Android: Remove unneeded Compositor::SetNeedsRedraw()
[chromium-blink-merge.git] / net / disk_cache / backend_impl.cc
blob0f8c3fdd1957b595167fc512aebbeccf05d7a39e
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/file_util.h"
10 #include "base/files/file_path.h"
11 #include "base/hash.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/metrics/field_trial.h"
14 #include "base/metrics/histogram.h"
15 #include "base/metrics/stats_counters.h"
16 #include "base/rand_util.h"
17 #include "base/strings/string_util.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/sys_info.h"
20 #include "base/threading/thread_restrictions.h"
21 #include "base/time/time.h"
22 #include "base/timer/timer.h"
23 #include "net/base/net_errors.h"
24 #include "net/disk_cache/cache_util.h"
25 #include "net/disk_cache/disk_format.h"
26 #include "net/disk_cache/entry_impl.h"
27 #include "net/disk_cache/errors.h"
28 #include "net/disk_cache/experiments.h"
29 #include "net/disk_cache/file.h"
31 // This has to be defined before including histogram_macros.h from this file.
32 #define NET_DISK_CACHE_BACKEND_IMPL_CC_
33 #include "net/disk_cache/histogram_macros.h"
35 using base::Time;
36 using base::TimeDelta;
37 using base::TimeTicks;
39 namespace {
41 const char* kIndexName = "index";
43 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
44 // Note that the actual target is to keep the index table load factor under 55%
45 // for most users.
46 const int k64kEntriesStore = 240 * 1000 * 1000;
47 const int kBaseTableLen = 64 * 1024;
48 const int kDefaultCacheSize = 80 * 1024 * 1024;
50 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
51 const int kTrimDelay = 10;
53 int DesiredIndexTableLen(int32 storage_size) {
54 if (storage_size <= k64kEntriesStore)
55 return kBaseTableLen;
56 if (storage_size <= k64kEntriesStore * 2)
57 return kBaseTableLen * 2;
58 if (storage_size <= k64kEntriesStore * 4)
59 return kBaseTableLen * 4;
60 if (storage_size <= k64kEntriesStore * 8)
61 return kBaseTableLen * 8;
63 // The biggest storage_size for int32 requires a 4 MB table.
64 return kBaseTableLen * 16;
67 int MaxStorageSizeForTable(int table_len) {
68 return table_len * (k64kEntriesStore / kBaseTableLen);
71 size_t GetIndexSize(int table_len) {
72 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
73 return sizeof(disk_cache::IndexHeader) + table_size;
76 // ------------------------------------------------------------------------
78 // Sets group for the current experiment. Returns false if the files should be
79 // discarded.
80 bool InitExperiment(disk_cache::IndexHeader* header, bool cache_created) {
81 if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 ||
82 header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) {
83 // Discard current cache.
84 return false;
87 if (base::FieldTrialList::FindFullName("SimpleCacheTrial") ==
88 "ExperimentControl") {
89 if (cache_created) {
90 header->experiment = disk_cache::EXPERIMENT_SIMPLE_CONTROL;
91 return true;
93 return header->experiment == disk_cache::EXPERIMENT_SIMPLE_CONTROL;
96 header->experiment = disk_cache::NO_EXPERIMENT;
97 return true;
100 // A callback to perform final cleanup on the background thread.
101 void FinalCleanupCallback(disk_cache::BackendImpl* backend) {
102 backend->CleanupCache();
105 } // namespace
107 // ------------------------------------------------------------------------
109 namespace disk_cache {
111 // Returns the preferred maximum number of bytes for the cache given the
112 // number of available bytes.
113 int PreferedCacheSize(int64 available) {
114 // Return 80% of the available space if there is not enough space to use
115 // kDefaultCacheSize.
116 if (available < kDefaultCacheSize * 10 / 8)
117 return static_cast<int32>(available * 8 / 10);
119 // Return kDefaultCacheSize if it uses 80% to 10% of the available space.
120 if (available < kDefaultCacheSize * 10)
121 return kDefaultCacheSize;
123 // Return 10% of the available space if the target size
124 // (2.5 * kDefaultCacheSize) is more than 10%.
125 if (available < static_cast<int64>(kDefaultCacheSize) * 25)
126 return static_cast<int32>(available / 10);
128 // Return the target size (2.5 * kDefaultCacheSize) if it uses 10% to 1%
129 // of the available space.
130 if (available < static_cast<int64>(kDefaultCacheSize) * 250)
131 return kDefaultCacheSize * 5 / 2;
133 // Return 1% of the available space if it does not exceed kint32max.
134 if (available < static_cast<int64>(kint32max) * 100)
135 return static_cast<int32>(available / 100);
137 return kint32max;
140 // ------------------------------------------------------------------------
142 BackendImpl::BackendImpl(const base::FilePath& path,
143 base::MessageLoopProxy* cache_thread,
144 net::NetLog* net_log)
145 : background_queue_(this, cache_thread),
146 path_(path),
147 block_files_(path),
148 mask_(0),
149 max_size_(0),
150 up_ticks_(0),
151 cache_type_(net::DISK_CACHE),
152 uma_report_(0),
153 user_flags_(0),
154 init_(false),
155 restarted_(false),
156 unit_test_(false),
157 read_only_(false),
158 disabled_(false),
159 new_eviction_(false),
160 first_timer_(true),
161 user_load_(false),
162 net_log_(net_log),
163 done_(true, false),
164 ptr_factory_(this) {
167 BackendImpl::BackendImpl(const base::FilePath& path,
168 uint32 mask,
169 base::MessageLoopProxy* cache_thread,
170 net::NetLog* net_log)
171 : background_queue_(this, cache_thread),
172 path_(path),
173 block_files_(path),
174 mask_(mask),
175 max_size_(0),
176 up_ticks_(0),
177 cache_type_(net::DISK_CACHE),
178 uma_report_(0),
179 user_flags_(kMask),
180 init_(false),
181 restarted_(false),
182 unit_test_(false),
183 read_only_(false),
184 disabled_(false),
185 new_eviction_(false),
186 first_timer_(true),
187 user_load_(false),
188 net_log_(net_log),
189 done_(true, false),
190 ptr_factory_(this) {
193 BackendImpl::~BackendImpl() {
194 if (user_flags_ & kNoRandom) {
195 // This is a unit test, so we want to be strict about not leaking entries
196 // and completing all the work.
197 background_queue_.WaitForPendingIO();
198 } else {
199 // This is most likely not a test, so we want to do as little work as
200 // possible at this time, at the price of leaving dirty entries behind.
201 background_queue_.DropPendingIO();
204 if (background_queue_.BackgroundIsCurrentThread()) {
205 // Unit tests may use the same thread for everything.
206 CleanupCache();
207 } else {
208 background_queue_.background_thread()->PostTask(
209 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
210 // http://crbug.com/74623
211 base::ThreadRestrictions::ScopedAllowWait allow_wait;
212 done_.Wait();
216 int BackendImpl::Init(const CompletionCallback& callback) {
217 background_queue_.Init(callback);
218 return net::ERR_IO_PENDING;
221 int BackendImpl::SyncInit() {
222 #if defined(NET_BUILD_STRESS_CACHE)
223 // Start evictions right away.
224 up_ticks_ = kTrimDelay * 2;
225 #endif
226 DCHECK(!init_);
227 if (init_)
228 return net::ERR_FAILED;
230 bool create_files = false;
231 if (!InitBackingStore(&create_files)) {
232 ReportError(ERR_STORAGE_ERROR);
233 return net::ERR_FAILED;
236 num_refs_ = num_pending_io_ = max_refs_ = 0;
237 entry_count_ = byte_count_ = 0;
239 if (!restarted_) {
240 buffer_bytes_ = 0;
241 trace_object_ = TraceObject::GetTraceObject();
242 // Create a recurrent timer of 30 secs.
