB: Called when there is data from both coroutines and A>B.
2065 ** EofA: Called when data is exhausted from selectA.
2067 ** EofB: Called when data is exhausted from selectB.
2069 ** The implementation of the latter five subroutines depend on which
2070 ** <operator> is used:
2073 ** UNION ALL UNION EXCEPT INTERSECT
2074 ** ------------- ----------------- -------------- -----------------
2075 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2077 ** AeqB: outA, nextA nextA nextA outA, nextA
2079 ** AgtB: outB, nextB outB, nextB nextB nextB
2081 ** EofA: outB, nextB outB, nextB halt halt
2083 ** EofB: outA, nextA outA, nextA outA, nextA halt
2085 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2086 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2087 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2088 ** following nextX causes a jump to the end of the select processing.
2090 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2091 ** within the output subroutine. The regPrev register set holds the previously
2092 ** output value. A comparison is made against this value and the output
2093 ** is skipped if the next results would be the same as the previous.
2095 ** The implementation plan is to implement the two coroutines and seven
2096 ** subroutines first, then put the control logic at the bottom. Like this:
2098 ** goto Init
2099 ** coA: coroutine for left query (A)
2100 ** coB: coroutine for right query (B)
2101 ** outA: output one row of A
2102 ** outB: output one row of B (UNION and UNION ALL only)
2103 ** EofA: ...
2104 ** EofB: ...
2105 ** AltB: ...
2106 ** AeqB: ...
2107 ** AgtB: ...
2108 ** Init: initialize coroutine registers
2109 ** yield coA
2110 ** if eof(A) goto EofA
2111 ** yield coB
2112 ** if eof(B) goto EofB
2113 ** Cmpr: Compare A, B
2114 ** Jump AltB, AeqB, AgtB
2115 ** End: ...
2117 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2118 ** actually called using Gosub and they do not Return. EofA and EofB loop
2119 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2120 ** and AgtB jump to either L2 or to one of EofA or EofB.
2122 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2123 static int multiSelectOrderBy(
2124 Parse *pParse, /* Parsing context */
2125 Select *p, /* The right-most of SELECTs to be coded */
2126 SelectDest *pDest /* What to do with query results */
2128 int i, j; /* Loop counters */
2129 Select *pPrior; /* Another SELECT immediately to our left */
2130 Vdbe *v; /* Generate code to this VDBE */
2131 SelectDest destA; /* Destination for coroutine A */
2132 SelectDest destB; /* Destination for coroutine B */
2133 int regAddrA; /* Address register for select-A coroutine */
2134 int regEofA; /* Flag to indicate when select-A is complete */
2135 int regAddrB; /* Address register for select-B coroutine */
2136 int regEofB; /* Flag to indicate when select-B is complete */
2137 int addrSelectA; /* Address of the select-A coroutine */
2138 int addrSelectB; /* Address of the select-B coroutine */
2139 int regOutA; /* Address register for the output-A subroutine */
2140 int regOutB; /* Address register for the output-B subroutine */
2141 int addrOutA; /* Address of the output-A subroutine */
2142 int addrOutB = 0; /* Address of the output-B subroutine */
2143 int addrEofA; /* Address of the select-A-exhausted subroutine */
2144 int addrEofB; /* Address of the select-B-exhausted subroutine */
2145 int addrAltB; /* Address of the A<B subroutine */
2146 int addrAeqB; /* Address of the A==B subroutine */
2147 int addrAgtB; /* Address of the A>B subroutine */
2148 int regLimitA; /* Limit register for select-A */
2149 int regLimitB; /* Limit register for select-A */
2150 int regPrev; /* A range of registers to hold previous output */
2151 int savedLimit; /* Saved value of p->iLimit */
2152 int savedOffset; /* Saved value of p->iOffset */
2153 int labelCmpr; /* Label for the start of the merge algorithm */
2154 int labelEnd; /* Label for the end of the overall SELECT stmt */
2155 int j1; /* Jump instructions that get retargetted */
2156 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2157 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2158 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2159 sqlite3 *db; /* Database connection */
2160 ExprList *pOrderBy; /* The ORDER BY clause */
2161 int nOrderBy; /* Number of terms in the ORDER BY clause */
2162 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2163 #ifndef SQLITE_OMIT_EXPLAIN
2164 int iSub1; /* EQP id of left-hand query */
2165 int iSub2; /* EQP id of right-hand query */
2166 #endif
2168 assert( p->pOrderBy!=0 );
2169 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2170 db = pParse->db;
2171 v = pParse->pVdbe;
2172 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2173 labelEnd = sqlite3VdbeMakeLabel(v);
2174 labelCmpr = sqlite3VdbeMakeLabel(v);
2177 /* Patch up the ORDER BY clause
2179 op = p->op;
2180 pPrior = p->pPrior;
2181 assert( pPrior->pOrderBy==0 );
2182 pOrderBy = p->pOrderBy;
2183 assert( pOrderBy );
2184 nOrderBy = pOrderBy->nExpr;
2186 /* For operators other than UNION ALL we have to make sure that
2187 ** the ORDER BY clause covers every term of the result set. Add
2188 ** terms to the ORDER BY clause as necessary.
2190 if( op!=TK_ALL ){
2191 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2192 struct ExprList_item *pItem;
2193 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2194 assert( pItem->iCol>0 );
2195 if( pItem->iCol==i ) break;
2197 if( j==nOrderBy ){
2198 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2199 if( pNew==0 ) return SQLITE_NOMEM;
2200 pNew->flags |= EP_IntValue;
2201 pNew->u.iValue = i;
2202 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2203 pOrderBy->a[nOrderBy++].iCol = (u16)i;
2208 /* Compute the comparison permutation and keyinfo that is used with
2209 ** the permutation used to determine if the next
2210 ** row of results comes from selectA or selectB. Also add explicit
2211 ** collations to the ORDER BY clause terms so that when the subqueries
2212 ** to the right and the left are evaluated, they use the correct
2213 ** collation.
2215 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2216 if( aPermute ){
2217 struct ExprList_item *pItem;
2218 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2219 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
2220 aPermute[i] = pItem->iCol - 1;
2222 pKeyMerge =
2223 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2224 if( pKeyMerge ){
2225 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2226 pKeyMerge->nField = (u16)nOrderBy;
2227 pKeyMerge->enc = ENC(db);
2228 for(i=0; i<nOrderBy; i++){
2229 CollSeq *pColl;
2230 Expr *pTerm = pOrderBy->a[i].pExpr;
2231 if( pTerm->flags & EP_ExpCollate ){
2232 pColl = pTerm->pColl;
2233 }else{
2234 pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2235 pTerm->flags |= EP_ExpCollate;
2236 pTerm->pColl = pColl;
2238 pKeyMerge->aColl[i] = pColl;
2239 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2242 }else{
2243 pKeyMerge = 0;
2246 /* Reattach the ORDER BY clause to the query.
2248 p->pOrderBy = pOrderBy;
2249 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2251 /* Allocate a range of temporary registers and the KeyInfo needed
2252 ** for the logic that removes duplicate result rows when the
2253 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2255 if( op==TK_ALL ){
2256 regPrev = 0;
2257 }else{
2258 int nExpr = p->pEList->nExpr;
2259 assert( nOrderBy>=nExpr || db->mallocFailed );
2260 regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2261 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2262 pKeyDup = sqlite3DbMallocZero(db,
2263 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2264 if( pKeyDup ){
2265 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2266 pKeyDup->nField = (u16)nExpr;
2267 pKeyDup->enc = ENC(db);
2268 for(i=0; i<nExpr; i++){
2269 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2270 pKeyDup->aSortOrder[i] = 0;
2275 /* Separate the left and the right query from one another
2277 p->pPrior = 0;
2278 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2279 if( pPrior->pPrior==0 ){
2280 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2283 /* Compute the limit registers */
2284 computeLimitRegisters(pParse, p, labelEnd);
2285 if( p->iLimit && op==TK_ALL ){
2286 regLimitA = ++pParse->nMem;
2287 regLimitB = ++pParse->nMem;
2288 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2289 regLimitA);
2290 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2291 }else{
2292 regLimitA = regLimitB = 0;
2294 sqlite3ExprDelete(db, p->pLimit);
2295 p->pLimit = 0;
2296 sqlite3ExprDelete(db, p->pOffset);
2297 p->pOffset = 0;
2299 regAddrA = ++pParse->nMem;
2300 regEofA = ++pParse->nMem;
2301 regAddrB = ++pParse->nMem;
2302 regEofB = ++pParse->nMem;
2303 regOutA = ++pParse->nMem;
2304 regOutB = ++pParse->nMem;
2305 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2306 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2308 /* Jump past the various subroutines and coroutines to the main
2309 ** merge loop
2311 j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2312 addrSelectA = sqlite3VdbeCurrentAddr(v);
2315 /* Generate a coroutine to evaluate the SELECT statement to the
2316 ** left of the compound operator - the "A" select.
2318 VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2319 pPrior->iLimit = regLimitA;
2320 explainSetInteger(iSub1, pParse->iNextSelectId);
2321 sqlite3Select(pParse, pPrior, &destA);
2322 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2323 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2324 VdbeNoopComment((v, "End coroutine for left SELECT"));
2326 /* Generate a coroutine to evaluate the SELECT statement on
2327 ** the right - the "B" select
2329 addrSelectB = sqlite3VdbeCurrentAddr(v);
2330 VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2331 savedLimit = p->iLimit;
2332 savedOffset = p->iOffset;
2333 p->iLimit = regLimitB;
2334 p->iOffset = 0;
2335 explainSetInteger(iSub2, pParse->iNextSelectId);
2336 sqlite3Select(pParse, p, &destB);
2337 p->iLimit = savedLimit;
2338 p->iOffset = savedOffset;
2339 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2340 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2341 VdbeNoopComment((v, "End coroutine for right SELECT"));
2343 /* Generate a subroutine that outputs the current row of the A
2344 ** select as the next output row of the compound select.
