Fix nullptr crash in OnEmbed
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob57a4f6cbbdf33a3f936b35dce9219c10165a66d3
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <stdint.h>
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "base/stl_util.h"
12 #include "net/quic/crypto/crypto_framer.h"
13 #include "net/quic/crypto/crypto_handshake_message.h"
14 #include "net/quic/crypto/crypto_protocol.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_data_reader.h"
18 #include "net/quic/quic_data_writer.h"
19 #include "net/quic/quic_flags.h"
20 #include "net/quic/quic_socket_address_coder.h"
21 #include "net/quic/quic_utils.h"
23 using base::StringPiece;
24 using std::map;
25 using std::max;
26 using std::min;
27 using std::numeric_limits;
28 using std::string;
30 namespace net {
32 namespace {
34 // Mask to select the lowest 48 bits of a sequence number.
35 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
36 UINT64_C(0x0000FFFFFFFFFFFF);
37 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
38 UINT64_C(0x00000000FFFFFFFF);
39 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
40 UINT64_C(0x000000000000FFFF);
41 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
42 UINT64_C(0x00000000000000FF);
44 const QuicConnectionId k1ByteConnectionIdMask = UINT64_C(0x00000000000000FF);
45 const QuicConnectionId k4ByteConnectionIdMask = UINT64_C(0x00000000FFFFFFFF);
47 // Number of bits the sequence number length bits are shifted from the right
48 // edge of the public header.
49 const uint8 kPublicHeaderSequenceNumberShift = 4;
51 // New Frame Types, QUIC v. >= 10:
52 // There are two interpretations for the Frame Type byte in the QUIC protocol,
53 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
55 // Regular Frame Types use the Frame Type byte simply. Currently defined
56 // Regular Frame Types are:
57 // Padding : 0b 00000000 (0x00)
58 // ResetStream : 0b 00000001 (0x01)
59 // ConnectionClose : 0b 00000010 (0x02)
60 // GoAway : 0b 00000011 (0x03)
61 // WindowUpdate : 0b 00000100 (0x04)
62 // Blocked : 0b 00000101 (0x05)
64 // Special Frame Types encode both a Frame Type and corresponding flags
65 // all in the Frame Type byte. Currently defined Special Frame Types are:
66 // Stream : 0b 1xxxxxxx
67 // Ack : 0b 01xxxxxx
69 // Semantics of the flag bits above (the x bits) depends on the frame type.
71 // Masks to determine if the frame type is a special use
72 // and for specific special frame types.
73 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
74 const uint8 kQuicFrameTypeStreamMask = 0x80;
75 const uint8 kQuicFrameTypeAckMask = 0x40;
77 // Stream frame relative shifts and masks for interpreting the stream flags.
78 // StreamID may be 1, 2, 3, or 4 bytes.
79 const uint8 kQuicStreamIdShift = 2;
80 const uint8 kQuicStreamIDLengthMask = 0x03;
82 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
83 const uint8 kQuicStreamOffsetShift = 3;
84 const uint8 kQuicStreamOffsetMask = 0x07;
86 // Data length may be 0 or 2 bytes.
87 const uint8 kQuicStreamDataLengthShift = 1;
88 const uint8 kQuicStreamDataLengthMask = 0x01;
90 // Fin bit may be set or not.
91 const uint8 kQuicStreamFinShift = 1;
92 const uint8 kQuicStreamFinMask = 0x01;
94 // Sequence number size shift used in AckFrames.
95 const uint8 kQuicSequenceNumberLengthShift = 2;
97 // Acks may be truncated.
98 const uint8 kQuicAckTruncatedShift = 1;
99 const uint8 kQuicAckTruncatedMask = 0x01;
101 // Acks may not have any nacks.
102 const uint8 kQuicHasNacksMask = 0x01;
104 // Returns the absolute value of the difference between |a| and |b|.
105 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
106 QuicPacketSequenceNumber b) {
107 // Since these are unsigned numbers, we can't just return abs(a - b)
108 if (a < b) {
109 return b - a;
111 return a - b;
114 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
115 QuicPacketSequenceNumber a,
116 QuicPacketSequenceNumber b) {
117 return (Delta(target, a) < Delta(target, b)) ? a : b;
120 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
121 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
122 case PACKET_FLAGS_6BYTE_SEQUENCE:
123 return PACKET_6BYTE_SEQUENCE_NUMBER;
124 case PACKET_FLAGS_4BYTE_SEQUENCE:
125 return PACKET_4BYTE_SEQUENCE_NUMBER;
126 case PACKET_FLAGS_2BYTE_SEQUENCE:
127 return PACKET_2BYTE_SEQUENCE_NUMBER;
128 case PACKET_FLAGS_1BYTE_SEQUENCE:
129 return PACKET_1BYTE_SEQUENCE_NUMBER;
130 default:
131 LOG(DFATAL) << "Unreachable case statement.";
132 return PACKET_6BYTE_SEQUENCE_NUMBER;
136 } // namespace
138 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
139 QuicTime creation_time,
140 Perspective perspective)
141 : visitor_(nullptr),
142 entropy_calculator_(nullptr),
143 error_(QUIC_NO_ERROR),
144 last_sequence_number_(0),
145 last_serialized_connection_id_(0),
146 supported_versions_(supported_versions),
147 decrypter_level_(ENCRYPTION_NONE),
148 alternative_decrypter_level_(ENCRYPTION_NONE),
149 alternative_decrypter_latch_(false),
150 perspective_(perspective),
151 validate_flags_(true),
152 creation_time_(creation_time),
153 last_timestamp_(QuicTime::Delta::Zero()) {
154 DCHECK(!supported_versions.empty());
155 quic_version_ = supported_versions_[0];
156 decrypter_.reset(QuicDecrypter::Create(kNULL));
157 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
160 QuicFramer::~QuicFramer() {}
162 // static
163 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
164 QuicStreamOffset offset,
165 bool last_frame_in_packet,
166 InFecGroup is_in_fec_group) {
167 bool no_stream_frame_length = last_frame_in_packet &&
168 is_in_fec_group == NOT_IN_FEC_GROUP;
169 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
170 GetStreamOffsetSize(offset) +
171 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
174 // static
175 size_t QuicFramer::GetMinAckFrameSize(
176 QuicSequenceNumberLength largest_observed_length) {
177 return kQuicFrameTypeSize + kQuicEntropyHashSize +
178 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
181 // static
182 size_t QuicFramer::GetStopWaitingFrameSize(
183 QuicSequenceNumberLength sequence_number_length) {
184 return kQuicFrameTypeSize + kQuicEntropyHashSize +
185 sequence_number_length;
188 // static
189 size_t QuicFramer::GetMinRstStreamFrameSize() {
190 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
191 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
192 kQuicErrorDetailsLengthSize;
195 // static
196 size_t QuicFramer::GetRstStreamFrameSize() {
197 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
198 kQuicErrorCodeSize;
201 // static
202 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
203 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
206 // static
207 size_t QuicFramer::GetMinGoAwayFrameSize() {
208 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
209 kQuicMaxStreamIdSize;
212 // static
213 size_t QuicFramer::GetWindowUpdateFrameSize() {
214 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
217 // static
218 size_t QuicFramer::GetBlockedFrameSize() {
219 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
222 // static
223 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
224 // Sizes are 1 through 4 bytes.
225 for (int i = 1; i <= 4; ++i) {
226 stream_id >>= 8;
227 if (stream_id == 0) {
228 return i;
231 LOG(DFATAL) << "Failed to determine StreamIDSize.";
232 return 4;
235 // static
236 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
237 // 0 is a special case.
238 if (offset == 0) {
239 return 0;
241 // 2 through 8 are the remaining sizes.
242 offset >>= 8;
243 for (int i = 2; i <= 8; ++i) {
244 offset >>= 8;
245 if (offset == 0) {
246 return i;
249 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
250 return 8;
253 // static
254 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
255 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
256 number_versions * kQuicVersionSize;
259 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
260 for (size_t i = 0; i < supported_versions_.size(); ++i) {
261 if (version == supported_versions_[i]) {
262 return true;
265 return false;
268 size_t QuicFramer::GetSerializedFrameLength(
269 const QuicFrame& frame,
270 size_t free_bytes,
271 bool first_frame,
272 bool last_frame,
273 InFecGroup is_in_fec_group,
274 QuicSequenceNumberLength sequence_number_length) {
275 // Prevent a rare crash reported in b/19458523.