243 int timer_delay = unit_test_ ? 1000 : 30000;
244 timer_.reset(new base::RepeatingTimer<BackendImpl>());
245 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
246 &BackendImpl::OnStatsTimer);
249 init_ = true;
250 Trace("Init");
252 if (data_->header.experiment != NO_EXPERIMENT &&
253 cache_type_ != net::DISK_CACHE) {
254 // No experiment for other caches.
255 return net::ERR_FAILED;
258 if (!(user_flags_ & kNoRandom)) {
259 // The unit test controls directly what to test.
260 new_eviction_ = (cache_type_ == net::DISK_CACHE);
263 if (!CheckIndex()) {
264 ReportError(ERR_INIT_FAILED);
265 return net::ERR_FAILED;
268 if (!restarted_ && (create_files || !data_->header.num_entries))
269 ReportError(ERR_CACHE_CREATED);
271 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
272 !InitExperiment(&data_->header, create_files)) {
273 return net::ERR_FAILED;
276 // We don't care if the value overflows. The only thing we care about is that
277 // the id cannot be zero, because that value is used as "not dirty".
278 // Increasing the value once per second gives us many years before we start
279 // having collisions.
280 data_->header.this_id++;
281 if (!data_->header.this_id)
282 data_->header.this_id++;
284 bool previous_crash = (data_->header.crash != 0);
285 data_->header.crash = 1;
287 if (!block_files_.Init(create_files))
288 return net::ERR_FAILED;
290 // We want to minimize the changes to cache for an AppCache.
291 if (cache_type() == net::APP_CACHE) {
292 DCHECK(!new_eviction_);
293 read_only_ = true;
294 } else if (cache_type() == net::SHADER_CACHE) {
295 DCHECK(!new_eviction_);
298 eviction_.Init(this);
300 // stats_ and rankings_ may end up calling back to us so we better be enabled.
301 disabled_ = false;
302 if (!InitStats())
303 return net::ERR_FAILED;
305 disabled_ = !rankings_.Init(this, new_eviction_);
307 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
308 trace_object_->EnableTracing(false);
309 int sc = SelfCheck();
310 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
311 NOTREACHED();
312 trace_object_->EnableTracing(true);
313 #endif
315 if (previous_crash) {
316 ReportError(ERR_PREVIOUS_CRASH);
317 } else if (!restarted_) {
318 ReportError(ERR_NO_ERROR);
321 FlushIndex();
323 return disabled_ ? net::ERR_FAILED : net::OK;
326 void BackendImpl::CleanupCache() {
327 Trace("Backend Cleanup");
328 eviction_.Stop();
329 timer_.reset();
331 if (init_) {
332 StoreStats();
333 if (data_)
334 data_->header.crash = 0;
336 if (user_flags_ & kNoRandom) {
337 // This is a net_unittest, verify that we are not 'leaking' entries.
338 File::WaitForPendingIO(&num_pending_io_);
339 DCHECK(!num_refs_);
342 block_files_.CloseFiles();
343 FlushIndex();
344 index_ = NULL;
345 ptr_factory_.InvalidateWeakPtrs();
346 done_.Signal();
349 // ------------------------------------------------------------------------
351 int BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry,
352 const CompletionCallback& callback) {
353 DCHECK(!callback.is_null());
354 background_queue_.OpenPrevEntry(iter, prev_entry, callback);
355 return net::ERR_IO_PENDING;
358 int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) {
359 DCHECK(entry);
360 *entry = OpenEntryImpl(key);
361 return (*entry) ? net::OK : net::ERR_FAILED;
364 int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) {
365 DCHECK(entry);
366 *entry = CreateEntryImpl(key);
367 return (*entry) ? net::OK : net::ERR_FAILED;
370 int BackendImpl::SyncDoomEntry(const std::string& key) {
371 if (disabled_)
372 return net::ERR_FAILED;
374 EntryImpl* entry = OpenEntryImpl(key);
375 if (!entry)
376 return net::ERR_FAILED;
378 entry->DoomImpl();
379 entry->Release();
380 return net::OK;
383 int BackendImpl::SyncDoomAllEntries() {
384 // This is not really an error, but it is an interesting condition.
385 ReportError(ERR_CACHE_DOOMED);
386 stats_.OnEvent(Stats::DOOM_CACHE);
387 if (!num_refs_) {
388 RestartCache(false);
389 return disabled_ ? net::ERR_FAILED : net::OK;
390 } else {
391 if (disabled_)
392 return net::ERR_FAILED;
394 eviction_.TrimCache(true);
395 return net::OK;
399 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
400 const base::Time end_time) {
401 DCHECK_NE(net::APP_CACHE, cache_type_);
402 if (end_time.is_null())
403 return SyncDoomEntriesSince(initial_time);
405 DCHECK(end_time >= initial_time);
407 if (disabled_)
408 return net::ERR_FAILED;
410 EntryImpl* node;
411 void* iter = NULL;
412 EntryImpl* next = OpenNextEntryImpl(&iter);
413 if (!next)
414 return net::OK;
416 while (next) {
417 node = next;
418 next = OpenNextEntryImpl(&iter);
420 if (node->GetLastUsed() >= initial_time &&
421 node->GetLastUsed() < end_time) {
422 node->DoomImpl();
423 } else if (node->GetLastUsed() < initial_time) {
424 if (next)
425 next->Release();
426 next = NULL;
427 SyncEndEnumeration(iter);
430 node->Release();
433 return net::OK;
436 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
437 // entries that are too old.
438 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
439 DCHECK_NE(net::APP_CACHE, cache_type_);
440 if (disabled_)
441 return net::ERR_FAILED;
443 stats_.OnEvent(Stats::DOOM_RECENT);
444 for (;;) {
445 void* iter = NULL;
446 EntryImpl* entry = OpenNextEntryImpl(&iter);
447 if (!entry)
448 return net::OK;
450 if (initial_time > entry->GetLastUsed()) {
451 entry->Release();
452 SyncEndEnumeration(iter);
453 return net::OK;
456 entry->DoomImpl();
457 entry->Release();
458 SyncEndEnumeration(iter); // Dooming the entry invalidates the iterator.
462 int BackendImpl::SyncOpenNextEntry(void** iter, Entry** next_entry) {
463 *next_entry = OpenNextEntryImpl(iter);
464 return (*next_entry) ? net::OK : net::ERR_FAILED;
467 int BackendImpl::SyncOpenPrevEntry(void** iter, Entry** prev_entry) {
468 *prev_entry = OpenPrevEntryImpl(iter);
469 return (*prev_entry) ? net::OK : net::ERR_FAILED;
472 void BackendImpl::SyncEndEnumeration(void* iter) {
473 scoped_ptr<Rankings::Iterator> iterator(
474 reinterpret_cast<Rankings::Iterator*>(iter));
477 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
478 if (disabled_)
479 return;
481 uint32 hash = base::Hash(key);
482 bool error;
483 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
484 if (cache_entry) {
485 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
486 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
488 cache_entry->Release();
492 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
493 if (disabled_)
494 return NULL;
496 TimeTicks start = TimeTicks::Now();
497 uint32 hash = base::Hash(key);
498 Trace("Open hash 0x%x", hash);
500 bool error;
501 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
502 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
503 // The entry was already evicted.