2346 VdbeNoopComment((v, "Output routine for A"));
2347 addrOutA = generateOutputSubroutine(pParse,
2348 p, &destA, pDest, regOutA,
2349 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2351 /* Generate a subroutine that outputs the current row of the B
2352 ** select as the next output row of the compound select.
2354 if( op==TK_ALL || op==TK_UNION ){
2355 VdbeNoopComment((v, "Output routine for B"));
2356 addrOutB = generateOutputSubroutine(pParse,
2357 p, &destB, pDest, regOutB,
2358 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2361 /* Generate a subroutine to run when the results from select A
2362 ** are exhausted and only data in select B remains.
2364 VdbeNoopComment((v, "eof-A subroutine"));
2365 if( op==TK_EXCEPT || op==TK_INTERSECT ){
2366 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2367 }else{
2368 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2369 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2370 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2371 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2372 p->nSelectRow += pPrior->nSelectRow;
2375 /* Generate a subroutine to run when the results from select B
2376 ** are exhausted and only data in select A remains.
2378 if( op==TK_INTERSECT ){
2379 addrEofB = addrEofA;
2380 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2381 }else{
2382 VdbeNoopComment((v, "eof-B subroutine"));
2383 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2384 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2385 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2386 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2389 /* Generate code to handle the case of A<B
2391 VdbeNoopComment((v, "A-lt-B subroutine"));
2392 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2393 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2394 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2395 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2397 /* Generate code to handle the case of A==B
2399 if( op==TK_ALL ){
2400 addrAeqB = addrAltB;
2401 }else if( op==TK_INTERSECT ){
2402 addrAeqB = addrAltB;
2403 addrAltB++;
2404 }else{
2405 VdbeNoopComment((v, "A-eq-B subroutine"));
2406 addrAeqB =
2407 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2408 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2409 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2412 /* Generate code to handle the case of A>B
2414 VdbeNoopComment((v, "A-gt-B subroutine"));
2415 addrAgtB = sqlite3VdbeCurrentAddr(v);
2416 if( op==TK_ALL || op==TK_UNION ){
2417 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2419 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2420 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2421 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2423 /* This code runs once to initialize everything.
2425 sqlite3VdbeJumpHere(v, j1);
2426 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2427 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2428 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2429 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2430 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2431 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2433 /* Implement the main merge loop
2435 sqlite3VdbeResolveLabel(v, labelCmpr);
2436 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2437 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2438 (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2439 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2441 /* Release temporary registers
2443 if( regPrev ){
2444 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2447 /* Jump to the this point in order to terminate the query.
2449 sqlite3VdbeResolveLabel(v, labelEnd);
2451 /* Set the number of output columns
2453 if( pDest->eDest==SRT_Output ){
2454 Select *pFirst = pPrior;
2455 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2456 generateColumnNames(pParse, 0, pFirst->pEList);
2459 /* Reassembly the compound query so that it will be freed correctly
2460 ** by the calling function */
2461 if( p->pPrior ){
2462 sqlite3SelectDelete(db, p->pPrior);
2464 p->pPrior = pPrior;
2466 /*** TBD: Insert subroutine calls to close cursors on incomplete
2467 **** subqueries ****/
2468 explainComposite(pParse, p->op, iSub1, iSub2, 0);
2469 return SQLITE_OK;
2471 #endif
2473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2474 /* Forward Declarations */
2475 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2476 static void substSelect(sqlite3*, Select *, int, ExprList *);
2479 ** Scan through the expression pExpr. Replace every reference to
2480 ** a column in table number iTable with a copy of the iColumn-th
2481 ** entry in pEList. (But leave references to the ROWID column
2482 ** unchanged.)
2484 ** This routine is part of the flattening procedure. A subquery
2485 ** whose result set is defined by pEList appears as entry in the
2486 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2487 ** FORM clause entry is iTable. This routine make the necessary
2488 ** changes to pExpr so that it refers directly to the source table
2489 ** of the subquery rather the result set of the subquery.
2491 static Expr *substExpr(
2492 sqlite3 *db, /* Report malloc errors to this connection */
2493 Expr *pExpr, /* Expr in which substitution occurs */
2494 int iTable, /* Table to be substituted */
2495 ExprList *pEList /* Substitute expressions */
2497 if( pExpr==0 ) return 0;
2498 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2499 if( pExpr->iColumn<0 ){
2500 pExpr->op = TK_NULL;
2501 }else{
2502 Expr *pNew;
2503 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2504 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2505 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2506 if( pNew && pExpr->pColl ){
2507 pNew->pColl = pExpr->pColl;
2509 sqlite3ExprDelete(db, pExpr);
2510 pExpr = pNew;
2512 }else{
2513 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2514 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2515 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2516 substSelect(db, pExpr->x.pSelect, iTable, pEList);
2517 }else{
2518 substExprList(db, pExpr->x.pList, iTable, pEList);
2521 return pExpr;
2523 static void substExprList(
2524 sqlite3 *db, /* Report malloc errors here */
2525 ExprList *pList, /* List to scan and in which to make substitutes */
2526 int iTable, /* Table to be substituted */
2527 ExprList *pEList /* Substitute values */
2529 int i;
2530 if( pList==0 ) return;
2531 for(i=0; i<pList->nExpr; i++){
2532 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2535 static void substSelect(
2536 sqlite3 *db, /* Report malloc errors here */
2537 Select *p, /* SELECT statement in which to make substitutions */
2538 int iTable, /* Table to be replaced */
2539 ExprList *pEList /* Substitute values */
2541 SrcList *pSrc;
2542 struct SrcList_item *pItem;
2543 int i;
2544 if( !p ) return;
2545 substExprList(db, p->pEList, iTable, pEList);
2546 substExprList(db, p->pGroupBy, iTable, pEList);
2547 substExprList(db, p->pOrderBy, iTable, pEList);
2548 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2549 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2550 substSelect(db, p->pPrior, iTable, pEList);
2551 pSrc = p->pSrc;
2552 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2553 if( ALWAYS(pSrc) ){
2554 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2555 substSelect(db, pItem->pSelect, iTable, pEList);
2559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2563 ** This routine attempts to flatten subqueries in order to speed
2564 ** execution. It returns 1 if it makes changes and 0 if no flattening
2565 ** occurs.
2567 ** To understand the concept of flattening, consider the following
2568 ** query:
2570 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2572 ** The default way of implementing this query is to execute the
2573 ** subquery first and store the results in a temporary table, then
2574 ** run the outer query on that temporary table. This requires two
2575 ** passes over the data. Furthermore, because the temporary table
2576 ** has no indices, the WHERE clause on the outer query cannot be
2577 ** optimized.
2579 ** This routine attempts to rewrite queries such as the above into
2580 ** a single flat select, like this:
2582 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2584 ** The code generated for this simpification gives the same result
2585 ** but only has to scan the data once. And because indices might
2586 ** exist on the table t1, a complete scan of the data might be
2587 ** avoided.
2589 ** Flattening is only attempted if all of the following are true:
2591 ** (1) The subquery and the outer query do not both use aggregates.
2593 ** (2) The subquery is not an aggregate or the outer query is not a join.
2595 ** (3) The subquery is not the right operand of a left outer join
2596 ** (Originally ticket #306. Strengthened by ticket #3300)
2598 ** (4) The subquery is not DISTINCT.
2600 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
2601 ** sub-queries that were excluded from this optimization. Restriction
2602 ** (4) has since been expanded to exclude all DISTINCT subqueries.
2604 ** (6) The subquery does not use aggregates or the outer query is not
2605 ** DISTINCT.
2607 ** (7) The subquery has a FROM clause.
2609 ** (8) The subquery does not use LIMIT or the outer query is not a join.
2611 ** (9) The subquery does not use LIMIT or the outer query does not use
2612 ** aggregates.
2614 ** (10) The subquery does not use aggregates or the outer query does not
2615 ** use LIMIT.
2617 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
2619 ** (**) Not implemented. Subsumed into restriction (3). Was previously
2620 ** a separate restriction deriving from ticket #350.
2622 ** (13) The subquery and outer query do not both use LIMIT.
2624 ** (14) The subquery does not use OFFSET.
2626 ** (15) The outer query is not part of a compound select or the
2627 ** subquery does not have a LIMIT clause.
2628 ** (See ticket #2339 and ticket [02a8e81d44]).
2630 ** (16) The outer query is not an aggregate or the subquery does
2631 ** not contain ORDER BY. (Ticket #2942) This used to not matter
2632 ** until we introduced the group_concat() function.
2634 ** (17) The sub-query is not a compound select, or it is a UNION ALL
2635 ** compound clause made up entirely of non-aggregate queries, and
2636 ** the parent query:
2638 ** * is not itself part of a compound select,
2639 ** * is not an aggregate or DISTINCT query, and
2640 ** * has no other tables or sub-selects in the FROM clause.
2642 ** The parent and sub-query may contain WHERE clauses. Subject to
2643 ** rules (11), (13) and (14), they may also contain ORDER BY,
2644 ** LIMIT and OFFSET clauses.
2646 ** (18) If the sub-query is a compound select, then all terms of the
2647 ** ORDER by clause of the parent must be simple references to
2648 ** columns of the sub-query.