276 if (frame.stream_frame == nullptr) {
277 LOG(DFATAL) << "Cannot compute the length of a null frame. "
278 << "type:" << frame.type << "free_bytes:" << free_bytes
279 << " first_frame:" << first_frame
280 << " last_frame:" << last_frame
281 << " is_in_fec:" << is_in_fec_group
282 << " seq num length:" << sequence_number_length;
283 set_error(QUIC_INTERNAL_ERROR);
284 visitor_->OnError(this);
285 return 0;
287 if (frame.type == PADDING_FRAME) {
288 // PADDING implies end of packet.
289 return free_bytes;
291 size_t frame_len =
292 ComputeFrameLength(frame, last_frame, is_in_fec_group,
293 sequence_number_length);
294 if (frame_len <= free_bytes) {
295 // Frame fits within packet. Note that acks may be truncated.
296 return frame_len;
298 // Only truncate the first frame in a packet, so if subsequent ones go
299 // over, stop including more frames.
300 if (!first_frame) {
301 return 0;
303 bool can_truncate =
304 frame.type == ACK_FRAME &&
305 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER);
306 if (can_truncate) {
307 // Truncate the frame so the packet will not exceed kMaxPacketSize.
308 // Note that we may not use every byte of the writer in this case.
309 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
310 return free_bytes;
312 if (!FLAGS_quic_allow_oversized_packets_for_test) {
313 return 0;
315 LOG(DFATAL) << "Packet size too small to fit frame.";
316 return frame_len;
319 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
321 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
323 // static
324 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
325 const QuicPacketHeader& header) {
326 return header.entropy_flag << (header.packet_sequence_number % 8);
329 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
330 const QuicFrames& frames,
331 char* buffer,
332 size_t packet_length) {
333 QuicDataWriter writer(packet_length, buffer);
334 if (!AppendPacketHeader(header, &writer)) {
335 LOG(DFATAL) << "AppendPacketHeader failed";
336 return nullptr;
339 size_t i = 0;
340 for (const QuicFrame& frame : frames) {
341 // Determine if we should write stream frame length in header.
342 const bool no_stream_frame_length =
343 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
344 (i == frames.size() - 1);
345 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
346 LOG(DFATAL) << "AppendTypeByte failed";
347 return nullptr;
350 switch (frame.type) {
351 case PADDING_FRAME:
352 writer.WritePadding();
353 break;
354 case STREAM_FRAME:
355 if (!AppendStreamFrame(
356 *frame.stream_frame, no_stream_frame_length, &writer)) {
357 LOG(DFATAL) << "AppendStreamFrame failed";
358 return nullptr;
360 break;
361 case ACK_FRAME:
362 if (!AppendAckFrameAndTypeByte(
363 header, *frame.ack_frame, &writer)) {
364 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
365 return nullptr;
367 break;
368 case STOP_WAITING_FRAME:
369 if (!AppendStopWaitingFrame(
370 header, *frame.stop_waiting_frame, &writer)) {
371 LOG(DFATAL) << "AppendStopWaitingFrame failed";
372 return nullptr;
374 break;
375 case MTU_DISCOVERY_FRAME:
376 // MTU discovery frames are serialized as ping frames.
377 case PING_FRAME:
378 // Ping has no payload.
379 break;
380 case RST_STREAM_FRAME:
381 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
382 LOG(DFATAL) << "AppendRstStreamFrame failed";
383 return nullptr;
385 break;
386 case CONNECTION_CLOSE_FRAME:
387 if (!AppendConnectionCloseFrame(
388 *frame.connection_close_frame, &writer)) {
389 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
390 return nullptr;
392 break;
393 case GOAWAY_FRAME:
394 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
395 LOG(DFATAL) << "AppendGoAwayFrame failed";
396 return nullptr;
398 break;
399 case WINDOW_UPDATE_FRAME:
400 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
401 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
402 return nullptr;
404 break;
405 case BLOCKED_FRAME:
406 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
407 LOG(DFATAL) << "AppendBlockedFrame failed";
408 return nullptr;
410 break;
411 default:
412 RaiseError(QUIC_INVALID_FRAME_DATA);
413 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
414 return nullptr;
416 ++i;
419 QuicPacket* packet =
420 new QuicPacket(writer.data(), writer.length(), false,
421 header.public_header.connection_id_length,
422 header.public_header.version_flag,
423 header.public_header.sequence_number_length);
425 return packet;
428 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
429 const QuicFecData& fec) {
430 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
431 DCHECK_NE(0u, header.fec_group);
432 size_t len = GetPacketHeaderSize(header);
433 len += fec.redundancy.length();
435 scoped_ptr<char[]> buffer(new char[len]);
436 QuicDataWriter writer(len, buffer.get());
437 if (!AppendPacketHeader(header, &writer)) {
438 LOG(DFATAL) << "AppendPacketHeader failed";
439 return nullptr;
442 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
443 LOG(DFATAL) << "Failed to add FEC";
444 return nullptr;
447 return new QuicPacket(buffer.release(), len, true,
448 header.public_header.connection_id_length,
449 header.public_header.version_flag,
450 header.public_header.sequence_number_length);
453 // static
454 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
455 const QuicPublicResetPacket& packet) {
456 DCHECK(packet.public_header.reset_flag);
458 CryptoHandshakeMessage reset;
459 reset.set_tag(kPRST);
460 reset.SetValue(kRNON, packet.nonce_proof);
461 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
462 if (!packet.client_address.address().empty()) {
463 // packet.client_address is non-empty.
464 QuicSocketAddressCoder address_coder(packet.client_address);
465 string serialized_address = address_coder.Encode();
466 if (serialized_address.empty()) {
467 return nullptr;
469 reset.SetStringPiece(kCADR, serialized_address);
471 const QuicData& reset_serialized = reset.GetSerialized();
473 size_t len =
474 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
475 scoped_ptr<char[]> buffer(new char[len]);
476 QuicDataWriter writer(len, buffer.get());
478 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
479 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
480 if (!writer.WriteUInt8(flags)) {
481 return nullptr;
484 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
485 return nullptr;
488 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
489 return nullptr;
492 return new QuicEncryptedPacket(buffer.release(), len, true);
495 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
496 const QuicPacketPublicHeader& header,
497 const QuicVersionVector& supported_versions) {
498 DCHECK(header.version_flag);
499 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
500 scoped_ptr<char[]> buffer(new char[len]);
501 QuicDataWriter writer(len, buffer.get());
503 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
504 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
505 if (!writer.WriteUInt8(flags)) {
506 return nullptr;
509 if (!writer.WriteUInt64(header.connection_id)) {
510 return nullptr;
513 for (size_t i = 0; i < supported_versions.size(); ++i) {
514 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
515 return nullptr;
519 return new QuicEncryptedPacket(buffer.release(), len, true);
522 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
523 QuicDataReader reader(packet.data(), packet.length());
525 visitor_->OnPacket();
527 // First parse the public header.
528 QuicPacketPublicHeader public_header;
529 if (!ProcessPublicHeader(&reader, &public_header)) {
530 DLOG(WARNING) << "Unable to process public header.";
531 DCHECK_NE("", detailed_error_);
532 return RaiseError(QUIC_INVALID_PACKET_HEADER);
535 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
536 // The visitor suppresses further processing of the packet.
537 return true;
540 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
541 public_header.versions[0] != quic_version_) {
542 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
543 return true;
547 bool rv;
548 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
549 rv = ProcessVersionNegotiationPacket(&reader, &public_header);
550 } else if (public_header.reset_flag) {
551 rv = ProcessPublicResetPacket(&reader, public_header);
552 } else if (packet.length() <= kMaxPacketSize) {
553 char buffer[kMaxPacketSize];
554 rv = ProcessDataPacket(&reader, public_header, packet, buffer,
555 kMaxPacketSize);
556 } else {
557 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
558 rv = ProcessDataPacket(&reader, public_header, packet, large_buffer.get(),
559 packet.length());
560 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
561 << "larger than kMaxPacketSize. packet size:"
562 << packet.length();
565 return rv;
568 bool QuicFramer::ProcessVersionNegotiationPacket(
569 QuicDataReader* reader,
570 QuicPacketPublicHeader* public_header) {
571 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
572 // Try reading at least once to raise error if the packet is invalid.