504 cache_entry->Release();
505 cache_entry = NULL;
508 int current_size = data_->header.num_bytes / (1024 * 1024);
509 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
510 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
511 int64 use_hours = total_hours - no_use_hours;
513 if (!cache_entry) {
514 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
515 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
516 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
517 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
518 stats_.OnEvent(Stats::OPEN_MISS);
519 return NULL;
522 eviction_.OnOpenEntry(cache_entry);
523 entry_count_++;
525 Trace("Open hash 0x%x end: 0x%x", hash,
526 cache_entry->entry()->address().value());
527 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
528 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
529 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
530 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
531 stats_.OnEvent(Stats::OPEN_HIT);
532 SIMPLE_STATS_COUNTER("disk_cache.hit");
533 return cache_entry;
536 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
537 if (disabled_ || key.empty())
538 return NULL;
540 TimeTicks start = TimeTicks::Now();
541 uint32 hash = base::Hash(key);
542 Trace("Create hash 0x%x", hash);
544 scoped_refptr<EntryImpl> parent;
545 Addr entry_address(data_->table[hash & mask_]);
546 if (entry_address.is_initialized()) {
547 // We have an entry already. It could be the one we are looking for, or just
548 // a hash conflict.
549 bool error;
550 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
551 if (old_entry)
552 return ResurrectEntry(old_entry);
554 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
555 DCHECK(!error);
556 if (parent_entry) {
557 parent.swap(&parent_entry);
558 } else if (data_->table[hash & mask_]) {
559 // We should have corrected the problem.
560 NOTREACHED();
561 return NULL;
565 // The general flow is to allocate disk space and initialize the entry data,
566 // followed by saving that to disk, then linking the entry though the index
567 // and finally through the lists. If there is a crash in this process, we may
568 // end up with:
569 // a. Used, unreferenced empty blocks on disk (basically just garbage).
570 // b. Used, unreferenced but meaningful data on disk (more garbage).
571 // c. A fully formed entry, reachable only through the index.
572 // d. A fully formed entry, also reachable through the lists, but still dirty.
574 // Anything after (b) can be automatically cleaned up. We may consider saving
575 // the current operation (as we do while manipulating the lists) so that we
576 // can detect and cleanup (a) and (b).
578 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
579 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
580 LOG(ERROR) << "Create entry failed " << key.c_str();
581 stats_.OnEvent(Stats::CREATE_ERROR);
582 return NULL;
585 Addr node_address(0);
586 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
587 block_files_.DeleteBlock(entry_address, false);
588 LOG(ERROR) << "Create entry failed " << key.c_str();
589 stats_.OnEvent(Stats::CREATE_ERROR);
590 return NULL;
593 scoped_refptr<EntryImpl> cache_entry(
594 new EntryImpl(this, entry_address, false));
595 IncreaseNumRefs();
597 if (!cache_entry->CreateEntry(node_address, key, hash)) {
598 block_files_.DeleteBlock(entry_address, false);
599 block_files_.DeleteBlock(node_address, false);
600 LOG(ERROR) << "Create entry failed " << key.c_str();
601 stats_.OnEvent(Stats::CREATE_ERROR);
602 return NULL;
605 cache_entry->BeginLogging(net_log_, true);
607 // We are not failing the operation; let's add this to the map.
608 open_entries_[entry_address.value()] = cache_entry.get();
610 // Save the entry.
611 cache_entry->entry()->Store();
612 cache_entry->rankings()->Store();
613 IncreaseNumEntries();
614 entry_count_++;
616 // Link this entry through the index.
617 if (parent.get()) {
618 parent->SetNextAddress(entry_address);
619 } else {
620 data_->table[hash & mask_] = entry_address.value();
623 // Link this entry through the lists.
624 eviction_.OnCreateEntry(cache_entry.get());
626 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
627 stats_.OnEvent(Stats::CREATE_HIT);
628 SIMPLE_STATS_COUNTER("disk_cache.miss");
629 Trace("create entry hit ");
630 FlushIndex();
631 cache_entry->AddRef();
632 return cache_entry.get();
635 EntryImpl* BackendImpl::OpenNextEntryImpl(void** iter) {
636 return OpenFollowingEntry(true, iter);
639 EntryImpl* BackendImpl::OpenPrevEntryImpl(void** iter) {
640 return OpenFollowingEntry(false, iter);
643 bool BackendImpl::SetMaxSize(int max_bytes) {
644 COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
645 if (max_bytes < 0)
646 return false;
648 // Zero size means use the default.
649 if (!max_bytes)
650 return true;
652 // Avoid a DCHECK later on.
653 if (max_bytes >= kint32max - kint32max / 10)
654 max_bytes = kint32max - kint32max / 10 - 1;
656 user_flags_ |= kMaxSize;
657 max_size_ = max_bytes;
658 return true;
661 void BackendImpl::SetType(net::CacheType type) {
662 DCHECK_NE(net::MEMORY_CACHE, type);
663 cache_type_ = type;
666 base::FilePath BackendImpl::GetFileName(Addr address) const {
667 if (!address.is_separate_file() || !address.is_initialized()) {
668 NOTREACHED();
669 return base::FilePath();
672 std::string tmp = base::StringPrintf("f_%06x", address.FileNumber());
673 return path_.AppendASCII(tmp);
676 MappedFile* BackendImpl::File(Addr address) {
677 if (disabled_)
678 return NULL;
679 return block_files_.GetFile(address);
682 base::WeakPtr<InFlightBackendIO> BackendImpl::GetBackgroundQueue() {
683 return background_queue_.GetWeakPtr();
686 bool BackendImpl::CreateExternalFile(Addr* address) {
687 int file_number = data_->header.last_file + 1;
688 Addr file_address(0);
689 bool success = false;
690 for (int i = 0; i < 0x0fffffff; i++, file_number++) {
691 if (!file_address.SetFileNumber(file_number)) {
692 file_number = 1;
693 continue;
695 base::FilePath name = GetFileName(file_address);
696 int flags = base::PLATFORM_FILE_READ |
697 base::PLATFORM_FILE_WRITE |
698 base::PLATFORM_FILE_CREATE |
699 base::PLATFORM_FILE_EXCLUSIVE_WRITE;
700 base::PlatformFileError error;
701 scoped_refptr<disk_cache::File> file(new disk_cache::File(
702 base::CreatePlatformFile(name, flags, NULL, &error)));
703 if (!file->IsValid()) {
704 if (error != base::PLATFORM_FILE_ERROR_EXISTS) {
705 LOG(ERROR) << "Unable to create file: " << error;
706 return false;
708 continue;
711 success = true;
712 break;
715 DCHECK(success);
716 if (!success)
717 return false;
719 data_->header.last_file = file_number;
720 address->set_value(file_address.value());
721 return true;
724 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
725 Addr* block_address) {
726 return block_files_.CreateBlock(block_type, block_count, block_address);
729 void BackendImpl::DeleteBlock(Addr block_address, bool deep) {
730 block_files_.DeleteBlock(block_address, deep);
733 LruData* BackendImpl::GetLruData() {
734 return &data_->header.lru;
737 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
738 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
739 return;
740 eviction_.UpdateRank(entry, modified);
743 void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) {
744 Addr address(rankings->Data()->contents);
745 EntryImpl* cache_entry = NULL;
746 if (NewEntry(address, &cache_entry)) {
747 STRESS_NOTREACHED();
748 return;
751 uint32 hash = cache_entry->GetHash();
752 cache_entry->Release();
754 // Anything on the table means that this entry is there.
755 if (data_->table[hash & mask_])
756 return;
758 data_->table[hash & mask_] = address.value();
759 FlushIndex();
762 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
763 uint32 hash = entry->GetHash();
764 std::string key = entry->GetKey();
765 Addr entry_addr = entry->entry()->address();
766 bool error;
767 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
768 CacheAddr child(entry->GetNextAddress());
770 Trace("Doom entry 0x%p", entry);
772 if (!entry->doomed()) {
773 // We may have doomed this entry from within MatchEntry.