2650 ** (19) The subquery does not use LIMIT or the outer query does not
2651 ** have a WHERE clause.
2653 ** (20) If the sub-query is a compound select, then it must not use
2654 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
2655 ** somewhat by saying that the terms of the ORDER BY clause must
2656 ** appear as unmodified result columns in the outer query. But
2657 ** have other optimizations in mind to deal with that case.
2659 ** (21) The subquery does not use LIMIT or the outer query is not
2660 ** DISTINCT. (See ticket [752e1646fc]).
2662 ** In this routine, the "p" parameter is a pointer to the outer query.
2663 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
2664 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2666 ** If flattening is not attempted, this routine is a no-op and returns 0.
2667 ** If flattening is attempted this routine returns 1.
2669 ** All of the expression analysis must occur on both the outer query and
2670 ** the subquery before this routine runs.
2672 static int flattenSubquery(
2673 Parse *pParse, /* Parsing context */
2674 Select *p, /* The parent or outer SELECT statement */
2675 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
2676 int isAgg, /* True if outer SELECT uses aggregate functions */
2677 int subqueryIsAgg /* True if the subquery uses aggregate functions */
2679 const char *zSavedAuthContext = pParse->zAuthContext;
2680 Select *pParent;
2681 Select *pSub; /* The inner query or "subquery" */
2682 Select *pSub1; /* Pointer to the rightmost select in sub-query */
2683 SrcList *pSrc; /* The FROM clause of the outer query */
2684 SrcList *pSubSrc; /* The FROM clause of the subquery */
2685 ExprList *pList; /* The result set of the outer query */
2686 int iParent; /* VDBE cursor number of the pSub result set temp table */
2687 int i; /* Loop counter */
2688 Expr *pWhere; /* The WHERE clause */
2689 struct SrcList_item *pSubitem; /* The subquery */
2690 sqlite3 *db = pParse->db;
2692 /* Check to see if flattening is permitted. Return 0 if not.
2694 assert( p!=0 );
2695 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
2696 if( db->flags & SQLITE_QueryFlattener ) return 0;
2697 pSrc = p->pSrc;
2698 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2699 pSubitem = &pSrc->a[iFrom];
2700 iParent = pSubitem->iCursor;
2701 pSub = pSubitem->pSelect;
2702 assert( pSub!=0 );
2703 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
2704 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
2705 pSubSrc = pSub->pSrc;
2706 assert( pSubSrc );
2707 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2708 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2709 ** because they could be computed at compile-time. But when LIMIT and OFFSET
2710 ** became arbitrary expressions, we were forced to add restrictions (13)
2711 ** and (14). */
2712 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
2713 if( pSub->pOffset ) return 0; /* Restriction (14) */
2714 if( p->pRightmost && pSub->pLimit ){
2715 return 0; /* Restriction (15) */
2717 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
2718 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
2719 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2720 return 0; /* Restrictions (8)(9) */
2722 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2723 return 0; /* Restriction (6) */
2725 if( p->pOrderBy && pSub->pOrderBy ){
2726 return 0; /* Restriction (11) */
2728 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
2729 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
2730 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2731 return 0; /* Restriction (21) */
2734 /* OBSOLETE COMMENT 1:
2735 ** Restriction 3: If the subquery is a join, make sure the subquery is
2736 ** not used as the right operand of an outer join. Examples of why this
2737 ** is not allowed:
2739 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
2741 ** If we flatten the above, we would get
2743 ** (t1 LEFT OUTER JOIN t2) JOIN t3
2745 ** which is not at all the same thing.
2747 ** OBSOLETE COMMENT 2:
2748 ** Restriction 12: If the subquery is the right operand of a left outer
2749 ** join, make sure the subquery has no WHERE clause.
2750 ** An examples of why this is not allowed:
2752 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2754 ** If we flatten the above, we would get
2756 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2758 ** But the t2.x>0 test will always fail on a NULL row of t2, which
2759 ** effectively converts the OUTER JOIN into an INNER JOIN.
2761 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2762 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2763 ** is fraught with danger. Best to avoid the whole thing. If the
2764 ** subquery is the right term of a LEFT JOIN, then do not flatten.
2766 if( (pSubitem->jointype & JT_OUTER)!=0 ){
2767 return 0;
2770 /* Restriction 17: If the sub-query is a compound SELECT, then it must
2771 ** use only the UNION ALL operator. And none of the simple select queries
2772 ** that make up the compound SELECT are allowed to be aggregate or distinct
2773 ** queries.
2775 if( pSub->pPrior ){
2776 if( pSub->pOrderBy ){
2777 return 0; /* Restriction 20 */
2779 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2780 return 0;
2782 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2783 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2784 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2785 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2786 || (pSub1->pPrior && pSub1->op!=TK_ALL)
2787 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2789 return 0;
2793 /* Restriction 18. */
2794 if( p->pOrderBy ){
2795 int ii;
2796 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2797 if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2802 /***** If we reach this point, flattening is permitted. *****/
2804 /* Authorize the subquery */
2805 pParse->zAuthContext = pSubitem->zName;
2806 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2807 pParse->zAuthContext = zSavedAuthContext;
2809 /* If the sub-query is a compound SELECT statement, then (by restrictions
2810 ** 17 and 18 above) it must be a UNION ALL and the parent query must
2811 ** be of the form:
2813 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
2815 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2816 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2817 ** OFFSET clauses and joins them to the left-hand-side of the original
2818 ** using UNION ALL operators. In this case N is the number of simple
2819 ** select statements in the compound sub-query.
2821 ** Example:
2823 ** SELECT a+1 FROM (
2824 ** SELECT x FROM tab
2825 ** UNION ALL
2826 ** SELECT y FROM tab
2827 ** UNION ALL
2828 ** SELECT abs(z*2) FROM tab2
2829 ** ) WHERE a!=5 ORDER BY 1
2831 ** Transformed into:
2833 ** SELECT x+1 FROM tab WHERE x+1!=5
2834 ** UNION ALL
2835 ** SELECT y+1 FROM tab WHERE y+1!=5
2836 ** UNION ALL
2837 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2838 ** ORDER BY 1
2840 ** We call this the "compound-subquery flattening".
2842 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2843 Select *pNew;
2844 ExprList *pOrderBy = p->pOrderBy;
2845 Expr *pLimit = p->pLimit;
2846 Select *pPrior = p->pPrior;
2847 p->pOrderBy = 0;
2848 p->pSrc = 0;
2849 p->pPrior = 0;
2850 p->pLimit = 0;
2851 pNew = sqlite3SelectDup(db, p, 0);
2852 p->pLimit = pLimit;
2853 p->pOrderBy = pOrderBy;
2854 p->pSrc = pSrc;
2855 p->op = TK_ALL;
2856 p->pRightmost = 0;
2857 if( pNew==0 ){
2858 pNew = pPrior;
2859 }else{
2860 pNew->pPrior = pPrior;
2861 pNew->pRightmost = 0;
2863 p->pPrior = pNew;
2864 if( db->mallocFailed ) return 1;
2867 /* Begin flattening the iFrom-th entry of the FROM clause
2868 ** in the outer query.
2870 pSub = pSub1 = pSubitem->pSelect;
2872 /* Delete the transient table structure associated with the
2873 ** subquery
2875 sqlite3DbFree(db, pSubitem->zDatabase);
2876 sqlite3DbFree(db, pSubitem->zName);
2877 sqlite3DbFree(db, pSubitem->zAlias);
2878 pSubitem->zDatabase = 0;
2879 pSubitem->zName = 0;
2880 pSubitem->zAlias = 0;
2881 pSubitem->pSelect = 0;
2883 /* Defer deleting the Table object associated with the
2884 ** subquery until code generation is
2885 ** complete, since there may still exist Expr.pTab entries that
2886 ** refer to the subquery even after flattening. Ticket #3346.
2888 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2890 if( ALWAYS(pSubitem->pTab!=0) ){
2891 Table *pTabToDel = pSubitem->pTab;
2892 if( pTabToDel->nRef==1 ){
2893 Parse *pToplevel = sqlite3ParseToplevel(pParse);
2894 pTabToDel->pNextZombie = pToplevel->pZombieTab;
2895 pToplevel->pZombieTab = pTabToDel;
2896 }else{
2897 pTabToDel->nRef--;
2899 pSubitem->pTab = 0;
2902 /* The following loop runs once for each term in a compound-subquery
2903 ** flattening (as described above). If we are doing a different kind
2904 ** of flattening - a flattening other than a compound-subquery flattening -
2905 ** then this loop only runs once.
2907 ** This loop moves all of the FROM elements of the subquery into the
2908 ** the FROM clause of the outer query. Before doing this, remember
2909 ** the cursor number for the original outer query FROM element in
2910 ** iParent. The iParent cursor will never be used. Subsequent code
2911 ** will scan expressions looking for iParent references and replace
2912 ** those references with expressions that resolve to the subquery FROM
2913 ** elements we are now copying in.
2915 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2916 int nSubSrc;
2917 u8 jointype = 0;
2918 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
2919 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
2920 pSrc = pParent->pSrc; /* FROM clause of the outer query */
2922 if( pSrc ){
2923 assert( pParent==p ); /* First time through the loop */
2924 jointype = pSubitem->jointype;
2925 }else{
2926 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
2927 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2928 if( pSrc==0 ){
2929 assert( db->mallocFailed );
2930 break;
2934 /* The subquery uses a single slot of the FROM clause of the outer
2935 ** query. If the subquery has more than one element in its FROM clause,
2936 ** then expand the outer query to make space for it to hold all elements
2937 ** of the subquery.