573 do {
574 QuicTag version;
575 if (!reader->ReadBytes(&version, kQuicVersionSize)) {
576 set_detailed_error("Unable to read supported version in negotiation.");
577 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
579 public_header->versions.push_back(QuicTagToQuicVersion(version));
580 } while (!reader->IsDoneReading());
582 visitor_->OnVersionNegotiationPacket(*public_header);
583 return true;
586 bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader,
587 const QuicPacketPublicHeader& public_header,
588 const QuicEncryptedPacket& packet,
589 char* decrypted_buffer,
590 size_t buffer_length) {
591 QuicPacketHeader header(public_header);
592 if (!ProcessUnauthenticatedHeader(encrypted_reader, &header)) {
593 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
594 return false;
597 size_t decrypted_length = 0;
598 if (!DecryptPayload(encrypted_reader, header, packet, decrypted_buffer,
599 buffer_length, &decrypted_length)) {
600 set_detailed_error("Unable to decrypt payload.");
601 return RaiseError(QUIC_DECRYPTION_FAILURE);
604 QuicDataReader reader(decrypted_buffer, decrypted_length);
605 if (!ProcessAuthenticatedHeader(&reader, &header)) {
606 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
607 return false;
610 if (!visitor_->OnPacketHeader(header)) {
611 // The visitor suppresses further processing of the packet.
612 return true;
615 if (packet.length() > kMaxPacketSize) {
616 DLOG(WARNING) << "Packet too large: " << packet.length();
617 return RaiseError(QUIC_PACKET_TOO_LARGE);
620 // Handle the payload.
621 if (!header.fec_flag) {
622 if (header.is_in_fec_group == IN_FEC_GROUP) {
623 StringPiece payload = reader.PeekRemainingPayload();
624 visitor_->OnFecProtectedPayload(payload);
626 if (!ProcessFrameData(&reader, header)) {
627 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
628 DLOG(WARNING) << "Unable to process frame data.";
629 return false;
631 } else {
632 QuicFecData fec_data;
633 fec_data.fec_group = header.fec_group;
634 fec_data.redundancy = reader.ReadRemainingPayload();
635 visitor_->OnFecData(fec_data);
638 visitor_->OnPacketComplete();
639 return true;
642 bool QuicFramer::ProcessPublicResetPacket(
643 QuicDataReader* reader,
644 const QuicPacketPublicHeader& public_header) {
645 QuicPublicResetPacket packet(public_header);
647 scoped_ptr<CryptoHandshakeMessage> reset(
648 CryptoFramer::ParseMessage(reader->ReadRemainingPayload()));
649 if (!reset.get()) {
650 set_detailed_error("Unable to read reset message.");
651 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
653 if (reset->tag() != kPRST) {
654 set_detailed_error("Incorrect message tag.");
655 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
658 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
659 set_detailed_error("Unable to read nonce proof.");
660 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
662 // TODO(satyamshekhar): validate nonce to protect against DoS.
664 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
665 QUIC_NO_ERROR) {
666 set_detailed_error("Unable to read rejected sequence number.");
667 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
670 StringPiece address;
671 if (reset->GetStringPiece(kCADR, &address)) {
672 QuicSocketAddressCoder address_coder;
673 if (address_coder.Decode(address.data(), address.length())) {
674 packet.client_address = IPEndPoint(address_coder.ip(),
675 address_coder.port());
679 visitor_->OnPublicResetPacket(packet);
680 return true;
683 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
684 StringPiece payload) {
685 visitor_->OnRevivedPacket();
687 header->entropy_hash = GetPacketEntropyHash(*header);
689 if (!visitor_->OnPacketHeader(*header)) {
690 return true;
693 if (payload.length() > kMaxPacketSize) {
694 set_detailed_error("Revived packet too large.");
695 return RaiseError(QUIC_PACKET_TOO_LARGE);
698 QuicDataReader reader(payload.data(), payload.length());
699 if (!ProcessFrameData(&reader, *header)) {
700 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
701 DLOG(WARNING) << "Unable to process frame data.";
702 return false;
705 visitor_->OnPacketComplete();
706 return true;
709 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
710 QuicDataWriter* writer) {
711 DVLOG(1) << "Appending header: " << header;
712 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
713 uint8 public_flags = 0;
714 if (header.public_header.reset_flag) {
715 public_flags |= PACKET_PUBLIC_FLAGS_RST;
717 if (header.public_header.version_flag) {
718 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
721 public_flags |=
722 GetSequenceNumberFlags(header.public_header.sequence_number_length)
723 << kPublicHeaderSequenceNumberShift;
725 switch (header.public_header.connection_id_length) {
726 case PACKET_0BYTE_CONNECTION_ID:
727 if (!writer->WriteUInt8(
728 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
729 return false;
731 break;
732 case PACKET_1BYTE_CONNECTION_ID:
733 if (!writer->WriteUInt8(
734 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
735 return false;
737 if (!writer->WriteUInt8(
738 header.public_header.connection_id & k1ByteConnectionIdMask)) {
739 return false;
741 break;
742 case PACKET_4BYTE_CONNECTION_ID:
743 if (!writer->WriteUInt8(
744 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
745 return false;
747 if (!writer->WriteUInt32(
748 header.public_header.connection_id & k4ByteConnectionIdMask)) {
749 return false;
751 break;
752 case PACKET_8BYTE_CONNECTION_ID:
753 if (!writer->WriteUInt8(
754 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
755 return false;
757 if (!writer->WriteUInt64(header.public_header.connection_id)) {
758 return false;
760 break;
762 last_serialized_connection_id_ = header.public_header.connection_id;
764 if (header.public_header.version_flag) {
765 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
766 QuicTag tag = QuicVersionToQuicTag(quic_version_);
767 writer->WriteUInt32(tag);
768 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
769 << QuicUtils::TagToString(tag) << "'";
772 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
773 header.packet_sequence_number, writer)) {
774 return false;
777 uint8 private_flags = 0;
778 if (header.entropy_flag) {
779 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
781 if (header.is_in_fec_group == IN_FEC_GROUP) {
782 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
784 if (header.fec_flag) {
785 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
787 if (!writer->WriteUInt8(private_flags)) {
788 return false;
791 // The FEC group number is the sequence number of the first fec
792 // protected packet, or 0 if this packet is not protected.
793 if (header.is_in_fec_group == IN_FEC_GROUP) {
794 DCHECK_LE(header.fec_group, header.packet_sequence_number);
795 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
796 // Offset from the current packet sequence number to the first fec
797 // protected packet.
798 uint8 first_fec_protected_packet_offset =
799 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
800 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
801 return false;
805 return true;
808 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
809 uint32 time_delta_us) {
810 // The new time_delta might have wrapped to the next epoch, or it
811 // might have reverse wrapped to the previous epoch, or it might
812 // remain in the same epoch. Select the time closest to the previous
813 // time.
815 // epoch_delta is the delta between epochs. A delta is 4 bytes of
816 // microseconds.
817 const uint64 epoch_delta = UINT64_C(1) << 32;
818 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
819 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
820 uint64 prev_epoch = epoch - epoch_delta;
821 uint64 next_epoch = epoch + epoch_delta;
823 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
824 epoch + time_delta_us,
825 ClosestTo(last_timestamp_.ToMicroseconds(),
826 prev_epoch + time_delta_us,
827 next_epoch + time_delta_us));
829 return QuicTime::Delta::FromMicroseconds(time);
832 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
833 QuicSequenceNumberLength sequence_number_length,
834 QuicPacketSequenceNumber packet_sequence_number) const {
835 // The new sequence number might have wrapped to the next epoch, or
836 // it might have reverse wrapped to the previous epoch, or it might
837 // remain in the same epoch. Select the sequence number closest to the
838 // next expected sequence number, the previous sequence number plus 1.
840 // epoch_delta is the delta between epochs the sequence number was serialized
841 // with, so the correct value is likely the same epoch as the last sequence
842 // number or an adjacent epoch.
