1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #include "base/logging.h"
8 #include "skia/ext/convolver.h"
9 #include "skia/ext/convolver_SSE2.h"
10 #include "third_party/skia/include/core/SkSize.h"
11 #include "third_party/skia/include/core/SkTypes.h"
17 // Converts the argument to an 8-bit unsigned value by clamping to the range
19 inline unsigned char ClampTo8(int a
) {
20 if (static_cast<unsigned>(a
) < 256)
21 return a
; // Avoid the extra check in the common case.
27 // Takes the value produced by accumulating element-wise product of image with
28 // a kernel and brings it back into range.
29 // All of the filter scaling factors are in fixed point with kShiftBits bits of
31 inline unsigned char BringBackTo8(int a
, bool take_absolute
) {
32 a
>>= ConvolutionFilter1D::kShiftBits
;
38 // Stores a list of rows in a circular buffer. The usage is you write into it
39 // by calling AdvanceRow. It will keep track of which row in the buffer it
40 // should use next, and the total number of rows added.
41 class CircularRowBuffer
{
43 // The number of pixels in each row is given in |source_row_pixel_width|.
44 // The maximum number of rows needed in the buffer is |max_y_filter_size|
45 // (we only need to store enough rows for the biggest filter).
47 // We use the |first_input_row| to compute the coordinates of all of the
48 // following rows returned by Advance().
49 CircularRowBuffer(int dest_row_pixel_width
, int max_y_filter_size
,
51 : row_byte_width_(dest_row_pixel_width
* 4),
52 num_rows_(max_y_filter_size
),
54 next_row_coordinate_(first_input_row
) {
55 buffer_
.resize(row_byte_width_
* max_y_filter_size
);
56 row_addresses_
.resize(num_rows_
);
59 // Moves to the next row in the buffer, returning a pointer to the beginning
61 unsigned char* AdvanceRow() {
62 unsigned char* row
= &buffer_
[next_row_
* row_byte_width_
];
63 next_row_coordinate_
++;
65 // Set the pointer to the next row to use, wrapping around if necessary.
67 if (next_row_
== num_rows_
)
72 // Returns a pointer to an "unrolled" array of rows. These rows will start
73 // at the y coordinate placed into |*first_row_index| and will continue in
74 // order for the maximum number of rows in this circular buffer.
76 // The |first_row_index_| may be negative. This means the circular buffer
77 // starts before the top of the image (it hasn't been filled yet).
78 unsigned char* const* GetRowAddresses(int* first_row_index
) {
79 // Example for a 4-element circular buffer holding coords 6-9.
82 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
85 // The "next" row is also the first (lowest) coordinate. This computation
86 // may yield a negative value, but that's OK, the math will work out
87 // since the user of this buffer will compute the offset relative
88 // to the first_row_index and the negative rows will never be used.
89 *first_row_index
= next_row_coordinate_
- num_rows_
;
91 int cur_row
= next_row_
;
92 for (int i
= 0; i
< num_rows_
; i
++) {
93 row_addresses_
[i
] = &buffer_
[cur_row
* row_byte_width_
];
95 // Advance to the next row, wrapping if necessary.
97 if (cur_row
== num_rows_
)
100 return &row_addresses_
[0];
104 // The buffer storing the rows. They are packed, each one row_byte_width_.
105 std::vector
<unsigned char> buffer_
;
107 // Number of bytes per row in the |buffer_|.
110 // The number of rows available in the buffer.
113 // The next row index we should write into. This wraps around as the
114 // circular buffer is used.
117 // The y coordinate of the |next_row_|. This is incremented each time a
118 // new row is appended and does not wrap.
119 int next_row_coordinate_
;
121 // Buffer used by GetRowAddresses().
122 std::vector
<unsigned char*> row_addresses_
;
125 // Convolves horizontally along a single row. The row data is given in
126 // |src_data| and continues for the num_values() of the filter.
127 template<bool has_alpha
>
128 void ConvolveHorizontally(const unsigned char* src_data
,
129 const ConvolutionFilter1D
& filter
,
130 unsigned char* out_row
) {
131 // Loop over each pixel on this row in the output image.
132 int num_values
= filter
.num_values();
133 for (int out_x
= 0; out_x
< num_values
; out_x
++) {
134 // Get the filter that determines the current output pixel.