2939 ** Example:
2941 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2943 ** The outer query has 3 slots in its FROM clause. One slot of the
2944 ** outer query (the middle slot) is used by the subquery. The next
2945 ** block of code will expand the out query to 4 slots. The middle
2946 ** slot is expanded to two slots in order to make space for the
2947 ** two elements in the FROM clause of the subquery.
2949 if( nSubSrc>1 ){
2950 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2951 if( db->mallocFailed ){
2952 break;
2956 /* Transfer the FROM clause terms from the subquery into the
2957 ** outer query.
2959 for(i=0; i<nSubSrc; i++){
2960 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2961 pSrc->a[i+iFrom] = pSubSrc->a[i];
2962 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2964 pSrc->a[iFrom].jointype = jointype;
2966 /* Now begin substituting subquery result set expressions for
2967 ** references to the iParent in the outer query.
2969 ** Example:
2971 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2972 ** \ \_____________ subquery __________/ /
2973 ** \_____________________ outer query ______________________________/
2975 ** We look at every expression in the outer query and every place we see
2976 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2978 pList = pParent->pEList;
2979 for(i=0; i<pList->nExpr; i++){
2980 if( pList->a[i].zName==0 ){
2981 const char *zSpan = pList->a[i].zSpan;
2982 if( ALWAYS(zSpan) ){
2983 pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2987 substExprList(db, pParent->pEList, iParent, pSub->pEList);
2988 if( isAgg ){
2989 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2990 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2992 if( pSub->pOrderBy ){
2993 assert( pParent->pOrderBy==0 );
2994 pParent->pOrderBy = pSub->pOrderBy;
2995 pSub->pOrderBy = 0;
2996 }else if( pParent->pOrderBy ){
2997 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2999 if( pSub->pWhere ){
3000 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3001 }else{
3002 pWhere = 0;
3004 if( subqueryIsAgg ){
3005 assert( pParent->pHaving==0 );
3006 pParent->pHaving = pParent->pWhere;
3007 pParent->pWhere = pWhere;
3008 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3009 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3010 sqlite3ExprDup(db, pSub->pHaving, 0));
3011 assert( pParent->pGroupBy==0 );
3012 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3013 }else{
3014 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3015 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3018 /* The flattened query is distinct if either the inner or the
3019 ** outer query is distinct.
3021 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3024 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3026 ** One is tempted to try to add a and b to combine the limits. But this
3027 ** does not work if either limit is negative.
3029 if( pSub->pLimit ){
3030 pParent->pLimit = pSub->pLimit;
3031 pSub->pLimit = 0;
3035 /* Finially, delete what is left of the subquery and return
3036 ** success.
3038 sqlite3SelectDelete(db, pSub1);
3040 return 1;
3042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3045 ** Analyze the SELECT statement passed as an argument to see if it
3046 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3047 ** it is, or 0 otherwise. At present, a query is considered to be
3048 ** a min()/max() query if:
3050 ** 1. There is a single object in the FROM clause.
3052 ** 2. There is a single expression in the result set, and it is
3053 ** either min(x) or max(x), where x is a column reference.
3055 static u8 minMaxQuery(Select *p){
3056 Expr *pExpr;
3057 ExprList *pEList = p->pEList;
3059 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3060 pExpr = pEList->a[0].pExpr;
3061 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3062 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3063 pEList = pExpr->x.pList;
3064 if( pEList==0 || pEList->nExpr!=1 ) return 0;
3065 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3066 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3067 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3068 return WHERE_ORDERBY_MIN;
3069 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3070 return WHERE_ORDERBY_MAX;
3072 return WHERE_ORDERBY_NORMAL;
3076 ** The select statement passed as the first argument is an aggregate query.
3077 ** The second argment is the associated aggregate-info object. This
3078 ** function tests if the SELECT is of the form:
3080 ** SELECT count(*) FROM <tbl>
3082 ** where table is a database table, not a sub-select or view. If the query
3083 ** does match this pattern, then a pointer to the Table object representing
3084 ** <tbl> is returned. Otherwise, 0 is returned.
3086 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3087 Table *pTab;
3088 Expr *pExpr;
3090 assert( !p->pGroupBy );
3092 if( p->pWhere || p->pEList->nExpr!=1
3093 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3095 return 0;
3097 pTab = p->pSrc->a[0].pTab;
3098 pExpr = p->pEList->a[0].pExpr;
3099 assert( pTab && !pTab->pSelect && pExpr );
3101 if( IsVirtual(pTab) ) return 0;
3102 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3103 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3104 if( pExpr->flags&EP_Distinct ) return 0;
3106 return pTab;
3110 ** If the source-list item passed as an argument was augmented with an
3111 ** INDEXED BY clause, then try to locate the specified index. If there
3112 ** was such a clause and the named index cannot be found, return
3113 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3114 ** pFrom->pIndex and return SQLITE_OK.
3116 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3117 if( pFrom->pTab && pFrom->zIndex ){
3118 Table *pTab = pFrom->pTab;
3119 char *zIndex = pFrom->zIndex;
3120 Index *pIdx;
3121 for(pIdx=pTab->pIndex;
3122 pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3123 pIdx=pIdx->pNext
3125 if( !pIdx ){
3126 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3127 pParse->checkSchema = 1;
3128 return SQLITE_ERROR;
3130 pFrom->pIndex = pIdx;
3132 return SQLITE_OK;
3136 ** This routine is a Walker callback for "expanding" a SELECT statement.
3137 ** "Expanding" means to do the following:
3139 ** (1) Make sure VDBE cursor numbers have been assigned to every
3140 ** element of the FROM clause.
3142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
3143 ** defines FROM clause. When views appear in the FROM clause,
3144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
3145 ** that implements the view. A copy is made of the view's SELECT
3146 ** statement so that we can freely modify or delete that statement
3147 ** without worrying about messing up the presistent representation
3148 ** of the view.
3150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
3151 ** on joins and the ON and USING clause of joins.
3153 ** (4) Scan the list of columns in the result set (pEList) looking
3154 ** for instances of the "*" operator or the TABLE.* operator.
3155 ** If found, expand each "*" to be every column in every table
3156 ** and TABLE.* to be every column in TABLE.
3159 static int selectExpander(Walker *pWalker, Select *p){
3160 Parse *pParse = pWalker->pParse;
3161 int i, j, k;
3162 SrcList *pTabList;
3163 ExprList *pEList;
3164 struct SrcList_item *pFrom;
3165 sqlite3 *db = pParse->db;
3167 if( db->mallocFailed ){
3168 return WRC_Abort;
3170 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3171 return WRC_Prune;
3173 p->selFlags |= SF_Expanded;
3174 pTabList = p->pSrc;
3175 pEList = p->pEList;
3177 /* Make sure cursor numbers have been assigned to all entries in
3178 ** the FROM clause of the SELECT statement.
3180 sqlite3SrcListAssignCursors(pParse, pTabList);
3182 /* Look up every table named in the FROM clause of the select. If
3183 ** an entry of the FROM clause is a subquery instead of a table or view,
3184 ** then create a transient table structure to describe the subquery.
3186 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3187 Table *pTab;
3188 if( pFrom->pTab!=0 ){
3189 /* This statement has already been prepared. There is no need
3190 ** to go further. */
3191 assert( i==0 );
3192 return WRC_Prune;
3194 if( pFrom->zName==0 ){
3195 #ifndef SQLITE_OMIT_SUBQUERY
3196 Select *pSel = pFrom->pSelect;
3197 /* A sub-query in the FROM clause of a SELECT */
3198 assert( pSel!=0 );
3199 assert( pFrom->pTab==0 );
3200 sqlite3WalkSelect(pWalker, pSel);
3201 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3202 if( pTab==0 ) return WRC_Abort;
3203 pTab->nRef = 1;
3204 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3205 while( pSel->pPrior ){ pSel = pSel->pPrior; }
3206 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3207 pTab->iPKey = -1;
3208 pTab->nRowEst = 1000000;
3209 pTab->tabFlags |= TF_Ephemeral;
3210 #endif
3211 }else{
3212 /* An ordinary table or view name in the FROM clause */
3213 assert( pFrom->pTab==0 );
3214 pFrom->pTab = pTab =
3215 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3216 if( pTab==0 ) return WRC_Abort;
3217 pTab->nRef++;
3218 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3219 if( pTab->pSelect || IsVirtual(pTab) ){
3220 /* We reach here if the named table is a really a view */
3221 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3222 assert( pFrom->pSelect==0 );
3223 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3224 sqlite3WalkSelect(pWalker, pFrom->pSelect);
3226 #endif
3229 /* Locate the index named by the INDEXED BY clause, if any. */
3230 if( sqlite3IndexedByLookup(pParse, pFrom) ){
3231 return WRC_Abort;
3235 /* Process NATURAL keywords, and ON and USING clauses of joins.
3237 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3238 return WRC_Abort;
3241 /* For every "*" that occurs in the column list, insert the names of
3242 ** all columns in all tables. And for every TABLE.* insert the names
3243 ** of all columns in TABLE. The parser inserted a special expression
3244 ** with the TK_ALL operator for each "*" that it found in the column list.
3245 ** The following code just has to locate the TK_ALL expressions and expand
3246 ** each one to the list of all columns in all tables.
3248 ** The first loop just checks to see if there are any "*" operators
3249 ** that need expanding.