843 const QuicPacketSequenceNumber epoch_delta =
844 UINT64_C(1) << (8 * sequence_number_length);
845 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
846 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
847 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
848 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
850 return ClosestTo(next_sequence_number,
851 epoch + packet_sequence_number,
852 ClosestTo(next_sequence_number,
853 prev_epoch + packet_sequence_number,
854 next_epoch + packet_sequence_number));
857 bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader,
858 QuicPacketPublicHeader* public_header) {
859 uint8 public_flags;
860 if (!reader->ReadBytes(&public_flags, 1)) {
861 set_detailed_error("Unable to read public flags.");
862 return false;
865 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
866 public_header->version_flag =
867 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
869 if (validate_flags_ &&
870 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
871 set_detailed_error("Illegal public flags value.");
872 return false;
875 if (public_header->reset_flag && public_header->version_flag) {
876 set_detailed_error("Got version flag in reset packet");
877 return false;
880 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
881 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
882 if (!reader->ReadUInt64(&public_header->connection_id)) {
883 set_detailed_error("Unable to read ConnectionId.");
884 return false;
886 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
887 break;
888 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
889 // If the connection_id is truncated, expect to read the last serialized
890 // connection_id.
891 if (!reader->ReadBytes(&public_header->connection_id,
892 PACKET_4BYTE_CONNECTION_ID)) {
893 set_detailed_error("Unable to read ConnectionId.");
894 return false;
896 if (last_serialized_connection_id_ &&
897 (public_header->connection_id & k4ByteConnectionIdMask) !=
898 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
899 set_detailed_error("Truncated 4 byte ConnectionId does not match "
900 "previous connection_id.");
901 return false;
903 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
904 public_header->connection_id = last_serialized_connection_id_;
905 break;
906 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
907 if (!reader->ReadBytes(&public_header->connection_id,
908 PACKET_1BYTE_CONNECTION_ID)) {
909 set_detailed_error("Unable to read ConnectionId.");
910 return false;
912 if (last_serialized_connection_id_ &&
913 (public_header->connection_id & k1ByteConnectionIdMask) !=
914 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
915 set_detailed_error("Truncated 1 byte ConnectionId does not match "
916 "previous connection_id.");
917 return false;
919 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
920 public_header->connection_id = last_serialized_connection_id_;
921 break;
922 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
923 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
924 public_header->connection_id = last_serialized_connection_id_;
925 break;
928 public_header->sequence_number_length =
929 ReadSequenceNumberLength(
930 public_flags >> kPublicHeaderSequenceNumberShift);
932 // Read the version only if the packet is from the client.
933 // version flag from the server means version negotiation packet.
934 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
935 QuicTag version_tag;
936 if (!reader->ReadUInt32(&version_tag)) {
937 set_detailed_error("Unable to read protocol version.");
938 return false;
941 // If the version from the new packet is the same as the version of this
942 // framer, then the public flags should be set to something we understand.
943 // If not, this raises an error.
944 QuicVersion version = QuicTagToQuicVersion(version_tag);
945 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
946 set_detailed_error("Illegal public flags value.");
947 return false;
949 public_header->versions.push_back(version);
951 return true;
954 // static
955 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
956 QuicPacketSequenceNumber sequence_number) {
957 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
958 return PACKET_1BYTE_SEQUENCE_NUMBER;
959 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
960 return PACKET_2BYTE_SEQUENCE_NUMBER;
961 } else if (sequence_number <
962 UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
963 return PACKET_4BYTE_SEQUENCE_NUMBER;
964 } else {
965 return PACKET_6BYTE_SEQUENCE_NUMBER;
969 // static
970 uint8 QuicFramer::GetSequenceNumberFlags(
971 QuicSequenceNumberLength sequence_number_length) {
972 switch (sequence_number_length) {
973 case PACKET_1BYTE_SEQUENCE_NUMBER:
974 return PACKET_FLAGS_1BYTE_SEQUENCE;
975 case PACKET_2BYTE_SEQUENCE_NUMBER:
976 return PACKET_FLAGS_2BYTE_SEQUENCE;
977 case PACKET_4BYTE_SEQUENCE_NUMBER:
978 return PACKET_FLAGS_4BYTE_SEQUENCE;
979 case PACKET_6BYTE_SEQUENCE_NUMBER:
980 return PACKET_FLAGS_6BYTE_SEQUENCE;
981 default:
982 LOG(DFATAL) << "Unreachable case statement.";
983 return PACKET_FLAGS_6BYTE_SEQUENCE;
987 // static
988 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
989 const QuicAckFrame& frame) {
990 AckFrameInfo ack_info;
991 if (frame.missing_packets.empty()) {
992 return ack_info;
994 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
995 size_t cur_range_length = 0;
996 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
997 QuicPacketSequenceNumber last_missing = *iter;
998 ++iter;
999 for (; iter != frame.missing_packets.end(); ++iter) {
1000 if (cur_range_length < numeric_limits<uint8>::max() &&
1001 *iter == (last_missing + 1)) {
1002 ++cur_range_length;
1003 } else {
1004 ack_info.nack_ranges[last_missing - cur_range_length] =
1005 static_cast<uint8>(cur_range_length);
1006 cur_range_length = 0;
1008 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1009 last_missing = *iter;
1011 // Include the last nack range.
1012 ack_info.nack_ranges[last_missing - cur_range_length] =
1013 static_cast<uint8>(cur_range_length);
1014 // Include the range to the largest observed.
1015 ack_info.max_delta =
1016 max(ack_info.max_delta, frame.largest_observed - last_missing);
1017 return ack_info;
1020 bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader,
1021 QuicPacketHeader* header) {
1022 if (!ProcessPacketSequenceNumber(encrypted_reader,
1023 header->public_header.sequence_number_length,
1024 &header->packet_sequence_number)) {
1025 set_detailed_error("Unable to read sequence number.");
1026 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1029 if (header->packet_sequence_number == 0u) {
1030 set_detailed_error("Packet sequence numbers cannot be 0.");
1031 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1034 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1035 return false;
1037 return true;
1040 bool QuicFramer::ProcessAuthenticatedHeader(QuicDataReader* reader,
1041 QuicPacketHeader* header) {
1042 uint8 private_flags;
1043 if (!reader->ReadBytes(&private_flags, 1)) {
1044 set_detailed_error("Unable to read private flags.");
1045 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1048 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1049 set_detailed_error("Illegal private flags value.");
1050 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1053 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1054 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1056 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1057 header->is_in_fec_group = IN_FEC_GROUP;
1058 uint8 first_fec_protected_packet_offset;
1059 if (!reader->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1060 set_detailed_error("Unable to read first fec protected packet offset.");
1061 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1063 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1064 set_detailed_error("First fec protected packet offset must be less "
1065 "than the sequence number.");
1066 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1068 header->fec_group =
1069 header->packet_sequence_number - first_fec_protected_packet_offset;
1072 header->entropy_hash = GetPacketEntropyHash(*header);
1073 // Set the last sequence number after we have decrypted the packet
1074 // so we are confident is not attacker controlled.
1075 last_sequence_number_ = header->packet_sequence_number;
1076 return true;
1079 bool QuicFramer::ProcessPacketSequenceNumber(
1080 QuicDataReader* reader,
1081 QuicSequenceNumberLength sequence_number_length,
1082 QuicPacketSequenceNumber* sequence_number) {
1083 QuicPacketSequenceNumber wire_sequence_number = 0u;
1084 if (!reader->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1085 return false;
1088 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1089 // in case the first guess is incorrect.
1090 *sequence_number =
1091 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1092 wire_sequence_number);
1093 return true;
1096 bool QuicFramer::ProcessFrameData(QuicDataReader* reader,
1097 const QuicPacketHeader& header) {
1098 if (reader->IsDoneReading()) {
1099 set_detailed_error("Packet has no frames.");
1100 return RaiseError(QUIC_MISSING_PAYLOAD);
1102 while (!reader->IsDoneReading()) {
1103 uint8 frame_type;
1104 if (!reader->ReadBytes(&frame_type, 1)) {
1105 set_detailed_error("Unable to read frame type.");
1106 return RaiseError(QUIC_INVALID_FRAME_DATA);
1109 if (frame_type & kQuicFrameTypeSpecialMask) {
1110 // Stream Frame
1111 if (frame_type & kQuicFrameTypeStreamMask) {
1112 QuicStreamFrame frame;
1113 if (!ProcessStreamFrame(reader, frame_type, &frame)) {
1114 return RaiseError(QUIC_INVALID_STREAM_DATA);
1116 if (!visitor_->OnStreamFrame(frame)) {
1117 DVLOG(1) << "Visitor asked to stop further processing.";
1118 // Returning true since there was no parsing error.