135 int filter_offset
, filter_length
;
136 const ConvolutionFilter1D::Fixed
* filter_values
=
137 filter
.FilterForValue(out_x
, &filter_offset
, &filter_length
);
139 // Compute the first pixel in this row that the filter affects. It will
140 // touch |filter_length| pixels (4 bytes each) after this.
141 const unsigned char* row_to_filter
= &src_data
[filter_offset
* 4];
143 // Apply the filter to the row to get the destination pixel in |accum|.
145 for (int filter_x
= 0; filter_x
< filter_length
; filter_x
++) {
146 ConvolutionFilter1D::Fixed cur_filter
= filter_values
[filter_x
];
147 accum
[0] += cur_filter
* row_to_filter
[filter_x
* 4 + 0];
148 accum
[1] += cur_filter
* row_to_filter
[filter_x
* 4 + 1];
149 accum
[2] += cur_filter
* row_to_filter
[filter_x
* 4 + 2];
151 accum
[3] += cur_filter
* row_to_filter
[filter_x
* 4 + 3];
154 // Bring this value back in range. All of the filter scaling factors
155 // are in fixed point with kShiftBits bits of fractional part.
156 accum
[0] >>= ConvolutionFilter1D::kShiftBits
;
157 accum
[1] >>= ConvolutionFilter1D::kShiftBits
;
158 accum
[2] >>= ConvolutionFilter1D::kShiftBits
;
160 accum
[3] >>= ConvolutionFilter1D::kShiftBits
;
162 // Store the new pixel.
163 out_row
[out_x
* 4 + 0] = ClampTo8(accum
[0]);
164 out_row
[out_x
* 4 + 1] = ClampTo8(accum
[1]);
165 out_row
[out_x
* 4 + 2] = ClampTo8(accum
[2]);
167 out_row
[out_x
* 4 + 3] = ClampTo8(accum
[3]);
171 // Does vertical convolution to produce one output row. The filter values and
172 // length are given in the first two parameters. These are applied to each
173 // of the rows pointed to in the |source_data_rows| array, with each row
174 // being |pixel_width| wide.
176 // The output must have room for |pixel_width * 4| bytes.
177 template<bool has_alpha
>
178 void ConvolveVertically(const ConvolutionFilter1D::Fixed
* filter_values
,
180 unsigned char* const* source_data_rows
,
182 unsigned char* out_row
) {
183 // We go through each column in the output and do a vertical convolution,
184 // generating one output pixel each time.
185 for (int out_x
= 0; out_x
< pixel_width
; out_x
++) {
186 // Compute the number of bytes over in each row that the current column
187 // we're convolving starts at. The pixel will cover the next 4 bytes.
188 int byte_offset
= out_x
* 4;
190 // Apply the filter to one column of pixels.
192 for (int filter_y
= 0; filter_y
< filter_length
; filter_y
++) {
193 ConvolutionFilter1D::Fixed cur_filter
= filter_values
[filter_y
];
194 accum
[0] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 0];
195 accum
[1] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 1];
196 accum
[2] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 2];
198 accum
[3] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 3];
201 // Bring this value back in range. All of the filter scaling factors
202 // are in fixed point with kShiftBits bits of precision.
203 accum
[0] >>= ConvolutionFilter1D::kShiftBits
;
204 accum
[1] >>= ConvolutionFilter1D::kShiftBits
;
205 accum
[2] >>= ConvolutionFilter1D::kShiftBits
;
207 accum
[3] >>= ConvolutionFilter1D::kShiftBits
;
209 // Store the new pixel.
210 out_row
[byte_offset
+ 0] = ClampTo8(accum
[0]);
211 out_row
[byte_offset
+ 1] = ClampTo8(accum
[1]);
212 out_row
[byte_offset
+ 2] = ClampTo8(accum
[2]);
214 unsigned char alpha
= ClampTo8(accum
[3]);
216 // Make sure the alpha channel doesn't come out smaller than any of the
217 // color channels. We use premultipled alpha channels, so this should
218 // never happen, but rounding errors will cause this from time to time.
219 // These "impossible" colors will cause overflows (and hence random pixel
220 // values) when the resulting bitmap is drawn to the screen.
222 // We only need to do this when generating the final output row (here).
223 int max_color_channel
= std::max(out_row
[byte_offset
+ 0],
224 std::max(out_row
[byte_offset
+ 1], out_row
[byte_offset
+ 2]));
225 if (alpha
< max_color_channel
)
226 out_row
[byte_offset
+ 3] = max_color_channel
;
228 out_row
[byte_offset
+ 3] = alpha
;
230 // No alpha channel, the image is opaque.