3251 for(k=0; k<pEList->nExpr; k++){
3252 Expr *pE = pEList->a[k].pExpr;
3253 if( pE->op==TK_ALL ) break;
3254 assert( pE->op!=TK_DOT || pE->pRight!=0 );
3255 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3256 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3258 if( k<pEList->nExpr ){
3260 ** If we get here it means the result set contains one or more "*"
3261 ** operators that need to be expanded. Loop through each expression
3262 ** in the result set and expand them one by one.
3264 struct ExprList_item *a = pEList->a;
3265 ExprList *pNew = 0;
3266 int flags = pParse->db->flags;
3267 int longNames = (flags & SQLITE_FullColNames)!=0
3268 && (flags & SQLITE_ShortColNames)==0;
3270 for(k=0; k<pEList->nExpr; k++){
3271 Expr *pE = a[k].pExpr;
3272 assert( pE->op!=TK_DOT || pE->pRight!=0 );
3273 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3274 /* This particular expression does not need to be expanded.
3276 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3277 if( pNew ){
3278 pNew->a[pNew->nExpr-1].zName = a[k].zName;
3279 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3280 a[k].zName = 0;
3281 a[k].zSpan = 0;
3283 a[k].pExpr = 0;
3284 }else{
3285 /* This expression is a "*" or a "TABLE.*" and needs to be
3286 ** expanded. */
3287 int tableSeen = 0; /* Set to 1 when TABLE matches */
3288 char *zTName; /* text of name of TABLE */
3289 if( pE->op==TK_DOT ){
3290 assert( pE->pLeft!=0 );
3291 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3292 zTName = pE->pLeft->u.zToken;
3293 }else{
3294 zTName = 0;
3296 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3297 Table *pTab = pFrom->pTab;
3298 char *zTabName = pFrom->zAlias;
3299 if( zTabName==0 ){
3300 zTabName = pTab->zName;
3302 if( db->mallocFailed ) break;
3303 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3304 continue;
3306 tableSeen = 1;
3307 for(j=0; j<pTab->nCol; j++){
3308 Expr *pExpr, *pRight;
3309 char *zName = pTab->aCol[j].zName;
3310 char *zColname; /* The computed column name */
3311 char *zToFree; /* Malloced string that needs to be freed */
3312 Token sColname; /* Computed column name as a token */
3314 /* If a column is marked as 'hidden' (currently only possible
3315 ** for virtual tables), do not include it in the expanded
3316 ** result-set list.
3318 if( IsHiddenColumn(&pTab->aCol[j]) ){
3319 assert(IsVirtual(pTab));
3320 continue;
3323 if( i>0 && zTName==0 ){
3324 if( (pFrom->jointype & JT_NATURAL)!=0
3325 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3327 /* In a NATURAL join, omit the join columns from the
3328 ** table to the right of the join */
3329 continue;
3331 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3332 /* In a join with a USING clause, omit columns in the
3333 ** using clause from the table on the right. */
3334 continue;
3337 pRight = sqlite3Expr(db, TK_ID, zName);
3338 zColname = zName;
3339 zToFree = 0;
3340 if( longNames || pTabList->nSrc>1 ){
3341 Expr *pLeft;
3342 pLeft = sqlite3Expr(db, TK_ID, zTabName);
3343 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3344 if( longNames ){
3345 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3346 zToFree = zColname;
3348 }else{
3349 pExpr = pRight;
3351 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3352 sColname.z = zColname;
3353 sColname.n = sqlite3Strlen30(zColname);
3354 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3355 sqlite3DbFree(db, zToFree);
3358 if( !tableSeen ){
3359 if( zTName ){
3360 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3361 }else{
3362 sqlite3ErrorMsg(pParse, "no tables specified");
3367 sqlite3ExprListDelete(db, pEList);
3368 p->pEList = pNew;
3370 #if SQLITE_MAX_COLUMN
3371 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3372 sqlite3ErrorMsg(pParse, "too many columns in result set");
3374 #endif
3375 return WRC_Continue;
3379 ** No-op routine for the parse-tree walker.
3381 ** When this routine is the Walker.xExprCallback then expression trees
3382 ** are walked without any actions being taken at each node. Presumably,
3383 ** when this routine is used for Walker.xExprCallback then
3384 ** Walker.xSelectCallback is set to do something useful for every
3385 ** subquery in the parser tree.
3387 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3388 UNUSED_PARAMETER2(NotUsed, NotUsed2);
3389 return WRC_Continue;
3393 ** This routine "expands" a SELECT statement and all of its subqueries.
3394 ** For additional information on what it means to "expand" a SELECT
3395 ** statement, see the comment on the selectExpand worker callback above.
3397 ** Expanding a SELECT statement is the first step in processing a
3398 ** SELECT statement. The SELECT statement must be expanded before
3399 ** name resolution is performed.
3401 ** If anything goes wrong, an error message is written into pParse.
3402 ** The calling function can detect the problem by looking at pParse->nErr
3403 ** and/or pParse->db->mallocFailed.
3405 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3406 Walker w;
3407 w.xSelectCallback = selectExpander;
3408 w.xExprCallback = exprWalkNoop;
3409 w.pParse = pParse;
3410 sqlite3WalkSelect(&w, pSelect);
3414 #ifndef SQLITE_OMIT_SUBQUERY
3416 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3417 ** interface.
3419 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3420 ** information to the Table structure that represents the result set
3421 ** of that subquery.
3423 ** The Table structure that represents the result set was constructed
3424 ** by selectExpander() but the type and collation information was omitted
3425 ** at that point because identifiers had not yet been resolved. This
3426 ** routine is called after identifier resolution.
3428 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3429 Parse *pParse;
3430 int i;
3431 SrcList *pTabList;
3432 struct SrcList_item *pFrom;
3434 assert( p->selFlags & SF_Resolved );
3435 if( (p->selFlags & SF_HasTypeInfo)==0 ){
3436 p->selFlags |= SF_HasTypeInfo;
3437 pParse = pWalker->pParse;
3438 pTabList = p->pSrc;
3439 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3440 Table *pTab = pFrom->pTab;
3441 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3442 /* A sub-query in the FROM clause of a SELECT */
3443 Select *pSel = pFrom->pSelect;
3444 assert( pSel );
3445 while( pSel->pPrior ) pSel = pSel->pPrior;
3446 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3450 return WRC_Continue;
3452 #endif
3456 ** This routine adds datatype and collating sequence information to
3457 ** the Table structures of all FROM-clause subqueries in a
3458 ** SELECT statement.
3460 ** Use this routine after name resolution.
3462 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3463 #ifndef SQLITE_OMIT_SUBQUERY
3464 Walker w;
3465 w.xSelectCallback = selectAddSubqueryTypeInfo;
3466 w.xExprCallback = exprWalkNoop;
3467 w.pParse = pParse;
3468 sqlite3WalkSelect(&w, pSelect);
3469 #endif
3474 ** This routine sets of a SELECT statement for processing. The
3475 ** following is accomplished:
3477 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
3478 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
3479 ** * ON and USING clauses are shifted into WHERE statements
3480 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
3481 ** * Identifiers in expression are matched to tables.
3483 ** This routine acts recursively on all subqueries within the SELECT.
3485 void sqlite3SelectPrep(
3486 Parse *pParse, /* The parser context */
3487 Select *p, /* The SELECT statement being coded. */
3488 NameContext *pOuterNC /* Name context for container */
3490 sqlite3 *db;
3491 if( NEVER(p==0) ) return;
3492 db = pParse->db;
3493 if( p->selFlags & SF_HasTypeInfo ) return;
3494 sqlite3SelectExpand(pParse, p);
3495 if( pParse->nErr || db->mallocFailed ) return;
3496 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3497 if( pParse->nErr || db->mallocFailed ) return;
3498 sqlite3SelectAddTypeInfo(pParse, p);
3502 ** Reset the aggregate accumulator.
3504 ** The aggregate accumulator is a set of memory cells that hold
3505 ** intermediate results while calculating an aggregate. This
3506 ** routine simply stores NULLs in all of those memory cells.
3508 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3509 Vdbe *v = pParse->pVdbe;
3510 int i;
3511 struct AggInfo_func *pFunc;
3512 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3513 return;
3515 for(i=0; i<pAggInfo->nColumn; i++){
3516 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3518 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3519 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3520 if( pFunc->iDistinct>=0 ){
3521 Expr *pE = pFunc->pExpr;
3522 assert( !ExprHasProperty(pE, EP_xIsSelect) );
3523 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3524 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3525 "argument");
3526 pFunc->iDistinct = -1;
3527 }else{
3528 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3529 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3530 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3537 ** Invoke the OP_AggFinalize opcode for every aggregate function
3538 ** in the AggInfo structure.
3540 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3541 Vdbe *v = pParse->pVdbe;
3542 int i;
3543 struct AggInfo_func *pF;
3544 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3545 ExprList *pList = pF->pExpr->x.pList;
3546 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3547 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3548 (void*)pF->pFunc, P4_FUNCDEF);
3553 ** Update the accumulator memory cells for an aggregate based on
3554 ** the current cursor position.