1119 return true;
1121 continue;
1124 // Ack Frame
1125 if (frame_type & kQuicFrameTypeAckMask) {
1126 QuicAckFrame frame;
1127 if (!ProcessAckFrame(reader, frame_type, &frame)) {
1128 return RaiseError(QUIC_INVALID_ACK_DATA);
1130 if (!visitor_->OnAckFrame(frame)) {
1131 DVLOG(1) << "Visitor asked to stop further processing.";
1132 // Returning true since there was no parsing error.
1133 return true;
1135 continue;
1138 // This was a special frame type that did not match any
1139 // of the known ones. Error.
1140 set_detailed_error("Illegal frame type.");
1141 DLOG(WARNING) << "Illegal frame type: "
1142 << static_cast<int>(frame_type);
1143 return RaiseError(QUIC_INVALID_FRAME_DATA);
1146 switch (frame_type) {
1147 case PADDING_FRAME:
1148 // We're done with the packet.
1149 return true;
1151 case RST_STREAM_FRAME: {
1152 QuicRstStreamFrame frame;
1153 if (!ProcessRstStreamFrame(reader, &frame)) {
1154 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1156 if (!visitor_->OnRstStreamFrame(frame)) {
1157 DVLOG(1) << "Visitor asked to stop further processing.";
1158 // Returning true since there was no parsing error.
1159 return true;
1161 continue;
1164 case CONNECTION_CLOSE_FRAME: {
1165 QuicConnectionCloseFrame frame;
1166 if (!ProcessConnectionCloseFrame(reader, &frame)) {
1167 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1170 if (!visitor_->OnConnectionCloseFrame(frame)) {
1171 DVLOG(1) << "Visitor asked to stop further processing.";
1172 // Returning true since there was no parsing error.
1173 return true;
1175 continue;
1178 case GOAWAY_FRAME: {
1179 QuicGoAwayFrame goaway_frame;
1180 if (!ProcessGoAwayFrame(reader, &goaway_frame)) {
1181 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1183 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1184 DVLOG(1) << "Visitor asked to stop further processing.";
1185 // Returning true since there was no parsing error.
1186 return true;
1188 continue;
1191 case WINDOW_UPDATE_FRAME: {
1192 QuicWindowUpdateFrame window_update_frame;
1193 if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) {
1194 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1196 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1197 DVLOG(1) << "Visitor asked to stop further processing.";
1198 // Returning true since there was no parsing error.
1199 return true;
1201 continue;
1204 case BLOCKED_FRAME: {
1205 QuicBlockedFrame blocked_frame;
1206 if (!ProcessBlockedFrame(reader, &blocked_frame)) {
1207 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1209 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1210 DVLOG(1) << "Visitor asked to stop further processing.";
1211 // Returning true since there was no parsing error.
1212 return true;
1214 continue;
1217 case STOP_WAITING_FRAME: {
1218 QuicStopWaitingFrame stop_waiting_frame;
1219 if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) {
1220 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1222 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1223 DVLOG(1) << "Visitor asked to stop further processing.";
1224 // Returning true since there was no parsing error.
1225 return true;
1227 continue;
1229 case PING_FRAME: {
1230 // Ping has no payload.
1231 QuicPingFrame ping_frame;
1232 if (!visitor_->OnPingFrame(ping_frame)) {
1233 DVLOG(1) << "Visitor asked to stop further processing.";
1234 // Returning true since there was no parsing error.
1235 return true;
1237 continue;
1240 default:
1241 set_detailed_error("Illegal frame type.");
1242 DLOG(WARNING) << "Illegal frame type: "
1243 << static_cast<int>(frame_type);
1244 return RaiseError(QUIC_INVALID_FRAME_DATA);
1248 return true;
1251 bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader,
1252 uint8 frame_type,
1253 QuicStreamFrame* frame) {
1254 uint8 stream_flags = frame_type;
1256 stream_flags &= ~kQuicFrameTypeStreamMask;
1258 // Read from right to left: StreamID, Offset, Data Length, Fin.
1259 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1260 stream_flags >>= kQuicStreamIdShift;
1262 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1263 // There is no encoding for 1 byte, only 0 and 2 through 8.
1264 if (offset_length > 0) {
1265 offset_length += 1;
1267 stream_flags >>= kQuicStreamOffsetShift;
1269 bool has_data_length =
1270 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1271 stream_flags >>= kQuicStreamDataLengthShift;
1273 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1275 frame->stream_id = 0;
1276 if (!reader->ReadBytes(&frame->stream_id, stream_id_length)) {
1277 set_detailed_error("Unable to read stream_id.");
1278 return false;
1281 frame->offset = 0;
1282 if (!reader->ReadBytes(&frame->offset, offset_length)) {
1283 set_detailed_error("Unable to read offset.");
1284 return false;
1287 if (has_data_length) {
1288 if (!reader->ReadStringPiece16(&frame->data)) {
1289 set_detailed_error("Unable to read frame data.");
1290 return false;
1292 } else {
1293 if (!reader->ReadStringPiece(&frame->data, reader->BytesRemaining())) {
1294 set_detailed_error("Unable to read frame data.");
1295 return false;
1299 return true;
1302 bool QuicFramer::ProcessAckFrame(QuicDataReader* reader,
1303 uint8 frame_type,
1304 QuicAckFrame* ack_frame) {
1305 // Determine the three lengths from the frame type: largest observed length,
1306 // missing sequence number length, and missing range length.
1307 const QuicSequenceNumberLength missing_sequence_number_length =
1308 ReadSequenceNumberLength(frame_type);
1309 frame_type >>= kQuicSequenceNumberLengthShift;
1310 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1311 ReadSequenceNumberLength(frame_type);
1312 frame_type >>= kQuicSequenceNumberLengthShift;
1313 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1314 frame_type >>= kQuicAckTruncatedShift;
1315 bool has_nacks = frame_type & kQuicHasNacksMask;
1317 if (!reader->ReadBytes(&ack_frame->entropy_hash, 1)) {
1318 set_detailed_error("Unable to read entropy hash for received packets.");
1319 return false;
1322 if (!reader->ReadBytes(&ack_frame->largest_observed,
1323 largest_observed_sequence_number_length)) {
1324 set_detailed_error("Unable to read largest observed.");
1325 return false;
1328 uint64 delta_time_largest_observed_us;
1329 if (!reader->ReadUFloat16(&delta_time_largest_observed_us)) {
1330 set_detailed_error("Unable to read delta time largest observed.");
1331 return false;
1334 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1335 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1336 } else {
1337 ack_frame->delta_time_largest_observed =
1338 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1341 if (!ProcessTimestampsInAckFrame(reader, ack_frame)) {
1342 return false;
1345 if (!has_nacks) {
1346 return true;
1349 uint8 num_missing_ranges;
1350 if (!reader->ReadBytes(&num_missing_ranges, 1)) {
1351 set_detailed_error("Unable to read num missing packet ranges.");
1352 return false;
1355 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1356 for (size_t i = 0; i < num_missing_ranges; ++i) {
1357 QuicPacketSequenceNumber missing_delta = 0;
1358 if (!reader->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1359 set_detailed_error("Unable to read missing sequence number delta.");
1360 return false;
1362 last_sequence_number -= missing_delta;
1363 QuicPacketSequenceNumber range_length = 0;
1364 if (!reader->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1365 set_detailed_error("Unable to read missing sequence number range.");
1366 return false;
1368 for (size_t j = 0; j <= range_length; ++j) {
1369 ack_frame->missing_packets.insert(last_sequence_number - j);
1371 // Subtract an extra 1 to ensure ranges are represented efficiently and
1372 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1373 // to represent an adjacent nack range.
1374 last_sequence_number -= (range_length + 1);
1377 // Parse the revived packets list.
1378 uint8 num_revived_packets;
1379 if (!reader->ReadBytes(&num_revived_packets, 1)) {
1380 set_detailed_error("Unable to read num revived packets.");
1381 return false;
1384 for (size_t i = 0; i < num_revived_packets; ++i) {
1385 QuicPacketSequenceNumber revived_packet = 0;
1386 if (!reader->ReadBytes(&revived_packet,
1387 largest_observed_sequence_number_length)) {
1388 set_detailed_error("Unable to read revived packet.");
1389 return false;
1392 ack_frame->revived_packets.insert(revived_packet);
1395 return true;
1398 bool QuicFramer::ProcessTimestampsInAckFrame(QuicDataReader* reader,
1399 QuicAckFrame* ack_frame) {
1400 if (ack_frame->is_truncated) {
1401 return true;
1403 uint8 num_received_packets;
1404 if (!reader->ReadBytes(&num_received_packets, 1)) {
1405 set_detailed_error("Unable to read num received packets.");
1406 return false;
1409 if (num_received_packets > 0) {
1410 uint8 delta_from_largest_observed;
1411 if (!reader->ReadBytes(&delta_from_largest_observed,
1412 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1413 set_detailed_error("Unable to read sequence delta in received packets.");
1414 return false;
1416 QuicPacketSequenceNumber seq_num =
1417 ack_frame->largest_observed - delta_from_largest_observed;
1419 // Time delta from the framer creation.