774 eviction_.OnDoomEntry(entry);
775 entry->InternalDoom();
776 if (!new_eviction_) {
777 DecreaseNumEntries();
779 stats_.OnEvent(Stats::DOOM_ENTRY);
782 if (parent_entry) {
783 parent_entry->SetNextAddress(Addr(child));
784 parent_entry->Release();
785 } else if (!error) {
786 data_->table[hash & mask_] = child;
789 FlushIndex();
792 #if defined(NET_BUILD_STRESS_CACHE)
794 CacheAddr BackendImpl::GetNextAddr(Addr address) {
795 EntriesMap::iterator it = open_entries_.find(address.value());
796 if (it != open_entries_.end()) {
797 EntryImpl* this_entry = it->second;
798 return this_entry->GetNextAddress();
800 DCHECK(block_files_.IsValid(address));
801 DCHECK(!address.is_separate_file() && address.file_type() == BLOCK_256);
803 CacheEntryBlock entry(File(address), address);
804 CHECK(entry.Load());
805 return entry.Data()->next;
808 void BackendImpl::NotLinked(EntryImpl* entry) {
809 Addr entry_addr = entry->entry()->address();
810 uint32 i = entry->GetHash() & mask_;
811 Addr address(data_->table[i]);
812 if (!address.is_initialized())
813 return;
815 for (;;) {
816 DCHECK(entry_addr.value() != address.value());
817 address.set_value(GetNextAddr(address));
818 if (!address.is_initialized())
819 break;
822 #endif // NET_BUILD_STRESS_CACHE
824 // An entry may be linked on the DELETED list for a while after being doomed.
825 // This function is called when we want to remove it.
826 void BackendImpl::RemoveEntry(EntryImpl* entry) {
827 #if defined(NET_BUILD_STRESS_CACHE)
828 NotLinked(entry);
829 #endif
830 if (!new_eviction_)
831 return;
833 DCHECK_NE(ENTRY_NORMAL, entry->entry()->Data()->state);
835 Trace("Remove entry 0x%p", entry);
836 eviction_.OnDestroyEntry(entry);
837 DecreaseNumEntries();
840 void BackendImpl::OnEntryDestroyBegin(Addr address) {
841 EntriesMap::iterator it = open_entries_.find(address.value());
842 if (it != open_entries_.end())
843 open_entries_.erase(it);
846 void BackendImpl::OnEntryDestroyEnd() {
847 DecreaseNumRefs();
848 if (data_->header.num_bytes > max_size_ && !read_only_ &&
849 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
850 eviction_.TrimCache(false);
853 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
854 DCHECK(rankings->HasData());
855 EntriesMap::const_iterator it =
856 open_entries_.find(rankings->Data()->contents);
857 if (it != open_entries_.end()) {
858 // We have this entry in memory.
859 return it->second;
862 return NULL;
865 int32 BackendImpl::GetCurrentEntryId() const {
866 return data_->header.this_id;
869 int BackendImpl::MaxFileSize() const {
870 return cache_type() == net::PNACL_CACHE ? max_size_ : max_size_ / 8;
873 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
874 if (disabled_ || old_size == new_size)
875 return;
876 if (old_size > new_size)
877 SubstractStorageSize(old_size - new_size);
878 else
879 AddStorageSize(new_size - old_size);
881 FlushIndex();
883 // Update the usage statistics.
884 stats_.ModifyStorageStats(old_size, new_size);
887 void BackendImpl::TooMuchStorageRequested(int32 size) {
888 stats_.ModifyStorageStats(0, size);
891 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
892 DCHECK_GT(new_size, current_size);
893 if (user_flags_ & kNoBuffering)
894 return false;
896 int to_add = new_size - current_size;
897 if (buffer_bytes_ + to_add > MaxBuffersSize())
898 return false;
900 buffer_bytes_ += to_add;
901 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
902 return true;
905 void BackendImpl::BufferDeleted(int size) {
906 buffer_bytes_ -= size;
907 DCHECK_GE(size, 0);
910 bool BackendImpl::IsLoaded() const {
911 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
912 if (user_flags_ & kNoLoadProtection)
913 return false;
915 return (num_pending_io_ > 5 || user_load_);
918 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
919 if (!experiment)
920 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
921 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
922 name, experiment);
925 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
926 return ptr_factory_.GetWeakPtr();
929 // We want to remove biases from some histograms so we only send data once per
930 // week.
931 bool BackendImpl::ShouldReportAgain() {
932 if (uma_report_)
933 return uma_report_ == 2;
935 uma_report_++;
936 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
937 Time last_time = Time::FromInternalValue(last_report);
938 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
939 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
940 uma_report_++;
941 return true;
943 return false;
946 void BackendImpl::FirstEviction() {
947 DCHECK(data_->header.create_time);
948 if (!GetEntryCount())
949 return; // This is just for unit tests.
951 Time create_time = Time::FromInternalValue(data_->header.create_time);
952 CACHE_UMA(AGE, "FillupAge", 0, create_time);
954 int64 use_time = stats_.GetCounter(Stats::TIMER);
955 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
956 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
958 if (!use_time)
959 use_time = 1;
960 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
961 static_cast<int>(data_->header.num_entries / use_time));
962 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
963 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
965 int avg_size = data_->header.num_bytes / GetEntryCount();
966 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
968 int large_entries_bytes = stats_.GetLargeEntriesSize();
969 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
970 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
972 if (new_eviction_) {
973 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
974 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
975 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
976 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
977 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
978 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
979 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
982 stats_.ResetRatios();
985 void BackendImpl::CriticalError(int error) {
986 STRESS_NOTREACHED();
987 LOG(ERROR) << "Critical error found " << error;
988 if (disabled_)
989 return;
991 stats_.OnEvent(Stats::FATAL_ERROR);
992 LogStats();
993 ReportError(error);
995 // Setting the index table length to an invalid value will force re-creation
996 // of the cache files.
997 data_->header.table_len = 1;
998 disabled_ = true;
1000 if (!num_refs_)
1001 base::MessageLoop::current()->PostTask(
1002 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1005 void BackendImpl::ReportError(int error) {
1006 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
1007 error == ERR_CACHE_CREATED);
1009 // We transmit positive numbers, instead of direct error codes.
1010 DCHECK_LE(error, 0);
1011 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
1014 void BackendImpl::OnEvent(Stats::Counters an_event) {
1015 stats_.OnEvent(an_event);
1018 void BackendImpl::OnRead(int32 bytes) {
1019 DCHECK_GE(bytes, 0);
1020 byte_count_ += bytes;
1021 if (byte_count_ < 0)
1022 byte_count_ = kint32max;
1025 void BackendImpl::OnWrite(int32 bytes) {
1026 // We use the same implementation as OnRead... just log the number of bytes.
1027 OnRead(bytes);
1030 void BackendImpl::OnStatsTimer() {
1031 stats_.OnEvent(Stats::TIMER);
1032 int64 time = stats_.GetCounter(Stats::TIMER);
1033 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
1035 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
1036 // the bias towards 0.
1037 if (num_refs_ && (current != num_refs_)) {
1038 int64 diff = (num_refs_ - current) / 50;
1039 if (!diff)
1040 diff = num_refs_ > current ? 1 : -1;
1041 current = current + diff;
1042 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
1043 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
1046 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
1048 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
1049 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
1051 // These values cover about 99.5% of the population (Oct 2011).
1052 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
1053 entry_count_ = 0;
1054 byte_count_ = 0;
1055 up_ticks_++;
1057 if (!data_)
1058 first_timer_ = false;
1059 if (first_timer_) {
1060 first_timer_ = false;
1061 if (ShouldReportAgain())
1062 ReportStats();
1065 // Save stats to disk at 5 min intervals.