3556 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3557 Vdbe *v = pParse->pVdbe;
3558 int i;
3559 struct AggInfo_func *pF;
3560 struct AggInfo_col *pC;
3562 pAggInfo->directMode = 1;
3563 sqlite3ExprCacheClear(pParse);
3564 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3565 int nArg;
3566 int addrNext = 0;
3567 int regAgg;
3568 ExprList *pList = pF->pExpr->x.pList;
3569 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3570 if( pList ){
3571 nArg = pList->nExpr;
3572 regAgg = sqlite3GetTempRange(pParse, nArg);
3573 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3574 }else{
3575 nArg = 0;
3576 regAgg = 0;
3578 if( pF->iDistinct>=0 ){
3579 addrNext = sqlite3VdbeMakeLabel(v);
3580 assert( nArg==1 );
3581 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3583 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3584 CollSeq *pColl = 0;
3585 struct ExprList_item *pItem;
3586 int j;
3587 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
3588 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3589 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3591 if( !pColl ){
3592 pColl = pParse->db->pDfltColl;
3594 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3596 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3597 (void*)pF->pFunc, P4_FUNCDEF);
3598 sqlite3VdbeChangeP5(v, (u8)nArg);
3599 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3600 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3601 if( addrNext ){
3602 sqlite3VdbeResolveLabel(v, addrNext);
3603 sqlite3ExprCacheClear(pParse);
3607 /* Before populating the accumulator registers, clear the column cache.
3608 ** Otherwise, if any of the required column values are already present
3609 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3610 ** to pC->iMem. But by the time the value is used, the original register
3611 ** may have been used, invalidating the underlying buffer holding the
3612 ** text or blob value. See ticket [883034dcb5].
3614 ** Another solution would be to change the OP_SCopy used to copy cached
3615 ** values to an OP_Copy.
3617 sqlite3ExprCacheClear(pParse);
3618 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3619 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3621 pAggInfo->directMode = 0;
3622 sqlite3ExprCacheClear(pParse);
3626 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3627 ** count(*) query ("SELECT count(*) FROM pTab").
3629 #ifndef SQLITE_OMIT_EXPLAIN
3630 static void explainSimpleCount(
3631 Parse *pParse, /* Parse context */
3632 Table *pTab, /* Table being queried */
3633 Index *pIdx /* Index used to optimize scan, or NULL */
3635 if( pParse->explain==2 ){
3636 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3637 pTab->zName,
3638 pIdx ? "USING COVERING INDEX " : "",
3639 pIdx ? pIdx->zName : "",
3640 pTab->nRowEst
3642 sqlite3VdbeAddOp4(
3643 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3647 #else
3648 # define explainSimpleCount(a,b,c)
3649 #endif
3652 ** Generate code for the SELECT statement given in the p argument.
3654 ** The results are distributed in various ways depending on the
3655 ** contents of the SelectDest structure pointed to by argument pDest
3656 ** as follows:
3658 ** pDest->eDest Result
3659 ** ------------ -------------------------------------------
3660 ** SRT_Output Generate a row of output (using the OP_ResultRow
3661 ** opcode) for each row in the result set.
3663 ** SRT_Mem Only valid if the result is a single column.
3664 ** Store the first column of the first result row
3665 ** in register pDest->iParm then abandon the rest
3666 ** of the query. This destination implies "LIMIT 1".
3668 ** SRT_Set The result must be a single column. Store each
3669 ** row of result as the key in table pDest->iParm.
3670 ** Apply the affinity pDest->affinity before storing
3671 ** results. Used to implement "IN (SELECT ...)".
3673 ** SRT_Union Store results as a key in a temporary table pDest->iParm.
3675 ** SRT_Except Remove results from the temporary table pDest->iParm.
3677 ** SRT_Table Store results in temporary table pDest->iParm.
3678 ** This is like SRT_EphemTab except that the table
3679 ** is assumed to already be open.
3681 ** SRT_EphemTab Create an temporary table pDest->iParm and store
3682 ** the result there. The cursor is left open after
3683 ** returning. This is like SRT_Table except that
3684 ** this destination uses OP_OpenEphemeral to create
3685 ** the table first.
3687 ** SRT_Coroutine Generate a co-routine that returns a new row of
3688 ** results each time it is invoked. The entry point
3689 ** of the co-routine is stored in register pDest->iParm.
3691 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
3692 ** set is not empty.
3694 ** SRT_Discard Throw the results away. This is used by SELECT
3695 ** statements within triggers whose only purpose is
3696 ** the side-effects of functions.
3698 ** This routine returns the number of errors. If any errors are
3699 ** encountered, then an appropriate error message is left in
3700 ** pParse->zErrMsg.
3702 ** This routine does NOT free the Select structure passed in. The
3703 ** calling function needs to do that.
3705 int sqlite3Select(
3706 Parse *pParse, /* The parser context */
3707 Select *p, /* The SELECT statement being coded. */
3708 SelectDest *pDest /* What to do with the query results */
3710 int i, j; /* Loop counters */
3711 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
3712 Vdbe *v; /* The virtual machine under construction */
3713 int isAgg; /* True for select lists like "count(*)" */
3714 ExprList *pEList; /* List of columns to extract. */
3715 SrcList *pTabList; /* List of tables to select from */
3716 Expr *pWhere; /* The WHERE clause. May be NULL */
3717 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
3718 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
3719 Expr *pHaving; /* The HAVING clause. May be NULL */
3720 int isDistinct; /* True if the DISTINCT keyword is present */
3721 int distinct; /* Table to use for the distinct set */
3722 int rc = 1; /* Value to return from this function */
3723 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
3724 AggInfo sAggInfo; /* Information used by aggregate queries */
3725 int iEnd; /* Address of the end of the query */
3726 sqlite3 *db; /* The database connection */
3728 #ifndef SQLITE_OMIT_EXPLAIN
3729 int iRestoreSelectId = pParse->iSelectId;
3730 pParse->iSelectId = pParse->iNextSelectId++;
3731 #endif
3733 db = pParse->db;
3734 if( p==0 || db->mallocFailed || pParse->nErr ){
3735 return 1;
3737 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3738 memset(&sAggInfo, 0, sizeof(sAggInfo));
3740 if( IgnorableOrderby(pDest) ){
3741 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3742 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3743 /* If ORDER BY makes no difference in the output then neither does
3744 ** DISTINCT so it can be removed too. */
3745 sqlite3ExprListDelete(db, p->pOrderBy);
3746 p->pOrderBy = 0;
3747 p->selFlags &= ~SF_Distinct;
3749 sqlite3SelectPrep(pParse, p, 0);
3750 pOrderBy = p->pOrderBy;
3751 pTabList = p->pSrc;
3752 pEList = p->pEList;
3753 if( pParse->nErr || db->mallocFailed ){
3754 goto select_end;
3756 isAgg = (p->selFlags & SF_Aggregate)!=0;
3757 assert( pEList!=0 );
3759 /* Begin generating code.
3761 v = sqlite3GetVdbe(pParse);
3762 if( v==0 ) goto select_end;
3764 /* If writing to memory or generating a set
3765 ** only a single column may be output.
3767 #ifndef SQLITE_OMIT_SUBQUERY
3768 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3769 goto select_end;
3771 #endif
3773 /* Generate code for all sub-queries in the FROM clause
3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3776 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3777 struct SrcList_item *pItem = &pTabList->a[i];
3778 SelectDest dest;
3779 Select *pSub = pItem->pSelect;
3780 int isAggSub;
3782 if( pSub==0 || pItem->isPopulated ) continue;
3784 /* Increment Parse.nHeight by the height of the largest expression
3785 ** tree refered to by this, the parent select. The child select
3786 ** may contain expression trees of at most
3787 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3788 ** more conservative than necessary, but much easier than enforcing
3789 ** an exact limit.
3791 pParse->nHeight += sqlite3SelectExprHeight(p);
3793 /* Check to see if the subquery can be absorbed into the parent. */
3794 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3795 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3796 if( isAggSub ){
3797 isAgg = 1;
3798 p->selFlags |= SF_Aggregate;
3800 i = -1;
3801 }else{
3802 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3803 assert( pItem->isPopulated==0 );
3804 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3805 sqlite3Select(pParse, pSub, &dest);
3806 pItem->isPopulated = 1;
3807 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3809 if( /*pParse->nErr ||*/ db->mallocFailed ){
3810 goto select_end;
3812 pParse->nHeight -= sqlite3SelectExprHeight(p);
3813 pTabList = p->pSrc;
3814 if( !IgnorableOrderby(pDest) ){
3815 pOrderBy = p->pOrderBy;
3818 pEList = p->pEList;
3819 #endif
3820 pWhere = p->pWhere;
3821 pGroupBy = p->pGroupBy;
3822 pHaving = p->pHaving;
3823 isDistinct = (p->selFlags & SF_Distinct)!=0;
3825 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3826 /* If there is are a sequence of queries, do the earlier ones first.
3828 if( p->pPrior ){
3829 if( p->pRightmost==0 ){
3830 Select *pLoop, *pRight = 0;
3831 int cnt = 0;
3832 int mxSelect;
3833 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3834 pLoop->pRightmost = p;
3835 pLoop->pNext = pRight;
3836 pRight = pLoop;
3838 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3839 if( mxSelect && cnt>mxSelect ){
3840 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3841 goto select_end;
3844 rc = multiSelect(pParse, p, pDest);
3845 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
3846 return rc;
3848 #endif
3850 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3851 ** GROUP BY might use an index, DISTINCT never does.
3853 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3854 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3855 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3856 pGroupBy = p->pGroupBy;
3857 p->selFlags &= ~SF_Distinct;
3860 /* If there is both a GROUP BY and an ORDER BY clause and they are
3861 ** identical, then disable the ORDER BY clause since the GROUP BY
3862 ** will cause elements to come out in the correct order. This is
3863 ** an optimization - the correct answer should result regardless.
3864 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3865 ** to disable this optimization for testing purposes.
3867 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3868 && (db->flags & SQLITE_GroupByOrder)==0 ){
3869 pOrderBy = 0;
3872 /* If there is an ORDER BY clause, then this sorting
3873 ** index might end up being unused if the data can be
3874 ** extracted in pre-sorted order. If that is the case, then the
3875 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3876 ** we figure out that the sorting index is not needed. The addrSortIndex
3877 ** variable is used to facilitate that change.