231 out_row
[byte_offset
+ 3] = 0xff;
236 void ConvolveVertically(const ConvolutionFilter1D::Fixed
* filter_values
,
238 unsigned char* const* source_data_rows
,
240 unsigned char* out_row
,
241 bool source_has_alpha
) {
242 if (source_has_alpha
) {
243 ConvolveVertically
<true>(filter_values
, filter_length
,
248 ConvolveVertically
<false>(filter_values
, filter_length
,
257 // ConvolutionFilter1D ---------------------------------------------------------
259 ConvolutionFilter1D::ConvolutionFilter1D()
263 ConvolutionFilter1D::~ConvolutionFilter1D() {
266 void ConvolutionFilter1D::AddFilter(int filter_offset
,
267 const float* filter_values
,
269 SkASSERT(filter_length
> 0);
271 std::vector
<Fixed
> fixed_values
;
272 fixed_values
.reserve(filter_length
);
274 for (int i
= 0; i
< filter_length
; ++i
)
275 fixed_values
.push_back(FloatToFixed(filter_values
[i
]));
277 AddFilter(filter_offset
, &fixed_values
[0], filter_length
);
280 void ConvolutionFilter1D::AddFilter(int filter_offset
,
281 const Fixed
* filter_values
,
283 // It is common for leading/trailing filter values to be zeros. In such
284 // cases it is beneficial to only store the central factors.
285 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
286 // a 1080p image this optimization gives a ~10% speed improvement.
287 int filter_size
= filter_length
;
288 int first_non_zero
= 0;
289 while (first_non_zero
< filter_length
&& filter_values
[first_non_zero
] == 0)
292 if (first_non_zero
< filter_length
) {
293 // Here we have at least one non-zero factor.
294 int last_non_zero
= filter_length
- 1;
295 while (last_non_zero
>= 0 && filter_values
[last_non_zero
] == 0)
298 filter_offset
+= first_non_zero
;
299 filter_length
= last_non_zero
+ 1 - first_non_zero
;
300 SkASSERT(filter_length
> 0);
302 for (int i
= first_non_zero
; i
<= last_non_zero
; i
++)
303 filter_values_
.push_back(filter_values
[i
]);
305 // Here all the factors were zeroes.
309 FilterInstance instance
;
311 // We pushed filter_length elements onto filter_values_
312 instance
.data_location
= (static_cast<int>(filter_values_
.size()) -
314 instance
.offset
= filter_offset
;
315 instance
.trimmed_length
= filter_length
;
316 instance
.length
= filter_size
;
317 filters_
.push_back(instance
);
319 max_filter_
= std::max(max_filter_
, filter_length
);
322 const ConvolutionFilter1D::Fixed
* ConvolutionFilter1D::GetSingleFilter(
323 int* specified_filter_length
,
325 int* filter_length
) const {
326 const FilterInstance
& filter
= filters_
[0];
327 *filter_offset
= filter
.offset
;
328 *filter_length
= filter
.trimmed_length
;
329 *specified_filter_length
= filter
.length
;
330 if (filter
.trimmed_length
== 0)
333 return &filter_values_
[filter
.data_location
];
336 typedef void (*ConvolveVertically_pointer
)(
337 const ConvolutionFilter1D::Fixed
* filter_values
,
339 unsigned char* const* source_data_rows
,
341 unsigned char* out_row
,
343 typedef void (*Convolve4RowsHorizontally_pointer
)(
344 const unsigned char* src_data
[4],
345 const ConvolutionFilter1D
& filter
,
346 unsigned char* out_row
[4]);
347 typedef void (*ConvolveHorizontally_pointer
)(
348 const unsigned char* src_data
,
349 const ConvolutionFilter1D
& filter
,
350 unsigned char* out_row
);
352 struct ConvolveProcs
{
353 // This is how many extra pixels may be read by the
354 // conolve*horizontally functions.