1066 if (time % 10 == 0)
1067 StoreStats();
1070 void BackendImpl::IncrementIoCount() {
1071 num_pending_io_++;
1074 void BackendImpl::DecrementIoCount() {
1075 num_pending_io_--;
1078 void BackendImpl::SetUnitTestMode() {
1079 user_flags_ |= kUnitTestMode;
1080 unit_test_ = true;
1083 void BackendImpl::SetUpgradeMode() {
1084 user_flags_ |= kUpgradeMode;
1085 read_only_ = true;
1088 void BackendImpl::SetNewEviction() {
1089 user_flags_ |= kNewEviction;
1090 new_eviction_ = true;
1093 void BackendImpl::SetFlags(uint32 flags) {
1094 user_flags_ |= flags;
1097 void BackendImpl::ClearRefCountForTest() {
1098 num_refs_ = 0;
1101 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
1102 background_queue_.FlushQueue(callback);
1103 return net::ERR_IO_PENDING;
1106 int BackendImpl::RunTaskForTest(const base::Closure& task,
1107 const CompletionCallback& callback) {
1108 background_queue_.RunTask(task, callback);
1109 return net::ERR_IO_PENDING;
1112 void BackendImpl::TrimForTest(bool empty) {
1113 eviction_.SetTestMode();
1114 eviction_.TrimCache(empty);
1117 void BackendImpl::TrimDeletedListForTest(bool empty) {
1118 eviction_.SetTestMode();
1119 eviction_.TrimDeletedList(empty);
1122 int BackendImpl::SelfCheck() {
1123 if (!init_) {
1124 LOG(ERROR) << "Init failed";
1125 return ERR_INIT_FAILED;
1128 int num_entries = rankings_.SelfCheck();
1129 if (num_entries < 0) {
1130 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
1131 #if !defined(NET_BUILD_STRESS_CACHE)
1132 return num_entries;
1133 #endif
1136 if (num_entries != data_->header.num_entries) {
1137 LOG(ERROR) << "Number of entries mismatch";
1138 #if !defined(NET_BUILD_STRESS_CACHE)
1139 return ERR_NUM_ENTRIES_MISMATCH;
1140 #endif
1143 return CheckAllEntries();
1146 void BackendImpl::FlushIndex() {
1147 if (index_.get() && !disabled_)
1148 index_->Flush();
1151 // ------------------------------------------------------------------------
1153 net::CacheType BackendImpl::GetCacheType() const {
1154 return cache_type_;
1157 int32 BackendImpl::GetEntryCount() const {
1158 if (!index_.get() || disabled_)
1159 return 0;
1160 // num_entries includes entries already evicted.
1161 int32 not_deleted = data_->header.num_entries -
1162 data_->header.lru.sizes[Rankings::DELETED];
1164 if (not_deleted < 0) {
1165 NOTREACHED();
1166 not_deleted = 0;
1169 return not_deleted;
1172 int BackendImpl::OpenEntry(const std::string& key, Entry** entry,
1173 const CompletionCallback& callback) {
1174 DCHECK(!callback.is_null());
1175 background_queue_.OpenEntry(key, entry, callback);
1176 return net::ERR_IO_PENDING;
1179 int BackendImpl::CreateEntry(const std::string& key, Entry** entry,
1180 const CompletionCallback& callback) {
1181 DCHECK(!callback.is_null());
1182 background_queue_.CreateEntry(key, entry, callback);
1183 return net::ERR_IO_PENDING;
1186 int BackendImpl::DoomEntry(const std::string& key,
1187 const CompletionCallback& callback) {
1188 DCHECK(!callback.is_null());
1189 background_queue_.DoomEntry(key, callback);
1190 return net::ERR_IO_PENDING;
1193 int BackendImpl::DoomAllEntries(const CompletionCallback& callback) {
1194 DCHECK(!callback.is_null());
1195 background_queue_.DoomAllEntries(callback);
1196 return net::ERR_IO_PENDING;
1199 int BackendImpl::DoomEntriesBetween(const base::Time initial_time,
1200 const base::Time end_time,
1201 const CompletionCallback& callback) {
1202 DCHECK(!callback.is_null());
1203 background_queue_.DoomEntriesBetween(initial_time, end_time, callback);
1204 return net::ERR_IO_PENDING;
1207 int BackendImpl::DoomEntriesSince(const base::Time initial_time,
1208 const CompletionCallback& callback) {
1209 DCHECK(!callback.is_null());
1210 background_queue_.DoomEntriesSince(initial_time, callback);
1211 return net::ERR_IO_PENDING;
1214 int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry,
1215 const CompletionCallback& callback) {
1216 DCHECK(!callback.is_null());
1217 background_queue_.OpenNextEntry(iter, next_entry, callback);
1218 return net::ERR_IO_PENDING;
1221 void BackendImpl::EndEnumeration(void** iter) {
1222 background_queue_.EndEnumeration(*iter);
1223 *iter = NULL;
1226 void BackendImpl::GetStats(StatsItems* stats) {
1227 if (disabled_)
1228 return;
1230 std::pair<std::string, std::string> item;
1232 item.first = "Entries";
1233 item.second = base::StringPrintf("%d", data_->header.num_entries);
1234 stats->push_back(item);
1236 item.first = "Pending IO";
1237 item.second = base::StringPrintf("%d", num_pending_io_);
1238 stats->push_back(item);
1240 item.first = "Max size";
1241 item.second = base::StringPrintf("%d", max_size_);
1242 stats->push_back(item);
1244 item.first = "Current size";
1245 item.second = base::StringPrintf("%d", data_->header.num_bytes);
1246 stats->push_back(item);
1248 item.first = "Cache type";
1249 item.second = "Blockfile Cache";
1250 stats->push_back(item);
1252 stats_.GetItems(stats);
1255 void BackendImpl::OnExternalCacheHit(const std::string& key) {
1256 background_queue_.OnExternalCacheHit(key);
1259 // ------------------------------------------------------------------------
1261 // We just created a new file so we're going to write the header and set the
1262 // file length to include the hash table (zero filled).
1263 bool BackendImpl::CreateBackingStore(disk_cache::File* file) {
1264 AdjustMaxCacheSize(0);
1266 IndexHeader header;
1267 header.table_len = DesiredIndexTableLen(max_size_);
1269 // We need file version 2.1 for the new eviction algorithm.
1270 if (new_eviction_)
1271 header.version = 0x20001;
1273 header.create_time = Time::Now().ToInternalValue();
1275 if (!file->Write(&header, sizeof(header), 0))
1276 return false;
1278 return file->SetLength(GetIndexSize(header.table_len));
1281 bool BackendImpl::InitBackingStore(bool* file_created) {
1282 if (!file_util::CreateDirectory(path_))
1283 return false;
1285 base::FilePath index_name = path_.AppendASCII(kIndexName);
1287 int flags = base::PLATFORM_FILE_READ |
1288 base::PLATFORM_FILE_WRITE |
1289 base::PLATFORM_FILE_OPEN_ALWAYS |
1290 base::PLATFORM_FILE_EXCLUSIVE_WRITE;
1291 scoped_refptr<disk_cache::File> file(new disk_cache::File(
1292 base::CreatePlatformFile(index_name, flags, file_created, NULL)));
1294 if (!file->IsValid())
1295 return false;
1297 bool ret = true;
1298 if (*file_created)
1299 ret = CreateBackingStore(file.get());
1301 file = NULL;
1302 if (!ret)
1303 return false;
1305 index_ = new MappedFile();
1306 data_ = reinterpret_cast<Index*>(index_->Init(index_name, 0));
1307 if (!data_) {
1308 LOG(ERROR) << "Unable to map Index file";
1309 return false;
1312 if (index_->GetLength() < sizeof(Index)) {
1313 // We verify this again on CheckIndex() but it's easier to make sure now
1314 // that the header is there.
1315 LOG(ERROR) << "Corrupt Index file";
1316 return false;
1319 return true;
1322 // The maximum cache size will be either set explicitly by the caller, or
1323 // calculated by this code.