3879 if( pOrderBy ){
3880 KeyInfo *pKeyInfo;
3881 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3882 pOrderBy->iECursor = pParse->nTab++;
3883 p->addrOpenEphm[2] = addrSortIndex =
3884 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3885 pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3886 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3887 }else{
3888 addrSortIndex = -1;
3891 /* If the output is destined for a temporary table, open that table.
3893 if( pDest->eDest==SRT_EphemTab ){
3894 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3897 /* Set the limiter.
3899 iEnd = sqlite3VdbeMakeLabel(v);
3900 p->nSelectRow = (double)LARGEST_INT64;
3901 computeLimitRegisters(pParse, p, iEnd);
3903 /* Open a virtual index to use for the distinct set.
3905 if( p->selFlags & SF_Distinct ){
3906 KeyInfo *pKeyInfo;
3907 assert( isAgg || pGroupBy );
3908 distinct = pParse->nTab++;
3909 pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3910 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3911 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3912 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
3913 }else{
3914 distinct = -1;
3917 /* Aggregate and non-aggregate queries are handled differently */
3918 if( !isAgg && pGroupBy==0 ){
3919 /* This case is for non-aggregate queries
3920 ** Begin the database scan
3922 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3923 if( pWInfo==0 ) goto select_end;
3924 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
3926 /* If sorting index that was created by a prior OP_OpenEphemeral
3927 ** instruction ended up not being needed, then change the OP_OpenEphemeral
3928 ** into an OP_Noop.
3930 if( addrSortIndex>=0 && pOrderBy==0 ){
3931 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3932 p->addrOpenEphm[2] = -1;
3935 /* Use the standard inner loop
3937 assert(!isDistinct);
3938 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3939 pWInfo->iContinue, pWInfo->iBreak);
3941 /* End the database scan loop.
3943 sqlite3WhereEnd(pWInfo);
3944 }else{
3945 /* This is the processing for aggregate queries */
3946 NameContext sNC; /* Name context for processing aggregate information */
3947 int iAMem; /* First Mem address for storing current GROUP BY */
3948 int iBMem; /* First Mem address for previous GROUP BY */
3949 int iUseFlag; /* Mem address holding flag indicating that at least
3950 ** one row of the input to the aggregator has been
3951 ** processed */
3952 int iAbortFlag; /* Mem address which causes query abort if positive */
3953 int groupBySort; /* Rows come from source in GROUP BY order */
3954 int addrEnd; /* End of processing for this SELECT */
3956 /* Remove any and all aliases between the result set and the
3957 ** GROUP BY clause.
3959 if( pGroupBy ){
3960 int k; /* Loop counter */
3961 struct ExprList_item *pItem; /* For looping over expression in a list */
3963 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3964 pItem->iAlias = 0;
3966 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3967 pItem->iAlias = 0;
3969 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
3970 }else{
3971 p->nSelectRow = (double)1;
3975 /* Create a label to jump to when we want to abort the query */
3976 addrEnd = sqlite3VdbeMakeLabel(v);
3978 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3979 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3980 ** SELECT statement.
3982 memset(&sNC, 0, sizeof(sNC));
3983 sNC.pParse = pParse;
3984 sNC.pSrcList = pTabList;
3985 sNC.pAggInfo = &sAggInfo;
3986 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3987 sAggInfo.pGroupBy = pGroupBy;
3988 sqlite3ExprAnalyzeAggList(&sNC, pEList);
3989 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3990 if( pHaving ){
3991 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3993 sAggInfo.nAccumulator = sAggInfo.nColumn;
3994 for(i=0; i<sAggInfo.nFunc; i++){
3995 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3996 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3998 if( db->mallocFailed ) goto select_end;
4000 /* Processing for aggregates with GROUP BY is very different and
4001 ** much more complex than aggregates without a GROUP BY.
4003 if( pGroupBy ){
4004 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
4005 int j1; /* A-vs-B comparision jump */
4006 int addrOutputRow; /* Start of subroutine that outputs a result row */
4007 int regOutputRow; /* Return address register for output subroutine */
4008 int addrSetAbort; /* Set the abort flag and return */
4009 int addrTopOfLoop; /* Top of the input loop */
4010 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4011 int addrReset; /* Subroutine for resetting the accumulator */
4012 int regReset; /* Return address register for reset subroutine */
4014 /* If there is a GROUP BY clause we might need a sorting index to
4015 ** implement it. Allocate that sorting index now. If it turns out
4016 ** that we do not need it after all, the OpenEphemeral instruction
4017 ** will be converted into a Noop.
4019 sAggInfo.sortingIdx = pParse->nTab++;
4020 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4021 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4022 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4023 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4025 /* Initialize memory locations used by GROUP BY aggregate processing
4027 iUseFlag = ++pParse->nMem;
4028 iAbortFlag = ++pParse->nMem;
4029 regOutputRow = ++pParse->nMem;
4030 addrOutputRow = sqlite3VdbeMakeLabel(v);
4031 regReset = ++pParse->nMem;
4032 addrReset = sqlite3VdbeMakeLabel(v);
4033 iAMem = pParse->nMem + 1;
4034 pParse->nMem += pGroupBy->nExpr;
4035 iBMem = pParse->nMem + 1;
4036 pParse->nMem += pGroupBy->nExpr;
4037 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4038 VdbeComment((v, "clear abort flag"));
4039 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4040 VdbeComment((v, "indicate accumulator empty"));
4042 /* Begin a loop that will extract all source rows in GROUP BY order.
4043 ** This might involve two separate loops with an OP_Sort in between, or
4044 ** it might be a single loop that uses an index to extract information
4045 ** in the right order to begin with.
4047 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4048 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
4049 if( pWInfo==0 ) goto select_end;
4050 if( pGroupBy==0 ){
4051 /* The optimizer is able to deliver rows in group by order so
4052 ** we do not have to sort. The OP_OpenEphemeral table will be
4053 ** cancelled later because we still need to use the pKeyInfo
4055 pGroupBy = p->pGroupBy;
4056 groupBySort = 0;
4057 }else{
4058 /* Rows are coming out in undetermined order. We have to push
4059 ** each row into a sorting index, terminate the first loop,
4060 ** then loop over the sorting index in order to get the output
4061 ** in sorted order
4063 int regBase;
4064 int regRecord;
4065 int nCol;
4066 int nGroupBy;
4068 explainTempTable(pParse,
4069 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
4071 groupBySort = 1;
4072 nGroupBy = pGroupBy->nExpr;
4073 nCol = nGroupBy + 1;
4074 j = nGroupBy+1;
4075 for(i=0; i<sAggInfo.nColumn; i++){
4076 if( sAggInfo.aCol[i].iSorterColumn>=j ){
4077 nCol++;
4078 j++;
4081 regBase = sqlite3GetTempRange(pParse, nCol);
4082 sqlite3ExprCacheClear(pParse);
4083 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4084 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4085 j = nGroupBy+1;
4086 for(i=0; i<sAggInfo.nColumn; i++){
4087 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4088 if( pCol->iSorterColumn>=j ){
4089 int r1 = j + regBase;
4090 int r2;
4092 r2 = sqlite3ExprCodeGetColumn(pParse,
4093 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
4094 if( r1!=r2 ){
4095 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4097 j++;
4100 regRecord = sqlite3GetTempReg(pParse);
4101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4102 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
4103 sqlite3ReleaseTempReg(pParse, regRecord);
4104 sqlite3ReleaseTempRange(pParse, regBase, nCol);
4105 sqlite3WhereEnd(pWInfo);
4106 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
4107 VdbeComment((v, "GROUP BY sort"));
4108 sAggInfo.useSortingIdx = 1;
4109 sqlite3ExprCacheClear(pParse);
4112 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4113 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4114 ** Then compare the current GROUP BY terms against the GROUP BY terms
4115 ** from the previous row currently stored in a0, a1, a2...
4117 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4118 sqlite3ExprCacheClear(pParse);
4119 for(j=0; j<pGroupBy->nExpr; j++){
4120 if( groupBySort ){
4121 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
4122 }else{
4123 sAggInfo.directMode = 1;
4124 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4127 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4128 (char*)pKeyInfo, P4_KEYINFO);
4129 j1 = sqlite3VdbeCurrentAddr(v);
4130 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4132 /* Generate code that runs whenever the GROUP BY changes.
4133 ** Changes in the GROUP BY are detected by the previous code
4134 ** block. If there were no changes, this block is skipped.
4136 ** This code copies current group by terms in b0,b1,b2,...
4137 ** over to a0,a1,a2. It then calls the output subroutine
4138 ** and resets the aggregate accumulator registers in preparation
4139 ** for the next GROUP BY batch.
4141 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4142 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4143 VdbeComment((v, "output one row"));
4144 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4145 VdbeComment((v, "check abort flag"));
4146 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4147 VdbeComment((v, "reset accumulator"));
4149 /* Update the aggregate accumulators based on the content of
4150 ** the current row
4152 sqlite3VdbeJumpHere(v, j1);
4153 updateAccumulator(pParse, &sAggInfo);
4154 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4155 VdbeComment((v, "indicate data in accumulator"));
4157 /* End of the loop
4159 if( groupBySort ){
4160 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4161 }else{
4162 sqlite3WhereEnd(pWInfo);
4163 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4166 /* Output the final row of result
4168 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4169 VdbeComment((v, "output final row"));
4171 /* Jump over the subroutines
4173 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4175 /* Generate a subroutine that outputs a single row of the result
4176 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
4177 ** is less than or equal to zero, the subroutine is a no-op. If
4178 ** the processing calls for the query to abort, this subroutine
4179 ** increments the iAbortFlag memory location before returning in
4180 ** order to signal the caller to abort.