1420 uint32 time_delta_us;
1421 if (!reader->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1422 set_detailed_error("Unable to read time delta in received packets.");
1423 return false;
1426 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1428 ack_frame->received_packet_times.push_back(
1429 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1431 for (uint8 i = 1; i < num_received_packets; ++i) {
1432 if (!reader->ReadBytes(&delta_from_largest_observed,
1433 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1434 set_detailed_error(
1435 "Unable to read sequence delta in received packets.");
1436 return false;
1438 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1440 // Time delta from the previous timestamp.
1441 uint64 incremental_time_delta_us;
1442 if (!reader->ReadUFloat16(&incremental_time_delta_us)) {
1443 set_detailed_error(
1444 "Unable to read incremental time delta in received packets.");
1445 return false;
1448 last_timestamp_ = last_timestamp_.Add(
1449 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1450 ack_frame->received_packet_times.push_back(
1451 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1454 return true;
1457 bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader,
1458 const QuicPacketHeader& header,
1459 QuicStopWaitingFrame* stop_waiting) {
1460 if (!reader->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1461 set_detailed_error("Unable to read entropy hash for sent packets.");
1462 return false;
1465 QuicPacketSequenceNumber least_unacked_delta = 0;
1466 if (!reader->ReadBytes(&least_unacked_delta,
1467 header.public_header.sequence_number_length)) {
1468 set_detailed_error("Unable to read least unacked delta.");
1469 return false;
1471 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1472 stop_waiting->least_unacked =
1473 header.packet_sequence_number - least_unacked_delta;
1475 return true;
1478 bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader,
1479 QuicRstStreamFrame* frame) {
1480 if (!reader->ReadUInt32(&frame->stream_id)) {
1481 set_detailed_error("Unable to read stream_id.");
1482 return false;
1485 if (!reader->ReadUInt64(&frame->byte_offset)) {
1486 set_detailed_error("Unable to read rst stream sent byte offset.");
1487 return false;
1490 uint32 error_code;
1491 if (!reader->ReadUInt32(&error_code)) {
1492 set_detailed_error("Unable to read rst stream error code.");
1493 return false;
1496 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1497 set_detailed_error("Invalid rst stream error code.");
1498 return false;
1501 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1502 if (quic_version_ <= QUIC_VERSION_24) {
1503 StringPiece error_details;
1504 if (!reader->ReadStringPiece16(&error_details)) {
1505 set_detailed_error("Unable to read rst stream error details.");
1506 return false;
1508 frame->error_details = error_details.as_string();
1511 return true;
1514 bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader,
1515 QuicConnectionCloseFrame* frame) {
1516 uint32 error_code;
1517 if (!reader->ReadUInt32(&error_code)) {
1518 set_detailed_error("Unable to read connection close error code.");
1519 return false;
1522 if (error_code >= QUIC_LAST_ERROR) {
1523 set_detailed_error("Invalid error code.");
1524 return false;
1527 frame->error_code = static_cast<QuicErrorCode>(error_code);
1529 StringPiece error_details;
1530 if (!reader->ReadStringPiece16(&error_details)) {
1531 set_detailed_error("Unable to read connection close error details.");
1532 return false;
1534 frame->error_details = error_details.as_string();
1536 return true;
1539 bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader,
1540 QuicGoAwayFrame* frame) {
1541 uint32 error_code;
1542 if (!reader->ReadUInt32(&error_code)) {
1543 set_detailed_error("Unable to read go away error code.");
1544 return false;
1546 frame->error_code = static_cast<QuicErrorCode>(error_code);
1548 if (error_code >= QUIC_LAST_ERROR) {
1549 set_detailed_error("Invalid error code.");
1550 return false;
1553 uint32 stream_id;
1554 if (!reader->ReadUInt32(&stream_id)) {
1555 set_detailed_error("Unable to read last good stream id.");
1556 return false;
1558 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1560 StringPiece reason_phrase;
1561 if (!reader->ReadStringPiece16(&reason_phrase)) {
1562 set_detailed_error("Unable to read goaway reason.");
1563 return false;
1565 frame->reason_phrase = reason_phrase.as_string();
1567 return true;
1570 bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader,
1571 QuicWindowUpdateFrame* frame) {
1572 if (!reader->ReadUInt32(&frame->stream_id)) {
1573 set_detailed_error("Unable to read stream_id.");
1574 return false;
1577 if (!reader->ReadUInt64(&frame->byte_offset)) {
1578 set_detailed_error("Unable to read window byte_offset.");
1579 return false;
1582 return true;
1585 bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader,
1586 QuicBlockedFrame* frame) {
1587 if (!reader->ReadUInt32(&frame->stream_id)) {
1588 set_detailed_error("Unable to read stream_id.");
1589 return false;
1592 return true;
1595 // static
1596 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1597 const QuicEncryptedPacket& encrypted,
1598 QuicConnectionIdLength connection_id_length,
1599 bool includes_version,
1600 QuicSequenceNumberLength sequence_number_length) {
1601 return StringPiece(
1602 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1603 connection_id_length, includes_version, sequence_number_length)
1604 - kStartOfHashData);
1607 void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) {
1608 DCHECK(alternative_decrypter_.get() == nullptr);
1609 DCHECK_GE(level, decrypter_level_);
1610 decrypter_.reset(decrypter);
1611 decrypter_level_ = level;
1614 void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level,
1615 QuicDecrypter* decrypter,
1616 bool latch_once_used) {
1617 alternative_decrypter_.reset(decrypter);
1618 alternative_decrypter_level_ = level;
1619 alternative_decrypter_latch_ = latch_once_used;
1622 const QuicDecrypter* QuicFramer::decrypter() const {
1623 return decrypter_.get();
1626 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1627 return alternative_decrypter_.get();
1630 void QuicFramer::SetEncrypter(EncryptionLevel level,
1631 QuicEncrypter* encrypter) {
1632 DCHECK_GE(level, 0);
1633 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1634 encrypter_[level].reset(encrypter);
1637 QuicEncryptedPacket* QuicFramer::EncryptPayload(
1638 EncryptionLevel level,
1639 QuicPacketSequenceNumber packet_sequence_number,
1640 const QuicPacket& packet,
1641 char* buffer,
1642 size_t buffer_len) {
1643 DCHECK(encrypter_[level].get() != nullptr);
1645 const size_t encrypted_len =
1646 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1647 StringPiece header_data = packet.BeforePlaintext();
1648 const size_t total_len = header_data.length() + encrypted_len;
1650 char* encryption_buffer = buffer;
1651 // Allocate a large enough buffer for the header and the encrypted data.
1652 const bool is_new_buffer = total_len > buffer_len;
1653 if (is_new_buffer) {
1654 if (!FLAGS_quic_allow_oversized_packets_for_test) {
1655 LOG(DFATAL) << "Buffer of length:" << buffer_len
1656 << " is not large enough to encrypt length " << total_len;
1657 return nullptr;
1659 encryption_buffer = new char[total_len];
1661 // Copy in the header, because the encrypter only populates the encrypted
1662 // plaintext content.
1663 memcpy(encryption_buffer, header_data.data(), header_data.length());
1664 // Encrypt the plaintext into the buffer.