1324 void BackendImpl::AdjustMaxCacheSize(int table_len) {
1325 if (max_size_)
1326 return;
1328 // If table_len is provided, the index file exists.
1329 DCHECK(!table_len || data_->header.magic);
1331 // The user is not setting the size, let's figure it out.
1332 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
1333 if (available < 0) {
1334 max_size_ = kDefaultCacheSize;
1335 return;
1338 if (table_len)
1339 available += data_->header.num_bytes;
1341 max_size_ = PreferedCacheSize(available);
1343 // Let's not use more than the default size while we tune-up the performance
1344 // of bigger caches. TODO(rvargas): remove this limit.
1345 if (max_size_ > kDefaultCacheSize * 4)
1346 max_size_ = kDefaultCacheSize * 4;
1348 if (!table_len)
1349 return;
1351 // If we already have a table, adjust the size to it.
1352 int current_max_size = MaxStorageSizeForTable(table_len);
1353 if (max_size_ > current_max_size)
1354 max_size_= current_max_size;
1357 bool BackendImpl::InitStats() {
1358 Addr address(data_->header.stats);
1359 int size = stats_.StorageSize();
1361 if (!address.is_initialized()) {
1362 FileType file_type = Addr::RequiredFileType(size);
1363 DCHECK_NE(file_type, EXTERNAL);
1364 int num_blocks = Addr::RequiredBlocks(size, file_type);
1366 if (!CreateBlock(file_type, num_blocks, &address))
1367 return false;
1369 data_->header.stats = address.value();
1370 return stats_.Init(NULL, 0, address);
1373 if (!address.is_block_file()) {
1374 NOTREACHED();
1375 return false;
1378 // Load the required data.
1379 size = address.num_blocks() * address.BlockSize();
1380 MappedFile* file = File(address);
1381 if (!file)
1382 return false;
1384 scoped_ptr<char[]> data(new char[size]);
1385 size_t offset = address.start_block() * address.BlockSize() +
1386 kBlockHeaderSize;
1387 if (!file->Read(data.get(), size, offset))
1388 return false;
1390 if (!stats_.Init(data.get(), size, address))
1391 return false;
1392 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
1393 stats_.InitSizeHistogram();
1394 return true;
1397 void BackendImpl::StoreStats() {
1398 int size = stats_.StorageSize();
1399 scoped_ptr<char[]> data(new char[size]);
1400 Addr address;
1401 size = stats_.SerializeStats(data.get(), size, &address);
1402 DCHECK(size);
1403 if (!address.is_initialized())
1404 return;
1406 MappedFile* file = File(address);
1407 if (!file)
1408 return;
1410 size_t offset = address.start_block() * address.BlockSize() +
1411 kBlockHeaderSize;
1412 file->Write(data.get(), size, offset); // ignore result.
1415 void BackendImpl::RestartCache(bool failure) {
1416 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
1417 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
1418 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
1419 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
1421 PrepareForRestart();
1422 if (failure) {
1423 DCHECK(!num_refs_);
1424 DCHECK(!open_entries_.size());
1425 DelayedCacheCleanup(path_);
1426 } else {
1427 DeleteCache(path_, false);
1430 // Don't call Init() if directed by the unit test: we are simulating a failure
1431 // trying to re-enable the cache.
1432 if (unit_test_)
1433 init_ = true; // Let the destructor do proper cleanup.
1434 else if (SyncInit() == net::OK) {
1435 stats_.SetCounter(Stats::FATAL_ERROR, errors);
1436 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
1437 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
1438 stats_.SetCounter(Stats::LAST_REPORT, last_report);
1442 void BackendImpl::PrepareForRestart() {
1443 // Reset the mask_ if it was not given by the user.
1444 if (!(user_flags_ & kMask))
1445 mask_ = 0;
1447 if (!(user_flags_ & kNewEviction))
1448 new_eviction_ = false;
1450 disabled_ = true;
1451 data_->header.crash = 0;
1452 index_->Flush();
1453 index_ = NULL;
1454 data_ = NULL;
1455 block_files_.CloseFiles();
1456 rankings_.Reset();
1457 init_ = false;
1458 restarted_ = true;
1461 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
1462 EntriesMap::iterator it = open_entries_.find(address.value());
1463 if (it != open_entries_.end()) {
1464 // Easy job. This entry is already in memory.
1465 EntryImpl* this_entry = it->second;
1466 this_entry->AddRef();
1467 *entry = this_entry;
1468 return 0;
1471 STRESS_DCHECK(block_files_.IsValid(address));
1473 if (!address.SanityCheckForEntryV2()) {
1474 LOG(WARNING) << "Wrong entry address.";
1475 STRESS_NOTREACHED();
1476 return ERR_INVALID_ADDRESS;
1479 scoped_refptr<EntryImpl> cache_entry(
1480 new EntryImpl(this, address, read_only_));
1481 IncreaseNumRefs();
1482 *entry = NULL;
1484 TimeTicks start = TimeTicks::Now();
1485 if (!cache_entry->entry()->Load())
1486 return ERR_READ_FAILURE;
1488 if (IsLoaded()) {
1489 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
1492 if (!cache_entry->SanityCheck()) {
1493 LOG(WARNING) << "Messed up entry found.";
1494 STRESS_NOTREACHED();
1495 return ERR_INVALID_ENTRY;
1498 STRESS_DCHECK(block_files_.IsValid(
1499 Addr(cache_entry->entry()->Data()->rankings_node)));
1501 if (!cache_entry->LoadNodeAddress())
1502 return ERR_READ_FAILURE;
1504 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1505 STRESS_NOTREACHED();
1506 cache_entry->SetDirtyFlag(0);
1507 // Don't remove this from the list (it is not linked properly). Instead,
1508 // break the link back to the entry because it is going away, and leave the
1509 // rankings node to be deleted if we find it through a list.
1510 rankings_.SetContents(cache_entry->rankings(), 0);
1511 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1512 STRESS_NOTREACHED();
1513 cache_entry->SetDirtyFlag(0);
1514 rankings_.SetContents(cache_entry->rankings(), address.value());
1517 if (!cache_entry->DataSanityCheck()) {
1518 LOG(WARNING) << "Messed up entry found.";
1519 cache_entry->SetDirtyFlag(0);
1520 cache_entry->FixForDelete();
1523 // Prevent overwriting the dirty flag on the destructor.
1524 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1526 if (cache_entry->dirty()) {
1527 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1528 address.value());
1531 open_entries_[address.value()] = cache_entry.get();
1533 cache_entry->BeginLogging(net_log_, false);
1534 cache_entry.swap(entry);
1535 return 0;
1538 EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash,
1539 bool find_parent, Addr entry_addr,
1540 bool* match_error) {
1541 Addr address(data_->table[hash & mask_]);
1542 scoped_refptr<EntryImpl> cache_entry, parent_entry;
1543 EntryImpl* tmp = NULL;
1544 bool found = false;
1545 std::set<CacheAddr> visited;
1546 *match_error = false;
1548 for (;;) {
1549 if (disabled_)
1550 break;
1552 if (visited.find(address.value()) != visited.end()) {
1553 // It's possible for a buggy version of the code to write a loop. Just
1554 // break it.
1555 Trace("Hash collision loop 0x%x", address.value());
1556 address.set_value(0);
1557 parent_entry->SetNextAddress(address);
1559 visited.insert(address.value());
1561 if (!address.is_initialized()) {
1562 if (find_parent)
1563 found = true;
1564 break;
1567 int error = NewEntry(address, &tmp);
1568 cache_entry.swap(&tmp);
1570 if (error || cache_entry->dirty()) {
1571 // This entry is dirty on disk (it was not properly closed): we cannot
1572 // trust it.