355 int extra_horizontal_reads
;
356 ConvolveVertically_pointer convolve_vertically
;
357 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally
;
358 ConvolveHorizontally_pointer convolve_horizontally
;
361 void SetupSIMD(ConvolveProcs
*procs
) {
364 if (cpu
.has_sse2()) {
365 procs
->extra_horizontal_reads
= 3;
366 procs
->convolve_vertically
= &ConvolveVertically_SSE2
;
367 procs
->convolve_4rows_horizontally
= &Convolve4RowsHorizontally_SSE2
;
368 procs
->convolve_horizontally
= &ConvolveHorizontally_SSE2
;
373 void BGRAConvolve2D(const unsigned char* source_data
,
374 int source_byte_row_stride
,
375 bool source_has_alpha
,
376 const ConvolutionFilter1D
& filter_x
,
377 const ConvolutionFilter1D
& filter_y
,
378 int output_byte_row_stride
,
379 unsigned char* output
,
380 bool use_simd_if_possible
) {
382 simd
.extra_horizontal_reads
= 0;
383 simd
.convolve_vertically
= NULL
;
384 simd
.convolve_4rows_horizontally
= NULL
;
385 simd
.convolve_horizontally
= NULL
;
386 if (use_simd_if_possible
) {
390 int max_y_filter_size
= filter_y
.max_filter();
392 // The next row in the input that we will generate a horizontally
393 // convolved row for. If the filter doesn't start at the beginning of the
394 // image (this is the case when we are only resizing a subset), then we
395 // don't want to generate any output rows before that. Compute the starting
396 // row for convolution as the first pixel for the first vertical filter.
397 int filter_offset
, filter_length
;
398 const ConvolutionFilter1D::Fixed
* filter_values
=
399 filter_y
.FilterForValue(0, &filter_offset
, &filter_length
);
400 int next_x_row
= filter_offset
;
402 // We loop over each row in the input doing a horizontal convolution. This
403 // will result in a horizontally convolved image. We write the results into
404 // a circular buffer of convolved rows and do vertical convolution as rows
405 // are available. This prevents us from having to store the entire
406 // intermediate image and helps cache coherency.
407 // We will need four extra rows to allow horizontal convolution could be done
408 // simultaneously. We also padding each row in row buffer to be aligned-up to
410 // TODO(jiesun): We do not use aligned load from row buffer in vertical
411 // convolution pass yet. Somehow Windows does not like it.
412 int row_buffer_width
= (filter_x
.num_values() + 15) & ~0xF;
413 int row_buffer_height
= max_y_filter_size
+
414 (simd
.convolve_4rows_horizontally
? 4 : 0);
415 CircularRowBuffer
row_buffer(row_buffer_width
,
419 // Loop over every possible output row, processing just enough horizontal
420 // convolutions to run each subsequent vertical convolution.
421 SkASSERT(output_byte_row_stride
>= filter_x
.num_values() * 4);
422 int num_output_rows
= filter_y
.num_values();
424 // We need to check which is the last line to convolve before we advance 4
425 // lines in one iteration.
426 int last_filter_offset
, last_filter_length
;
428 // SSE2 can access up to 3 extra pixels past the end of the
429 // buffer. At the bottom of the image, we have to be careful
430 // not to access data past the end of the buffer. Normally
431 // we fall back to the C++ implementation for the last row.
432 // If the last row is less than 3 pixels wide, we may have to fall
433 // back to the C++ version for more rows. Compute how many
434 // rows we need to avoid the SSE implementation for here.
435 filter_x
.FilterForValue(filter_x
.num_values() - 1, &last_filter_offset
,
436 &last_filter_length
);
437 int avoid_simd_rows
= 1 + simd
.extra_horizontal_reads
/
438 (last_filter_offset
+ last_filter_length
);
440 filter_y
.FilterForValue(num_output_rows
- 1, &last_filter_offset
,
441 &last_filter_length
);
443 for (int out_y
= 0; out_y
< num_output_rows
; out_y
++) {
444 filter_values
= filter_y
.FilterForValue(out_y
,
445 &filter_offset
, &filter_length
);
447 // Generate output rows until we have enough to run the current filter.
448 while (next_x_row
< filter_offset
+ filter_length
) {
449 if (simd
.convolve_4rows_horizontally
&&
450 next_x_row
+ 3 < last_filter_offset
+ last_filter_length
-
452 const unsigned char* src
[4];
453 unsigned char* out_row
[4];
454 for (int i
= 0; i
< 4; ++i
) {
455 src
[i
] = &source_data
[(next_x_row
+ i
) * source_byte_row_stride
];
456 out_row
[i
] = row_buffer
.AdvanceRow();
458 simd
.convolve_4rows_horizontally(src
, filter_x
, out_row
);
461 // Check if we need to avoid SSE2 for this row.