1665 size_t output_length = 0;
1666 if (!encrypter_[level]->EncryptPacket(
1667 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1668 encryption_buffer + header_data.length(), &output_length,
1669 encrypted_len)) {
1670 RaiseError(QUIC_ENCRYPTION_FAILURE);
1671 return nullptr;
1674 return new QuicEncryptedPacket(
1675 encryption_buffer, header_data.length() + output_length, is_new_buffer);
1678 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1679 // In order to keep the code simple, we don't have the current encryption
1680 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1681 size_t min_plaintext_size = ciphertext_size;
1683 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1684 if (encrypter_[i].get() != nullptr) {
1685 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1686 if (size < min_plaintext_size) {
1687 min_plaintext_size = size;
1692 return min_plaintext_size;
1695 bool QuicFramer::DecryptPayload(QuicDataReader* encrypted_reader,
1696 const QuicPacketHeader& header,
1697 const QuicEncryptedPacket& packet,
1698 char* decrypted_buffer,
1699 size_t buffer_length,
1700 size_t* decrypted_length) {
1701 StringPiece encrypted = encrypted_reader->ReadRemainingPayload();
1702 DCHECK(decrypter_.get() != nullptr);
1703 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1704 packet, header.public_header.connection_id_length,
1705 header.public_header.version_flag,
1706 header.public_header.sequence_number_length);
1707 bool success = decrypter_->DecryptPacket(
1708 header.packet_sequence_number, associated_data, encrypted,
1709 decrypted_buffer, decrypted_length, buffer_length);
1710 if (success) {
1711 visitor_->OnDecryptedPacket(decrypter_level_);
1712 } else if (alternative_decrypter_.get() != nullptr) {
1713 success = alternative_decrypter_->DecryptPacket(
1714 header.packet_sequence_number, associated_data, encrypted,
1715 decrypted_buffer, decrypted_length, buffer_length);
1716 if (success) {
1717 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1718 if (alternative_decrypter_latch_) {
1719 // Switch to the alternative decrypter and latch so that we cannot
1720 // switch back.
1721 decrypter_.reset(alternative_decrypter_.release());
1722 decrypter_level_ = alternative_decrypter_level_;
1723 alternative_decrypter_level_ = ENCRYPTION_NONE;
1724 } else {
1725 // Switch the alternative decrypter so that we use it first next time.
1726 decrypter_.swap(alternative_decrypter_);
1727 EncryptionLevel level = alternative_decrypter_level_;
1728 alternative_decrypter_level_ = decrypter_level_;
1729 decrypter_level_ = level;
1734 if (!success) {
1735 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1736 << header.packet_sequence_number;
1737 return false;
1740 return true;
1743 size_t QuicFramer::GetAckFrameSize(
1744 const QuicAckFrame& ack,
1745 QuicSequenceNumberLength sequence_number_length) {
1746 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1747 QuicSequenceNumberLength largest_observed_length =
1748 GetMinSequenceNumberLength(ack.largest_observed);
1749 QuicSequenceNumberLength missing_sequence_number_length =
1750 GetMinSequenceNumberLength(ack_info.max_delta);
1752 size_t ack_size = GetMinAckFrameSize(largest_observed_length);
1753 if (!ack_info.nack_ranges.empty()) {
1754 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1755 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1756 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1757 ack_size += min(ack.revived_packets.size(),
1758 kMaxRevivedPackets) * largest_observed_length;
1761 // In version 23, if the ack will be truncated due to too many nack ranges,
1762 // then do not include the number of timestamps (1 byte).
1763 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1764 // 1 byte for the number of timestamps.
1765 ack_size += 1;
1766 if (ack.received_packet_times.size() > 0) {
1767 // 1 byte for sequence number, 4 bytes for timestamp for the first
1768 // packet.
1769 ack_size += 5;
1771 // 1 byte for sequence number, 2 bytes for timestamp for the other
1772 // packets.
1773 ack_size += 3 * (ack.received_packet_times.size() - 1);
1777 return ack_size;
1780 size_t QuicFramer::ComputeFrameLength(
1781 const QuicFrame& frame,
1782 bool last_frame_in_packet,
1783 InFecGroup is_in_fec_group,
1784 QuicSequenceNumberLength sequence_number_length) {
1785 switch (frame.type) {
1786 case STREAM_FRAME:
1787 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1788 frame.stream_frame->offset,
1789 last_frame_in_packet, is_in_fec_group) +
1790 frame.stream_frame->data.length();
1791 case ACK_FRAME: {
1792 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1794 case STOP_WAITING_FRAME:
1795 return GetStopWaitingFrameSize(sequence_number_length);
1796 case MTU_DISCOVERY_FRAME:
1797 // MTU discovery frames are serialized as ping frames.
1798 case PING_FRAME:
1799 // Ping has no payload.
1800 return kQuicFrameTypeSize;
1801 case RST_STREAM_FRAME:
1802 if (quic_version_ <= QUIC_VERSION_24) {
1803 return GetMinRstStreamFrameSize() +
1804 frame.rst_stream_frame->error_details.size();
1806 return GetRstStreamFrameSize();
1807 case CONNECTION_CLOSE_FRAME:
1808 return GetMinConnectionCloseFrameSize() +
1809 frame.connection_close_frame->error_details.size();
1810 case GOAWAY_FRAME:
1811 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1812 case WINDOW_UPDATE_FRAME:
1813 return GetWindowUpdateFrameSize();
1814 case BLOCKED_FRAME:
1815 return GetBlockedFrameSize();
1816 case PADDING_FRAME:
1817 DCHECK(false);
1818 return 0;
1819 case NUM_FRAME_TYPES:
1820 DCHECK(false);
1821 return 0;
1824 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1825 DCHECK(false);
1826 return 0;
1829 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1830 bool no_stream_frame_length,
1831 QuicDataWriter* writer) {
1832 uint8 type_byte = 0;
1833 switch (frame.type) {
1834 case STREAM_FRAME: {
1835 if (frame.stream_frame == nullptr) {
1836 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1838 // Fin bit.
1839 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1841 // Data Length bit.
1842 type_byte <<= kQuicStreamDataLengthShift;
1843 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1845 // Offset 3 bits.
1846 type_byte <<= kQuicStreamOffsetShift;
1847 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1848 if (offset_len > 0) {
1849 type_byte |= offset_len - 1;
1852 // stream id 2 bits.
1853 type_byte <<= kQuicStreamIdShift;
1854 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1855 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1856 break;
1858 case ACK_FRAME:
1859 return true;
1860 case MTU_DISCOVERY_FRAME:
1861 type_byte = static_cast<uint8>(PING_FRAME);
1862 break;
1863 default:
1864 type_byte = static_cast<uint8>(frame.type);
1865 break;
1868 return writer->WriteUInt8(type_byte);
1871 // static
1872 bool QuicFramer::AppendPacketSequenceNumber(
1873 QuicSequenceNumberLength sequence_number_length,
1874 QuicPacketSequenceNumber packet_sequence_number,
1875 QuicDataWriter* writer) {
1876 // Ensure the entire sequence number can be written.
1877 if (writer->capacity() - writer->length() <
1878 static_cast<size_t>(sequence_number_length)) {
1879 return false;
1881 switch (sequence_number_length) {
1882 case PACKET_1BYTE_SEQUENCE_NUMBER:
1883 return writer->WriteUInt8(
1884 packet_sequence_number & k1ByteSequenceNumberMask);
1885 break;
1886 case PACKET_2BYTE_SEQUENCE_NUMBER:
1887 return writer->WriteUInt16(
1888 packet_sequence_number & k2ByteSequenceNumberMask);
1889 break;
1890 case PACKET_4BYTE_SEQUENCE_NUMBER:
1891 return writer->WriteUInt32(
1892 packet_sequence_number & k4ByteSequenceNumberMask);
1893 break;
1894 case PACKET_6BYTE_SEQUENCE_NUMBER:
1895 return writer->WriteUInt48(
1896 packet_sequence_number & k6ByteSequenceNumberMask);
1897 break;
1898 default:
1899 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1900 return false;
1904 bool QuicFramer::AppendStreamFrame(
1905 const QuicStreamFrame& frame,
1906 bool no_stream_frame_length,
1907 QuicDataWriter* writer) {
1908 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1909 LOG(DFATAL) << "Writing stream id size failed.";
1910 return false;
1912 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1913 LOG(DFATAL) << "Writing offset size failed.";
1914 return false;
1916 if (!no_stream_frame_length) {
1917 if ((frame.data.size() > numeric_limits<uint16>::max()) ||
1918 !writer->WriteUInt16(static_cast<uint16>(frame.data.size()))) {
1919 LOG(DFATAL) << "Writing stream frame length failed";
1920 return false;
1924 if (!writer->WriteBytes(frame.data.data(), frame.data.size())) {
1925 LOG(DFATAL) << "Writing frame data failed.";
1926 return false;
1928 return true;
1931 void QuicFramer::set_version(const QuicVersion version) {
1932 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1933 quic_version_ = version;
1936 bool QuicFramer::AppendAckFrameAndTypeByte(
1937 const QuicPacketHeader& header,
1938 const QuicAckFrame& frame,
1939 QuicDataWriter* writer) {
1940 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1941 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1942 QuicSequenceNumberLength largest_observed_length =
1943 GetMinSequenceNumberLength(ack_largest_observed);
1944 QuicSequenceNumberLength missing_sequence_number_length =
1945 GetMinSequenceNumberLength(ack_info.max_delta);
1946 // Determine whether we need to truncate ranges.