1573 Addr child(0);
1574 if (!error)
1575 child.set_value(cache_entry->GetNextAddress());
1577 if (parent_entry.get()) {
1578 parent_entry->SetNextAddress(child);
1579 parent_entry = NULL;
1580 } else {
1581 data_->table[hash & mask_] = child.value();
1584 Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(),
1585 address.value());
1587 if (!error) {
1588 // It is important to call DestroyInvalidEntry after removing this
1589 // entry from the table.
1590 DestroyInvalidEntry(cache_entry.get());
1591 cache_entry = NULL;
1592 } else {
1593 Trace("NewEntry failed on MatchEntry 0x%x", address.value());
1596 // Restart the search.
1597 address.set_value(data_->table[hash & mask_]);
1598 visited.clear();
1599 continue;
1602 DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_);
1603 if (cache_entry->IsSameEntry(key, hash)) {
1604 if (!cache_entry->Update())
1605 cache_entry = NULL;
1606 found = true;
1607 if (find_parent && entry_addr.value() != address.value()) {
1608 Trace("Entry not on the index 0x%x", address.value());
1609 *match_error = true;
1610 parent_entry = NULL;
1612 break;
1614 if (!cache_entry->Update())
1615 cache_entry = NULL;
1616 parent_entry = cache_entry;
1617 cache_entry = NULL;
1618 if (!parent_entry.get())
1619 break;
1621 address.set_value(parent_entry->GetNextAddress());
1624 if (parent_entry.get() && (!find_parent || !found))
1625 parent_entry = NULL;
1627 if (find_parent && entry_addr.is_initialized() && !cache_entry.get()) {
1628 *match_error = true;
1629 parent_entry = NULL;
1632 if (cache_entry.get() && (find_parent || !found))
1633 cache_entry = NULL;
1635 find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp);
1636 FlushIndex();
1637 return tmp;
1640 // This is the actual implementation for OpenNextEntry and OpenPrevEntry.
1641 EntryImpl* BackendImpl::OpenFollowingEntry(bool forward, void** iter) {
1642 if (disabled_)
1643 return NULL;
1645 DCHECK(iter);
1647 const int kListsToSearch = 3;
1648 scoped_refptr<EntryImpl> entries[kListsToSearch];
1649 scoped_ptr<Rankings::Iterator> iterator(
1650 reinterpret_cast<Rankings::Iterator*>(*iter));
1651 *iter = NULL;
1653 if (!iterator.get()) {
1654 iterator.reset(new Rankings::Iterator(&rankings_));
1655 bool ret = false;
1657 // Get an entry from each list.
1658 for (int i = 0; i < kListsToSearch; i++) {
1659 EntryImpl* temp = NULL;
1660 ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i),
1661 &iterator->nodes[i], &temp);
1662 entries[i].swap(&temp); // The entry was already addref'd.
1664 if (!ret)
1665 return NULL;
1666 } else {
1667 // Get the next entry from the last list, and the actual entries for the
1668 // elements on the other lists.
1669 for (int i = 0; i < kListsToSearch; i++) {
1670 EntryImpl* temp = NULL;
1671 if (iterator->list == i) {
1672 OpenFollowingEntryFromList(forward, iterator->list,
1673 &iterator->nodes[i], &temp);
1674 } else {
1675 temp = GetEnumeratedEntry(iterator->nodes[i],
1676 static_cast<Rankings::List>(i));
1679 entries[i].swap(&temp); // The entry was already addref'd.
1683 int newest = -1;
1684 int oldest = -1;
1685 Time access_times[kListsToSearch];
1686 for (int i = 0; i < kListsToSearch; i++) {
1687 if (entries[i].get()) {
1688 access_times[i] = entries[i]->GetLastUsed();
1689 if (newest < 0) {
1690 DCHECK_LT(oldest, 0);
1691 newest = oldest = i;
1692 continue;
1694 if (access_times[i] > access_times[newest])
1695 newest = i;
1696 if (access_times[i] < access_times[oldest])
1697 oldest = i;
1701 if (newest < 0 || oldest < 0)
1702 return NULL;
1704 EntryImpl* next_entry;
1705 if (forward) {
1706 next_entry = entries[newest].get();
1707 iterator->list = static_cast<Rankings::List>(newest);
1708 } else {
1709 next_entry = entries[oldest].get();
1710 iterator->list = static_cast<Rankings::List>(oldest);
1713 *iter = iterator.release();
1714 next_entry->AddRef();
1715 return next_entry;
1718 bool BackendImpl::OpenFollowingEntryFromList(bool forward, Rankings::List list,
1719 CacheRankingsBlock** from_entry,
1720 EntryImpl** next_entry) {
1721 if (disabled_)
1722 return false;
1724 if (!new_eviction_ && Rankings::NO_USE != list)
1725 return false;
1727 Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry);
1728 CacheRankingsBlock* next_block = forward ?
1729 rankings_.GetNext(rankings.get(), list) :
1730 rankings_.GetPrev(rankings.get(), list);
1731 Rankings::ScopedRankingsBlock next(&rankings_, next_block);
1732 *from_entry = NULL;
1734 *next_entry = GetEnumeratedEntry(next.get(), list);
1735 if (!*next_entry)
1736 return false;
1738 *from_entry = next.release();
1739 return true;
1742 EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next,
1743 Rankings::List list) {
1744 if (!next || disabled_)
1745 return NULL;
1747 EntryImpl* entry;
1748 int rv = NewEntry(Addr(next->Data()->contents), &entry);
1749 if (rv) {
1750 STRESS_NOTREACHED();
1751 rankings_.Remove(next, list, false);
1752 if (rv == ERR_INVALID_ADDRESS) {
1753 // There is nothing linked from the index. Delete the rankings node.
1754 DeleteBlock(next->address(), true);
1756 return NULL;
1759 if (entry->dirty()) {
1760 // We cannot trust this entry.
1761 InternalDoomEntry(entry);
1762 entry->Release();
1763 return NULL;
1766 if (!entry->Update()) {
1767 STRESS_NOTREACHED();
1768 entry->Release();
1769 return NULL;
1772 // Note that it is unfortunate (but possible) for this entry to be clean, but
1773 // not actually the real entry. In other words, we could have lost this entry
1774 // from the index, and it could have been replaced with a newer one. It's not
1775 // worth checking that this entry is "the real one", so we just return it and
1776 // let the enumeration continue; this entry will be evicted at some point, and
1777 // the regular path will work with the real entry. With time, this problem
1778 // will disasappear because this scenario is just a bug.
1780 // Make sure that we save the key for later.
1781 entry->GetKey();
1783 return entry;
1786 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1787 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1788 deleted_entry->Release();
1789 stats_.OnEvent(Stats::CREATE_MISS);
1790 Trace("create entry miss ");
1791 return NULL;
1794 // We are attempting to create an entry and found out that the entry was
1795 // previously deleted.
1797 eviction_.OnCreateEntry(deleted_entry);
1798 entry_count_++;
1800 stats_.OnEvent(Stats::RESURRECT_HIT);
1801 Trace("Resurrect entry hit ");
1802 return deleted_entry;
1805 void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) {
1806 LOG(WARNING) << "Destroying invalid entry.";
1807 Trace("Destroying invalid entry 0x%p", entry);
1809 entry->SetPointerForInvalidEntry(GetCurrentEntryId());
1811 eviction_.OnDoomEntry(entry);
1812 entry->InternalDoom();
1814 if (!new_eviction_)
1815 DecreaseNumEntries();
1816 stats_.OnEvent(Stats::INVALID_ENTRY);
1819 void BackendImpl::AddStorageSize(int32 bytes) {
1820 data_->header.num_bytes += bytes;
1821 DCHECK_GE(data_->header.num_bytes, 0);
1824 void BackendImpl::SubstractStorageSize(int32 bytes) {
1825 data_->header.num_bytes -= bytes;
1826 DCHECK_GE(data_->header.num_bytes, 0);
1829 void BackendImpl::IncreaseNumRefs() {
1830 num_refs_++;
1831 if (max_refs_ < num_refs_)
1832 max_refs_ = num_refs_;
1835 void BackendImpl::DecreaseNumRefs() {
1836 DCHECK(num_refs_);
1837 num_refs_--;
1839 if (!num_refs_ && disabled_)
1840 base::MessageLoop::current()->PostTask(
1841 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1844 void BackendImpl::IncreaseNumEntries() {
1845 data_->header.num_entries++;
1846 DCHECK_GT(data_->header.num_entries, 0);
1849 void BackendImpl::DecreaseNumEntries() {
1850 data_->header.num_entries--;
1851 if (data_->header.num_entries < 0) {
1852 NOTREACHED();
1853 data_->header.num_entries = 0;
1857 void BackendImpl::LogStats() {
1858 StatsItems stats;
1859 GetStats(&stats);
1861 for (size_t index = 0; index < stats.size(); index++)
1862 VLOG(1) << stats[index].first << ": " << stats[index].second;
1865 void BackendImpl::ReportStats() {
1866 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1868 int current_size = data_->header.num_bytes / (1024 * 1024);
1869 int max_size = max_size_ / (1024 * 1024);
1870 int hit_ratio_as_percentage = stats_.GetHitRatio();
1872 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1873 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1874 // ratio of that bin's total count to the count in the same bin in the Size2
1875 // histogram.
1876 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1877 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1878 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1879 if (!max_size)
1880 max_size++;
1881 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1883 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1884 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1885 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1886 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1887 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1889 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1890 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1891 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1892 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1893 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1894 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1895 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1896 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1897 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1899 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1900 if (!data_->header.create_time || !data_->header.lru.filled) {
1901 int cause = data_->header.create_time ? 0 : 1;
1902 if (!data_->header.lru.filled)
1903 cause |= 2;
1904 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1905 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1906 return;
1909 // This is an up to date client that will report FirstEviction() data. After
1910 // that event, start reporting this:
1912 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1913 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1914 // time is the ratio of that bin's total count to the count in the same bin in
1915 // the TotalTime histogram.
1916 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1917 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, implicit_cast<int>(total_hours));
1919 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1920 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1922 // We may see users with no use_hours at this point if this is the first time
1923 // we are running this code.
1924 if (use_hours)
1925 use_hours = total_hours - use_hours;
1927 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1928 return;
1930 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1931 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1932 // is the ratio of that bin's total count to the count in the same bin in the
1933 // UseTime histogram.
1934 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1935 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, implicit_cast<int>(use_hours));
1936 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1938 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1939 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1941 int avg_size = data_->header.num_bytes / GetEntryCount();
1942 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1943 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1945 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1946 data_->header.num_entries * 100 / (mask_ + 1));
1948 int large_entries_bytes = stats_.GetLargeEntriesSize();
1949 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1950 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1952 if (new_eviction_) {
1953 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1954 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1955 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1956 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1957 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1958 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1959 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1960 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1961 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1964 stats_.ResetRatios();
1965 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1967 if (cache_type_ == net::DISK_CACHE)
1968 block_files_.ReportStats();
1971 void BackendImpl::UpgradeTo2_1() {
1972 // 2.1 is basically the same as 2.0, except that new fields are actually
1973 // updated by the new eviction algorithm.
1974 DCHECK(0x20000 == data_->header.version);
1975 data_->header.version = 0x20001;
1976 data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries;
1979 bool BackendImpl::CheckIndex() {
1980 DCHECK(data_);
1982 size_t current_size = index_->GetLength();
1983 if (current_size < sizeof(Index)) {
1984 LOG(ERROR) << "Corrupt Index file";
1985 return false;
1988 if (new_eviction_) {
1989 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1990 if (kIndexMagic != data_->header.magic ||
1991 kCurrentVersion >> 16 != data_->header.version >> 16) {
1992 LOG(ERROR) << "Invalid file version or magic";
1993 return false;
1995 if (kCurrentVersion == data_->header.version) {
1996 // We need file version 2.1 for the new eviction algorithm.
1997 UpgradeTo2_1();
1999 } else {
2000 if (kIndexMagic != data_->header.magic ||
2001 kCurrentVersion != data_->header.version) {
2002 LOG(ERROR) << "Invalid file version or magic";
2003 return false;
2007 if (!data_->header.table_len) {
2008 LOG(ERROR) << "Invalid table size";
2009 return false;
2012 if (current_size < GetIndexSize(data_->header.table_len) ||
2013 data_->header.table_len & (kBaseTableLen - 1)) {
2014 LOG(ERROR) << "Corrupt Index file";
2015 return false;
2018 AdjustMaxCacheSize(data_->header.table_len);
2020 #if !defined(NET_BUILD_STRESS_CACHE)
2021 if (data_->header.num_bytes < 0 ||
2022 (max_size_ < kint32max - kDefaultCacheSize &&
2023 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
2024 LOG(ERROR) << "Invalid cache (current) size";
2025 return false;
2027 #endif
2029 if (data_->header.num_entries < 0) {
2030 LOG(ERROR) << "Invalid number of entries";
2031 return false;
2034 if (!mask_)
2035 mask_ = data_->header.table_len - 1;
2037 // Load the table into memory with a single read.
2038 scoped_ptr<char[]> buf(new char[current_size]);
2039 return index_->Read(buf.get(), current_size, 0);
2042 int BackendImpl::CheckAllEntries() {
2043 int num_dirty = 0;
2044 int num_entries = 0;
2045 DCHECK(mask_ < kuint32max);
2046 for (unsigned int i = 0; i <= mask_; i++) {
2047 Addr address(data_->table[i]);
2048 if (!address.is_initialized())
2049 continue;
2050 for (;;) {
2051 EntryImpl* tmp;
2052 int ret = NewEntry(address, &tmp);
2053 if (ret) {
2054 STRESS_NOTREACHED();
2055 return ret;
2057 scoped_refptr<EntryImpl> cache_entry;
2058 cache_entry.swap(&tmp);
2060 if (cache_entry->dirty())
2061 num_dirty++;
2062 else if (CheckEntry(cache_entry.get()))
2063 num_entries++;
2064 else
2065 return ERR_INVALID_ENTRY;
2067 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
2068 address.set_value(cache_entry->GetNextAddress());
2069 if (!address.is_initialized())
2070 break;
2074 Trace("CheckAllEntries End");
2075 if (num_entries + num_dirty != data_->header.num_entries) {
2076 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
2077 " " << data_->header.num_entries;
2078 DCHECK_LT(num_entries, data_->header.num_entries);
2079 return ERR_NUM_ENTRIES_MISMATCH;
2082 return num_dirty;
2085 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
2086 bool ok = block_files_.IsValid(cache_entry->entry()->address());
2087 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
2088 EntryStore* data = cache_entry->entry()->Data();
2089 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
2090 if (data->data_addr[i]) {
2091 Addr address(data->data_addr[i]);
2092 if (address.is_block_file())
2093 ok = ok && block_files_.IsValid(address);
2097 return ok && cache_entry->rankings()->VerifyHash();
2100 int BackendImpl::MaxBuffersSize() {
2101 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
2102 static bool done = false;
2104 if (!done) {
2105 const int kMaxBuffersSize = 30 * 1024 * 1024;
2107 // We want to use up to 2% of the computer's memory.
2108 total_memory = total_memory * 2 / 100;
2109 if (total_memory > kMaxBuffersSize || total_memory <= 0)
2110 total_memory = kMaxBuffersSize;
2112 done = true;
2115 return static_cast<int>(total_memory);
2118 } // namespace disk_cache