462 if (simd
.convolve_horizontally
&&
463 next_x_row
< last_filter_offset
+ last_filter_length
-
465 simd
.convolve_horizontally(
466 &source_data
[next_x_row
* source_byte_row_stride
],
467 filter_x
, row_buffer
.AdvanceRow());
469 if (source_has_alpha
) {
470 ConvolveHorizontally
<true>(
471 &source_data
[next_x_row
* source_byte_row_stride
],
472 filter_x
, row_buffer
.AdvanceRow());
474 ConvolveHorizontally
<false>(
475 &source_data
[next_x_row
* source_byte_row_stride
],
476 filter_x
, row_buffer
.AdvanceRow());
483 // Compute where in the output image this row of final data will go.
484 unsigned char* cur_output_row
= &output
[out_y
* output_byte_row_stride
];
486 // Get the list of rows that the circular buffer has, in order.
487 int first_row_in_circular_buffer
;
488 unsigned char* const* rows_to_convolve
=
489 row_buffer
.GetRowAddresses(&first_row_in_circular_buffer
);
491 // Now compute the start of the subset of those rows that the filter
493 unsigned char* const* first_row_for_filter
=
494 &rows_to_convolve
[filter_offset
- first_row_in_circular_buffer
];
496 if (simd
.convolve_vertically
) {
497 simd
.convolve_vertically(filter_values
, filter_length
,
498 first_row_for_filter
,
499 filter_x
.num_values(), cur_output_row
,
502 ConvolveVertically(filter_values
, filter_length
,
503 first_row_for_filter
,
504 filter_x
.num_values(), cur_output_row
,
510 void SingleChannelConvolveX1D(const unsigned char* source_data
,
511 int source_byte_row_stride
,
512 int input_channel_index
,
513 int input_channel_count
,
514 const ConvolutionFilter1D
& filter
,
515 const SkISize
& image_size
,
516 unsigned char* output
,
517 int output_byte_row_stride
,
518 int output_channel_index
,
519 int output_channel_count
,
520 bool absolute_values
) {
521 int filter_offset
, filter_length
, filter_size
;
522 // Very much unlike BGRAConvolve2D, here we expect to have the same filter
524 const ConvolutionFilter1D::Fixed
* filter_values
=
525 filter
.GetSingleFilter(&filter_size
, &filter_offset
, &filter_length
);
527 if (filter_values
== NULL
|| image_size
.width() < filter_size
) {
532 int centrepoint
= filter_length
/ 2;
533 if (filter_size
- filter_offset
!= 2 * filter_offset
) {
534 // This means the original filter was not symmetrical AND
535 // got clipped from one side more than from the other.
536 centrepoint
= filter_size
/ 2 - filter_offset
;
539 const unsigned char* source_data_row
= source_data
;
540 unsigned char* output_row
= output
;
542 for (int r
= 0; r
< image_size
.height(); ++r
) {
543 unsigned char* target_byte
= output_row
+ output_channel_index
;
544 // Process the lead part, padding image to the left with the first pixel.
546 for (; c
< centrepoint
; ++c
, target_byte
+= output_channel_count
) {
549 int pixel_byte_index
= input_channel_index
;
550 for (; i
< centrepoint
- c
; ++i
) // Padding part.
551 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
553 for (; i
< filter_length
; ++i
, pixel_byte_index
+= input_channel_count
)
554 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
556 *target_byte
= BringBackTo8(accval
, absolute_values
);
559 // Now for the main event.
560 for (; c
< image_size
.width() - centrepoint
;
561 ++c
, target_byte
+= output_channel_count
) {
563 int pixel_byte_index
= (c
- centrepoint
) * input_channel_count
+
566 for (int i
= 0; i
< filter_length
;
567 ++i
, pixel_byte_index
+= input_channel_count
) {
568 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
571 *target_byte
= BringBackTo8(accval
, absolute_values
);
574 for (; c
< image_size
.width(); ++c
, target_byte
+= output_channel_count
) {
576 int overlap_taps
= image_size
.width() - c
+ centrepoint
;
577 int pixel_byte_index
= (c
- centrepoint
) * input_channel_count
+
580 for (; i
< overlap_taps
- 1; ++i
, pixel_byte_index
+= input_channel_count
)
581 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
583 for (; i
< filter_length
; ++i
)
584 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
586 *target_byte
= BringBackTo8(accval
, absolute_values
);
589 source_data_row
+= source_byte_row_stride
;
590 output_row
+= output_byte_row_stride
;
594 void SingleChannelConvolveY1D(const unsigned char* source_data
,
595 int source_byte_row_stride
,
596 int input_channel_index
,
597 int input_channel_count
,
598 const ConvolutionFilter1D
& filter
,
599 const SkISize
& image_size
,
600 unsigned char* output
,
601 int output_byte_row_stride
,
602 int output_channel_index
,
603 int output_channel_count
,
604 bool absolute_values
) {
605 int filter_offset
, filter_length
, filter_size
;
606 // Very much unlike BGRAConvolve2D, here we expect to have the same filter
608 const ConvolutionFilter1D::Fixed
* filter_values
=
609 filter
.GetSingleFilter(&filter_size
, &filter_offset
, &filter_length
);
611 if (filter_values
== NULL
|| image_size
.height() < filter_size
) {
616 int centrepoint
= filter_length
/ 2;
617 if (filter_size
- filter_offset
!= 2 * filter_offset
) {
618 // This means the original filter was not symmetrical AND
619 // got clipped from one side more than from the other.
620 centrepoint
= filter_size
/ 2 - filter_offset
;
623 for (int c
= 0; c
< image_size
.width(); ++c
) {
624 unsigned char* target_byte
= output
+ c
* output_channel_count
+
625 output_channel_index
;
628 for (; r
< centrepoint
; ++r
, target_byte
+= output_byte_row_stride
) {
631 int pixel_byte_index
= c
* input_channel_count
+ input_channel_index
;
633 for (; i
< centrepoint
- r
; ++i
) // Padding part.
634 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
636 for (; i
< filter_length
; ++i
, pixel_byte_index
+= source_byte_row_stride
)
637 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
639 *target_byte
= BringBackTo8(accval
, absolute_values
);
642 for (; r
< image_size
.height() - centrepoint
;
643 ++r
, target_byte
+= output_byte_row_stride
) {
645 int pixel_byte_index
= (r
- centrepoint
) * source_byte_row_stride
+
646 c
* input_channel_count
+ input_channel_index
;
647 for (int i
= 0; i
< filter_length
;
648 ++i
, pixel_byte_index
+= source_byte_row_stride
) {
649 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
652 *target_byte
= BringBackTo8(accval
, absolute_values
);
655 for (; r
< image_size
.height();
656 ++r
, target_byte
+= output_byte_row_stride
) {
658 int overlap_taps
= image_size
.height() - r
+ centrepoint
;
659 int pixel_byte_index
= (r
- centrepoint
) * source_byte_row_stride
+
660 c
* input_channel_count
+ input_channel_index
;
662 for (; i
< overlap_taps
- 1;
663 ++i
, pixel_byte_index
+= source_byte_row_stride
) {
664 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
667 for (; i
< filter_length
; ++i
)
668 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
670 *target_byte
= BringBackTo8(accval
, absolute_values
);
675 void SetUpGaussianConvolutionKernel(ConvolutionFilter1D
* filter
,
678 DCHECK(filter
!= NULL
);
679 DCHECK_GT(kernel_sigma
, 0.0);
680 const int tail_length
= static_cast<int>(4.0f
* kernel_sigma
+ 0.5f
);
681 const int kernel_size
= tail_length
* 2 + 1;
682 const float sigmasq
= kernel_sigma
* kernel_sigma
;
683 std::vector
<float> kernel_weights(kernel_size
, 0.0);
684 float kernel_sum
= 1.0f
;
686 kernel_weights
[tail_length
] = 1.0f
;
688 for (int ii
= 1; ii
<= tail_length
; ++ii
) {
689 float v
= std::exp(-0.5f
* ii
* ii
/ sigmasq
);
690 kernel_weights
[tail_length
+ ii
] = v
;
691 kernel_weights
[tail_length
- ii
] = v
;
692 kernel_sum
+= 2.0f
* v
;
695 for (int i
= 0; i
< kernel_size
; ++i
)
696 kernel_weights
[i
] /= kernel_sum
;
699 kernel_weights
[tail_length
] = 0.0;
700 for (int ii
= 1; ii
<= tail_length
; ++ii
) {
701 float v
= sigmasq
* kernel_weights
[tail_length
+ ii
] / ii
;
702 kernel_weights
[tail_length
+ ii
] = v
;
703 kernel_weights
[tail_length
- ii
] = -v
;
707 filter
->AddFilter(0, &kernel_weights
[0], kernel_weights
.size());