1947 size_t available_range_bytes =
1948 writer->capacity() - writer->length() - kNumberOfRevivedPacketsSize -
1949 kNumberOfNackRangesSize - GetMinAckFrameSize(largest_observed_length);
1950 size_t max_num_ranges = available_range_bytes /
1951 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1952 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1953 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1954 DVLOG_IF(1, truncated) << "Truncating ack from "
1955 << ack_info.nack_ranges.size() << " ranges to "
1956 << max_num_ranges;
1957 // Write out the type byte by setting the low order bits and doing shifts
1958 // to make room for the next bit flags to be set.
1959 // Whether there are any nacks.
1960 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1962 // truncating bit.
1963 type_byte <<= kQuicAckTruncatedShift;
1964 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1966 // Largest observed sequence number length.
1967 type_byte <<= kQuicSequenceNumberLengthShift;
1968 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1970 // Missing sequence number length.
1971 type_byte <<= kQuicSequenceNumberLengthShift;
1972 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1974 type_byte |= kQuicFrameTypeAckMask;
1976 if (!writer->WriteUInt8(type_byte)) {
1977 return false;
1980 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1981 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1982 if (truncated) {
1983 // Skip the nack ranges which the truncated ack won't include and set
1984 // a correct largest observed for the truncated ack.
1985 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1986 ++i) {
1987 ++ack_iter;
1989 // If the last range is followed by acks, include them.
1990 // If the last range is followed by another range, specify the end of the
1991 // range as the largest_observed.
1992 ack_largest_observed = ack_iter->first - 1;
1993 // Also update the entropy so it matches the largest observed.
1994 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1995 ++ack_iter;
1998 if (!writer->WriteUInt8(ack_entropy_hash)) {
1999 return false;
2002 if (!AppendPacketSequenceNumber(largest_observed_length,
2003 ack_largest_observed, writer)) {
2004 return false;
2007 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2008 if (!frame.delta_time_largest_observed.IsInfinite()) {
2009 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2010 delta_time_largest_observed_us =
2011 frame.delta_time_largest_observed.ToMicroseconds();
2014 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2015 return false;
2018 // Timestamp goes at the end of the required fields.
2019 if (!truncated) {
2020 if (!AppendTimestampToAckFrame(frame, writer)) {
2021 return false;
2025 if (ack_info.nack_ranges.empty()) {
2026 return true;
2029 const uint8 num_missing_ranges =
2030 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
2031 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2032 return false;
2035 int num_ranges_written = 0;
2036 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2037 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2038 // Calculate the delta to the last number in the range.
2039 QuicPacketSequenceNumber missing_delta =
2040 last_sequence_written - (ack_iter->first + ack_iter->second);
2041 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2042 missing_delta, writer)) {
2043 return false;
2045 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2046 ack_iter->second, writer)) {
2047 return false;
2049 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2050 last_sequence_written = ack_iter->first - 1;
2051 ++num_ranges_written;
2053 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2055 // Append revived packets.
2056 // If not all the revived packets fit, only mention the ones that do.
2057 uint8 num_revived_packets =
2058 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2059 num_revived_packets = static_cast<uint8>(min(
2060 static_cast<size_t>(num_revived_packets),
2061 (writer->capacity() - writer->length()) / largest_observed_length));
2062 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2063 return false;
2066 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2067 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2068 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2069 if (!AppendPacketSequenceNumber(largest_observed_length,
2070 *iter, writer)) {
2071 return false;
2075 return true;
2078 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2079 QuicDataWriter* writer) {
2080 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2081 // num_received_packets is only 1 byte.
2082 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2083 return false;
2086 uint8 num_received_packets = frame.received_packet_times.size();
2088 if (!writer->WriteBytes(&num_received_packets, 1)) {
2089 return false;
2091 if (num_received_packets == 0) {
2092 return true;
2095 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2096 QuicPacketSequenceNumber sequence_number = it->first;
2097 QuicPacketSequenceNumber delta_from_largest_observed =
2098 frame.largest_observed - sequence_number;
2100 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2101 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2102 return false;
2105 if (!writer->WriteUInt8(
2106 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2107 return false;
2110 // Use the lowest 4 bytes of the time delta from the creation_time_.
2111 const uint64 time_epoch_delta_us = UINT64_C(1) << 32;
2112 uint32 time_delta_us =
2113 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2114 & (time_epoch_delta_us - 1));
2115 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2116 return false;
2119 QuicTime prev_time = it->second;
2121 for (++it; it != frame.received_packet_times.end(); ++it) {
2122 sequence_number = it->first;
2123 delta_from_largest_observed = frame.largest_observed - sequence_number;
2125 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2126 return false;
2129 if (!writer->WriteUInt8(
2130 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2131 return false;
2134 uint64 frame_time_delta_us =
2135 it->second.Subtract(prev_time).ToMicroseconds();
2136 prev_time = it->second;
2137 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2138 return false;
2141 return true;
2144 bool QuicFramer::AppendStopWaitingFrame(
2145 const QuicPacketHeader& header,
2146 const QuicStopWaitingFrame& frame,
2147 QuicDataWriter* writer) {
2148 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2149 const QuicPacketSequenceNumber least_unacked_delta =
2150 header.packet_sequence_number - frame.least_unacked;
2151 const QuicPacketSequenceNumber length_shift =
2152 header.public_header.sequence_number_length * 8;
2153 if (!writer->WriteUInt8(frame.entropy_hash)) {
2154 LOG(DFATAL) << " hash failed";
2155 return false;
2158 if (least_unacked_delta >> length_shift > 0) {
2159 LOG(DFATAL) << "sequence_number_length "
2160 << header.public_header.sequence_number_length
2161 << " is too small for least_unacked_delta: "
2162 << least_unacked_delta;
2163 return false;
2165 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2166 least_unacked_delta, writer)) {
2167 LOG(DFATAL) << " seq failed: "
2168 << header.public_header.sequence_number_length;
2169 return false;
2172 return true;
2175 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2176 QuicDataWriter* writer) {
2177 if (!writer->WriteUInt32(frame.stream_id)) {
2178 return false;
2181 if (!writer->WriteUInt64(frame.byte_offset)) {
2182 return false;
2185 uint32 error_code = static_cast<uint32>(frame.error_code);
2186 if (!writer->WriteUInt32(error_code)) {
2187 return false;
2190 if (quic_version_ <= QUIC_VERSION_24) {
2191 if (!writer->WriteStringPiece16(frame.error_details)) {
2192 return false;
2195 return true;
2198 bool QuicFramer::AppendConnectionCloseFrame(
2199 const QuicConnectionCloseFrame& frame,
2200 QuicDataWriter* writer) {
2201 uint32 error_code = static_cast<uint32>(frame.error_code);
2202 if (!writer->WriteUInt32(error_code)) {
2203 return false;
2205 if (!writer->WriteStringPiece16(frame.error_details)) {
2206 return false;
2208 return true;
2211 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2212 QuicDataWriter* writer) {
2213 uint32 error_code = static_cast<uint32>(frame.error_code);
2214 if (!writer->WriteUInt32(error_code)) {
2215 return false;
2217 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2218 if (!writer->WriteUInt32(stream_id)) {
2219 return false;
2221 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2222 return false;
2224 return true;
2227 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2228 QuicDataWriter* writer) {
2229 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2230 if (!writer->WriteUInt32(stream_id)) {
2231 return false;
2233 if (!writer->WriteUInt64(frame.byte_offset)) {
2234 return false;
2236 return true;
2239 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2240 QuicDataWriter* writer) {
2241 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2242 if (!writer->WriteUInt32(stream_id)) {
2243 return false;
2245 return true;
2248 bool QuicFramer::RaiseError(QuicErrorCode error) {
2249 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2250 << " detail: " << detailed_error_;
2251 set_error(error);
2252 visitor_->OnError(this);
2253 return false;
2256 } // namespace net