4182 addrSetAbort = sqlite3VdbeCurrentAddr(v);
4183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4184 VdbeComment((v, "set abort flag"));
4185 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4186 sqlite3VdbeResolveLabel(v, addrOutputRow);
4187 addrOutputRow = sqlite3VdbeCurrentAddr(v);
4188 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4189 VdbeComment((v, "Groupby result generator entry point"));
4190 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4191 finalizeAggFunctions(pParse, &sAggInfo);
4192 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4193 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4194 distinct, pDest,
4195 addrOutputRow+1, addrSetAbort);
4196 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4197 VdbeComment((v, "end groupby result generator"));
4199 /* Generate a subroutine that will reset the group-by accumulator
4201 sqlite3VdbeResolveLabel(v, addrReset);
4202 resetAccumulator(pParse, &sAggInfo);
4203 sqlite3VdbeAddOp1(v, OP_Return, regReset);
4205 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
4206 else {
4207 ExprList *pDel = 0;
4208 #ifndef SQLITE_OMIT_BTREECOUNT
4209 Table *pTab;
4210 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4211 /* If isSimpleCount() returns a pointer to a Table structure, then
4212 ** the SQL statement is of the form:
4214 ** SELECT count(*) FROM <tbl>
4216 ** where the Table structure returned represents table <tbl>.
4218 ** This statement is so common that it is optimized specially. The
4219 ** OP_Count instruction is executed either on the intkey table that
4220 ** contains the data for table <tbl> or on one of its indexes. It
4221 ** is better to execute the op on an index, as indexes are almost
4222 ** always spread across less pages than their corresponding tables.
4224 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4225 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
4226 Index *pIdx; /* Iterator variable */
4227 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
4228 Index *pBest = 0; /* Best index found so far */
4229 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
4231 sqlite3CodeVerifySchema(pParse, iDb);
4232 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4234 /* Search for the index that has the least amount of columns. If
4235 ** there is such an index, and it has less columns than the table
4236 ** does, then we can assume that it consumes less space on disk and
4237 ** will therefore be cheaper to scan to determine the query result.
4238 ** In this case set iRoot to the root page number of the index b-tree
4239 ** and pKeyInfo to the KeyInfo structure required to navigate the
4240 ** index.
4242 ** In practice the KeyInfo structure will not be used. It is only
4243 ** passed to keep OP_OpenRead happy.
4245 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4246 if( !pBest || pIdx->nColumn<pBest->nColumn ){
4247 pBest = pIdx;
4250 if( pBest && pBest->nColumn<pTab->nCol ){
4251 iRoot = pBest->tnum;
4252 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4256 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4257 if( pKeyInfo ){
4258 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4260 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4261 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4262 explainSimpleCount(pParse, pTab, pBest);
4263 }else
4264 #endif /* SQLITE_OMIT_BTREECOUNT */
4266 /* Check if the query is of one of the following forms:
4268 ** SELECT min(x) FROM ...
4269 ** SELECT max(x) FROM ...
4271 ** If it is, then ask the code in where.c to attempt to sort results
4272 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4273 ** If where.c is able to produce results sorted in this order, then
4274 ** add vdbe code to break out of the processing loop after the
4275 ** first iteration (since the first iteration of the loop is
4276 ** guaranteed to operate on the row with the minimum or maximum
4277 ** value of x, the only row required).
4279 ** A special flag must be passed to sqlite3WhereBegin() to slightly
4280 ** modify behaviour as follows:
4282 ** + If the query is a "SELECT min(x)", then the loop coded by
4283 ** where.c should not iterate over any values with a NULL value
4284 ** for x.
4286 ** + The optimizer code in where.c (the thing that decides which
4287 ** index or indices to use) should place a different priority on
4288 ** satisfying the 'ORDER BY' clause than it does in other cases.
4289 ** Refer to code and comments in where.c for details.
4291 ExprList *pMinMax = 0;
4292 u8 flag = minMaxQuery(p);
4293 if( flag ){
4294 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4295 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4296 pDel = pMinMax;
4297 if( pMinMax && !db->mallocFailed ){
4298 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4299 pMinMax->a[0].pExpr->op = TK_COLUMN;
4303 /* This case runs if the aggregate has no GROUP BY clause. The
4304 ** processing is much simpler since there is only a single row
4305 ** of output.
4307 resetAccumulator(pParse, &sAggInfo);
4308 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4309 if( pWInfo==0 ){
4310 sqlite3ExprListDelete(db, pDel);
4311 goto select_end;
4313 updateAccumulator(pParse, &sAggInfo);
4314 if( !pMinMax && flag ){
4315 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4316 VdbeComment((v, "%s() by index",
4317 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4319 sqlite3WhereEnd(pWInfo);
4320 finalizeAggFunctions(pParse, &sAggInfo);
4323 pOrderBy = 0;
4324 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4325 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4326 pDest, addrEnd, addrEnd);
4327 sqlite3ExprListDelete(db, pDel);
4329 sqlite3VdbeResolveLabel(v, addrEnd);
4331 } /* endif aggregate query */
4333 if( distinct>=0 ){
4334 explainTempTable(pParse, "DISTINCT");
4337 /* If there is an ORDER BY clause, then we need to sort the results
4338 ** and send them to the callback one by one.
4340 if( pOrderBy ){
4341 explainTempTable(pParse, "ORDER BY");
4342 generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4345 /* Jump here to skip this query
4347 sqlite3VdbeResolveLabel(v, iEnd);
4349 /* The SELECT was successfully coded. Set the return code to 0
4350 ** to indicate no errors.
4352 rc = 0;
4354 /* Control jumps to here if an error is encountered above, or upon
4355 ** successful coding of the SELECT.
4357 select_end:
4358 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4360 /* Identify column names if results of the SELECT are to be output.
4362 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4363 generateColumnNames(pParse, pTabList, pEList);
4366 sqlite3DbFree(db, sAggInfo.aCol);
4367 sqlite3DbFree(db, sAggInfo.aFunc);
4368 return rc;
4371 #if defined(SQLITE_DEBUG)
4373 *******************************************************************************
4374 ** The following code is used for testing and debugging only. The code
4375 ** that follows does not appear in normal builds.
4377 ** These routines are used to print out the content of all or part of a
4378 ** parse structures such as Select or Expr. Such printouts are useful
4379 ** for helping to understand what is happening inside the code generator
4380 ** during the execution of complex SELECT statements.
4382 ** These routine are not called anywhere from within the normal
4383 ** code base. Then are intended to be called from within the debugger
4384 ** or from temporary "printf" statements inserted for debugging.
4386 void sqlite3PrintExpr(Expr *p){
4387 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4388 sqlite3DebugPrintf("(%s", p->u.zToken);
4389 }else{
4390 sqlite3DebugPrintf("(%d", p->op);
4392 if( p->pLeft ){
4393 sqlite3DebugPrintf(" ");
4394 sqlite3PrintExpr(p->pLeft);
4396 if( p->pRight ){
4397 sqlite3DebugPrintf(" ");
4398 sqlite3PrintExpr(p->pRight);
4400 sqlite3DebugPrintf(")");
4402 void sqlite3PrintExprList(ExprList *pList){
4403 int i;
4404 for(i=0; i<pList->nExpr; i++){
4405 sqlite3PrintExpr(pList->a[i].pExpr);
4406 if( i<pList->nExpr-1 ){
4407 sqlite3DebugPrintf(", ");
4411 void sqlite3PrintSelect(Select *p, int indent){
4412 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4413 sqlite3PrintExprList(p->pEList);
4414 sqlite3DebugPrintf("\n");
4415 if( p->pSrc ){
4416 char *zPrefix;
4417 int i;
4418 zPrefix = "FROM";
4419 for(i=0; i<p->pSrc->nSrc; i++){
4420 struct SrcList_item *pItem = &p->pSrc->a[i];
4421 sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4422 zPrefix = "";
4423 if( pItem->pSelect ){
4424 sqlite3DebugPrintf("(\n");
4425 sqlite3PrintSelect(pItem->pSelect, indent+10);
4426 sqlite3DebugPrintf("%*s)", indent+8, "");
4427 }else if( pItem->zName ){
4428 sqlite3DebugPrintf("%s", pItem->zName);
4430 if( pItem->pTab ){
4431 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4433 if( pItem->zAlias ){
4434 sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4436 if( i<p->pSrc->nSrc-1 ){
4437 sqlite3DebugPrintf(",");
4439 sqlite3DebugPrintf("\n");
4442 if( p->pWhere ){
4443 sqlite3DebugPrintf("%*s WHERE ", indent, "");
4444 sqlite3PrintExpr(p->pWhere);
4445 sqlite3DebugPrintf("\n");
4447 if( p->pGroupBy ){
4448 sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4449 sqlite3PrintExprList(p->pGroupBy);
4450 sqlite3DebugPrintf("\n");
4452 if( p->pHaving ){
4453 sqlite3DebugPrintf("%*s HAVING ", indent, "");
4454 sqlite3PrintExpr(p->pHaving);
4455 sqlite3DebugPrintf("\n");
4457 if( p->pOrderBy ){
4458 sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4459 sqlite3PrintExprList(p->pOrderBy);
4460 sqlite3DebugPrintf("\n");
4463 /* End of the structure debug printing code
4464 *****************************************************************************/
4465 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */