1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "crypto/ghash.h"
9 #include "base/logging.h"
10 #include "base/sys_byteorder.h"
14 // GaloisHash is a polynomial authenticator that works in GF(2^128).
16 // Elements of the field are represented in `little-endian' order (which
17 // matches the description in the paper[1]), thus the most significant bit is
18 // the right-most bit. (This is backwards from the way that everybody else does
21 // We store field elements in a pair of such `little-endian' uint64s. So the
22 // value one is represented by {low = 2**63, high = 0} and doubling a value
23 // involves a *right* shift.
25 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
29 // Get64 reads a 64-bit, big-endian number from |bytes|.
30 uint64
Get64(const uint8 bytes
[8]) {
32 memcpy(&t
, bytes
, sizeof(t
));
33 return base::NetToHost64(t
);
36 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
37 void Put64(uint8 bytes
[8], uint64 x
) {
38 x
= base::HostToNet64(x
);
39 memcpy(bytes
, &x
, sizeof(x
));
42 // Reverse reverses the order of the bits of 4-bit number in |i|.
44 i
= ((i
<< 2) & 0xc) | ((i
>> 2) & 0x3);
45 i
= ((i
<< 1) & 0xa) | ((i
>> 1) & 0x5);
51 GaloisHash::GaloisHash(const uint8 key
[16]) {
54 // We precompute 16 multiples of |key|. However, when we do lookups into this
55 // table we'll be using bits from a field element and therefore the bits will
56 // be in the reverse order. So normally one would expect, say, 4*key to be in
57 // index 4 of the table but due to this bit ordering it will actually be in
58 // index 0010 (base 2) = 2.
59 FieldElement x
= {Get64(key
), Get64(key
+8)};
60 product_table_
[0].low
= 0;
61 product_table_
[0].hi
= 0;
62 product_table_
[Reverse(1)] = x
;
64 for (int i
= 0; i
< 16; i
+= 2) {
65 product_table_
[Reverse(i
)] = Double(product_table_
[Reverse(i
/2)]);
66 product_table_
[Reverse(i
+1)] = Add(product_table_
[Reverse(i
)], x
);
70 void GaloisHash::Reset() {
71 state_
= kHashingAdditionalData
;
72 additional_bytes_
= 0;
73 ciphertext_bytes_
= 0;
79 void GaloisHash::UpdateAdditional(const uint8
* data
, size_t length
) {
80 DCHECK_EQ(state_
, kHashingAdditionalData
);
81 additional_bytes_
+= length
;
85 void GaloisHash::UpdateCiphertext(const uint8
* data
, size_t length
) {
86 if (state_
== kHashingAdditionalData
) {
87 // If there's any remaining additional data it's zero padded to the next
90 memset(&buf_
[buf_used_
], 0, sizeof(buf_
)-buf_used_
);
91 UpdateBlocks(buf_
, 1);
94 state_
= kHashingCiphertext
;
97 DCHECK_EQ(state_
, kHashingCiphertext
);
98 ciphertext_bytes_
+= length
;
102 void GaloisHash::Finish(void* output
, size_t len
) {
103 DCHECK(state_
!= kComplete
);
106 // If there's any remaining data (additional data or ciphertext), it's zero
107 // padded to the next full block.
108 memset(&buf_
[buf_used_
], 0, sizeof(buf_
)-buf_used_
);
109 UpdateBlocks(buf_
, 1);
115 // The lengths of the additional data and ciphertext are included as the last
116 // block. The lengths are the number of bits.
117 y_
.low
^= additional_bytes_
*8;
118 y_
.hi
^= ciphertext_bytes_
*8;
119 MulAfterPrecomputation(product_table_
, &y_
);
121 uint8
*result
, result_tmp
[16];
123 result
= reinterpret_cast<uint8
*>(output
);
128 Put64(result
, y_
.low
);
129 Put64(result
+ 8, y_
.hi
);
132 memcpy(output
, result_tmp
, len
);
136 GaloisHash::FieldElement
GaloisHash::Add(
137 const FieldElement
& x
,
138 const FieldElement
& y
) {
139 // Addition in a characteristic 2 field is just XOR.
140 FieldElement z
= {x
.low
^y
.low
, x
.hi
^y
.hi
};
145 GaloisHash::FieldElement
GaloisHash::Double(const FieldElement
& x
) {
146 const bool msb_set
= x
.hi
& 1;
149 // Because of the bit-ordering, doubling is actually a right shift.
151 xx
.hi
|= x
.low
<< 63;
154 // If the most-significant bit was set before shifting then it, conceptually,
155 // becomes a term of x^128. This is greater than the irreducible polynomial
156 // so the result has to be reduced. The irreducible polynomial is
157 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
158 // which also means subtracting the other four terms. In characteristic 2
159 // fields, subtraction == addition == XOR.
161 xx
.low
^= 0xe100000000000000ULL
;
166 void GaloisHash::MulAfterPrecomputation(const FieldElement
* table
,
168 FieldElement z
= {0, 0};
170 // In order to efficiently multiply, we use the precomputed table of i*key,
171 // for i in 0..15, to handle four bits at a time. We could obviously use
172 // larger tables for greater speedups but the next convenient table size is
173 // 4K, which is a little large.
175 // In other fields one would use bit positions spread out across the field in
176 // order to reduce the number of doublings required. However, in
177 // characteristic 2 fields, repeated doublings are exceptionally cheap and
178 // it's not worth spending more precomputation time to eliminate them.
179 for (unsigned i
= 0; i
< 2; i
++) {
187 for (unsigned j
= 0; j
< 64; j
+= 4) {
189 // the values in |table| are ordered for little-endian bit positions. See
190 // the comment in the constructor.
191 const FieldElement
& t
= table
[word
& 0xf];
201 // kReductionTable allows for rapid multiplications by 16. A multiplication by
202 // 16 is a right shift by four bits, which results in four bits at 2**128.
203 // These terms have to be eliminated by dividing by the irreducible polynomial.
204 // In GHASH, the polynomial is such that all the terms occur in the
205 // least-significant 8 bits, save for the term at x^128. Therefore we can
206 // precompute the value to be added to the field element for each of the 16 bit
207 // patterns at 2**128 and the values fit within 12 bits.
208 static const uint16 kReductionTable
[16] = {
209 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
210 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
214 void GaloisHash::Mul16(FieldElement
* x
) {
215 const unsigned msw
= x
->hi
& 0xf;
217 x
->hi
|= x
->low
<< 60;
219 x
->low
^= static_cast<uint64
>(kReductionTable
[msw
]) << 48;
222 void GaloisHash::UpdateBlocks(const uint8
* bytes
, size_t num_blocks
) {
223 for (size_t i
= 0; i
< num_blocks
; i
++) {
224 y_
.low
^= Get64(bytes
);
226 y_
.hi
^= Get64(bytes
);
228 MulAfterPrecomputation(product_table_
, &y_
);
232 void GaloisHash::Update(const uint8
* data
, size_t length
) {
234 const size_t n
= std::min(length
, sizeof(buf_
) - buf_used_
);
235 memcpy(&buf_
[buf_used_
], data
, n
);
240 if (buf_used_
== sizeof(buf_
)) {
241 UpdateBlocks(buf_
, 1);
247 const size_t n
= length
/ 16;
248 UpdateBlocks(data
, n
);
254 memcpy(buf_
, data
, length
);
259 } // namespace crypto